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§1. Introduction

Based on the Hardy-Littlewood method, Davenport and Heilbronn proved
that if A,, ---, A, are non-zero real numbers, not all of the same sign and not
all in rational ratio and if for any given integer k=1, s=2*%+1, then for every
e>0 the inequality

| S Ank| <e
j=1

has infinitely many solutions in natural numbers n;. Later, Schwarz showed
that if either s=2*41 or s=2k%2 log k+loglog k-+5/2)—1 (for £=12), then the
inequality

| S apsl<e (11)

has infinitely many solutions in prime numbers p;. A. Baker [1] raised a new
kind of approximation by proving that when k=1, s=3 and A is any arbitrary
natural number, the ¢ in [I.I] can be replaced by (log maxp;)"4. Recently,
Ramachandra [9] has obtained this result for arbitrary %k and with the p*
replaced by arbitrary integer-valued polynomials f;(p;) with positive leading
coefficients provided that s satisfies the same condition as that required by

Schwarz. In 1974, Vaughan made a remarkable progress in this problem
by proving that if k=4,

217k if k<12,
a:{ (1.2)
(2k%(2 log k+loglog E+3))"* if £>12,
N=[(—log 20-+log(1—2/k))/(—log(1—1/k))] (1.3)
and
s=2(k+N)+7, (1.4)

then the ¢ in can be replaced by (maxp;)"?, where o is any positive
constant<(5(k-+1)22*+1)"1  In this paper we shall adapt the elegant method of

to establish :
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THEOREM 1. Suppose that k=3, (1.2), (1.3), (1.4) hold and @,(x)(j=1, -, s)
are any polynomials of same degree k with integer coefficients and positive leading
coefficients. Then for any real number 7 and for any non-zero real numbers
A,y As which are not all of the same sign and not all in rational ratio, there
are infinitely many solutions in primes p; of the inequality

I+ 2 2,@,(p,)| <(max p;)?, (15)

where B is any constant with

0< B<(V/21—1)/(A5(k+1)22¢k+D) | (1.6)
THEOREM 2. Let k=2 and .
s=2k+1., (1.7)

Let 3, B, @,x) and 2; (j=1, -+, s) satisfy the same hypotheses of Theorem 1.
Then (1.5) has infinitely many solutions in primes p;.

When £k is small is the same condition required by Schwarz and
Ramachandra [9] which is better than only when £=4 (c.{f. the table in
§7). So our Theorems 1 and 2 form an improvement of results in [9] in both
the lower bound of s and the accuracy of the approximation. On the other
hand, our Theorems 1, 2, 3 and Lemma 7 extend Theorems 1, 2 and Corollary
2.1 in [12] to polynomials of degree k=2 with some improvement in the upper
bound of ¢ When k=2, 3, our extension fills up the gap left in [12]. By
(1.2), (1.3), (1.4) we see that if % is large then the lower bound of s <Cklogk
where the positive constant C can be arbitrarily close to 4.

For positive X, we use U(X)=U, with or without a suffix or superfix, to
denote a finite set of distinct real numbers such that no element exceeds X in
absolute value and each pair of different elements, say u,, u,, satisfies |u,—1u,|
=>1. U(X) has density v (<1) if |U], the number of elements of U(X) satisfies

Ul >X">. (1.8)

In §4 we shall prove

THEOREM 3. Let %, B, P{x), 4; (j=1, -+, s) satisfy the same hypotheses of
Theorem 1. Suppose that for each integer m>0 and sufficiently large X there
exist sets U, (X) (=1, 2) having density v such that each element in U, (i=1, 2)
can be written in the form

m=1
EZMHHJ'EPJ-(‘Z?J-) (f:l, 2)

with P{(p;)<X, where integer M=21+1 and
IZk; [>R(1—v)/20. (1.9)
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If s=M+2m then (1.5) has infinitely many solutions in primes p,.

As for polynomials we have to make some weaker estimates, especially in
our Lemmas 5, 6, it seems that we are not in the position to obtain an even
better lower bound for s, when k£ is small.

