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An infinite and unbounded covering surface R~ of an open Riemann surface
R is referred to as a T6ki covering surface if any bounded harmonic function
on R~ is constant on z7!(¢) for each ¢ in R where = is the projection. The
primary purpose of this paper is to show the existence of a TOki covering
surface R~ of any given open Riemann surface R (Main theorem in no. 1.2).
We can construct R~ so that the projections of branch points in R~ is discrete
in R. Remove a parametric disk V from R. We will show that any bounded
harmonic function on R~—z"* V) vanishing on its boundary relative to R™ is
constant on m(g) for each ¢ in R—V, and actually we will prove this asser-
tion for a more general subset than V in no. 2.5). As an applica-
tion of this we will see that = V) always clusters to the Royden harmonic
boundary of R~ which consists of a single point in no. 2.3). Based
on these results we will show that there exists a single point of positive har-
monic measure but no isolated point in the Royden harmonic boundary of R~
—a7 (V) in no. 3.1). The most effective application of Tdki covering
surfaces is the following : For any compact Stonean space 4 which is a Wiener
harmonic boundary of a hyperbolic Riemann surface, there exists an open
Riemann surface whose Royden harmonic boundary consists of a single point
and whose Wiener harmonic boundary is 4 in no. 4.3). We denote
by b(W) (the B-harmonic dimension) the number of isolated points in the Wiener
harmonic boundary of an open Riemann surface W and by d(W) (the D-harmonic
dimension) and d~(W) (the D~-harmonic dimension) the numbers of isolated
points and points with positive harmonic measures, respectively, in the Royden
harmonic boundary of W. Based on the above results we will determine the
triples (b, d, d~) of countable cardinal numbers such that (b, d, d*)=(b(W.), d(W),
d~(W)) for a certain open Riemann surface W in no. 5.3).

Toki covering surfaces.

1.1. We start by fixing terminologies. Let R~ and R be Riemann surfaces.
The triple (R~, R, n) is said to be a covering surface if #: R~ — R is a non-
constant analytic mapping. The surface R is referred to as the base surface
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and © the projection of the covering surface. The surface R™ itself is often
called the covering surface. A curve y in R is a continuous mapping of the
interval [0, 1] into R. We say that the covering surface (R~, R, x) is unbounded
if the following condition is satisfied: For any curve y in R and any point a”
in R~ with n(a~)=y(0) there always exists a curve y~ in R~ such that y~(0)=a~
and y(©)=zey~(¢) on [0, 1]. Let av€R~ and e¢€R with zn(¢~)=a and z==n(z"™)
=a+(z"—a~)™ (m=1) be the local representation of z. If m=2, then ¢~ is said
to be a branch point of order m of the covering surface. Let a=R and n *(a)
={a;}(1=n<NZL). For convenience we say that a=R is an even base point
if we can find a parametric disk V at ¢ with the following property: There
exist an m=1 and N—1 connected components Vy of z7XV) (1£n< N=o0) such
that V is a parametric disk at a; and z=n(z~)=a+(z~—a;)™ is a mapping of
Vi onto V (1=n<N). A covering surface (R~, R, ) is referred to as an even
covering surface if every point a=R is an even base point. In this case there
exist no branch points in 7z !(a) for every a=R except for an isolated subset
of R. Even covering surfaces are unbounded. For unbounded covering surfaces
(R~, R, =) the number of points in z7!(a) is a constant <oco for every a€R
where branch points are counted repeatedly according their orders. This
number is referred to as the sheet number. If it is finite (infinite, resp.), then
(R~, R, m) is said to be finite (infinite, resp.).

1.2. For any covering surface (R~, R, ©) we can consider the [ift up n*
which is an injective map from the space of functions on R to that on R~
defined by #n*f=f-n for functions f on R. The lift up n* preserves constants,
ring operations, positiveness, boundedness, analyticity, super and subharmonicity,
and so forth. In particular the mapping

1) 7*: HB(R) —> HB(R™)

is well defined and injective, where H(R) is the space of harmonic functions on
R and HB(R) is the subspace of H(R) consisting of bounded functions. We
say that (R~, R, m) or simply R~ is a Toki covering surface of R if (R, R, &)
is infinite and unbounded and the mapping (1) is surjective, i.e.

2) n*(HB(R))=HB(R)°r=HB(R™).

