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\S 1. Introduction.

Let $\mathfrak{S}$ be the set consisting of all compact bordered Riemann surfaces.
For $\overline{S}$ in $\mathfrak{S}$ , we denote its interior and its border by $S$ and $\partial S$ , respectively.
Let $P(\geqq 0)$ be the genus of $\overline{S}$ and $q(\geqq 1)$ be the number of boundary components
of $\overline{S}$ . We set

$N=2p+q-1$ .

Furthermore we denote by $A(S)$ the set of all functions which are analytic in
$S$ and continuous on $\overline{S}$ . It forms a Banach algebra with the supremum norm

$\Vert f\Vert=\sup_{z\in S}|f(z)|$ .

For $\overline{S}$ and $\overline{S}^{\prime}$ in $\mathfrak{S}$ , let $L(A(S), A(S^{\prime}))$ denote the set of all continuous inverti-
ble linear mappings of $A(S)$ onto $A(S^{\prime})$ . It is shown by Rochberg [4] that
$L(A(S), A(S^{\prime}))$ is nonvoid if $S$ and $S^{\prime}$ are homeomorphic. We set

$ c(T)=\Vert T\Vert\Vert T^{-1}\Vert$

for $T$ in $L(A(S), A(S^{\prime}))$ . We have always

$c(T)\geqq 1$ ,

and we can easily see that $ T/\Vert T\Vert$ is an isometry if and only if $c(T)=1$ . If
$T1=1$ , then

$1\leqq\Vert T\Vert\leqq c(T)$ , $1\leqq\Vert T^{-1}\Vert\leqq c(T)$ .

Let $z$ and $z^{\prime}$ be points of $S$ and $S^{\prime}$ , respectively. If there exist a positive
number $\epsilon$ and an element $T$ of $L(A(S), A(S^{\prime}))$ such that

$|f(z)-(Tf)(z^{\prime})|\leqq\epsilon$ min $(\Vert f\Vert, \Vert Tf\Vert)$

for all $f$ in $A(S)$ , then we say that $z$ and $z^{\prime}$ are $\epsilon$ -related with $resPect$ to $T$, or
$z$ and $z^{\prime}$ satisfy an $\epsilon$ -relation with respect to $T$.

The purpose of the present paper is to prove the following theorems:
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THEOREM 1. For $\overline{S}$ and $\overline{S}^{\prime}\in \mathfrak{S}$ , suppOse that there exis $ts$ a $T\in L(A(S), A(S^{\prime}))$

which is an isometry and satisfies $T1=1$ . Then there exists a conformal mappjng
$w$ of $S$ onto $S^{\prime}$ such that

$Tf=f\circ w^{-1}$

for all $f$ in $A(S)$ .
This result is not new. According to a result of Nagasawa [2; Theorem

3], a $T$ satisfying the above assumption is an algebraic isomorphism. Then,
as is well known, $T$ induces a natural mapping of the maximal ideal space of
$\overline{S}$ onto that of $\overline{S}^{\prime}$ , which determines a conformal mapping $w$ .

In \S 4, we shall give a more direct proof of Theorem 1.
THEOREM 2. If $\overline{S}$ and $\overline{S}^{\prime}\in \mathfrak{S}$ satisfy

$inf\{c(T)|T\in L(A(S), A(S^{\prime}))\}=1$ ,

then $S$ and $S^{\prime}$ are conformally equivalent.
This result has been obtained by Rochberg [4]. In \S 5, we shall give an

alternative proof by constructing a conformal mapping directly.
THEOREM 3. Let $\overline{S}\in \mathfrak{S}$ be such that $N=2p+q-1\geqq 2$ . For every suficiently

small $\epsilon>0$ and every relatively compact subdomain $D$ of $S$ , there exists a con-
stant $d>1$ having the following property:

If $T\in L(A(S), A(S))$ satisfes $c(T)<d$ and $T1=1$ , then there exists a unique
conformal automorphism $w$ of $S$ such that, for every $z\in D,$ $z$ and $w(z)$ are
$\epsilon$ -related with respect to $T$.

To state the following theorem we need a notation: For a subdomain $D$

of $S$ and an analytic function $f$ in $D$ , we mean by $N_{f}(D)$ the set of zeros of
$f$ in $D$ .

THEOREM 4. Let $\overline{S}\in \mathfrak{S}$ be such that $N=2p+q-1\geqq 2$ . Consider an arbitrary
$f_{0}\in A(S)$ . For every sufficiently small $\epsilon>0$ and every relatively compact sub-
domain $D$ of $S$ such that $f_{0}$ does not vanish on the boundary of $D$, there exis $ts$

a constant $d>1$ having the following property:
If $T\in L(A(S), A(S))$ satisfies $c(T)<d$ and $T1=1$ , then the number of zeros

of $f_{0}$ in $D$ is equal to that of $Tf_{0}$ in $w(D)$ , where $w$ is the conformal automor-
phism of $S$ determined by Theorem 3; and furthermore there exists a unique
mapping $\theta$ of $N_{Tf_{0}}(w(D))$ onto $N_{f_{0}}(D)$ such that, for every $\zeta\in N_{Tf_{0}}(w(D)),$ $\theta(\zeta)$

and $\zeta$ are $\epsilon$ -related with respect to $T$.

\S 2. The construction of the function $\phi_{\zeta}$.
For $\overline{S}\in \mathfrak{S}$, we denote its boundary components by $\Gamma_{1},$ $\cdots$ , $\Gamma_{q}$ . Let $\alpha_{1},$ $\beta_{1}$ ,

, $\alpha_{p},$
$\beta_{p}$ be simple loops on $S$ which are homologically independent modulo

$\partial S$ such that
$\alpha_{t}\cap\alpha_{j}=\emptyset$ , $\beta_{i}\cap\beta_{j}=\emptyset$ , $\alpha_{t}\cap\beta_{j}=\emptyset$
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for $i\neq j$ , and $\alpha_{i}$ intersects $\beta_{i}$ at exactly one point. By removing $\alpha_{1},$ $\beta_{1},$ $\cdots$ ,
$\alpha_{p},$

$\beta_{p}$ from $S$, we obtain a planar domain $S_{0}$ . If we set

$\gamma_{2t-1}=\alpha_{i}$ , $\gamma_{2i}=\beta_{i}$ $(i=1, \cdots, p)$ ,

$\gamma_{2p+j}=\Gamma_{j}$ $(j=1, \cdots, q-1)$ ,

$\gamma_{1},$ $\cdots$ , $\gamma_{N}$ form a canonical homology basis of $\overline{S}$ . By Ahlfors [1], there exists
a basis $\omega_{1},$

$\cdots$ , $\omega_{N}$ of the space of analytic Schottky differentials satisfying

$\int_{\gamma_{i}}\omega_{j}=\delta_{ij}$ $(i, j=1, \cdots, N)$ .

For $\zeta$ in $S$ we denote by $G_{\zeta}(z)$ the Green function on $\overline{S}$ with pole at $\zeta$ .
For each $j$ $(j=1, --, N)$ and every point $\zeta$ in $S-\gamma_{j}$ we set

(1) $\pi_{f}(\zeta)=\int_{\gamma_{j}}*dG_{\zeta}$ .