The method we use here can also be applied to improve the result in [8]
concerning an analogous problem for mixed powers.

§2. Notation

Throughout, n and p with or without suffices denote positive integers and
primes respectively. The integer k is always =2 except in § 5 where k=3. x
is a real variable and [x] is its integral part. We write e(x)=exp (2zxix). P
and ¢ are sufficiently large and small positive numbers respectively such that
all the approximations in this paper hold. We put L=log P.

In view of (1.5) we always assume that for each of the above given poly-

k
nomials @;(x)= X a;yx", the integer coefficients «,, satisfy
h=0

(ajp -+ a;)=1 and a;=0. (2.1)

k
Whenever there is no ambiguity we use P(x)= > a,x* to denote any one of
n=1

these modified polynomials. Without loss of generality, let |4,|=|4,| and sup-
pose that 4,/4,<0 and is irrational. For if 4,/4, is irrational but >0, then there
must be some j with 2<j such that 1;/4,<0 and hence 4,/4,<0. But then 2;/4,
and 4,/4, cannot both be rational. If X>0 we use Y<X (or X>Y) to denote
|Y | <AX, where A is some positive constant which may depend on the given
constants k, s, 4;, a;, and ¢ only.

§3. Proof of Lemma 7

We proceed the proof of our theorems by lemmas.

LEMMA 1. Suppose that for any given x+0 there exist integers a, q such
that |azx—a/ql =q7% with (a, 9)=1 and P*"*<g=P*'*. Then

Pe(x_ﬁ?(n)) L Ppi-ited, (3.1

ePsn<

where A 1s a positive constant depending on k only.

ProOF. When k=12, (3.1) follows from (1.2) and Lemma 3.6 in [5, p. 24].
When £>12, (3.1) follows from (1.2) and Theorem 9 in [5, p. 62]. The slight
change of the range of ¢ does not affect the original argument.

For the given 3 ((1.6)) let

t=P7?, (3.2)
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7t if x=0,
K(x)={ (33)

(sin wzx)?/(7x)? otherwise .

Obviously K.(x)<z2.
LEMMA 2. For any real y we have

S:e(xy)Kr(x)dxzmaX 0, z—|»]).

Proor. This follows from in [3].
For integers a, g let

S(a, 9= 3 ela 2)/q),

S)= ey #a)dz

LEMMA 3. Suppose that for any given x there exist integers a, q such that
{x—a/q| S q *P~***"c with (a, q)=1, 1=q=P*'*. Then
oo ex P(n)—q7S(a, 9)I(y) <P?,

eP=ns

where y=x—a/q.
Proor. This follows from Lemma 7.11 in [5, p. 87] and (1.2)
LEMMA 4. If r=2 then

1

f | 9(3)| Tdy < PTE

_1
2

Proor. Using integration by parts we have J(y)< P~ #*1|y| ! if y+#0. Then
1

the lemma follows from this and the partition of the interval | y]§7 by =Pk,
LEMMA 5. (a) If (q, g.)=1 then
S(a1g:+a:q,, 0:92)=5(ay, q)S(as, ¢o). 3.4)
(b) Suppose that (a, p)=1 then for any positive integer h
S(a, pM)<pra-ve (3.5)

PROOF. is in [6, p. 1971 which is an easy generalization
of a special case of in [14, p. 46] to polynomials. is the Funda-
mental Lemma in [5, p. 1].

For any positive integer r let

Adp= 3 IS, @l7q". (3.6)

(a,17)=1
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LEMMA 6. Suppose that r=2k then
c
1ngéQx‘lT(q)<<L ’

where Q=P ¢ and C is a large positive constant.

PrOOF. By (3.6),

Ag)A{q)=AKq:19)
provided that (q,, g,)=1. Suppose that

S AN
r=1
Then it follows from A()=1 and 3 p~'<2loglog P that
Y4
ALQ= TLA+ 3 A,(p")<exp (C X p)<K LE
1=9sQ p=Q h=1 p=Q

as desired. It remains to prove [3.9) By [3.5) [3.6) and r=2k%,

h:i;lAr(ph)«hi:lp—h(r/k—l)<<p1—r/k<<p—1 .

