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An infinite and unbounded covering surface $R^{\sim}$ of an open Riemann surface
$R$ is referred to as a T\^oki covering surface if any bounded harmonic function
on $R^{\sim}$ is constant on $\pi^{-1}(q)$ for each $q$ in $R$ where $\pi$ is the projection. The
primary purpose of this paper is to show the existence of a T\^oki covering
surface $R^{\sim}$ of any given open Riemann surface $R$ (Main theorem in no. 1.2).

We can construct $R^{\sim}$ so that the projections of branch points in $R^{\sim}$ is discrete
in $R$ . Remove a parametric disk $V$ from $R$ . We will show that any bounded
harmonic function on $R^{\sim}-\pi^{-1}(\overline{V})$ vanishing on its boundary relative to $R^{\sim}$ is
constant on $\pi^{-1}(q)$ for each $q$ in $R-\overline{V}$, and actually we will prove this asser-
tion for a more general subset than $V$ (Theorem in no. 2.5). As an applica-
tion of this we will see that $\pi^{-1}(V)$ always clusters to the Royden harmonic
boundary of $R^{\sim}$ which consists of a single point (Theorem in no. 2.3). Based
on these results we will show that there exists a single point of positive har-
monic measure but no isolated point in the Royden harmonic boundary of $R^{\sim}$

$-\pi^{-1}(\overline{V})$ (Theorem in no. 3.1). The most effective application of T\^oki covering
surfaces is the following: For any compact Stonean space $\Delta$ which is a Wiener
harmonic boundary of a hyperbolic Riemann surface, there exists an open
Riemann surface whose Royden harmonic boundary consists of a single point
and whose Wiener harmonic boundary is $\Delta$ (Theorem in no. 4.3). We denote
by $b(W)$ (the B-harmonic dimension) the number of isolated points in the Wiener
harmonic boundary of an open Riemann surface $W$ and by $d(W)$ (the D-harmonic
dimension) and $d^{\sim}(W)$ (the $D^{\sim}$-harmonic dimension) the numbers of isolated
points and points with positive harmonic measures, respectively, in the Royden
harmonic boundary of $W$ . Based on the above results we will determine the
triples $(b, d, d^{\sim})$ of countable cardinal numbers such that $(b, d, d^{\sim})=(b(W), d(W)$ ,
$d^{\sim}(W))$ for a certain open Riemann surface $W$ (Theorem in no. 5.3).

T\^oki covering surfaces.

1.1. We start by fixing terminologies. Let $R^{\sim}$ and $R$ be Riemann surfaces.
The triple $(R^{\sim}, R, \pi)$ is said to be a covering surface if $\pi;R^{\sim}\rightarrow R$ is a non-
constant analytic mapping. The surface $R$ is referred to as the base surface
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and $\pi$ the projection of the covering surface. The surface $R^{\sim}$ itself is often
called the covering surface. A curve $\gamma$ in $R$ is a continuous mapping of the
interval $[0,1]$ into $R$ . We say that the covering surface $(R^{\sim}, R, \pi)$ is unbounded
if the following condition is satisfied: For any curve $\gamma$ in $R$ and any point $a^{\sim}$

in $R^{\sim}$ with $\pi(a^{\sim})=\gamma(O)$ there always exists a curve $\gamma^{\sim}$ in $R^{\sim}$ such that $\gamma^{\sim}(0)=a^{\sim}$

and $\gamma(t)\equiv\pi\circ\gamma^{\sim}(t)$ on $[0,1]$ . Let $a^{\sim}\in R^{\sim}$ and $a\in R$ with $\pi(a^{\sim})=a$ and $z=\pi(z^{\sim})$

$=a+(z^{\sim}-a^{\sim})^{m}(m\geqq 1)$ be the local representation of $\pi$ . If $m\geqq 2$ , then $a^{\sim}$ is said
to be a branch point of order $m$ of the covering surface. Let $a\in R$ and $\pi^{-1}(a)$

$=\{a_{n}^{\sim}\}(1\leqq n<N\leqq\infty)$ . For convenience we say that $a\in R$ is an even base point
if we can find a parametric disk $V$ at $a$ with the following property: There
exist an $m\geqq 1$ and $N-1$ connected components $V_{n}^{\sim}$ of $\pi^{-1}(V)(1\leqq n<N\leqq\infty)$ such
that $V_{n}^{\sim}$ is a parametric disk at $a_{n}^{\sim}$ and $z=\pi(z^{\sim})=a+(z^{\sim}-a_{n}^{\sim})^{m}$ is a mapping of
$V_{n}^{\sim}$ onto $V(1\leqq n<N)$ . A covering surface $(R^{\sim}, R, \pi)$ is referred to as an even
covering surface if every point $a\in R$ is an even base point. In this case there
exist no branch points in $\pi^{-1}(a)$ for every $a\in R$ except for an isolated subset
of $R$ . Even covering surfaces are unbounded. For unbounded covering surfaces
$(R^{\sim}, R, \pi)$ the number of points in $\pi^{-1}(a)$ is a constant $\leqq\infty$ for every $a\in R$

where branch points are counted repeatedly according their orders. This
number is referred to as the sheet number. If it is finite (infinite, resp.), then
$(R^{\sim}, R, \pi)$ is said to be finite (infinite, resp.).

1.2. For any covering surface $(R^{\sim}, R, \pi)$ we can consider the lift up $\pi^{*}$

which is an injective map from the spac $e$ of functions on $R$ to that on $R^{\sim}$

defined by $\pi^{*}f=f\circ\pi$ for functions $f$ on $R$ . The lift up $\pi^{*}$ preserves constants,
ring operations, positiveness, boundedness, analyticity, super and subharmonicity,

and so forth. In particular the mapping

(1) $\pi^{*};$ $HB(R)\rightarrow HB(R^{\sim})$

is well defined and injective, where $H(R)$ is the space of harmonic functions on
$R$ and $HB(R)$ is the subspace of $H(R)$ consisting of bounded functions. We
say that $(R^{\sim}, R, \pi)$ or simply $R^{\sim}$ is a T\^oki covering surface of $R$ if $(R^{\sim}, R, \pi)$

is infinite and unbounded and the mapping (1) is surjective, $i$ . $e$ .
(2) $\pi^{*}(HB(R))=HB(R)\circ\pi=HB(R^{\sim})$ .
The primary purpose of this paper is to prove the following

MAIN THEOREM. For any open Riemann surface $R$ there always exists a
T\^oki covering surface $R^{\sim}of$ $R$ .

The above result was originally proved by T\^oki [7] when the base surface
$R$ is the open unit disk $|z|<1$ . We adopted the terminology T\^oki covering
surface in honor of this very important work in the classification theory of
Riemann surfaces. The covering surface $R^{\sim}$ can be constructed so as to satisfy
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the following two more properties: $R^{\sim}$ is even; $e$very point in an arbitrarily
given compact subset $K$ of $R$ is not the projection of any branch point of $R^{\sim}$ .
The proof will be given in nos. 1.3-1.8.

1.3. We denote by $N$ the set of positive integers. Consider the mapping

(3) $(m, n)\rightarrow\mu=\mu(m, n)=2^{m-1}(2n-1)$

of $N\times N$ to $N$. Observe that the mapping (3) is bijective. Moreover $\mu(m, n)$

$\leqq\mu(m^{\prime}, n^{\prime})$ if $m\leqq m^{\prime}$ and $n\leqq n^{\prime}$ . It is also clear that $\mu(m, n)\rightarrow\infty$ if $ m\rightarrow\infty$ or
$ n\rightarrow\infty$ or $m$ and $ n\rightarrow\infty$ .