Evidently, $\pi_{j}(\zeta)$ is a continuous function of $\zeta$ on $S-\gamma_{j}$ . If $\zeta$ is a point of $\gamma_{j}$

$(1\leqq j\leqq 2p)$ , it defines two distinct accessible boundary points $\zeta_{1}$ and $\zeta_{2}$ of $S-\gamma_{j}$ .
Let $C_{1}$ be a curve in $S-\gamma_{j}$ which ends at $\zeta$ and defines $\zeta_{1}$ . If we modify $\gamma_{j}$

in a parametric disk about $\zeta$ by making a detour along a circular arc which
does not meet $C_{1}$ , then another loop $\gamma_{j}^{\prime}$ is obtained. Let $\pi_{j}(\zeta_{1})$ denote the value
obtained by using $\gamma_{j}^{\prime}$ in place of $\gamma_{j}$ in (1). Similarly, we can also define $\pi_{j}(\zeta_{2})$ .
Clearly,

(2) $\pi_{j}(\zeta_{2})-\pi_{j}(\zeta_{1})=\pm 2\pi$ .
Furthermore, $\pi_{j}(\zeta)$ is continuous on the set $S_{0}^{*}$ obtained by adding to $S_{0}=S-$

$\bigcup_{j=1}^{2p}\gamma_{j}$ all accessible boundary points which are defined by points of $\bigcup_{j=1}^{2p}\gamma_{j}$ . We

note that a natural topology can be defined on $S_{0}^{*}$ .
Now we fix a point $z_{0}$ in $S_{0}$ . For each point $\zeta$ in $S_{0}^{*}-\{z_{0}\}$ we define a

function

(3) $f_{\zeta}(z)=\exp[-\int_{z_{0}}^{z}(dG_{\zeta}+i*dG-i\sum_{j=1}^{N}\pi_{j}(\zeta)\omega_{j})]$ .

For a fixed $\zeta,$ $f_{\zeta}(z)$ is single-valued and analytic on $\overline{S}$ , consequently, it is in
$A(S)$ . Moreover, $f_{\zeta}(z)$ is continuous on $S_{0}^{*}-\{z_{0}\}$ with respect to $\zeta$ for a fixed
$z$ in $\overline{S}$ . We choose another point $\tilde{z}_{0}(\neq z_{0})$ in $S_{0}$ and denote by $f_{\zeta}(z)$ the function
defined by using $\tilde{z}_{0}$ in place of $z_{0}$ in (3). Then, there exists the limit

$g(z)=\lim_{\zeta\rightarrow z_{0}}f_{z_{0}}(\zeta)f_{\zeta}(z)$

for each $z$ in $\overline{S}$ , and $g$ is an analytic function on $\overline{S}$ . Now we set

$\phi_{\zeta}(z)=\left\{\begin{array}{ll}\tilde{f}_{z_{0}}(\zeta)f_{\zeta}(z) & for \zeta\neq z_{0}\\g(z) & for \zeta=z_{0}.\end{array}\right.$



376 Y. MIYAHARA

The function $\phi_{\zeta}(z)$ has the following properties.
(i) For a fixed $\zeta$ in $S_{0}^{*},$ $\phi_{\zeta}$ is analytic on $\overline{S}$ , consequently, it is in $A(S)$ .

Moreover, for a fixed $z$ in $\overline{S},$

$\phi_{\zeta}(z)$ is continuous on $S_{0}^{*}$ with respect to $\zeta$ .
(ii) For each $\zeta$ in $S_{0}^{*},$ $\zeta$ is a simple zero of $\phi_{\zeta}$, and it is the only zero

of $\phi_{\zeta}$.
(iii) For every compact subset $K^{*}$ of $S_{0}^{*}$ there is a constant $m(>1)$ such

that

(4) $\frac{1}{m}\leqq|\phi_{\zeta}(z)|\leqq m$

for all $z$ on $\partial S$ and all $\zeta$ in $K^{*}$ .
(iv) For each $\zeta_{0}$ in $S_{0}^{*}$

(5)
$\lim_{\zeta\rightarrow\zeta_{0}}\Vert\phi_{\zeta}-\phi_{\zeta_{0}}\Vert=0$ .

(v) If a point $\zeta$ on $\gamma_{j}$ defines two distinct accessible boundary points $\zeta_{1}$

and $\zeta_{2}$ of $S_{0},$ (2) implies that
(6) $\phi_{\zeta_{2}}(z)=g_{j}(z)\phi_{\zeta_{1}}(z)$ or $\phi_{\zeta_{2}}(z)=g_{j}(z)^{-1}\phi_{\zeta_{1}}(z)$ ,

where $g_{j}$ is a function in $A(S)$ defined by

$g_{j}(z)=\exp(2\pi i\int_{z_{0}}^{z}\omega_{j})$ .

If $\zeta$ defines four distinct accessible boundary points $\zeta_{1},$ $\zeta_{2},$ $\zeta_{3}$ and $\zeta_{4}$ of $S_{0}$ , we
obtain, for example, the following relations;

$\phi_{\zeta_{2}}(z)=g_{2j-1}(z)\phi_{\zeta_{1}}(z)$ , $\phi_{\zeta_{3}}(z)=g_{2j}(z)\phi_{\zeta_{1}}(z)$ ,

$\phi_{\zeta_{4}}(z)=g_{2j-1}(z)g_{2j}(z)\phi_{\zeta_{1}}(z)$ .

\S 3. Lemmas.

The following lemmas are due to Rochberg [3], [4] and [5].

LEMMA 1. For $\overline{S},\overline{S}^{\prime}\in \mathfrak{S}$ and for every $\epsilon>0$ , there exists a constant $d>1$

such that
$\Vert T(fg)-(Tf)(Tg)\Vert\leqq\epsilon\Vert f\Vert$ lgll

for all $T\in L(A(S), A(S^{\prime}))$ with $c(T)<d$ and $T1=1$ and for all $f,$ $g\in A(S)$ (cf.
[3]).

LEMMA 2. For every $\epsilon>0$, there exists a constant $d>1$ having the following
property:

For $\overline{S},\overline{S}^{\prime}\in \mathfrak{S}$ and every $T\in L(A(S), A(S^{\prime}))$ with $c(T)<d$ and $T1=1$ , there
exists a homeomorphism $h$ of $\partial S$ onto $\partial S^{\prime}$ such that

$|f(z)-(TfXh(z))|\leqq\epsilon\Vert f\Vert$

for all $z$ on $\partial S$ and all $f\in A(S)$ (cf. [3], [5]).



Conformal maPpings and isomorphisms of spaces of analytic functions 377

LEMMA 3. If $\overline{S}$ and $\overline{S}^{\prime}\in \mathfrak{S}$ satisfy

$inf\{c(T)|T\in L(A(S), A(S^{\prime}))\}=1$ ,

then there exists a sequence $\{T_{n}\}$ in $L(A(S), A(S^{\prime}))$ such that $c(T_{n})\rightarrow 1$ and
$T_{n}1=1$ (cf. [3]).