The primary purpose of this paper is to prove the following

MAIN THEOREM. For any open Riemann surface R there always exists a
Toki covering surface R~ of R.

The above result was originally proved by Téki [7] when the base surface
R is the open unit disk |z|<1. We adopted the terminology TOKki covering
surface in honor of this very important work in the classification theory of
Riemann surfaces. The covering surface R~ can be constructed so as to satisfy
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the following two more properties: R~ is even; every point in an arbitrarily
given compact subset K of R is not the projection of any branch point of R™.
The proof will be given in nos. 1.3-1.8.

1.3. We denote by N the set of positive integers. Consider the mapping
3) (m, n) —> p=p(m, n)=2""(2n—1)

of NXN to N. Observe that the mapping (3) is bijective. Moreover p(m, n)
Zp(m’, n’) if m=m’ and n=n’. It is also clear that p(m, n) — co if m — co or
n— oo or m and n — oo,

1.4. Since R is open, we can find an exhaustion {R%},ey of R such that
R2*—R?~1 consists of a finite number [(z) of annuli A,; (=1, -+, [(y)) for each
p<N. We denote by mod A,; the logarithmic modulus of A, i.e. mod A=t
if the conformal representation of A4,; is 1<[z|<e’. We choose an arbitrary
but fixed sequence {k()},cv in N such that

4/k(p)< min mod A4,
141w

for every = N. Since mod A<mod A’ for AC A’, we can find an annulus Bx
with EMCAM for each (g, A) such that B,; separates one component of 04,
from the other and

mod B.;=4/k(1)
for 2=1, ---, [(#). Therefore we can view B,; as a spherical ring, i.e.
4 Bi={re'?; 0<logr<4/k(pw}.

We then consider the slits Sy,; in each B,, with p=pu(m, n) given by
Smaa={re’? ; 1/k(p)<logr<3/k(y), 0=2mv/k(1)}
for v=1, ---, k(p).

1.5. We denote by R, the surface R less all the slits S%..; ((m, n)e NX N, 2
:1; Ty l(#(m: n))} D:]., T k(ﬂ(m; n)))) i.e.

Ry=R— U U U Sha.

(M,n)ENXN 1=2=1(p(m,n)) 1S k(u(m,n))

Consider two sequences {R(h)}rex and {R(h)}rex of duplicates R(h) and R(h)
of R,.

1.6. We join R(h) (h=1, 2, ---) with R(n’) (h’=1, 2, ---) suitably crosswise
along every slit S, described as follows. For convenience we introduce the
following notation: m=0 for m=1 and m=2""2 for m>1. First, for m=1, join
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R(h) with R(h) (h=1, 2, ---) crosswise along every slit S,; with n€N, i=1, -,
(p(1, n)), and y=1, ---, k(u(l, n)). Next for each fixed meN with m>1 and
subsequently fixed j=0, 1, -+ and i=1, -+, @, join R(i+mj) with RG-+M(j+1))
for even j and R(i+yj) with R(i+m(j—1)) for odd j, crosswise along every
slit Sh.a with neN, 2=1, ---, l(u(im, n)), and v=1, -+, k(p(m, n)). This rather
intricate procedure can be intuitively clarified by the scheme in Fig. 1.

The covering surface R~ over R thus constructed with = the natural pro-
jection R~ — R is easily seen to be unbounded and infinite. It is also clear
that R~ is even. For any compact subset K of R, we could take R*' large
enough so that R*"DOK. Then there is no branch point of R~ over any point
of K. We will prove that R~ is a TOki covering surface of R. For this pur-
pose we only have to show that (2) is valid for the above constructed R™.

1.7. Set Rmn,i:?f_l<Blu(m,n>,2) and Lmn,zzﬂ'—l(l‘u(m,n)]) where
Lucm,mya= {re'” ; log r=2/k()}
in Bcm,ma as represented by (4) with p=pu(m, n). We also set