1.4. Since $R$ is open, we can find an exhaustion $\{R^{\alpha}\}_{\alpha\in N}$ of $R$ such that
$R^{2\mu}-\overline{R}^{2\mu-1}$ consists of a Pnite number $l(\mu)$ of annuli $A_{\mu\lambda}(\lambda=1, \cdots , l(\mu))$ for each
$\mu\in N$. We denote by mod $A_{\mu\lambda}$ the logarithmic modulus of $A_{\mu\lambda},$

$i$ . $e$ . mod $A_{\mu\lambda}=t$

if the conformal representation of $A_{\mu\lambda}$ is $1<|z|<e^{t}$ . We choose an arbitrary
but fixed sequence $\{k(\mu)\}_{\mu\in N}$ in $N$ such that

$4/k(\mu)<\min_{1\leqq\lambda\leqq l(\mu)}mod A_{\mu\lambda}$

for every $\mu\in N$. Since modA $<mod A^{\prime}$ for $\overline{A}\subset A^{\prime}$ , we can find an annulus $B_{\mu\lambda}$

with $\overline{B}_{\mu\lambda}\subset A_{\mu\lambda}$ for each $(\mu, \lambda)$ such that $B_{\mu\lambda}$ separates one component of $\partial A_{\mu\lambda}$

from the other and

mod $B_{\mu\lambda}=4/k(\mu)$

for $\lambda=1,$ $\cdots$ , $l(\mu)$ . Therefore we can view $B_{\mu\lambda}$ as a spherical ring, $i$ . $e$ .
(4) $B_{\mu\lambda}=\{re^{i\theta} ; 0<\log r<4/k(\mu)\}$ .

We then consider the slits $S_{mn\lambda}^{\nu}$ in each $B_{\mu\lambda}$ with $\mu=\mu(m, n)$ given by
$S_{mn\lambda}^{\nu}=\{re^{i\theta} ; 1/k(\mu)<\log r<3/k(\mu), \theta=2\pi\nu/k(\mu)\}$

for $\nu=1,$ $\cdots$ , $k(\mu)$ .

1.5. We denote by $R_{0}$ the surface $R$ less all the slits $S_{mn\lambda}^{\nu}((m, n)\in N\times N,$ $\lambda$

$=1,$ $\cdots$ , $l(\mu(m, n)),$ $\nu=1,$ $\cdots$ , $k(\mu(m, n))),$ $i$ . $e$ .

$R_{0}=R-\bigcup_{(m,n)\in NxN\mu}\bigcup_{11\leqq\lambda\leqq l((mn))\leqq\nu\leqq k(\mu^{(m,n))}},US_{mn\lambda}^{\nu}$ .

Consider two sequences $\{R(h)\}_{h\in N}$ and $\{\hat{R}(h)\}_{h\in N}$ of duplicates $R(h)$ and $\hat{R}(h)$

of $R_{0}$ .

1.6. We join $R(h)(h=1, 2, )$ with $R(h^{\prime})(h^{\prime}=1, 2, )$ suitably crosswise
along every slit $S_{mn\lambda}^{\nu}$ described as follows. For convenience we introduce the
following notation: $\hslash i=0$ for $m=1$ and $th=2^{m-2}$ for $m>1$ . First, for $m=1$ , join
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: : : .:
$\vee^{\wedge}q^{-}q\underline{\overline{c\circ}}\underline{\Phi}$

$\vee^{\wedge}\underline{\overline{L\circ}}\underline{t\Omega}\approx^{-}\check{\approx}$

$\vee-0^{\wedge}\vee\underline{\wedge\triangleleft}\underline{\triangleleft}\approx\approx$

$\wedge\wedge\vee-\vee\underline{\infty}\underline{\infty}qq$

$\vee---\vee\circ 1\circ 1\wedge\wedge\approx\approx$

$\vee---\langle\vee\wedge\wedge=\approx\approx$

$\vee-\vee\wedge\wedge\underline{o}\underline{o}\approx\approx$

$\vee\approx-\langle\approx\vee\wedge\wedge\Phi C)$

$\vee^{\wedge}\approx\vee-\vee\infty\infty\wedge\wedge q\overline{\triangleright}\triangleright\approx^{-\vee}(\approx$
$\vee\vee\wedge\wedge\wedge\infty\infty Q_{j}\triangleright\approx X_{q}^{\check{q}}\vee S$

$\vee\approx\approx-\vee-\vee\wedge\wedge\wedge\wedge qL\Omega 1\Omega cC\Phi\check{q}$ $\vee\vee\vee\wedge\wedge\wedge c’ ot\Omega\approx\approx\approx X_{\wedge}^{q}\langle\vee m$

$\wedge\triangleleft$ $\wedge\triangleleft$ $\wedge\triangleleft$ $\wedge\triangleleft$

$\vee\approx\approx-\langle\approx\vee\vee-\wedge\wedge co\propto)\approx$
$\vee X_{q}^{\approx}c_{\wedge}\vee\vee\wedge\approx\infty\approx co$

$\vee-\approx-\langle\approx\vee\wedge\wedge\vee-\wedge\approx 0^{\wedge}\approx r\circ l-$
$\wedge\approx-\vee\times_{c}^{q}\vee\wedge\wedge\infty\circ 1\approx\approx-\wedge$

$7^{-}\S||$
$\circ l\sim\approx||$ $co\S||$ $\approx_{I1}S$

$L\Omega\sim\approx||$
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$R(h)$ with $R(h)(h=1, 2, )$ crosswise along every slit $S_{1n\lambda}^{\nu}$ with $n\in N,$ $\lambda=1,$ $\cdots$ ,
$1(\mu(1, n))$ , and $\nu=1,$ $\cdots$ , $k(\mu(1, n))$ . Next for each fixed $m\in N$ with $m>1$ and
subsequently fixed $j=0,1,$ $\cdots$ and $i=1,$ $\cdots$ , $ih$ , join $R(i+\hat{m}j)$ with $\hat{R}(i+|\wedge n(j+1))$

for even $j$ and $R(i+\hslash j)$ with $\hat{R}(i+\hslash(j-1))$ for odd $j$ , crosswise along every
slit $S_{mn\lambda}^{\nu}$ with $n\in N,$ $\lambda=1,$ $\cdots$ , $1(\mu(m, n))$ , and $\nu=1,$ $\cdots$ , $k(\mu(m, n))$ . This rather
intricate procedure can be intuitively clarified by the scheme in Fig. 1.

The covering surface $R^{\sim}$ over $R$ thus constructed with $\pi$ the natural pro-
jection $R^{\sim}\rightarrow R$ is easily seen to be unbounded and infinite. It is also clear
that $R^{\sim}$ is even. For any compact subset $K$ of $R$ , we could take $R^{1}$ large
enough so that $R^{1}\supset K$. Then there is no branch point of $R^{\sim}$ over any point
of $K$. We will prove that $R^{\sim}$ is a T\^oki covering surface of $R$ . For this pur-
pose we only have to show that (2) is valid for the above constructed $R^{\sim}$ .

1.7. Set $R_{mn\lambda}=\pi^{-1}(B_{\mu^{(m,n)\lambda}})$ and $L_{mn\lambda}=\pi^{-1}(l_{\mu^{(}m,n)\lambda})$ where

$l_{\mu^{(m,n)\lambda}}=$ { $re^{t\theta}$ ; log $r=2/k(\mu)$}

in $B_{\mu^{(m,n)\lambda}}$ as represented by (4) with $\mu=\mu(m, n)$ . We also set

$R_{mn_{1\leqq\lambda\leqq l(\mu^{(m,n))}}^{=UR_{mn\lambda}}},$ $L_{mn}=\bigcup_{1\xi\lambda\leqq l(\mu^{(m,n))}}L_{mn\lambda}$ .