LEMMA 4. Under the same assumptiOn of Lemma 3, there exist a sub-
sequence $\{T_{n_{j}}\}$ of $\{T_{n}\}$ , an analytic mapping $\tau$ of $S^{\prime}$ into $S$ and an analytic
maPping $a$ of $S$ into $S^{\prime}$ such that

$\lim_{j\rightarrow\infty}(T_{n_{j}}f)(w)=f(\tau(w))$

uniformly on every comPact subset of $S^{\prime}$ for all $f\in A(S)$ , and

$\lim_{j\rightarrow\infty}(T_{n_{j}}^{-1}g)(z)=g(\sigma(z))$

uniformly on every comPact subset of $S$ for all $g\in A(S^{\prime})$ (cf. [4], [5]).

Let $D$ be a relatively compact subdomain of $S$ . If $\overline{D}\cap(\cup^{p}2\gamma_{j})$ is nonvoid,
$j=1$

we denote by $D^{*}$ the set obtained by adding to $\overline{D}-\cup 2p\gamma_{j}$ all accessible bound-
$j=1$

ary points which are defined by points of $\overline{D}\cap(\cup 2p\gamma_{j})$ . The set $D^{*}$ is a subset
$j=1$

of $S_{0}^{*}$ . If $\overline{D}\cap(\cup\gamma_{j})2p$ is void, $D^{*}$ is equal to $\overline{D}$ .
$j=1$

LEMMA 5. Let $\overline{S}$ be an element of $\mathfrak{S}$ . For every $\epsilon>0$ and every relatively

comPact subdomain $D$ of $S$, there exists a constant $d>1$ having the following
property:

For $\overline{S}^{\prime}\in \mathfrak{S}$ and $T\in L(A(S), A(S^{\prime}))$ with $c(T)<d$ and $T1=1$ , there exists a
continuous mapping $w_{T}$ of $D^{*}$ into $S^{\prime}$ such that, for every $\zeta\in D^{*},$ $\zeta$ and $w_{T}(\zeta)$

are $\epsilon$ -related with resPect to $T$ (cf. [5]).

PROOF. By property (iii) there is a constant $m>1$ for $D^{*}$ such that (4)
holds for all $z$ on $\partial S$ and all $\zeta$ in $D^{*}$ . We set $\epsilon_{1}=1/(2m^{2})$ . By Lemma 2 there
is a constant $d_{1}>1$ as follows. If $c(T)<d_{1}$ , there exists a homeomorphism $h$

of $\partial S$ onto $\partial S^{\prime}$ such that
$|\phi_{\zeta}(z)-(T\phi_{\zeta})(h(z))|\leqq\epsilon_{1}\Vert\phi_{\zeta}\Vert$

for all $z$ on $\partial S$ and all $\zeta$ in $D^{*}$ . Combining (4) and the above inequality it
follows that

$|(T\phi_{\zeta})(h(z))|>\frac{1}{2m}$

for all $z$ on $\partial S$ and all $\zeta$ in $D^{*}$ . Hence the change of argument of $T\phi_{\zeta}$ around
$\partial S^{\prime}$ is equal to the change of argument of $\phi_{\zeta}$ around $\partial S$ . Therefore, by the
argument principle, $T\phi_{\zeta}$ has the same number of zeros as $\phi_{\zeta}$ , that is, exactly
one. We denote this zero by $w_{T}(\zeta)$ . It follows from (5) that the mapping
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$w_{T}(\zeta)$ of $D^{*}$ into $S^{\prime}$ is continuous. Furthermore, using Lemma 1, we can show
by the same argument as Proof of Proposition 1 in [5] that if $c(T)$ is suffi-
ciently close to 1, $\zeta$ in $D^{*}$ and $w_{T}(\zeta)$ are $\epsilon$ -related with respect to $T$.

\S 4. Proof of Theorem 1.

Let $\{S_{n}\}\iota be$ an exhaustion of $S$. Since $T$ is an isometry by assumption,
$c(T)=1$ . Consequently, by Lemma 5 there exists a continuous mapping $w_{T}^{(n)}$

of $S_{n}^{*}$ into $S^{\prime}$ for each $n$ such that every point $\zeta$ in $S_{n}^{*}$ and $w_{T}^{(n)}(\zeta)$ satisfy an
$\epsilon$ -relation $*with$ respect to $T$ for every $\epsilon>0$ . By the dePnition of $w_{T}^{(n)},$ $w_{T}^{(n)}$

$=w_{T}^{(n+1)}=\ldots=w_{T}^{(n+k)}=\ldots$ in $S_{n}^{*}$ . Thus we obtain a continuous mapping $w_{T}$ of
$S_{0}^{*}$ into $S^{\prime}$ such that

$|f(\zeta)-(Tf)(w_{T}(\zeta))|\leqq\epsilon\Vert f\Vert$

for all $\zeta$ in $S_{0}^{*}$ and all $f$ in $A(S)$ . Since $\epsilon>0$ is arbitrary, we have a relation

(7) $(Tf)(w_{T}(\zeta))=f(\zeta)$

for every $\zeta$ in $S_{0}^{*}$ and every $f$ in $A(S)$ . If a point $\zeta$ on $\bigcup_{j=1}^{2p}\gamma_{j}$ defines two dis-

tinct accessible boundary points $\zeta_{1}$ and $\zeta_{2}$ of $S_{0}^{*}$ , it follows from (7) that

$g(w_{T}(\zeta_{1}))=g(w_{T}(\zeta_{2}))$

for all $g$ in $A(S^{\prime})$ . Hence
$w_{T}(\zeta_{1})=w_{T}(\zeta_{2})$ ,

for $A(S^{\prime})$ separates points on $S^{\prime}$ . If a $\zeta$ on $\cup\gamma_{f}2p$ defines four distinct accessible
$j=1$

boundary points $\zeta_{1},$ $\zeta_{2},$ $\zeta_{3}$ and $\zeta_{4}$ of $S_{0}$ , we similarly obtain

$w_{T}(\zeta_{1})=w_{T}(\zeta_{2})=w_{T}(\zeta_{3})=w_{T}(\zeta_{4})$ .
Therefore $w_{T}$ is a continuous mapping of $S$ into $S^{\prime}$ , and (7) holds for all $\zeta$ in
$S$ and all $f$ in $A(S)$ .

On the other hand, since $c(T^{-1})=1$ , we can use the same method as above
to $T^{-1}$ . Hence we obtain a continuous mapping $w_{T^{-1}}$ of $S^{\prime}$ into $S$ such that

(8) $(T^{-1}g)(w_{\tau-1}(\zeta^{\prime}))=g(\zeta^{\prime})$

for all $\zeta^{\prime}$ in $S^{\prime}$ and all $g$ in $A(S^{\prime})$ .
Now, for each fixed $\zeta$ in $S$ we set $\zeta^{\prime}=w_{T}(\zeta)$ . If we set $f=T^{-1}\phi_{\zeta^{\prime}}$ in (7),

$(T^{-1}\phi_{\zeta\prime})(\zeta)=\phi_{\zeta\prime}(\zeta^{\prime})=0$ .
Since $T^{-1}\phi_{\zeta\prime}$ has the only zero $w_{\tau-1}(\zeta^{\prime})$ ,

$ w_{\tau-1}(\zeta^{\prime})=\zeta$ .
Thus
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$ w_{p-1}(w_{T}(\zeta))=\zeta$

for all $\zeta$ in $S$. Similarly, it follows from (8) that

$ w_{T}(w_{r-1}(\zeta^{\prime}))=\zeta$

for all $\zeta^{\prime}$ in $S^{\prime}$ . Therefore $w=w_{T}$ is a homeomorphism of $S$ onto $S^{\prime}$ and $w^{-1}$

$=w_{\tau-1}$ . We know by (7) that $w=w_{T}$ is conformal and

$Tf=f\circ w^{-1}$

for all $f$ in $A(S)$ .