Rpn= U Runis Lon= U Lnna-
1251 am,n)) 15251(u(m,n))
Observe that R, contains all the copies of Sy.; (A=1, ---, l(p(m, n)), v=1, -,
k(p(m, n))) and L., passes through every copy of S,,.1 above. We maintain the
existence of a constant ¢=(0, 1) such that
5) sup |v]| <o sup |v|
Lmn Rpn
for every ve HB(R,,) vanishing at branch points in R,,, i.e. end points of all
the copies of Sh.; in Ry, (A=1, -, (u(m, n)), v=1, -, k(u(m, n))). We only
have to show (5) for L,.; and R,,; instead of L,, and R,, For this purpose
let Rya2s be any connected component of Rp,; and set Lynis=LnniNRunis
Observe that Rp.i is a two sheeted covering surface over B,m,»i: We can
make further reduction to prove (5). Namely we only have to prove (5) for
Lonzs and Ry,is instead of Lpy,; and Rp.a:  Again let Ry.;., be the part of
Raynas lying over

2x(v—1)/k(p) <O<2x(v+1)/k(p)
and L. be the part of L.z over
2n(v—1/2)/ () <0 =2r(v+1/2)/k(ys)

for v=1, ---, k(y) with p=p(m, n). The crucial point in our reasoning is the
following : Configurations (Ri.is Lmnis) are conformally equivalent to each
other for any meN, neN, A=1, -+, [(u(m, n)), any s, and v=1, -+, k(x). There-
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fore, as our final]reduction, we only have to show the existence of a constant
o<(0, 1) such that

6) sup lv| <o

L.nn/l;s

for every v& H(Rpna5) such that [v|=<1 on Rl..; and v vanishes at the end
points of S}...5 in order to establish (5). If (6) were not the case, then there
would exist a sequence {v,} in H(Ry.1s) with |v,/| <1 on R}, such that each
v, vanishes at the end points of S}.,., and that

lim ( sup |v,|)=1.

o L;rm/l;s
We may assume, by choosing a subsequence if necessary, that {v,} converges
to a v, H(RLnzs). Obviously the |v,] =1 on R, and vanishes at the end
points of S}, Clearly the supremum of |v,| on L, is 1 and a fortiori
the maximum principle yields that |v,|=1 on K}.;; which contradicts that v,
vanishes at the end points of Sh,z..

1.8. Let T, be the cover transformation of R~ such that two points in
R(h) and R(h) (h=1, 2, ---) with the same projections are interchanged. For
m>1, let T,, be the cover transformation of R~ such that two points in R(i+7)
and R(i+7m(j+1)) with the same projections are interchanged for even j and
two points in R(i+j) and R(i+#(j—1)) with the same projections are inter-
changed for odd j {cf. no. 1.6). Again the scheme in Fig. 1 will be helpful to
see the mapping property of T,, (im=1, 2, ---) intuitively and to be convinced that
it is well defined. Take an arbitrary u HB(R~). We only have to show that
u is constant on 7 %(z) for any z€R in order to conclude the validity of (2).
For this aim consider

Un=W—uT)/2

for each fixed me&N. It is clear that u,<HB(R™) and |u,| <M on R~ where
M=sup p~|u|. Observe that u, is qualified to be a v in (5) and therefore

sup lu,| oM.
Lmn

This then implies that |u,|=<cM on R, .-,, and again by (5) we cdeduce that

sup |uy,| =c’M.

msn-1

Repeating this process n—1 times we arrive at the conclusion

sup |upl <o"M.
Lm:l

Since ne N is arbitrary, we deduce that u,=0 on L, ,;, and a fortiori #,=0 on
R~. Therefore u=u-T,, on R~ for every meN. This means that u is constant
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on 7" Yz) for any z€R.
The proof of the main theorem is herewith complete.

Minimal functions and compactifications.

2.1. We denote by HX(R) the space of harmonic functions on R with a
boundedness property X. In addition to X=2B (the finiteness of the supremum
norm) we consider X=D (the finiteness of the Dirichlet seminorm Dg(u)*?=

(SRdu/\*du)l”z) and X=BD (both B and D). We also consider the class HD~(R)

of nonnegative harmonic functions u on R such that there exists a decreasing
sequence {u,} CHD(R) with u, —u on R. A function u is said to be HX-
minimal on R provided that R is hyperbolic, u is a strictly positive function
in HX(R), and there exists a positive constant ¢, for any ve HX(R) with u=v
>0 on R such that v=c,u (X=B, D, D~, BD and BD~). It is known that HX-
minimal functions (X=D, D~) are automatically bounded (cf. e.g. [6]). There-
fore the notion should only be considered for X=B, D and D~. We will denote
by x(R) the cardinal number of HX-minimal functions on R when two HX-
minimal functions u; and u, are identified if u,/u, is a constant (x=b, d and d~
according as X=B5, D and D~). Let u be an HX-minimal function on a sub-
surface S of a Riemann surface R such that each point in the relative boundary
0S of S isregular with respect to the Dirichlet problem for S. Then it is well
known that u has the vanishing boundary values on oS (cf. e.g. [6]).