Observe that $R_{mn}$ contains all the copies of $S_{mn\lambda}^{\nu}(\lambda=1,$ $\cdots$ , $1(\mu(m, n)),$ $\nu=1,$ $\cdots$ ,
$k(\mu(m, n)))$ and $L_{mn}$ passes through every copy of $S_{mn\lambda}^{\nu}$ above. We maintain the
existence of a constant $\sigma\in(0,1)$ such that

(5) $\sup_{L_{mn}}|v|\leqq\sigma\sup_{R_{mn}}|v|$

for every $v\in HB(R_{mn})$ vanishing at branch points in $R_{mn},$ $i$ . $e$ . end points of all
the copies of $S_{mn\lambda}^{\nu}$ in $R_{mn}$ $(\lambda=1, \cdots , l(\mu(m, n)), \nu=1, \cdots , k(\mu(m, n)))$ . We only

have to show (5) for $L_{mn\lambda}$ and $R_{mn\lambda}$ instead of $L_{mn}$ and $R_{mn}$ . For this purpose
let $R_{mn\lambda.s}$ be any connected component of $R_{mn\lambda}$ and set $L_{mn\lambda,s}=L_{mn\overline{x}}\cap R_{mn\lambda.s}$ .
Observe that $R_{mn\lambda,s}$ is a two sheeted covering surface over $B_{\mu^{(m,n)\lambda}}$ . We can
make further reduction to prove (5). Namely we only have to prove (5) for
$L_{mn\lambda.s}$ and $R_{mn\grave{A}.s}$ instead of $L_{mn\lambda}$ and $R_{mn\lambda}$ . Again let $R_{mn\lambda,s}^{\nu}$ be the part of
$R_{mn\lambda;s}$ lying over

$2\pi(\nu-1)/k(\mu)<\theta<2\pi(\nu+1)/k(\mu)$

and $L_{mn\lambda;s}^{\nu}$ be the part of $L_{mn\lambda.s}$ over

$2\pi(\nu-1/2)/k(\mu)\leqq\theta\leqq 2\pi(\nu+1/2)/k(\mu)$

for $\nu=1,$ $\cdots$ , $k(\mu)$ with $\mu=\mu(m, n)$ . The crucial point in our reasoning is the
following: Configurations $(R_{mn\lambda,s}^{\nu}, L_{mn\lambda.s}^{\nu})$ are conformally $equivale^{\tau}\wedge 1t$ to each
other for any $m\in N,$ $n\in N,$ $\lambda=1,$ $\cdots$ , $l(\mu(m, n))$ , any $s$, and $\nu=1,$ $\cdots$ , $k(\mu)$ . There-
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fore, as our $final\sum reduction$, we only have to show the existence of a constant
$\sigma\in(0,1)$ such that

(6)
$\sup_{L_{nn\lambda;s}^{1}}|v|\leqq\sigma$

for every $v\in H(R_{mn\lambda,s}^{1})$ such that $|v|\leqq 1$ on $R_{mn\lambda,s}^{1}$ and $v$ vanishes at the end
points of $S_{m\eta}^{1}\lambda.s$

’ in order to establish (5). If (6) were not the case, then there
would exist a sequence $\{v_{q}\}$ in $H(R_{mn\lambda,s}^{1})$ with $|v_{q}|<1$ on $R_{mn\lambda,s}^{1}$ such that each
$v_{q}$ vanishes at the end points of $S_{mn\lambda.s}^{1}$ and that

$\lim_{q\rightarrow\infty}(\sup_{L_{mn\lambda_{i}s}^{1}}|v_{q}|)=1$
.

We may assume, by choosing a subsequence if necessary, that $\{v_{q}\}$ converges
to a $v_{0}\in H(R_{mn\lambda,s}^{1})$ . Obviously the $|v_{0}|\leqq 1$ on $R_{mn\lambda,s}^{1}$ and vanishes at the end
points of $S_{nn\lambda,s}^{1}$ . Clearly the supremum of $|v_{0}|$ on $L_{mn\lambda,s}^{1}$ is 1 and a fortiori
the maximum principle yields that $|v_{0}|\equiv 1$ on $R_{mn\lambda,s}^{1}$ which contradicts that $v_{0}$

vanishes at the end points of $S_{mn\lambda,s}^{1}$ .

1.8. Let $T_{1}$ be the cover transformation of $R^{\sim}$ such that two points in
$R(h)$ and $\hat{R}(h)(h=1, 2, )$ with the same projections are interchanged. For
$m>1$ , let $T_{m}$ be the cover transformation of $R^{\sim}$ such that two points in $R(i+\hslash j)$

and $R(i+\hat{m}(j+1))$ with the same projections are interchanged for even $j$ and
two points in $R(i+jhj)$ and $R(i+f\hslash(j-1))$ with the same projections are inter-
changed for odd $j$ (cf. no. 1.6). Again the scheme in Fig. 1 will be helpful to
see the mapping property of $T_{m}(m=1, 2, )$ intuitively and to be convinced that
it is well defined. Take an arbitrary $u\in HB(R^{\sim})$ . We only have to show that
$u$ is constant on $\pi^{-1}(z)$ for any $z\in R$ in order to conclude the validity of (2).

For this aim consider
$u_{m}=(u-u\circ T_{m})/2$

for each fixed $m\in N$. It is clear that $u_{m}\in HB(R^{\sim})$ and $|u_{m}|\leqq M$ on $R^{\sim}$ where
$M=\sup_{R}\sim|u|$ . Observe that $u_{m}$ is qualified to be a $v$ in (5) and therefore

$\sup_{L_{mn}}|u_{m}|\leqq\sigma M$ .
This then implies that $|u_{m}|\leqq\sigma M$ on $R_{m,n-1}$ , and again by (5) we deduce that

$\sup_{L_{m’ n- 1}}|u_{m}|\leqq\sigma^{2}M$ .
Repeating this process $n-1$ times we arrive at the conclusion

$\sup_{L_{m’ 1}}|u_{m}|\leqq\sigma^{n}M$ .

Since $n\in N$ is arbitrary, we deduce that $u_{m}=0$ on $L_{m,1}$ , and a fortiori $u_{m}=0$ on
$R^{\sim}$ . Therefore $u\equiv u\circ T_{m}$ on $R^{\sim}$ for every $m\in N$. This means that $u$ is constant
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on $\pi^{-1}(z)$ for any $z\in R$ .
The proof of the main theorem is herewith complete.

Minimal functions and compactifications.

2.1. We denote by $HX(R)$ the space of harmonic functions on $R$ with a
boundedness property $X$ . In addition to $X=B$ (the Pniteness of the supremum
norm) we consider $X=D$ (the finiteness of the Dirichlet seminorm $D_{R}(u)^{1/2}=$

$(\int_{R}du\Lambda^{*}du)^{1/2})$ and $X=BD$ (both $B$ and $D$ ). We also consider the class $HD^{\sim}(R)$

of nonnegative harmonic functions $u$ on $R$ such that there exists a decreasing
sequence $\{u_{n}\}\subset HD(R)$ with $u_{n}\rightarrow u$ on $R$ . A function $u$ is said to be HX-
minimal on $R$ provided that $R$ is hyperbolic, $u$ is a strictly positive function
in $HX(R)$ , and there exists a positive constant $c_{v}$ for any $v\in HX(R)$ with $u\geqq v$

$>0$ on $R$ such that $v=c_{v}u$ ($X=B,$ $D,$ $D^{\sim},$ $BD$ and $BD^{\sim}$). It is known that HX-
minimal functions $(X=D, D^{\sim})$ are automatically bounded (cf. $e$ . $g$ . $[6]$ ). There-
fore the notion should only be considered for $X=B,$ $D$ and $D^{\sim}$ . We will denote
by $x(R)$ the cardinal number of HX-minimal functions on $R$ when two HX-
minimal functions $u_{1}$ and $u_{2}$ are identified if $u_{1}/u_{2}$ is a constant ($x=b,$ $d$ and $d^{\sim}$

according as $X=B,$ $D$ and $D^{\sim}$). Let $u$ be an HX-minimal function on a sub-
surface $S$ of a Riemann surface $R$ such that each point in the relative boundary
$\partial S$ of $S$ is regular with respect to the Dirichlet problem for $S$ . Then it is well
known that $u$ has the vanishing boundary values on $\partial S$ (cf. $e$ . $g$ . $[6]$ ).