\S 5. Proof of Theorem 2.

1. By Lemmas 3 and 4 there exists a sequence $\{T_{j}\}$ in $L(A(S), A(S^{\prime}))$

with

(9) $\lim_{j\rightarrow\infty}c(T_{j})=1$ , $T_{f}1=1$ ,

and there exist an analytic mapping $\tau$ of $S$ into $S$ and an analytic mapping
$\sigma$ of $S$ into $S^{\prime}$ such that

(10) $\varliminf_{j}(T_{j}f)(w)=f(\tau(w))$

uniformly on every compact subset of $S^{\prime}$ for all $f$ in $A(S)$ , and

(11) $\lim_{j\rightarrow\infty}(T_{j}^{-1}g)(z)=g(\sigma(z))$

uniformly on every compact subset of $S$ for all $g$ in $A(S^{\prime})$ .
Let $\{S_{n}\}$ be an exhaustion of $S$ and $\{\epsilon_{n}\}$ be a sequence of positive numbers

which tends to zero. In Lemma 5 we set $\epsilon=\epsilon_{n}$ and $D=S_{n}$ for each $n$ , and
we denote the corresponding constant by $d_{n}(>1)$ . By (9), $c(T_{J_{n}})<d_{n}$ for a suffi-
ciently large $j_{n}$ . We may assume $j_{n}<j_{n+1}$ . By Lemma 5 there exists a con-
tinuous mapping

$w_{\tau_{j_{n}}}$ of $S_{n}^{*}$ into $S^{\prime}$ for each $n$ such that $\zeta$ and $w_{\tau_{J_{n}}}(\zeta)$ are
$\epsilon_{n}$ -related with respect to $T_{j_{n}}$ for all $\zeta$ in $S_{n}^{*}$ . For simplicity, we shall use the
notation $T_{n}$ in place of $T_{j_{n}}$ . By $\epsilon_{n}$ -relation

(12) $|f(\zeta)-(T_{n}f\chi w_{\tau_{n}}(\zeta))|\leqq\epsilon_{n}\Vert f\Vert$

for all $\zeta$ in $S_{n}^{*}$ and all $f$ in $A(S)$ .
2. Now we take distances $d(\cdot, )$ and $d^{\prime}(\cdot, \cdot)$ on $S_{0}^{*}$ and $\overline{S}^{\prime}$ , respectively,

which induce the original topologies of $S_{0}^{*}$ and $\overline{S}^{\prime}$ , respectively. We shall
verify that for every compact subset $K^{*}$ of $S_{0}^{*}$ the mappings $w_{\tau_{n}}$ for suffi-
ciently large $n$ are equicontinuous on $K^{*}$ . For this purpose we show that the
set of the zeros $w_{\tau_{n}}(\zeta)$ of $T_{n}\phi_{C}$ for all $n$ and all $\zeta$ in $K^{*}$ is apart from $\partial S^{\prime}$ .
If it were not, then there is a sequence $\{\zeta_{n}\}$ in $K^{*}$ such as $\{w_{\tau_{n}}(\zeta_{n})\}$ has an
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accumulating point $z_{0}^{\prime}$ on $\partial S^{\prime}$ . By choosing a subsequence if necessary, we may
assume that $\zeta_{n}\rightarrow\zeta_{0}$ for some $\zeta_{0}$ on $K^{*}$ and $w_{\tau_{n}}(\zeta_{n})\rightarrow z_{0}^{\prime}$ . Let $g$ be a noncon-
stant function in $A(S^{\prime})$ satisfying $|g|=1$ on $\partial S^{\prime}$ . (This is a so-called inner
function.) By $\epsilon_{n}$ -relation

$|(T_{n}^{-1}g)(\zeta_{n})-g(w_{\tau_{n}}(\zeta_{n}))|\leqq\epsilon_{n}$ ,

consequently,
$|g(w_{Tn}(\zeta_{n}))|\leqq|(T_{n}^{-1}g)(\zeta_{n})|+\epsilon_{n}$

for all $n$ . Hence it follows from (11) that

$1=|g(z_{0}^{\prime})|\leqq|g(a(\zeta_{0}))|<1$ .
This is a contradiction.

So, there is a domain $D^{\prime}$ whose boundary consists of a finite number of
analytic closed curves such that

$w_{\tau_{n}}(K^{*})\subset D^{\prime}\subset\overline{D}^{\prime}\subset S^{\prime}$

for all $n$ . If we apply the residue theorem to every function $\psi$ in $A(S)$ , then

$\psi(w_{\tau_{n}}(\zeta))=\frac{1}{2\pi i}\int_{\partial D^{\prime}}\psi(z^{\prime})\frac{(T_{n}\phi_{\zeta})^{\prime}(z^{\prime})}{(T_{n}\phi_{\zeta})(z)}dz^{\prime}$

for all $n$ and all $\zeta$ in $K^{*}$ . Hence, using (5) we can show that if an $\epsilon>0$ is
given there is a $\delta>0$ such that

(13) $|\psi(w_{\tau_{n}}(\zeta_{1}))-\psi(w_{T_{n}}(\zeta_{2}))|<\epsilon$

for all $\zeta_{1}$ and $\zeta_{2}$ in $K^{*}$ with $ d(\zeta_{1}, \zeta_{2})<\delta$ and for all $n$ .
The above implies that if an $\epsilon>0$ is given there is a $\delta>0$ such as

$ d^{\prime}(w_{\tau_{n}}(\zeta_{1}), w_{\tau_{n}}(\zeta_{2}))<\epsilon$

for all $\zeta_{1}$ and $\zeta_{2}$ in $K^{*}$ with $ d(\zeta_{1}, \zeta_{2})<\delta$ and for all $n$ . If it were not, then
there are an $\epsilon>0$ and points $\zeta_{1n},$ $\zeta_{2n}$ in $K^{*}$ with $d(\zeta_{1n}, \zeta_{2n})\rightarrow 0$ such that

$ d^{\prime}(w_{\tau_{n}}(\zeta_{1n}), w_{\tau_{n}}(\zeta_{2n}))\geqq\epsilon$ .
We may assume that $\zeta_{1n}\rightarrow\zeta_{0},$ $\zeta_{2n}\rightarrow\zeta_{0}$ for some $\zeta_{0}$ in $K^{*},$ $w_{\tau_{n}}(\zeta_{1n})\rightarrow w_{1}$ for some
$w_{1}$ in $S^{\prime}$ and $w_{\tau_{n}}(\zeta_{2n})\rightarrow w_{2}$ for some $w_{2}$ in $S^{\prime}$ . The above inequality implies
$d^{\prime}(w_{1}, w_{2})\geqq\epsilon>0$ . Hence $w_{1}\neq w_{2}$ . Since the space $A(S^{\prime})$ separates points on $S^{\prime}$ ,
there is a function $\psi$ in $A(S^{\prime})$ such as

$\psi(w_{1})\neq\psi(w_{2})$ .
If an $\epsilon>0$ is given, it follows from (13) that

$|\psi(w_{\tau_{n}}(\zeta_{1n}))-\psi(w_{\tau_{n}}(\zeta_{2n}))|<\epsilon$

for sufficiently large $n$ . Letting $n$ go to infinity, we obtain



Conformal mappjngs and isomorphisms of spaces of analytic functions 381

$|\psi(w_{1})-\psi(w_{2})|\leqq\epsilon$ .