This proves
LEMMA 7. Let U=U(P* ) denote a set with density v and

F(x)= %)Ue(xu) .

Let
J (x)zspgn)gp e(x P(n)) .

For the given 8 (1.2) let v satisfy

r=2k and r>k(1—v)/0.
Then for each A;

|17y Py Kidx<ePrLe |0 1,

where C is the same constant in (3.7).

399

3.7

(3.8)

(3.9)

(310)

Proor. By Lemmas 1-4, 6 and the same argument as in the proof of
Theorem 1 in [12, pp. 390-1] we can prove the lemma, so we omit the details

here.

4. Proof of Theorem 3.

Let
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glx)= EKE e(x L(p)),

PP

P 4.1)
1= _e(x #(y)/1og y dy,

D=(~21-1)/10, go=1-D. 4.2)

We use p=o-+1i! to denote a typical zero of the Riemann zeta function {(s) and
2./ to denote the summation over all those zeros p with |[t|=<P?, 6=, Itis
known that ([7, p. 291])

2/1<<PDS(1-00)/(2—¢70>L5<<PD . (43)
Let
Glx, p)= X ntRe(x[P(nV*)])/log n, (4.4)
(ePYksn<Pk

where [ %] means the integral part of the value of ¢. Put
J)=2'G(x, p), (4.5)
A(x0)=g(0)+/(0)—I(x). (4.6)
LEMMA 8. (a) Suppose that 2<Y=P. Then
Slog p+ 3 YPp =Y <POLE.

(b) S/P°LPexp(—LY?).

PrROOF. Part (a) follows from the same proof as in [11]. Part
(b) can be shown by the same proof as of [11, p. 3791.
LEMMA 9. We have

A(x)K P L1+ x| P*).

PrROOF. As one may regard the integral in (4.1) as the difference of two
integrals with different upper limits ¢P, P respectively but with the same lower
limit 2, in the proof we replace ¢P in (4.1) simply by 2. By the same reason
we replace (¢P)* in by 2. Let

logn+2/n"1** if n=p* for some p=P,
an={ 4.7)
Sniterk otherwise .
ba=e(x[P(n¥*)])/logn and b,=e(xP(n'*))/logn.
Then we have

g(ﬁf)ﬂ(?f)zgzspk {an(bn—0r)+ayzbn} =S,+S;, say. (4.8)

As for any real y
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e(xLy])—e(xy)< | x|

and P(n) is integral valued we have

5132' E kn_l‘p/k(bn—b;z)

25nsP
x| P°<|x|Pexp(—LY?).

The last inequality follows from (b).

401

4.9)

We come now to consider S,. By a similar argument as the first part of

the proof of in we have

> n¢e/Bt 20k [ p) & PP

nsz

(4.10)

if z<P* 6,<0<1, |t|ZPP. It follows from [4.7) [[4.10), [4.3) [(4.2) and [Cemmal

8(a) that for any z=<P*

S a b —zE= 3 log p+ 320 p 7 — VAL O(PPYSY 1L POOLS
14

nsz pszl/k

Let A(z):%) an, P,=((P¥]+1)V* and 9D(x, z):%{e(x@(zl’k))/log 2.

that

, , n+1
n+1_bn:S Dx, z)dz.

By Abel's partial summation we have
Si=A(Pe(x2(P)/(klog P)—abi— ¥, Am|"" o(x, 2dz
On the other hand, by (4.1), integration by parts and y=z"* we have
P P
1= 4y 01/ L)=0(1+ x|+ xR Plog P,
P}
_Sz kZV*D(x, 2)dz

k
since S: kzV*D(x, z)dz< |x|. So in view of (4.11) we have

e(xP(Py))

Se—I(x)=—a,b;+-0(1+ | x| )+ log P, -

(A(PHE™—P)

(4.11)

We see

-{-S zPlk ke(xP(zV*){2rixz log Z—d—ﬂ‘)(zl’/k)*l} (z(log 2)°)(z"*— A(2)k™)dz

dz
K PoOL(1+ | x| P¥)

(4.12)
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since by we have a,b;< 3’1« PP, follows from
and (4.12).