2.2. We denote by I'a(R) (I"9(R), resp.) the Royden (Wiener, resp.) boundary
of a Riemann surface R and by 4dg(R) (4d4(R), resp.) the Rbyden (Wiener, resp.)
harmonic boundary of R. The space R\UI g(R) (Rl ¢(R), resp.) is a compact
Hausdorff space containing R as its dense subspace and is referred to as the
Royden (Wiener, resp.) compactification of R. The space HBD(R) (HB(R), resp.)
can be considered to be a subspace of C(R\UI g(R)) (C(R\JI 4(R)), resp.). We
denote by gz (e, resp.) the harmonic measure on I'g(R) ("4 (R), resp.) with
respect to a fixed center z)€R. Then px(I'«(R)—A4+(R))=0 and 4dx(R) is a
compact subset of I'x(R) (X=R, 9). Based on the fact that HBD(R)| 44 is
dense in C(dz) and HB(R)|d4w=C(ds), we see that b(R) and d(R) are the
numbers of isolated points in dg and dqy, respectively, and d~(R) is the number
of points in Jds with positive pg-mass. Thus in particular x(R) is the countable
cardinal number (x=0, d, d~). For these we refer to e.g. monographs of Con-
stantinescu-Cornea or [6] We are interested in the mapping R — (b(R),
d(R), d~(R)) of hyperbolic Riemann surfaces into triples of countable cardinal
numbers. In these studies the TOki covering surfaces are very useful.
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2.3. Consider a hyperbolic Riemann surface R and a ToOki covering surface
(R~, R, =) of R. Then R~ is also hyperbolic along with R, i.e. R0 (the
class of parabolic Riemann surfaces). In view of (2), HBD(R~)=R (the real
number field), and since HBD(R™) is dense in HD(R~) with respect to the
Dirichlet seminorm and the supremum norm on each compact subset of R~,
HD(R~)=R. Therefore R¥€0yzp=0pgpp where Oyy is the class of Riemann
surfaces F such that HX(F )= {constants}. Hence dg(R™) consists of a single
point. Take a sequence {B,}, n€l, of closed parametric disks B, such that
B.N\B,=¢ (n+m) and {B,} is locally finite in R~. Here and hereafter parametric
disks are assumed to be relatively compact. It is known (cf. [6]) that

(T BN s(R)— ds(R™) ¢

where the closure is taken in R~ s(R™~). We are interested in the question
when the relation

@) (U Banda(R")#¢

is valid. The following result intuitively clarifies the location of A(R™):
THEOREM [f there exists a closed parametric disk B in R such that = (B)
= UVB,,, then the velation (7) is valid.
neA

We will derive this result as a consequence of a more general assertion
discussed in nos. 2.4-2.5 below.

2.4. Take a nonempty open subset S of an open Riemann surface R such
that each point in 9S is regular with respect to the Dirichlet problem for S.
We denote by HB(S; 0S) the relative class consisting of ue HB(S)~C(R) such
that u|(R—S)=0. We denote by 1=A4s the inextremization 2. HB(R)—HB(S ;dS)
and by p=ps the extremization p: HB(S; 0S)— HB(R) (cf. e.g. Noshiro [5, p.
103]; see Fig. 2). The composition A°y is always an identity map of HB(S; 0S)

A

HB(S: 3S) i HB(R) HB(R) HB(S: 3S)
v 2
7
HB(S; aS) HB(R)

Fig. 2.
onto itself but p°4 is not necessarily so. A subset ECR is said to be B-
negligible (cf.[2]) if there exists an S such that R—SDE and tseAs is an
identity map of HB(R) onto itself. Roughly speaking F is B-negligible if the
‘closure’ of E has a ‘small’ intersection with the ideal boundary of R, and trivial
examples of B-negligible sets are compact subsets of R.
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2.5. Let S be as in no. 2.4 and S”=7z"%S). Then each point in 0S™~ is also
regular with respect to the Dirichlet problem. Clearly z*: HB(S; 0S)—
HB(S~; 05S~) is injective and we ask when it is surjective, viz.