2.2. We denote by $\Gamma_{\mathcal{R}}(R)$ ( $\Gamma_{\mathcal{W}}(R)$ , resp.) the Royden (Wiener, resp.) boundary
of a Riemann surface $R$ and by $\Delta_{\mathcal{R}}(R)$ ( $\Delta_{\mathcal{W}}(R)$ , resp.) the Royden (Wiener, resp.)
harmonic boundary of $R$ . The space $R\cup\Gamma_{\mathcal{R}}(R)$ ( $R\cup\Gamma_{\mathcal{W}}(R)$ , resp.) is a compact
Hausdorff space containing $R$ as its dense subspace and is referred to as the
Royden (Wiener, resp.) compactification of $R$ . The space $HBD(R)$ ($HB(R)$ , resp.)
can be considered to be a subspace of $C(R\cup\Gamma_{\mathcal{R}}(R))$ ( $C(R\cup\Gamma_{\mathfrak{N}}(R))$ , resp.). We
denote by $\mu_{\mathcal{R}}$ ( $\mu_{\mathcal{W}}$ , resp.) the harmonic measure on $\Gamma_{\mathcal{R}}(R)$ ( $\Gamma_{\mathcal{W}}(R)$ , resp.) with
respect to a fixed center $z_{0}\in R$ . Then $\mu_{\mathfrak{X}}(\Gamma_{\mathfrak{X}}(R)-\Delta_{\mathcal{X}}(R))=0$ and $\Delta_{\mathcal{X}}(R)$ is a
compact subset of $\Gamma_{\mathfrak{X}}(R)(\mathfrak{X}=\mathcal{R}, \mathcal{W})$ . Based on the fact that $HBD(R)|\Delta_{\mathcal{R}}$ is
dense in $C(\Delta_{\underline{a}_{i}})$ and $HB(R)|\Delta_{\mathcal{W}}=C(\Delta_{\mathcal{W}})$ , we see that $b(R)$ and $d(R)$ are the
numbers of isolated points in $\Delta_{\mathcal{R}}$ and $\Delta_{\psi}$, respectively, and $d^{\sim}(R)$ is the number
of points in $\Delta_{\mathcal{R}}$ with positive $\mu_{\mathcal{R}}$-mass. Thus in particular $x(R)$ is the countable
cardinal number $(x=b, d, d^{\sim})$ . For these we refer to $e$ . $g$ . monographs of Con-
stantinescu-Cornea [1] or [6]. We are interested in the mapping $R\rightarrow(b(R)$ ,
$d(R),$ $d^{\sim}(R))$ of hyperbolic Riemann surfaces into triples of countable cardinal
numbers. In these studies the T\^oki covering surfaces are very useful.
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2.3. Consider a hyperbolic Riemann surface $R$ and a T\^oki covering surface
$(R^{\sim}, R, \pi)$ of $R$ . Then $R^{\sim}$ is also hyperbolic along with $R,$ $i$ . $e$ . $R^{\sim}\not\in O_{G}$ (the

class of parabolic Riemann surfaces). In view of (2), $HBD(R^{\sim})=R$ (the real
number field), and since $HBD(R^{\sim})$ is dense in $HD(R^{\sim})$ with respect to the
Dirichlet seminorm and the supremum norm on each compact subset of $R^{\sim}$,
$HD(R^{\sim})=R$ . Therefore $R^{\sim}\in O_{HD}=O_{HBD}$ where $O_{HX}$ is the class of Riemann
surfaces $F$ such that $HX(F)=\{constants\}$ . Hence $\Delta_{\mathcal{R}}(R^{\sim})$ consists of a single
point. Take a sequence $\{B_{n}\},$ $n\in N$, of closed parametric disks $B_{n}$ such that
$B_{n}\cap B_{m}=\phi(n\neq m)$ and $\{B_{n}\}$ is locally finite in $R^{\sim}$ . Here and hereafter parametric
disks ar $e$ assumed to be relatively compact. It is known (cf. [6]) that

$\overline{(UB_{n})}\cap(\Gamma_{\mathcal{R}}(R^{\sim})-\Delta_{R}(R^{\sim}))\neq\phi n\in N$

where the closure is taken in $R^{\sim}\cup\Gamma_{\mathcal{R}}(R^{\sim})$ . We are interested in the question
when the relation

(7) $\overline{(\bigcup_{n\in N}B_{n})}\cap\Delta_{\mathcal{R}}(R^{\sim})\neq\phi$

is valid. The following result intuitively clarifies the location of $\Delta_{R}(R^{\sim})$ :
THEOREM If tllere exists a closed parametric disk $B$ in $R$ such that $\pi^{-1}(B)$

$=\bigcup_{n\in N}B_{n}$ , then the relation (7) is valid.

We will derive this result as a consequence of a more general assertion
discussed in nos. 2.4-2.5 below.

2.4. Take a nonempty open subset $S$ of an open Riemann surface $R$ such
that each point in $\partial S$ is regular with respect to the Dirichlet problem for $S$ .
We denote by $HB(S;\partial S)$ the relative class consisting of $u\in HB(S)\bigcap_{1}C(R)$ such
that $u|(R-S)=0$ . We denote by $\lambda=\lambda_{S}$ the inextremization $\lambda:HB(R)\rightarrow HB(S;\partial S)$

and by $\mu=\mu_{S}$ the extremization $\mu:HB(S;\partial S)\rightarrow HB(R)$ (cf. $e$ . $g$ . Noshiro [5, $p$ .
103]; see Fig. 2). The composition $\lambda 0\mu$ is always an identity map of $HB(S;\partial S)$

Fig. 2.

onto itself but $\mu^{o}\lambda$ is not necessarily so. A subset $E\subset R$ is said to be B-
negligible (cf. [2]) if there exists an $S$ such that $R-S\supset E$ and $\mu_{S}\circ\lambda_{S}$ is an
identity map of $HB(R)$ onto itself. Roughly speaking $E$ is B-negligible if the
’closure’ of $E$ has a ’small’ intersection with the ideal boundary of $R$ , and trivial
examples of B-negligible sets are compact subsets of $R$ .
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2.5. Let $S$ be as in no. 2.4 and $S^{\sim}=\pi^{-1}(S)$ . Then each point in $\partial S^{\sim}$ is also
regular with respect to the Dirichl\‘et problem. Clearly $\pi^{*};$ $ HB(S;\partial S)\rightarrow$

$HB(S^{\sim} ; \partial S^{\sim})$ is injective and we ask when it is surjective, viz.