LEMMA 10. Suppose that B, is a positive constant <2D/3 ((4.2)). Let

A (4.13)
We have
I(x)< Pmin(1, |x|*P%), (4.14)
. |
| * JItdx<Pr*exp (—2L), 4.15)
iy
3
S ()1 7dx < PR, (4.16)
2
S 1 4(x) | [dx < PP exp (—2 L) 4.17)
=7
|| lg@ltarapes. (4.18)

PROOF. follows from (4.1) by partial integration.
By and Schwarz’s inequality,

GRS (4.19)

_1
2

e

Note that for any large integers m, n with |m—n| =2,
Ce(m"*)]+#[L@"")].

Let H(n)=n"'*?*(logn)~'. Then by Parseval’s identity and o<1

1

S 2z lG(x, P)l 2dx<<<c,,)k§ SPk(]‘](n)2-}~]"](n)lr‘l(ﬂ—].)—l-]‘](?’t)[‘f(ﬂvf—]_))<<1’:’-1e1'-2c7L—2 .
(4.20)

o=

Then (4.15) follows from (4 19), (4.20) and Lemma 8 (b).
(4.16) follows from and the partition of the interval [x|= % by Pk
By and

S g | 4(x)|2dx K P2ooL O P-k+331
-7

(4.17) follows from this and B:<2D/3.
follows from (4.15), (4.17) easily. This proves
In what follows the suffix j in any function 4;(x) depending on a polynomial
% indicates that this polynomial is now specified to be the given polynomial
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2;. For simplicity, sometimes we shall denote h;(1;x) by h;. Let

M M
Uf(x):};[l gi(A;x), U*(x)= J_H=11j(2jx) . (4.21)
For the given 3 ((1.6)) let 3, be any constant satisfying
a 'f<B:<2D/3, (4.22)
where
Q= (22 k(B 1)) (4.23)
and k=2.

Partition the real line into E,, E,, E, as
E={x||x|sP k), E,={x|P *h|x|< PP},
E.,= {x| x| >P*#1}. (4.24)
LEMMA 11. We have

SE [V (x)—T*(x)| K(x)dx<Lt?P¥ % exp (— LY%).

Proor. By (3.3),
. 7-1
[, 70Tl Kdx<et| | 5 4-) W 1L Ll dx,
Ey E; j=1 1 j+1

M
where I:_Ignzul} I,=1. Note that |g,|, |I.!| <P and then for each j
] 1

j—1 M
TL ga 1 1< (1 gl + [ L P2
1 J+1
By Schwarz’s inequality and for each j=1, ---, M we have
[, 145=T,1C gl + Il )dz P ¥ exp (= L)

Hence follows.

LEMMA 12. Suppose that for any given x there are some integers a, q with
(a, 9)=1, 1=q such that |x—a/ql=q% If

log V>2*2(2k+1) loglog P, (4.25)
where V=min (PY3, q, P*q™*). Then
2 e(x P(p))KPV~*,
PSP
where « 1s defined in (4.23).
ProoOF. This lemma follows easily from the theorem in [13, p. 5].

LEMMA 13. Suppose that j=1, 2 and x€FE, If there are integers aj;, q;
with (a;, ¢;)=1 and q;=1 such that

Iljx—aj/qjléq}IP_k+‘81€ (4:.26)
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then
max (g5, g2)=P3!.