8) m*(HB(S; 0S))=HB(S; 0S)or=HB(S~; 0S™),

a localization of (2). As an answer we maintain the following

THEOREM. If R—S is B-negligible (and in particular compact), then the
relation (8) 1s valid.

We only have to show that there exists a #= HB(S; 0S) for any given
nonnegative u€ HB(S™~; 0S™) such that u=#.xr. Let v=ps~u. By (2) there
exists a D€ HB(R) with v=0.7x=0. Since ps is surjective (by the B-negligi-
bility of R—S), there exists a #€HB(S; 0S) such that =ps#t. Observe that
v—u=0 and ?—%=0. On setting A=u—1#ox, we see that |h]| <(v—u)+(@—H)ex.
By the definition of y, v—u is a potential on R~. Let k be a harmonic minorant
of (0—@)ox on R~. In view of (2) there exists a k=HB(R) with & =kex and
a fortiori »—#=k on R. Since ?—#4 is a potential on R, k and therefore k
is nonpositive. Namely, any harmonic minorant of (0—#)-x is nonpositive,
and hence (?—#&)omr is a potential. We have seen that |4] is dominated by
a potential and therefore h=0, i.e. u=#-r with 2= HB(S; 0S).

2.6. We prove in no. 2.3 as an application of the foregoing
theorem. Suppose (7) is invalid. Then there exists a nonconstant u< HBD(S™;
0S™), S~=R~— \EJNB,,, such that u|dg(R~)=1 and u|(R~—S~)=0. Since B is

B-negligible, S~=z"%S) and S=R—B, we have (8), viz. there exists a @<
HB(S; 0S) such that u=#iex. Therefore Dp(u)=Dg(f#t)-co=co, a contradiction.

Subsurfaces of Toki covering surfaces.

3.1. We denote by P(R) the set of projections of the branch points of R~
in R. In this section we consider only those TOki covering surfaces R~ of
hyperbolic R such that P(R) is isolated in R. The R~ constructed in Section 1
belongs to this category since even R~ clearly has this property. For conve-
nience we say that a subsurface S~ of R~ is admissible if it has a form

SY=zn"%S), S=R—K

where K is a compact subset contained in a region W such that each component
of 77Y(W) is a copy of W and each point in 0S is regular with respect to the
Dirichlet problem. The simplest example of S~ is when S=R—V where V is
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a parametric disk with VCR—®(R). As an extention of our former result
we maintain the following

THEOREM. There exists a unique (up to multiplicative constants) HD~-minimal
Sfunction but no HD-minimal function on any admissible subsurface S~ of a Toki
covering surface R~ with an 1isolated set of projections of branch points in a

hyperbolic Riemann surface R.

Suppose that there exists an HD-minimal function u# on S~. Then ue
HBD(S~; 0S™) and, by in no. 2.5, there exists a #=HBD(S; 0S) with
u=for. Since Dp~(u)=Dg(f)-co<oo, u must be a constant zero, a contradiction.
Therefore we only have to show the existence of a unique HD™-minimal func-
tion on S~, which will be carried over in nos. 3.2-3.5.

3.2. We denote by @ the harmonic measure of the ideal boundary of R
and hence of S=R—K with respect to S. On letting @=0 on K we see that
weHBD(S; 0S) and psw=1. We set K,={@#=p}(p<s(0, 1)) and K,=K. There
exists an p<(0, 1) such that K,N\P(R)=¢, K, is compact, and 0K, consists of
a finite number of piecewise analytic Jordan curves for every p&(0, »]. Observe
that n‘l(Kp):né)v(Kp)n (disjoint union) where (K,), (n€N) are copies of K,. Take

any positive ue HBD(S™) dominating an hex (A€ HB(S; 8S)) on S~. Then, for
any o<(0, 7],

9 lim inf ( min w)=suph.
) im in (a(rg{l)r)lnu)_sgp 1

To prove this, fix an arbitrary positive number ¢ and then an a=S—®P(R) such
that A(a)=sups h—e. We can find a regular subregion WCS—®(R) such that
WD K,\J{a}(pc[0, »]) and =z }(W)= QW,L (disjoint union) where W, (neN)

are copies of W with W,D(K,), (neN). Let u,=u|(W,—(K,),). Since W,—
(K))a=W,—K, may be identified with W—K, {u,} can also be viewed as a
sequence of functions on W—K. The key observation to the proof of (9) is
the following simple relation :

névDWrK@ln_u(a)): nA:_:NDW—K(un>:n§v Dy -k (W) =Ds~(u)< o .