(8) $\pi^{*}(HB(S;\partial S))=HB(S;\partial S)0\pi=HB(S^{\sim} ; \partial S^{\sim})$ ,

a localization of (2). As an answer we maintain the following
THEOREM. If $R-S$ is B-negligible (and in partjcular compact), then the

relation (8) is valid.
We only have to show that there exists a \^u\in HB(S; $\partial S$) for any given

nonnegative $u\in HB(S^{\sim} ; \partial S^{\sim})$ such that $ u=\hat{u}\circ\pi$ . Let $v=\mu s\sim u$ . By (2) there
exists a $\hat{v}\in HB(R)$ with $v=i)_{0}\pi\geqq 0$ . Since $\mu_{S}$ is surjective (by the B-negligi-
bility of $R-S$), there exists a $\hat{u}\in HB(S;\partial S)$ such that $\hat{v}=\mu_{S}\hat{u}$ . Observe that
$v-u\geqq 0$ and $\hat{v}-\text{{\it \^{u}}}\geqq 0$ . On setting h=u–\^u $\circ$ \mbox{\boldmath $\pi$}, we see that $|h|\leqq(v-u)+(\partial-\tilde{u})\circ\pi$ .
By the definition of $\mu,$ $v-u$ is a potential on $R^{\sim}$ . Let $k$ be a harmonic minorant
of (\partial --\^u) $\circ$ \mbox{\boldmath $\pi$} on $R^{\sim}$ . In view of (2) there exists a $\hat{k}\in HB(R)$ with $ k=\hat{k}\circ\pi$ and
a fortiori $\hat{v}-\hat{u}\geqq\hat{k}$ on $R$ . Since i)–\^u is a potential on $R,\hat{k}$ and therefore $k$

is nonpositive. Namely, any harmonic minorant of $(\hat{v}-\text{{\it \^{u}}})\circ\pi$ is nonpositive,
and hence $(\hat{v}-\hat{u})\circ\pi$ is a potential. We have seen that $|h|$ is dominated by
a potential and therefore $h\equiv 0,$ $i$ . $e$ . $ u=\hat{u}\circ\pi$ with $\hat{u}\in HB(S;\partial S)$ .

2.6. We prove Theorem in no. 2.3 as an application of the foregoing
theorem. Suppose (7) is invalid. Then there exists a nonconstant $u\in HBD(S^{\sim};$

$\partial S^{\sim}),$

$S^{\sim}=R^{\sim}-UB_{n}n\in N$ such that $u|\Delta_{\mathcal{R}}(R^{\sim})=1$ and $u|(R^{\sim}-S^{\sim})=0$ . Since $B$ is

B-negligible, $S^{\sim}=\pi^{-1}(S)$ and $S=R-B$ , we have (8), viz. there exists a $\hat{u}\in$

$HB(S;\partial S)$ such that $ u=\hat{u}\circ\pi$ . Therefore $ D_{R^{\sim}}(u)=D_{R}(\text{{\it \^{u}}})\cdot\infty=\infty$ , a contradiction.

Subsurfaces of T\^oki covering surfaces.

3.1. We denote by $\mathcal{P}(R)$ the set of projections of the branch points of $R^{\sim}$

in $R$ . In this section we consider only those T\^oki covering surfaces $R^{\sim}$ of
hyperbolic $R$ such that $\mathcal{P}(R)$ is isolated in $R$ . The $R^{\sim}$ constructed in Section 1
belongs to this category since even $R^{\sim}$ clearly has this property. For conve-
nienc $e$ we say that a subsurface $ s\sim$ of $R^{\sim}$ is admissible if it has a form

$S^{\sim}=\pi^{-1}(S)$ , $S=R-K$

where $K$ is a compact subset contained in a region $W$ such that each component
of $\pi^{-1}(W)$ is a copy of $W$ and each point in $\partial S$ is regular with respect to the
Dirichlet problem. The simplest example of $ s\sim$ is when $S=R-\overline{V}$ where $V$ is
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a parametric disk with $\overline{V}\subset R-\mathcal{P}(R)$ . As an extention of our former result [3]

we maintain the following
THEOREM. There exists a unique (up to multiplicative constants) $HD^{\sim}$-minimal

function but no HD-minimal function on any admissible subsurface $S^{\sim}of$ a T\^oki
covering surface $R^{\sim}$ with an isolated set of pr0jectj0ns of branch points in a
hyperb0lic Riemann surface $R$ .

Suppose that there exists an HD-minimal function $u$ on $S^{\sim}$ . Then $ u\in$

$HBD(S^{\sim} ; \partial S^{\sim})$ and, by Theorem in no. 2.5, there exists a \^u\in HBD(S; $\partial S$) with
$ u=\hat{u}\circ\pi$ . Since $D_{R}\sim(u)=D_{R}(\text{{\it \^{u}}})\cdot\infty<\infty,$ $u$ must be a constant zero, a contradiction.
Therefore we only have to show the existence of a unique $HD^{\sim}$-minimal func-
tion on $ s\sim$, which will be carried over in nos. 3.2-3.5.

3.2. We denote by $\hat{w}$ the harmonic measure of the ideal boundary of $R$

and henc $e$ of $S=R-K$ with respect to $S$ . On letting $\Phi\equiv 0$ on $K$ we see that
$\emptyset\in HBD(S;\partial S)$ and $\mu_{S}\Phi\equiv 1$ . We set $ K_{\rho}=t\emptyset\leqq\rho$ } $(\rho\in(0,1))$ and $K_{0}=K$. There
exists an $\eta\in(0,1)$ such that $K_{\rho}\cap \mathcal{P}(R)=\phi,$ $K_{\rho}$ is compact, and $\partial K_{\rho}$ consists of
a finite number of piecewise analytic Jordan curves for every $\rho\in(0, \eta$]. Observe
that $\pi^{-1}(K_{\rho})=\sum_{n\in N}(K_{\rho})_{n}$ (disjoint union) where $(K_{\rho})_{n}(n\in N)arecopiesofK_{\rho}$ . Take

any positive $u\in HBD(S^{\sim})$ dominating an $\hat{h}\circ\pi(\hat{h}\in HB(S;\partial S))$ on $S^{\sim}$ . Then, for
any $\rho\in(0, \eta$],

9) $\lim_{n\rightarrow}\inf_{\infty}(\min_{\partial(K_{\beta})_{n}}u)\geqq\sup\hat{h}s$

To prove this, fix an arbitrary positive number $\epsilon$ and then an $a\in S-\mathcal{P}(R)$ such
that $\hat{h}(a)\geqq\sup_{S}\hat{h}-\epsilon$ . We can find a regular subregion $W\subset S-\mathcal{P}(R)$ such that
$W\supset K_{\rho}\cup\{a\}(\rho\in[0, \eta])$ and $\pi^{-1}(W)=\sum_{n\in N}W_{n}$ (disjoint union) where $W_{n}(n\in N)$

are copies of $W$ with $W_{n}\supset(K_{\rho})_{n}(n\in N)$ . Let $u_{n}=u|(W_{n}-(K_{0})_{n})$ . Since $W_{n}-$

$(K_{0})_{n}=W_{n}-K_{n}$ may be identified with $W-K,$ $\{u_{n}\}$ can also be viewed as a
sequence of functions on $W-K$. The key observation to the proof of (9) is
the following simple relation:

$\sum_{n\in N}D_{W-K}(u_{n}-u(a))=\sum_{n\in N}D_{W-K}(u_{n})=\sum_{n\in N}D_{W_{n}-K_{n}}(u)\leqq D_{s\sim}(u)<\infty$ .

As a consequence of this we have

$\lim_{n\rightarrow\infty}D_{W-K}(u_{n}-u_{n}(a))=0$ .
Therefore $\{u_{n}-u_{n}(a)\}$ converges to zero uniformly on each compact subset of
$W-K$ and in particular on $\partial(K_{\rho})_{n}(\rho\in(0, \eta$]). Since $u_{n}\geqq\hat{h}$ on $W-K,$ $u_{n}(a)\geqq\hat{h}(a)$

and a fortiori $u_{n}\geqq\hat{h}(a)+(u_{n}-u_{n}(a))$ . Hence

$\lim_{n\rightarrow}\inf_{\infty}(\min_{\partial K_{\beta}}u_{n})\geqq\hat{h}(a)\geqq_{s}\sup\hat{h}-\epsilon$ .
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On letting $\epsilon\rightarrow 0$ we conclude the validity of (9).