ProOOF. The argument is based on the method used in the proof of
13 in [4]. We see that
a,a,#0. 4.27)

For if a,=0 then by [4.26), |x|<P **f1g|2,|"* which contradicts x=F, ((4.24))
as ¢ would be very small. Suppose that

max (q;, q,)< PP, (4.28)
By and x€E, we have
ay 1 Jx— a, 010s= (| Asx| +-eq5 P #+31)| Lox| ~igpe P-4+
qz sz 1 ql 14y2— 2 2 2 2

S(gotel | NP FAZ2e PRt (4.29)
Similarly since |2,]=|4.] we have

a, 1 ay
a0 Aox f]ﬂh( 2 7s )

S2eP ke, (4.30)

It follows from [(4.29) that

axq, %‘ —a1q» §45P—k+2‘91 . (431)
2

On the other hand, since A,/1, is irrational it is known that there are infinitely
many convergents a/q with (a, ¢)=1, 1=q such that

R
2q®

A a

s q

So for any integers a’/, ¢’ with 1=¢’<q we have

A1 , lag’—a’q| A a 1 q’ 1°

A S] Py (L S L, R W ) S R . B 7Y
T2 q< qq’ s q>>q 2q2>2q (4.32)
If P=q@W% 231 and ¢<1/8 then in view of [4.27) and (4.32) we must have
lasq.| Z=g=PF %1, (4.33)

But by 4.28) and x=E, we have
—Zi 01025 (| dox| +eqat P HBYPBIZ 2| 2,| P31 (4.34)

2

Thus (4.34) contradicts since by B8:<2D/3<k/5. This proves
Lemma 13
LEMMA 14. We have, for any constant B>0
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sup min (| gi(A4:x)|, 1gx(2:x)|)<zPL™E.

PRrROOF. For any x=FE, and j=1, 2 by Dirichlet’s theorem there are integers
a;, q; with (a;, ¢;)=1 and 1=<¢,<P* %! such that

|2x—a;/q;1 = g7 P~**Pe.

Then in view of we may let ¢;=P?%. We see that now [(4.25)
is satisfied with V=min (P¥?, q, P*¢")=¢P?1, By (4.22)

g(Ax) K PrebrgrPLB

This proves
In what follows we always assume that U,=U,(P*¢) (t=1, 2) satisfy
and

Fz(x):ue‘%ze(xu) .

LEMMA 15. Let M in (4.21) be an odd integer and |=(M—1)/2 satisfying (1.9).
Then for any constant B>0

SE |V (OF(0)F (0| K()dx<z*P¥*| U, | | U, | L72+¢,

where C is the same constant in (3.7).
Proor. By Lemmas 2, 7, for j=1, 2, ---, M; t=1, 2,

| "l ol dx<| | A0 FD1 K0 dx

LTPH k| U, |2L°. (4.35)

By Holder’s inequality we have

5=, 1L 1g,F0F ()| Kdodx

IA

(I~ L igmerrma) (] 11 g Kods)

(I 1ameormwan) ) (1L arw ) ).

j=2

A

The same result holds for SZ:SE };Iz | g;F(x)F(x)| K(x)dx. So by Lemma 14
.
and (4.35)

[, FOF(OF(9] Kddx <t PL (S, +S5)

LTPL B(P* *|U,||U,| L?).

This proves Lemma 15.
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LEMMA 16. Let 2(x)= e(x &(y1, -+, ¥»)), where w 1s any real valued func-
tion and the summation is over any finite set of values of yi, -+, ¥n. Then for
any X>4/t we have

SIxI>X| Q(x)] ZK’(x)dx<<(Xf)_IS:| Q002K (x)dx.
ProOF. By in [4], for any A>4
[, 10@ K@</ 12@) 1K)z,

where K,(z) means K.(z) with z replaced by 1. Then our follows
from simple substitutions.

LEMMA 17. With the same hypotheses as Lemma 15 on M, we have for any
constant B>0,

[, [F@OP R Kdx P4 UL U L5,
where C 1s the same constant in (3.7).
ProoF. By Lemmas [[6, 7 and (3.2), (4.23), for any j=1, 2, ---, M; =1, 2,
[, 180 P K P4 U 2L
LTEPHR| U, 2L B (4.36)

Then Lemma 17 follows from Hoélder’s inequality, (4.36) and a similar argument
as that in Lemma 15.