As a consequence of this we have
lim Dy _x(u,—u(a))=0.
n—->o0
Therefore {u,—u,(a)} converges to zero uniformly on each compact subset of

W—K and in particular on 0(K,), (0=(0, %]). Since u,=h on W—K, un(a)gﬁ(a)
and a fortiori u,=h(a)+(u,—u,(a)). Hence

b . . > A > A#
hr,flinf%?ft,n un):h(a)zssup he.
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On letting ¢ — 0 we conclude the validity of (9).

3.3. We set w=w-x which is in HB(S; dS). We denote by p the single
point in dg(R™). Since H K, is compact in R, I'e(R™) and j@l K; are disjoint
in R~UI'g(R~) and therefore there exist: a unique wnEHBD(RN—jL:jIK,-)mC(RN
UI'¢(R™)) such that w,(p)=1 and wnl(j!1 K;)=0 for each n€N. We maintain
that

(10) w=lim w,€ HD~(S")NHB(S~; 0S™).

n—>00

Since {w,} (neN) is decreasing on R~, we see that w~=lim w, belongs to

n->00

HD~(SY)NHB(S~; dS™). Since lim inf(wa(z)—w(2))=0 for every z¥=(0S™)\U {p},

the maximum principle (cf. e.g. [6]) vields w,=w (neN) and a fortiori w~=w.
On the other hand, by (8), w~=w"~ex with a Ww~=HB(S; 0S). Here in view of
0=w~=1 on R~, we also have 0=@~=<1 on R and a fortiori #~<® on K. Hence
w=0"er<Wer=w. We thus conclude that w~=w, i.e. is valid.

3.4. We come to an essential part of our proof. We maintain that w is
HD~-minimal on S~. Suppose that 0<u=w on S~ with uHD~(S™). Since
0<w<1 on S~, a=sups~u<=(0, 1]. We will prove that u=aw on S~. Observe
that sups@t=sups~u=a, where #< HB(S; 0S) with u=#.zr whose existence is a
consequence of u HB(S~; 0S~) and (8). Hence #=<a®w on S and a fortiori u
<aw. Thus we only have to show that u=aw on S~. Let {u'}({=N) be a
decreasing sequence in HD(S™) converging to u on S~. Replacing u® by u*Aa
(the greatest harmonic minorant of #* and «), if necessary, we may assume
that a=u‘=Zu=#f-z on S~. Fixing an arbitrary p<(0, 7], (9) yields

a=sup #=<lim inf ( min »®)<lim sup (max u")<a.
s N> 3¢ (Kp)n

p)n n->o0

This implies that

lim (max |u*—e«al)=0.
N—>00 3(Kp n

Fix an arbitrary positive number ¢ and then an meN such that u'4+e¢>a on
0(K,). for every n=m. Let @#'=u’ on SN—nQ(Kp),, and #° be in H(K,),—
0K ) )NC((K,)n), with @*=u’ on 0(K,),, on (K,), for 1=n<m. Then @ is a
piecewise smooth continuous function on R~— n\>JmKn:S~U(n\?1Kn) and has the

finite Dirichlet integral over there. Set v'=—min (#‘+¢, @) on R>— k>J (K,)» and

v'=a on U(K,),. Then v* is piecewise smooth and has the finite Dirichlet
n_>m
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integral over R~. Therefore v'eC(R~\JI g(R™)) (cf. e.g. [6]). In view of (7),
the closure of éljv (K,), in R~\UI'g(R) contains p, and since O:(K,,)n is compact
n n=
in R~, the closure of g}(KP)n in R~UI'g(R™) contains p. Therefore v*=a on
n->om

U (K,), implies that v*(p)=a. Observe that
lim inf {(v(2)+p)—aw(z)} =0

for every z*<(0(z (K,))\V{p}. Hence the maximum principle yields
(uite)+p=aw

on R™—="YK,). On letting ¢e—0 we deduce that w'+p=aw on R~>—r '(K,).
Then by making p—0 we have u*=Zaw on R*—z (K)=S"~ for every i€ N.
Again by 1—co, we conclude that u=aw on S™.