Since $\epsilon>0$ is arbitrary, we have

$\psi(w_{1})=\psi(w_{2})$ .
This is a contradiction. Thus the mappings $w_{\tau_{n}}$ are equicontinuous on $K^{*}$ .
From this and the fact that $\{w_{\tau_{n}}(\zeta)\}$ has a limit point in $S^{\prime}$ for every $\zeta$, we
conclude that $\{w_{\tau_{n}}(\zeta)\}$ is a normal family.

3. By choosing a subsequence if necessary, we may assume that there is
a continuous mapping $w$ of $S_{0}^{*}$ into $S^{\prime}$ such that

(14) $\varliminf_{n}w_{\tau_{n}}(\zeta)=w(\zeta)$

uniformly on every compact subset of $S_{0}^{*}$ . In order to show that the mapping
$w(\zeta)$ can be defined on $S$ and it is continuous on $S$ , we must show that it
assumes the same value at distinct accessible boundary points of $S_{0}^{*}$ defined

by each point $\zeta$ on $\bigcup_{j=1}^{2p}\gamma_{j}$ . Suppose that a point $\zeta$ on $\gamma_{j}$ dePnes two distinct

boundary points $\zeta_{1}$ and $\zeta_{2}$ . By (6) and Lemma 1, if an $\epsilon>0$ is given, we have

(15) $\Vert T_{n}\phi_{\zeta_{2}}-(T_{n}g_{j})(T_{n}\phi_{\zeta_{1}})\Vert=\Vert T_{n}(g_{j}\phi_{\zeta_{1}})-(T_{n}g_{j})(T_{n}\phi_{\zeta_{1}})\Vert$

$\leqq\epsilon\Vert g_{j}||\Vert\phi_{\zeta_{1}}\Vert$

for all sufficiently large $n$ . We know from (10) that the sequences $\{T_{n}\phi_{\zeta_{2}}\}$ and
$\{(T_{n}g_{j})(T_{n}\phi_{\zeta_{1}})\}$ converge uniformly on every compact subset of $S^{\prime}$ . By (15)

they have the same limit function

$h=\lim_{n\rightarrow\infty}T_{n}\phi_{\zeta_{2}}=\lim_{n\rightarrow\infty}(T_{n}g_{j})(T_{n}\phi_{\zeta_{1}})$ .

By (12) and (14) we have
$h(w(\zeta))=\phi_{\zeta_{2}}(\zeta)$

for all $\zeta$ in $S_{0}^{*}$ . Consequently, neither $h$ nor $w$ is a constant.
Now $T_{n}\phi_{\zeta_{2}}$ has the only zero $w_{\tau_{n}}(\zeta_{2})$ . Since $g_{j}$ has no zeros, by the same

argument as the proof of Lemma 5 we can see that $T_{n}g_{j}$ also has no zeros
for all sufficiently large $n$ . Hence $(T_{n}g_{j})(T_{n}\phi_{(}1)$ has the only zero $w_{\tau_{n}}(\zeta_{1})$ for
all sufficiently large $n$ . By Hurwitz’ theorem, $h$ has only one zero, and the
zeros of $T_{n}\phi_{\zeta_{2}}$ and $(T_{n}g_{j})(T_{n}\phi_{\zeta_{1}})$ converge to it as $ n\rightarrow\infty$ . Therefore

$\lim_{n\rightarrow\infty}w_{\tau_{n}}(\zeta_{1})=\lim_{n\rightarrow\infty}w_{\tau_{n}}(\zeta_{2})$ ,

that is,
$w(\zeta_{1})=w(\zeta_{2})$ .

If a point $\zeta$ on $\gamma_{j}$ defines four distinct accessible boundary points $\zeta_{1},$ $\zeta_{2},$ $\zeta_{3}$ and



382 Y. MIYAHARA

$\zeta_{4}$ of $S_{0}$ , we can similarly show that

$w(\zeta_{1})=w(\zeta_{2})=w(\zeta_{3})=w(\zeta_{4})$ .
Thus $w$ is a continuous mapping of $S$ into $S^{\prime}$.

4. Let $p^{\prime}$ be the genus of $\overline{S}^{\prime}$ and $q^{\prime}$ be the number of its boundary $compo\rightarrow$

nents. We set $N^{\prime}=2p^{\prime}+q^{\prime}-1$ and denote by $\gamma_{1}^{\prime},$ $\cdots$ , $\gamma_{N^{i}}^{\prime}$ the canonical homology

basis of $\overline{S}^{\prime}$ as before mentioned. We set $S_{0}^{\prime}=S^{\prime}-U\gamma_{j}^{\prime}2p^{J}$ and denote by $(S_{0}^{\prime})^{*}$ the
$j=1$

set obtained by adding to $S_{0}^{\prime}$ all accessible boundary points which are defined

by points of $2p^{\prime}\cup\gamma_{j}^{f}$ .
$j=1$

Since $c(T_{j}^{-1})=c(T_{j}),$ (9) implies that

$\lim_{j\rightarrow}c(T_{j}^{-1})=1$ , $T_{j}^{-1}1=1$ .

Let $\{S_{n}^{\prime}\}$ be an exhaustion of $S^{\prime}$ . By the same argument as before there
exists a continuous mapping $w_{\tau_{n}^{-1}}$ of $(S_{n}^{\prime})^{*}$ into $S$ for each $n$ such that

(16) $\lim_{n\rightarrow\infty}w_{\tau_{n}^{-1}}(\zeta^{\prime})=w^{\prime}(\zeta^{\prime})$

uniformly on every compact subset of $(S_{0}^{\prime})^{*}$ , where $w^{\prime}$ is a continuous mapping
of $S^{\prime}$ into $S$, and moreover $\zeta^{\prime}$ and $w_{\tau_{n}^{-1}}(\zeta^{\prime})$ are $\epsilon_{n}$ -related with respect to $T_{n}^{-1}$

for all $\zeta^{\prime}$ in (S\’o)*. It follows from $\epsilon_{n}$ -relation that

(17) $|(T_{n}f)(\zeta^{\prime})-f(w\tau-1(\zeta^{\prime}))|\leqq\epsilon_{n}\Vert f\Vert n$

for all $\zeta^{\prime}$ in $(S_{n}^{\prime})^{*}$ and all $f$ in $A(S)$ .
5. Now we set $\zeta^{\prime}=w(\zeta)$ for each fixed $\zeta$ in $S$ . If $n$ is sufficiently large,