LEMMA 18. For any constant B>0, we have

Sl | K dx <2 P AL, (4.37)

S_w U0 F(x)Fo(x)e(n0) K (x)dx>c*PY ¥ U, | | Uy | L7 . (4.38)
PrROOF. By (4.14), for |x|>P #*1,
I () <P F x| 72 (4.39)

(4.37) follows from (4.39), (3.3).
We come now to prove (4.38). For each pair (u;, u,) with u, €U, (=1, 2)
define a set @* in the M-dimensional space by the following (4.40), (4.41), (4.42).

e2PF< 7, <2¢2P* (j=3,4, -, M), (4.40)
e /2| P*< 2,<2¢| 2,/ 2, | P* . (441)

For real y with |y| é—;~, let z,>0 satisfy
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g)l(zilk):_gz(zé/k)x2/21+y/zl—_g/)‘l ’ (4-42)
where

M
5_—_77—{—u1+u2+ 23: Zj @J(Z‘l/k) .
Such z, is uniquely defined if @,(zV’*) is large. We shall prove that

(EP)k<21<Pk .

Hence if 4 denotes the cartesian product of the intervals (eP)*<z,<P* (j=1, 2,
.-, M) then
B*CR. (4.43)

Note that for large zj,
—%—aijj<£Pj(Z}/k)<2aijj. (444)
It follows from 2,/2,<0, (4.42), (4.44), (4.41), (4.40) and |u,| <P* ¢ that

B(e)Z e PP (@I 1))

(1| +2P* 4 4e2P* 3 [ L las0)/ | 4] > gy PP
) 3

and then z,>(eP)*. Similarly we have z,<P* This proves[4.43). By [Lemmal
2, (442),

[Pt K. ()

= 2 Lﬁ z;"4(log z,)" max (0, — &+ ‘j;zjg,-(zyk)ndzl edzy

u,ug

Z~1—z' > S ﬁ z7""Vr(log z;)"'dz, -+~ dzy

2 TunusJex 1

>>’Z.'P(1_k)ML_M[ Ull | U2|TP(M—1)k .

This proves
We come now to the proof of Let X=P*= It suffices to
consider s=M+2m. By [Lemma 2,

S:dxvW(x)Fl(x)Fz(x)K,(x)dx

=S max (0, e |7+ £ 2,2,

where X is over u,€ U, (t=1, 2); eP<p,<P(j=1,2, -+, M). Obviously [Theorem 3
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follows if the above integral tends to infinity as P — co. Let the constants
B in Lemmas [4, 15, I7, I8 satisfy

B>M+C, (4.45)
where C is the same constant in [3.7). By [4.38), [4.37), Lemma 11 and
SE V() F(0)F(x)eGen) K(X)dx > 2P+ U [ Uy L. (4.46)
1

Then by 17, the first integral in the proof

>cPYR U |U,| L™ as desired. This proves as M>k+25 ((1.9),
16).

§5. Proof of Theorem 1.

LEMMA 19. For each large X let U(X) be a set with density v—e, where
1/k<v<1 and let

=)= E (1 (= D)+ (/) max (n4-1—w(k—1)/(@"—1+v). 5.1)

Suppose further that A is a non-zeroreal number and

$)=(uk—1)/vk. (5.2)

Then, for each sufficiently large Y, there is a set UXY) with density p—e such
that every element in U* can be written in the form AP(p)+u with P(p)<Y and
usU(Y?).

Proor. Following the same argument as Lemma 16 in Wwe can prove
without difficulty, since the main tool, Theorems 1, 2 in [2] can be
easily generalized to polynomials with integral coefficients.

We come now to the proof of Theorem 1. In view of Theorem 3 it suffices
to show that for each integer m>0 there exist U,(P* ), U,(P*¢) satisfying all
hypotheses in Theorem 3. We shall construct U, only and U, can be obtained
in exactly the same way.