3.3. We set $ w=\hat{w}0\pi$ which is in $HB(S;\partial S)$ . We denote by $P$ the single

point in $\Delta_{\mathcal{R}}(R^{\sim})$ . Since $\bigcup_{j=1}^{n}K_{j}$ is compact in $R^{\sim},$ $\Gamma_{\mathcal{R}}(R^{\sim})$ and $\bigcup_{j-1}^{n}K_{j}$ are disjoint

in $R^{\sim}\cup\Gamma_{\mathcal{R}}(R^{\sim})$ and therefore there exists a unique $w_{n}\in HBD(R^{\sim}-UK_{j})\cap C(R^{\sim}j=1n$

$\cup\Gamma_{\mathcal{R}}(R^{\sim}))$ such that $w_{n}(p)=1$ and $w_{n}|(UK_{j})=0j=1n$ for each $n\in N$. We maintain

that

(10) $w=\lim_{n\rightarrow\infty}w_{n}\in HD^{\sim}(S^{\sim})\cap HB(S^{\sim} ; \partial S^{\sim})$ .
Since $\{w_{n}\}(n\in N)$ is decreasing on $R^{\sim}$, we see that $w^{\sim}=\lim_{n\rightarrow\infty}w_{n}$ belongs to

$HD^{\sim}(S^{\sim})\cap HB(S^{\sim} ; \partial S^{\sim})$ . Sinc $e\lim_{\rightarrow}\inf_{z}(w_{n}(z)-w(z))\geqq 0$ for every $z^{*}\in(\partial S^{\sim})\cup\{p\}$ ,

the maximum principle (cf. $e$ . $g$ . $[6]$ ) yields $w_{n}\geqq w(n\in N)$ and a fortiori $w^{\sim}\geqq w$ .
On the other hand, by (8), $ w^{\sim}=\emptyset^{\sim_{\circ}}\pi$ with a $ai^{\sim}\in HB(S;\partial S)$ . Here in view of
$0\leqq w^{\sim}\leqq 1$ on $R^{\sim}$, we also have $0\leqq\hat{w}^{\sim}\leqq 1$ on $R$ and a fortiori $\hat{w}^{\sim}\leqq\hat{w}$ on $R$ . Hence
$w^{\sim}=\emptyset^{\sim_{\circ}}\pi\leqq a\circ\pi=w$ . We thus conclude that $w^{\sim}=w,$ $i$ . $e$ . (10) is valid.

3.4. We come to an essential part of our proof. We maintain that $w$ is
$HD^{\sim}$-minimal on $ s\sim$ . Suppose that $0<u\leqq w$ on $ s\sim$ with $u\in HD^{\sim}(S^{\sim})$ . Since
$0<w<1$ on $S^{\sim},$ $\alpha=\sup_{S}\sim u\in(0,1$]. We will prove that $u\equiv\alpha w$ on $S^{\sim}$ . Observe
that $\sup_{S}\text{{\it \^{u}}}=\sup_{S}\sim u=\alpha$ , where $\hat{u}\in HB(S;\partial S)$ with $ u=\hat{u}\circ\pi$ whose existence is a
consequence of $u\in HB(S^{\sim} ; \partial S^{\sim})$ and (8). Hence $\hat{u}\leqq\alpha\emptyset$ on $S$ and a fortiori $u$

$\leqq\alpha w$ . Thus we only have to show that $u\geqq\alpha w$ on $s\sim$ . Let $\{u^{i}\}(i\in N)$ be a
decreasing sequence in $HD(S^{\sim})$ converging to $u$ on $ s\sim$ . Replacing $u^{i}$ by $ u^{i}\wedge\alpha$

(the greatest harmonic minorant of $u^{t}$ and $\alpha$ ), if necessary, we may assume
that $\alpha\geqq u^{i}\geqq u=\hat{u}\circ\pi$ on $s\sim$ . Fixing an arbitrary $\rho\in(0, \eta$], (9) yields

$\alpha=\sup\text{{\it \^{u}}}\leqq\lim_{ns\rightarrow\infty}\inf(\min_{\rho n}u^{t})\leqq\lim_{n\partial(K)\rightarrow\infty}\sup(\max_{\rho\partial(K)n}u^{i})\leqq\alpha$ .

This implies that
$\lim_{n\rightarrow\infty}(\max_{\partial(K_{\rho})n}|u^{i}-\alpha|)=0$ .

Fix an arbitrary positive number $\epsilon$ and then an $m\in N$ such that $ u^{i}+\epsilon>\alpha$ on
$\partial(K_{\rho})_{n}$ for every $n\geqq m$ . Let $\overline{u}^{i}=u^{i}$ on $S^{\sim}-U(K_{\rho})_{n}n=1m$ and $\overline{u}^{t}$ be in $H((K_{\rho})_{n}$–

$\partial(K_{\rho})_{n})\cap C((K_{\rho})_{n})$ , with $\overline{u}^{i}=u^{i}$ on $\partial(K_{\rho})_{n}$ , on $(K_{\rho})_{n}$ for $1\leqq n\leqq m$ . Then $\overline{u}^{i}$ is a

piecewise smooth continuous function on $R^{\sim}-UK_{n}=S^{\sim}\cup(UK_{n})n>mn=1m$ and has the

finite Dirichlet integral over there. Set $v^{i}=\min(\overline{u}^{i}+\epsilon, \alpha)$ on $R^{\sim}-U(K_{\rho})_{n}n>m$ and
$ v^{i}=\alpha$ on $n>mU(K_{\rho})_{n}$ . Then $v^{i}$ is piecewise smooth and has the Pnite Dirichlet
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integral over $R^{\sim}$ . Therefore $v^{i}\in C(R^{\sim}\cup\Gamma_{\mathcal{R}}(R^{\sim}))$ (cf. $e$ . $g$ . $[6]$ ). In view of (7),

the closure $ofUn\in N(K_{\rho})_{n}$ in $R^{\sim}\cup\Gamma_{\mathcal{R}}(R)$ contains $p$ , and since $n\Rightarrow 1U^{m}(K_{\rho})_{n}$ is compact

in $R^{\sim}$, the closure of $n>mU(K_{\rho})_{n}$ in $R^{\sim}\cup\Gamma_{\mathcal{R}}(R^{\sim})$ contains $p$ . Therefore $ v^{t}=\alpha$ on
$\cup(K_{\rho})_{n}$ implies that $ v^{i}(p)=\alpha$ . Observe that

$n>m$

$\lim_{z\rightarrow}$
$inf\{(v^{i}(z)+\rho)-\alpha w(z)\}\geqq 0$

for every $z^{*}\in(\partial(\pi^{-1}(K_{\rho})))\cup\{p\}$ . Hence the maximum principle yields

$(u^{i}+\epsilon)+\rho\geqq\alpha w$

on $R^{\sim}-\pi^{-1}(K_{\rho})$ . On letting $\epsilon\rightarrow 0$ we deduce that $u^{t}+\rho\geqq\alpha w$ on $R^{\sim}-\pi^{-1}(K_{\rho})$ .
Then by making $\rho\rightarrow 0$ we have $u^{i}\geqq\alpha w$ on $R^{\sim}-\pi^{-1}(K)=S^{\sim}$ for every $i\in N$.
Again by $ i\rightarrow\infty$ , we conclude that $u\geqq\alpha w$ on $ s\sim$ .