$\zeta$ is in $S_{n}$ and $\zeta^{\prime}$ is in $S_{n}^{\prime}$ . Then, for every $f$ in $A(S)$

(18) $|f(\zeta)-Xw^{\prime}(\zeta^{\prime}))|$

$\leqq|f(\zeta)-(T_{n}f)(w_{\tau_{n}}(\zeta))|+|(T_{n}f)(w_{\tau_{n}}(\zeta))-(T_{n}f)(w(\zeta))|$

$+|(T_{n}f)(\zeta^{\prime})-f(w_{\tau_{n}^{-1}}(\zeta^{\prime}))|+|f(w_{\tau_{n}^{-1}}(\zeta^{\prime}))-f(w^{\prime}(\zeta^{\prime}))|$ .
By (12), (17) and (16), the first term, the third term and the last term of the
right side of (18) converge to $0$ as $ n\rightarrow\infty$ . The functions $T_{n}f$ are equicontinu-
ous on every compact subset of $S^{\prime}$ , for they are uniformly bounded on $S^{\prime}$ .
Hence, by (14) the second term of the right side of (18) converges to $0$ as
$ n\rightarrow\infty$ . Thus it follows from (18) that

$f(w^{\prime}(\zeta^{\prime}))=f(\zeta)$ .
If we set $f=\phi_{\zeta}$ particularly, we obtain

$\phi_{\zeta}(w^{\prime}(\zeta^{\prime}))=\phi_{C}(\zeta)=0$ .
Since $\zeta$ is the only zero of $\phi_{(}$, we have
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$ w^{\prime}(\zeta^{\prime})=\zeta$ .
Thus

$ w^{\prime}(w(\zeta))=\zeta$

for all $\zeta$ in $S$. We also obtain by the same argument as above

$w(w^{\prime}(\zeta^{\prime}))=\zeta^{\prime}$

for all $\zeta^{\prime}$ in $S^{\prime}$ . Therefore $w$ is a homeomorphism of $S$ onto $S^{\prime}$ .
By (10) a sequence $\{T_{n}f\}$ converges uniformly on every compact subset of

$S^{\prime}$ for every $f$ in $A(S)$ . We set

$g=\lim_{n\rightarrow\infty}T_{n}f$ ,

where $g$ is an analytic function on $S^{\prime}$ . It follows from (12) that

(19) $g(w(\zeta))=f(\zeta)$

for all $\zeta$ in $S$ . If $f$ is not a constant, $g$ is not one. Sincef andg are analytic,
(19) implies that $w(\zeta)$ is analytic on S. Therefore $w$ is a conformal mapping of
$S$ onto $S^{\prime}$ .

\S 6. Proof of Theorem 3.

Since $N\geqq 2$ , there are only a finite number of conformal automorphisms
of $S$. We denote them by $w_{1},$

$\cdots$ , $w_{M}$ . For every relatively compact subdomain
$D$ of $S$ and for every $\epsilon>0$, we want to show the existence of a $d>1$ such that
if $c(T)<d$ and $T1=1$ , then

$|f(z)-(Tf)(w_{j}(z))|\leqq\epsilon\min(\Vert f\Vert, \Vert Tf\Vert)$

for a certain $j(1\leqq j\leqq M)$ , for all $f$ in $A(S)$ and for all $z$ in $D$ . If it is not
true, then for some relatively compact subdomain $D$ of $S$ and for some $\epsilon>0$

there is a sequence $d_{n}(>1)$ which converges to 1 as follows. For each $n$ there
is a $T_{n}$ in $L(A(S), A(S))$ with $c(T_{n})<d_{n}$ and $T_{n}1=1$ such that for each $j$

$(1\leqq j\leqq M)$ there are an $f_{jn}$ in $A(S)$ and a $z_{jn}$ in $D$ satisfying

(20) $|f_{jn}(z_{jn})-(T_{n}f_{jn})(w_{j}(z_{jn}))|>\epsilon\Vert f_{jn}\Vert$

or
(21) $|f_{jn}(z_{jn})-(T_{n}f_{jn})(w_{j}(z_{jn}))|>\epsilon\Vert T_{n}f_{jn}\Vert$ .

Since $c(T_{n})\rightarrow 1$ and $T_{n}1=1$ , we can use the same arguments as the proof of
Theorem 2. Hence, by choosing a subsequence if necessary, we may assume
that for a certain $j(1\leqq j\leqq M)$

(22) $\lim_{n\rightarrow\infty}w_{\tau_{n}}(z)=w_{j}(z)$



384 Y. MIYAHARA

uniformly on every compact subset of $S_{0}^{*}$ , where $w_{\tau_{n}}$ is the mapping in Lemma
5. By using Lemma 5, we may simultaneously assume that

(23) $|f_{jn}(z_{jn})-(T_{n}f_{jn})(w_{\tau_{n}}(z_{jn}))|\leqq\frac{\epsilon}{2}$ min $(\Vert f_{jn}\Vert , \Vert T_{n}f_{jn}\Vert)$ .

In addition, we may assume that with respect to the $j$ we have selected,
either (20) or (21) holds for every $n$ . Furthermore, we may assume that $z_{jn}\rightarrow z_{0}$

as $ n\rightarrow\infty$ for some $z_{0}$ in $\overline{D}$.
Since the functions $ f_{jn}/\Vert f_{jn}\Vert$ and $(T_{n}f_{jn})/||f_{jn}\Vert$ are uniformly bounded on

$S$, we can assume that for certain analytic functions $f_{0}$ and $g_{0}$ on $S$

$\lim_{n\rightarrow\infty}\frac{f_{jn}}{\Vert f_{jn}\Vert}=f_{0}$ , $\lim_{n\rightarrow\infty}\frac{T_{n}f_{jn}}{\Vert f_{jn}\Vert}=g_{0}$

uniformly on every compact subset of $S$ . If (20) holds for every $n$ , then

$|\frac{f_{jn}(z_{jn})}{||f_{jn}||}-\frac{(T_{n}f_{jn})(w_{j}(z_{jn}))}{\Vert f_{jn}\Vert}|>\epsilon$ .

Letting $n$ go to infinity, we obtain

$|f_{0}(z_{0})-g_{0}(w_{j}(z_{0}))|\geqq\epsilon$ .
On the other hand, it follows from (22) and (23) that

$|f_{0}(z_{0})-g_{0}(w_{j}(z_{0}))|\leqq\frac{\epsilon}{2}$ ,

which is a contradiction. If (21) holds for every $n$ , the similar argument yields
a contradiction.