Let

vo=1/k+¢/2,

2/k if j=1,
{ BY(14+-(k—Dy,-) if 2=5j=m—1.
Whenever there is no ambiguity we shall drop j from v;. Let (cf. (5.1), (5.2))

J

(5.3)

#j+1:/«5(’)j) ’ ¢j+1:¢(Vj) ’
cn)=mn+1—v(k—1))/2"—1+v).
Obviously, for j=1
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#j+1:Vj+1+(Vj/k) m;iX £(n), (54)
¢jr1=1—1/k)+k* max k(n), (5.5)
where n=k—2. By (5.3), for j=1
y;=1—(1-2/k)(1—1/k)"? (5.6)
and so
1/k<y;<1. (5.7)
Also we have
Dj<‘l,lj . (5.8)

For if j=2, (5.8) follows from and max #(n)=r(k—2)>0. For j=1, by [5.1),

#(%)2k—1(1+(k—1)”o+voﬁ(l))_2_ k—1(2+—%—e(k—2)) ,

as
vor(1)>1/k—e/2.

Next, if x(n) attains its maximum at A>1 then
(h—(k—1))/2" ' =1+v)=(h+1—(k—1)/(2"—1+)

or

r(h)=217",
Whence ' ‘
max e(n)<1 (5.9)

as for the case 4=1, (5.7) can be applied. It follows from that
$;<1. (5.10)

Let »; be m non-zero real numbers and I7,(x) be m polynomials satisfying
For any large real number X there is a set U‘“(X) with density v,—e¢
such that every element in U is of the form 7,II(p,) with II(p,)<X. For
by the prime number theorem the above requirements produce the set U‘®(X)
immediately. By we are now able to apply iteratively
and finally for large Y we obtain a set U™ (YY) with density v,_,—e such
that every element in U™ Y is of the form

m-1
2 0l (py)
j=0

with IT,(p,)<Y?), where ¢}:EI:¢,, if j<m—1 and ¢,-,=1. By all

II (p<Y.
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On the other hand, if we set m=N+3, then by (1.3)
m>2+(log (1—2/k)—log 26)/(—log (1—1/k)).

Hence by
1_20< Vm_l .

If we take [(=(M—1)/2)=F, we have [>k(1—v,_,)/20. So M=2k-+1 satisfies
Putting Y=P*¢, 9;=Assj+1, 1 j=Prs2j+1 and U™ P(Y)=U, we see that
this U,(P*¢) satisfies all hypotheses in This proves [Theorem 1.

§6. Proof of Theorem 2.

In Lemmas 20, 1, PJ, C’ will denote the same positive constant depending
on % only.
LEMMA 20. We have

PrROOF. This is Theorem 4 in [5, p. 19].
LeEMMA 21. Let v=2*% For each 2; we have

[” 1701 ECodrge PoiLe

where f(A;x) is defined in (3.10).
Proor. Let t=7/2. It follows from that

[T 170 K dr= 2,( 7 etat; = @)~ 2m) K)dx

— 3, max (0, r—| zjlg P(n,)—2(m))
éf Zz 1 s (61)

where the summation X, is over all integers eP=<n;, m;=P([=1, ---, t) and the
summation >, is over all positive integers n;, m; =P (I=1, ---, t) satisfying

l’gl P(n,)— P(m)=0. Since

>, 1:S: | 3 e @) dx

follows from [(6.1) and Lemma 20.
LEMMA 22. Let M in (4.21) be defined by

M=2%41.
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Then for any constant B>0 we have

SE [T (x)| K(x)dx L 2P Y- * L~ B+C" |

2

SE | (x)| K(x)dx L 2P M- %[~ B+C" |
3

S_‘” UH(x)e(yx)K(x)dx > PE+L M .

Proor. The proof follows from the same argument as that of Lemmas
5, 07, [8 except now we should apply instead of

With the help of 11, 22 and we can prove by
a similar argument as that of

§7. Remark.

By we obtain here the numerical lower bound of s in our theorems
when k=12, '

k 2 3 4 5 6 7 8 1 9 |10 11| 12
2(k+N)+7 11 | 19 | 31 | 43 | 61 | 79 | 103 | 127 | 155 | 185
2k+1 5 9 | 17 | 33 | 65 | 129 | 257 | 513 | 1025|2049 4097
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