3.5. Th $e$ uniqueness of the $HD^{\sim}$-minimal function is easy to see. Let $u$

be an $HD^{\sim}$-minimal function on $S^{\sim}$ . We may assume that $0<u<1$ on $S^{\sim}$ . By
the minimality of $u,$ $u|\partial S^{\sim}=0$ , and thus $u\in HB(S^{\sim} ; \partial S^{\sim})$ by setting $u\equiv 0$ on
$R^{\sim}-S^{\sim}$ . By (8), $ u=\hat{u}\circ\pi$ with a $\hat{u}\in HB(S;\partial S)$ . Sinc$e0<\hat{u}<1$ on $S$ with \^u|\partial S
$=0$ , we have $\hat{u}\leqq\hat{w}$ on $S$ . Therefore $u=\hat{u}\circ\pi\leqq\hat{w}\circ\pi=w$ on $ s\sim$ . By the minimality
of $w$ , there exists a constant $c$ such that $u=cw,$ $viz$ . there exists a unique
$HD^{\sim}$-minimal function $w$ on $S^{\sim}$ up to multiplicative constants.

Classification of fibers.

4.1. We denote by $\tau=\tau_{R}$ the natural maPping of $R\cup\Gamma_{\mathcal{W}}(R)$ onto $R\cup\Gamma_{\mathcal{R}}(R)$ ,
viz. $\tau$ is a continuous mapping of $R\cup\Gamma_{\mathcal{W}}(R)$ onto $R\cup\Gamma_{\mathcal{R}}(R)$ such that $\tau|R$ is
an identity mapping. Take a $q\in\Gamma_{\mathcal{R}}(R)$ . The set $\pi^{-1}(q)$ is compact and is
referred to as a fiber over $q$ . In view of the relation (cf. $e$ . $g$ . $[6]$ )

(11) $\mu_{\mathcal{W}}(\tau^{-1}(q))=\mu_{\mathcal{R}}(q)$ ,

it is interesting to study the fiber $\tau^{-1}(q)$ over a $q\in\Delta_{\mathcal{R}}(R)$ with $\mu_{\mathcal{R}}(q)>0$ . We
classify such fibers into three types. We say that $\tau^{-1}(q)$ is of type I or more
precisely type $I_{n}$ if there exists a sequence $\{p_{j}\}(1\leqq j<n+1)$ of distinct points
$p_{j}$ in $\tau^{-1}(q)$ with $\mu_{\mathcal{W}}(p_{j})>0$ such that $\mu_{\mathcal{W}}(\tau^{-1}(q)-\{p_{j}\})=0$ . Here $n\in\overline{N}=N\cdot\{\infty\}$ ,
the set of countable cardinal numbers except zero, and $\infty+1=\infty$ . The fiber
$\tau^{-1}(q)$ is said to be of type II if $\mu_{\mathcal{W}}(p)=0$ for every $p\in\tau^{-1}(q)$ . If there exist a
sequence $\{p_{j}\}(1\leqq j<n+1)$ of distinct points $p_{j}$ in $\tau^{-1}(q)$ with $\mu_{\mathcal{W}}(p_{j})>0$ and a
subset $E$ of $\tau^{-1}(q)$ with the property that $\mu_{\mathcal{W}}(E)>0$ and $\mu_{\mathcal{W}}(p)=0$ for any $p\in E$

such that $\tau^{-1}(q)=\{p_{j}\}\cup E$, then we say that the fiber $\tau^{-1}(q)$ is of type III or
more precisely type $III_{n}(n\in\overline{N})$ .
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4.2. Let $q\in\Delta_{\mathcal{R}}(R)$ with $\mu_{\mathcal{R}}(q)>0$ . We maintain that the Pber $\tau^{-1}(q)$ is either
of type $I_{n}(n\in\overline{N})$ , type II, or type $III_{n}(n\in\overline{N})$ . In fact, let $F=\{p_{j}\in\tau^{-1}(q);\mu_{\wp}(p_{j})$

$>0\}$ and $E=\tau^{-1}(q)-F$ . In view of the relation (11) and $\mu_{\mathcal{R}}(q)\leqq\mu_{R}(\Delta_{\mathcal{R}}(R))=1$ ,
we see that $F$ is a countable set. If $ F=\phi$ , then $\tau^{-1}(q)$ is of tyPe II. SuPpose
$ F\neq\phi$ and $F=\{p_{j} ; 1\leqq j<n+1\}(n\in\overline{N})$ . If moreover $\mu_{91}(E)=0$ , then $\tau^{-1}(q)$ is of
type $I_{n}$ . If $\mu_{7\nu}(E)>0$, then $\tau^{-1}(q)$ is of type $III_{n}$ . Thus merely classifying fibers
$\tau^{-1}(q)$ into three types is trivial and really nontrivial part is to show the exis-
tence of $(R, q)$ such that $\tau^{-1}(q)$ is of any type I, II, and III in which the exis-
tence of T\^oki covering surface of any open Riemann surface is very conve-
niently made use of.

4.3. Take a hyperbolic Riemann surface $R$ and a T\^oki covering surface
$R^{\sim}$ of $R$ . Then $\Delta_{R}(R^{\sim})$ consists of a single point $q$ with $\mu_{\mathcal{R}}(q)>0$ . Then $\tau^{-1}(q)$

$=\tau_{R^{\sim}}^{-1}(q)\supseteqq\Delta_{\mathcal{W}}(R^{\sim})$ . By (2) we see that the measure spaces $(\Delta_{\mathcal{W}}(R^{\sim}), \mu_{\psi R}\sim)$ and
$(\Delta_{\mathcal{W}}(R), \mu_{1^{\text{m}},R}C)$ can be identified, viz. we have the following relation for a T\^oki
covering surface $R^{\sim}$ of a hyperbolic Riemann surface $R$ :
(12) $(\tau^{-1}(\Delta_{\mathcal{R}}(R^{\sim})), \mu_{7l^{2}R}\sim)=(\Delta_{qf/}(R^{\sim}), \mu_{\mathcal{W},R}\sim)\approx(\Delta_{1f}c(R), \mu_{\mathcal{W},R})$

$where\approx means$ an isomorphism as topological measure spaces. Thus we can
produce fibers $\tau^{-1}(q)=\tau^{-1}(\Delta_{9}(R^{\sim}))$ as $\Delta_{\wp}(R)$ quite arbitrarily by choosing $R$

suitably. For example, take $R$ as the open unit disk $|z|<1$ . Then each point
of $\Delta_{\mathcal{W}}(R)$ has $\mu_{qf}$ -measure zero and therefore $\tau^{-1}(q)$ is of type II. It is known
that there exists an $R$ in the class $O_{HB}^{n}$ (cf. $e$ . $g$ . $[6]$ ) which may be characterized
by that $\Delta_{\mathcal{W}}(R)=\{p_{j} ; 1\leqq j<n+1\}\cup E$, where $p_{i}\neq p_{j}(i\neq j),$ $\mu_{\mathcal{W}}(p_{j})>0$, and $\mu_{\mathcal{W}}(E)$

$=0(n\in\overline{N})$ . Then $\tau^{-1}(q)$ is of type $I_{n}(n\in\overline{N})$ . Remove a closed parametric disk
from the above surface and let $R$ be the resulting surface. Then $\tau^{-1}(q)$ is of
type $III_{n}(n\in\overline{N})$ . Thus we have obtained the following

THEOREM. The fiber $\tau^{-1}(q)$ over a point $q\in\Delta_{\mathcal{R}}(R)$ of positjve $\mu_{\mathcal{R}}$-measure can
be classified into three types $I_{n}$ , II, and $III_{n}$ , and there really exist an $R$ and $ q\in$

$\Delta_{R}(R)$ of positive $\mu_{\mathcal{R}}$-measure such that the fiber $\tau^{-1}(q)$ is of any given type $I_{n}$ ,
II, and $III_{n}(n\in\overline{N})$ .