Finally we must prove the uniqueness of $w$ for every sufficiently small
$\epsilon>0$ . If it is not true, there are positive sequence $\{\epsilon_{n}\}$ with $\epsilon_{n}\rightarrow 0$ , a sequence
$\{T_{n}\}$ in $L(A(S), A(S))$ and distinct conformal automorphisms $w_{j},$ $w_{i}(j\neq k)$ such
that

(24) $|f(z)-(T_{n}f)(w_{j}(z))|\leqq\epsilon_{n}\min(\Vert f\Vert, \Vert T_{n}f\Vert)$

and

(25) $|f(z)-(T_{n}f)(w_{k}(z))|\leqq\epsilon_{n}\min(\Vert f\Vert, \Vert T_{n}f\Vert)$

for all $f$ in $A(S)$ and all $z$ in $D$ . We choose a point $z_{1}$ in $Dsuch_{\overline{s}}that$

$w_{j}(z_{1})\neq w_{k}(z_{1})$ .
It follows from (24) and (25) that

$|f(w_{j}(z_{1}))-f(w_{k}(z_{1}))|$

$\leqq|f(w_{j}(z_{1}))-(T_{n}^{-1}f)(z_{1})|+|f(w_{k}(z_{1}))-(T_{n}^{-1}f)(z_{1})|$

$\leqq 2\epsilon_{n}\Vert f\Vert$



$\prime^{-}onformalmaP_{Y}^{\wedge}ings$ and isomorphisms of spaces of analytic functions 385

for all $f$ in $A(S)$ . Hence
$f(w_{j}(z_{1}))=f(w_{k}(z_{1}))$

for all $f$ in $A(S)$ . This is a contradiction, for the space $A(S)$ separates points
on $S$. Thus the uniqueness has been proved.

\S 7. Proof of Theorem 4.

1. Let $D$ be a relatively compact subdomain of S. We may assume that
the boundary $C$ of $D$ consists of a finite number of contours and $f_{0}$ does not
vanish on $C$ . Let $m$ be the minimum of $|f_{0}|$ on $C$. For every $\epsilon$ with $0<\epsilon<m$ ,
we set

$\epsilon_{1}=\min(\frac{\epsilon}{2},$
$\frac{\epsilon}{2\Vert f_{0}\Vert})$ .

By Theorem 3 there is a constant $d_{1}>1$ as follows. If a $T$ in $L(A(S), A(S))$

satisfies $c(T)<d_{1}$ and $T1=1$ , then there is a unique automorphism $\iota u$ of $S$ such
that

(26) $|f(z)-(Tf)(w(z))|\leqq\epsilon_{1}\min(\Vert f\Vert, \Vert Tf\Vert)$

$\leqq\frac{\epsilon}{2}\min(\Vert f\Vert, \Vert Tf\Vert)$

for all $f$ in $A(S)$ and all $z$ in $\overline{D}$ . Particularly,

(27) $|f_{0}(z)-(Tf_{0})(w(z))|\leqq\epsilon_{1}\Vert f_{0}\Vert<\epsilon$

$<m\leqq|f_{0}(z)|$

for all $z$ on $C$ . Hence, by the theorem of Rouch\’e, $f_{0}(z)$ and $(Tf_{0})(w(z))$ have
the same number of zeros in $D$ .

2. Now we take a distance $d(\cdot, )$ on $S$ which induces the original topo-
logy of $S$ . All functions $ f/\Vert f\Vert$ and $f/\Vert Tf\Vert forf\in A(S)$ and for Twith $c(T)<d_{1}$

are equicontinuous on $D$ , consequently, if $\delta>0$ is sufficiently small and $c(T)<d_{1}$ ,
then

(28) $|f(z_{1})-f(z_{2})|\leqq\frac{\epsilon}{2}\min(\Vert f\Vert, \Vert Tf\Vert)$

for all $z_{1},$ $z_{2}$ in $D$ with $ d(z_{1}, z_{2})<\delta$ and for all $f$ in $A(S)$ .
3. Let $a_{1},$ $\cdots$ , $a_{l}$ be the elements of $N_{f_{0}}(D)$ . We may assume that the

neighborhoods $U_{\delta}(a_{j})=\{z|d(z, a_{j})<\delta\}(j=1, \cdots, 1)$ are contained in $D$ and mutually
disjoint. We want to show that for every sufficiently small $\epsilon>0$ there is a
$d>1$ such that, if $c(T)<d$ and $w$ is the conformal automorphism corresponding
to $T$ in the sense of Theorem 3, then for every $\zeta$ in $N_{Tf_{0}}(w(D)),$ $w^{-1}(\zeta)$ is
contained in $U_{\delta}(a_{j})$ for some $j$ with $1\leqq j\leqq l$ . If it is not true, then there are
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a positive sequence $\{\epsilon_{n}\}$ with $\epsilon_{n}\rightarrow 0$, a sequence $\{T_{n}\}$ in $L(A(S), A(S))$ satisfying
$c(T_{n})\rightarrow 1$ and $T_{n}1=1$ , and a point $\zeta_{n}$ in $N_{\tau_{n^{f_{0}}}}(w(D))$ , where $w$ is a fixed con-
formal autoInorphism corresponding to $T_{n}$ in the sense of Theorem 3 such
that $w^{-1}(\zeta_{n})$ is not in $U_{\delta}(a_{j})$ for every $n$ and every $j$ with $1\leqq j\leqq l$ . Since we
may use (27) for $\epsilon=\epsilon_{n}$ and $T=T_{n}$ , we obtain

(29) $|f_{0}(z)-(T_{n}f_{0})(w(z))|<\epsilon_{n}$

for all $z$ in $D$ . Hence
$|f_{0}(w^{-1}(\zeta_{n}))|<\epsilon_{n}$ ,

consequently,

$\lim_{n\rightarrow\infty}f_{0}(w^{-1}(\zeta_{n}))=0$ .

We may assume that $\zeta_{n}\rightarrow\zeta_{0}$ for some $\zeta_{0}$ in $S$ . Then, $f_{0}(w^{-1}(\zeta_{0}))=0$, so, $w^{-1}(\zeta_{0})$

$=a_{j}$ for some $j$ with $1\leqq j\leqq l$ . Hence

$\lim_{n-}w^{-1}(\zeta_{n})=a_{j}$ ,

which is a contradiction.
4. In the previous section we have shown that for every $\zeta$ in $N_{Tf_{0}}(w(D))$

there is an $a_{j}$ in $N_{f_{0}}(D)$ whose $\delta$-neighborhood contains $w^{-1}(\zeta)$ if $\epsilon>0$ is suffi-
ciently small and $c(T)$ is sufficiently close to 1. Then, it follows from (26) and
(28) that if $c(T)$ is sufficiently close to 1 and $T1=1$ ,

$|f(a_{j})-(Tf)(\zeta)|$

$\leqq|f(a_{j})-f(w^{-1}(\zeta))|+|f(w^{-1}(\zeta))-(Tf)(\zeta)|$

$\leqq\epsilon\min(\Vert f\Vert, \Vert Tf\Vert)$

for all $f$ in $A(S)$ . Namely, $a_{j}$ and $\zeta$ are $\epsilon$ -related with respect to $T$. Thus, if
$\epsilon>0$ is sufficiently small and $c(T)$ is sufficiently close to 1, we can define a
mapping $\theta$ of $N_{Tf_{0}}(w(D))$ into $N_{Jo}(D)$ by setting, for every $\zeta$ in $N_{Tf_{0}}(w(D))$ ,
$\theta(\zeta)=a_{j}$ . Observe that $\theta(\zeta)$ and $\zeta$ are $\epsilon$ -related with respect to $T$.