Surfaces with given harmonic dimensions.

5.1. The cardinal number $x(R)(x=b, d, d^{\sim})$ (cf. no. 2.2) is also called the X-
harmonic dimension $(X=B, D, D^{\sim})$ of $R$ . We denote by $R$ the class of open
Riemann surfaces and consider a mapping $\delta:R\rightarrow\overline{N}_{0}^{3}=\overline{N}_{0}\times\overline{N}_{0}\times\overline{N}_{0}$ such that
$\delta(R)=(b(R), d(R),$ $d^{\sim}(R))$ where $\overline{N}_{0}=\{0\}\cup\overline{N}=N\cup\{0, \infty\}$ . We wish to determine
the range $\delta(R)$ in $\overline{N}_{0}^{3}$ . In other words we are interested in the following prob-
lem: Find an oPen Riemann surface $R$ such that $x(R)=x(x=b, d, d^{\sim})$ for a
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given triple $(b, d, d^{\sim})$ of countable cardinal numbers. We will give a necessary
and sufficient condition on the triple $(b, d, d^{\sim})$ such that the above problem has
a solution.

5.2. As a preparation we consider a countable family $\{R_{k}\}(1\leqq k<N)(N\in$

$\overline{N},$ $N>1$ ) of hyperbolic Riemann surfaces $R_{k}$ . Let $U_{k}$ be a parametric disk in
$R_{k}$ . For convenience we represent $U_{k}$ as the ’disk’ $ 1/4<|z-(3k-2)|\leqq\infty$ about
the point at infinity $\infty$ of $\hat{C}=C\cup\{\infty\}$ , where $C$ is the finite complex plane.
We denote by $V_{k}$ the concentric parametric ’disk’ $ 1<|z-(3k-2)|\leqq\infty$ and $\alpha_{k}$

the curve $|z-(3k-2)|=1/2$ in $U_{k}$ . Let $w_{k}$ be the harmonic measure of the
ideal boundary of $R_{k}$ with respect to $R_{k}-\overline{V}_{k}$ . We extend $w_{k}$ to $R_{k}$ so as to
be in $C(R_{k})$ by setting $w_{k}\equiv 0$ on $\overline{V}_{k}$ . By choosing $U_{k}$ sufficiently small in $R_{k}$

we may assume that
$D_{R_{k}}(w_{k})<1/2^{k}$

(13)
$\{\inf_{a_{k}}w_{k}>1/2$ .

Let $W=\hat{C}-\overline{U\{|z-(3k-2)|<1}$}
$1\xi k<N$

Weld each $R_{k}-\overline{V}_{k}$ to $W$ by identifying

$|z-(3k-2)|=1$ in $R_{k}-V_{k}$ and $\overline{W}$. The resulting Riemann surface will be
denoted by $\bigoplus_{1\leqq k<N}R_{k}$ . As a consequence of (13) we ha$ve$ the following identity:

(14) $x(\bigoplus_{1\leq k<N}R_{k})=\sum_{1\xi k<N}x(R_{k})$ $(x=b, d, d^{\sim})$ .

This relation is trivial for $ N<\infty$ and the condition (13) is redundant for the
validity of (14) for $ N<\infty$ . The relation must be well known even for the case
$ N=\infty$ but we cannot locate the exact referenc $e$ except for [4].

5.3. A triple $(b, d, d^{\sim})$ of countable cardinal numbers $(i. e. (b, d, d^{\sim})\in\overline{N}_{0}^{3})$

will be referred to as being solvable if the following condition is satisfied:

(15) $\{IfIfd^{\sim}=0d^{\sim}\geqq 1,$ $thenthenb=d=0bisarbitrary$
and $d\leqq d^{\sim};$

We will prove that the image set $\delta(R)\subset\overline{N}_{0}^{3}$ is the set of solvable triples, $i$ . $e$ .
we will prove the following

THEOREM. There exists a Riemann surface $R$ such that $x(R)=x(x=b, d, d^{\sim})$

if and only if the triple $(b, d, d^{\sim})$ is solvable.
For convenience we denote by $ R_{bdd}\sim$ a Riemann surface such that $x(R_{bdd}\sim)$

$=x(x=b, d, d^{\sim})$ . Observe that an HD-minimal function is always an $HD^{\sim}-$

minimal function, $i$ . $e$ . $d(R)\leqq d^{\sim}(R)$ . Suppose that there exists an HB-minimal
function on $R$ . Then $\Delta_{c_{W}}(R)$ contains a point $P$ with $\mu_{\mathcal{W}}(p)>0$ and thus, by



$T\delta ki$ covering surfaces 373

(11), $\mu_{\mathcal{R}}(q)>0$ with $\sigma-\tau(p)$ which implies the existence of an $HD^{\sim}$-minimal func-
tion (cf. $e$ . $g$ . $[6]$ ). Therefore $b(R)\geqq 1$ implies $d^{\sim}(R)\geqq 1$ , or equivalently, $d^{\sim}(R)=0$

implies $b(R)=0$ . From these observations it follows that the existence of an
$ R_{bdd}\sim$ assures the solvability of the triple $(b, d, d^{\sim})$ . Conversely assume that
$(b, d, d^{\sim})$ is a solvable triple. We will prove the existence of an $ R_{bdd}\sim$ . Any
(hyperbolic) subregion of $\hat{C}$ is an $R_{000}$ , and the nontrivial case is when $d^{\sim}\geqq 1$ .
Let $n\in\overline{N}_{0}$ be arbitrarily given. There exists a hyperbolic Riemann surface
$R(n)$ belonging to the class $O_{HB}^{n}$ for the case $n\geqq 1$ (cf. $e$ . $g$ . $[6]$ ) and, $e$ . $g$ . $R(O)$

$=\{|z|<1\}$ , so that $b(R(n))=n$ . Then an even T\^oki covering surface $R(n)^{\sim}$ of
$R(n)$ is an $R_{n11}$ . By Theorem 3.1 an admissible subsurfac $ es\sim$ of $R(n)^{\sim}$ is an
$R_{n01}$ . Thus surfaces $R_{n11}$ and $R_{n01}$ exist for any $n\in\overline{N}_{0}$ . Assume first that $d$

$=d^{\sim}$ . There exists a sequence $\{b_{k}\}\subset\overline{N}_{0}$ such that $\sum_{1\leqq k<d+1}b_{k}=b$ . Let $R_{k}=R_{b_{k}11}$

and consider $\bigoplus_{1\leqq k<d+1}R_{k}$ . By (14) we see that $\bigoplus_{1\leq k<d+1}R_{k}$ is an $ R_{bdd}\sim$ . Next con-

sider the case $d<d^{\sim}$ . We choose a sequence $\{b_{k}\}\subset\overline{N}_{0}$ such that $b=_{1\xi}\sum_{k<a^{\sim}+1}b_{k}$ .

If $d=0$ , then, by (14), $\bigoplus_{1\leqq k<d^{\sim}+1}R_{k}$ with $R_{k}=R_{b_{k}01}$ is an $ R_{b0d}\sim$ . If $d>0$, then let

$R_{k}=R_{b_{k}11}(1\leqq k<d+1)$ and $R_{k}=R_{b_{k}01}(d<k<d^{\sim}+1)$ . Once more by (14) we see
that $\bigoplus_{1\leqq k<d^{\sim}+1}R_{k}$ is an $ R_{bdd}\sim$ .
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