5. Next, we shall prove that $\theta$ is characterized as the mapping of $N_{Tf_{0}}$

$(w(D))$ into $N_{Jo}(D)$ such that $\theta(\zeta)$ and $\zeta$ are $\epsilon$ -related with respect to $T$. We
may show that if $\epsilon>0$ is sufficiently small and $c(T)$ is sufficiently close to 1,
then a point $a_{j}$ in $N_{f_{0}}(D)$ is uniquely determined for a given $\zeta$ in $N_{Tf_{0}}(w(D))$

by the condition that $a_{j}$ and $\zeta$ are e-related with respect to $T$. If it were
not, then there are a positive sequence $\{\epsilon_{n}\}$ with $\epsilon_{n}\rightarrow 0$, a sequence $\{T_{n}\}$ with
$c(T_{n})\rightarrow 1$ , distinct points $a_{j},$ $a_{k}$ in $N_{f_{0}}(D)(j\neq k)$ and a point $\zeta_{n}$ in $N_{\tau_{n^{f_{0}}}}(w(D))$ ,
where $w$ is a fixed conformal automorphism corresponding to $T_{n}$ , such that $a_{j}$

and $\zeta_{n},$ $a_{k}$ and $\zeta_{n}$ are $\epsilon_{n}$ -related with respect to $T_{n}$ . Hence
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$|f(a_{j})-f(a_{k})|$

$\leqq|f(a_{j})-(T_{n}f)(\zeta_{n})|+|f(a_{k})-(T_{n}f)(\zeta_{n})|$

$\leqq 2\epsilon_{n}\Vert f\Vert$

for all $f$ in $A(S)$ . Therefore
$f(a_{j})=f(a_{k})$

for all $f$ in $A(S)$ , which is a contradiction.
6. Let $\epsilon>0$ be a sufficiently small number. We denote by $D_{0}$ the union

of $w(D)$ for all conformal automorphisms $w$ of $S$ . It is a relatively compact
subdomain of $S$ . Since all functions $(Tf)/\Vert f\Vert$ and $(Tf)/\Vert Tf\Vert$ for $f\in A(S)$ and
for $T$ with $c(T)$ close to 1 are equicontinuous on $D_{0}$ , we can choose a $\delta>0$

such that

(30) $|(Tf)(z_{1})-(Tf)(z_{2})|\leqq\frac{\epsilon}{2}\min(\Vert f\Vert, \Vert Tf\Vert)$

for all $z_{1},$ $z_{2}$ in $D_{0}$ with $ d(z_{1}, z_{2})<\delta$ , for all $f$ in $A(S)$ and for all $T$ with $c(T)$

sufficiently close to 1.
7. To continue, we need the following proposition:
For every sufficiently small $\epsilon>0$ , there exists a $d>1$ such that, if $c(T)<d$

and $T1=1$ , then there exists a point $\zeta\in N_{Tf_{0}}(w(D))$ whose $\delta$-neighborhood con-
tains $w(a)$ , where $a$ is an arbitrary point of $N_{f_{0}}(D)$ and $w$ is the conformal
automorphism of $S$ corresponding to $T$ in the sense of Theorem 3.

Suppose that this proposition does not hold. Then there are a positive
sequence $\{\epsilon_{n}\}$ with $\epsilon_{n}\rightarrow 0$ and a sequence $\{T_{n}\}$ in $L(A(S), A(S))$ with $c(T_{n})\rightarrow 1$

and $T_{n}1=1$ satisfying the following property; there is a conformal automor-
phism $w$ of $S$ independent of $n$ such that (29) is satisfied and $w(a)$ is not in
$U_{\delta}(\zeta)$ for any $\zeta$ in $N_{\tau_{n^{f_{0}}}}(w(D))$ . It follows from (29) that

$|(T_{n}f_{0})(w(a))|<\epsilon_{n}$ ,
consequently

(31) $\lim_{n\sim\varpi}(T_{n}f_{0})(w(a))=0$ .

We may assume that $\{T_{n}f_{0}\}$ converges uniformly on every compact subset
of $S$ . We set

(32) $g_{0}=\lim_{n\rightarrow\infty}T_{n}f_{0}$

The inequality (29) implies that

$f_{0}(z)=g_{0}(w(z))$

in $D$ . Hence the zeros of $g_{0}$ in $w(D)$ are



388 Y. MIYAHARA

$\zeta_{j}=w(a_{j})$ $(j=1, \cdots\prime 1)$ .
If we choose a sufficiently small $\delta_{1}$ with $0<\delta_{1}<\delta/2$ , tbe neighborhoods $U_{\delta 1}(\zeta_{j})$

\langle$j=1,$ $\cdots$ , l) are contained in $w(D)$ and mutually disjoint. There is a constant
$\eta>0$ such that

$|g_{0}(z)|>\eta$

for all $z$ in $w(D)-U^{l}U_{\delta_{1}}(\zeta_{j})j=1$ Since the convergence in (32) is uniform on
$w(D)$ ,

$|(T_{n}f_{0})(z)|>\eta$

for all $z$ in $w(D)-U^{l}U_{\delta_{1}}(\zeta_{j})$ and for all sufficiently large $n$ . By Hurwitz’ theo-
$j=1$

rem, each $U_{\delta_{1}}(\zeta_{j})$ contains a point $\zeta$ in $N_{T_{n}f_{0}}(w(D))$ if $n$ is sufficiently large.
Then, $\delta>2\delta_{1}$ implies $U_{\delta}(\zeta)\supset U_{\delta_{1}}(\zeta_{j})$ . Hence $w(a)$ is not in $U_{\delta_{1}}(\zeta_{j})(j=1, \cdots, l)$ ,
for $w(a)$ is not in $U_{\delta}(\zeta)$ for any $\zeta$ in $N_{\tau_{n^{f_{0}}}}(w(D))$ . Therefore we can conclude
that

$|(T_{n}f_{0})(w(a))|>\eta$

for all sufficiently large $n$ . This contradicts (31).
8. Now, let us prove that the mapping $\theta$ is onto. Let $a$ be an arbitrary

point in $N_{f_{0}}(D)$ . For every sufficiently small $\epsilon>0$, we take a $T$ with $T1=1$

and $c(T)$ sufficiently close to 1 so that (26) and (30) are satisfied, and so that
there exists the $\zeta$ satisfying the proposition in the previous section. Then
we have

$|f(a)-(Tf)(\zeta)|$

$\leqq|f(a)-(Tf)(w(a))|+|(Tf)(w(a))-(Tf)(\zeta)|$

$\leqq\epsilon\min$( $\Vert$ fll, 1 $\tau f\Vert$ )

for all $f$ in $A(S)$ . Namely, $a$ and $\zeta$ are $\epsilon$ -related with respect to $T$. Remember
that $\theta(\zeta)$ is characterized by the condition that $\theta(\zeta)$ and $\zeta$ are $\epsilon$ -related with
respect to $T$. Hence $a=\theta(\zeta)$ , that is, the mapping $\theta$ is onto. Thus the proof
has been completed.
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