3.5. The uniqueness of the HD™-minimal function is easy to see. Let u
be an HD™~-minimal function on S~. We may assume that 0<u<1 on S~. By
the minimality of wu, #|0S~=0, and thus usHB(S~; 05~) by setting ©=0 on
R~—S~. By (8), u=fiex with a #€HB(S; dS). Since 0<#<1 on S with #|0S
=0, we have #=<® on S. Therefore u=#er<wWer=w on S~. By the minimality
of w, there exists a constant ¢ such that u=cw, viz. there exists a unique
HD~-minimal function w on S™ up to multiplicative constants.

Classification of fibers.

4.1. We denote by t=tz the natural mapping of R\ I'¢(R) onto R\JI &(R),
viz. 7 is a continuous mapping of R\JI'¢(R) onto RUI'g(R) such that 7|R is
an identity mapping. Take a ¢g=I'a(R). The set n7%(¢) is compact and is
referred to as a fiber over ¢. In view of the relation (cf. e.g. [6])

11) pa(t ()= pax(q),

it is interesting to study the fiber t7%(q) over a g& 4x(R) with pe(g)>0. We
classify such fibers into three types. We say that z7'(¢) is of type I or more
precisely type I, if there exists a sequence {p;}(1=<j<n+1) of distinct points
p; in v7(q) with pg(p;)>0 such that pg(z7(g)—{p;})=0. Here ne N=NU {c},
the set of countable cardinal numbers except zero, and co+1=co, The fiber
77Y(g) is said to be of type II if pg(p)=0 for every per7'(g). If there exist a
sequence {p;}(1=j<n-+1) of distinct points p; in z7%g) with pu(p,)>0 and a
subset E of 77!(g) with the property that ug(E)>0 and pg(p)=0 for any peE
such that z7(g)={p;} \VE, then we say that the fiber z7%(q) is of ¢ype III or
more precisely type III, (ne N).
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4.2. Let g=dx(R) with pg(g)>0. We maintain that the fiber z7*(¢) is either
of type I, (neN), type I, or type I, (n€N). In fact, let F={p,Ec7%(q); pw(p;)
>0} and E=t"'(q)—F. In view of the relation [II) and px(g)=px(dx(R))=1,
we see that F is a countable set. If F=¢, then t7%(q) is of type II. Suppose
F+#¢ and F={p,;; 1=j<n-+1}(neN). If moreover us(E)=0, then r7%(q) is of
type I,. If py(E)>0, then z7(g) is of type Ill,. Thus merely classifying fibers
77Y(q) into three types is trivial and really nontrivial part is to show the exis-
tence of (R, ¢) such that z7*(q) is of any type I, II, and IIl in which the exis-
tence of TOKi covering surface of any open Riemann surface is Vvery conve-
niently made use of.

4.3. Take a hyperbolic Riemann surface R and a TOki covering surface
R~ of R. Then 4g(R™) consists of a single point ¢ with x(¢)>0. Then z7'(g)
=tzMq@)=249%(R~). By (2) we see that the measure spaces (doy(R™), pay,r~) and
(d9(R), pap,r) can be identified, viz. we have the following relation for a Toki
covering surface R~ of a hyperbolic Riemann surface R:

(12) (7N da(R™), pa,r)=(de(R™), pay,r~)~=(d5(R), poy,r)

where~means an isomorphism as topological measure spaces. Thus we can
produce fibers 77 (q)=7"(d«(R~)) as Ad4(R) quite arbitrarily by choosing R
suitably. For example, take R as the open unit disk |z|<1. Then each point
of 44/(R) has pg-measure zero and therefore z7*(¢) is of type II. It is known
that there exists an R in the class O%jp(cf. e. g. [6]) which may be characterized
by that dy(R)={p;; 1=j<n+1}\VE, where p;#p; (i#])), pa(p;)>0, and pgy(E)
=0(neN). Then r7Y(q) is of type I,(nEN). Remove a closed parametric disk
from the above surface and let R be the resulting surface. Then z7!(g) is of
type Ill, (neN). Thus we have obtained the following

THEOREM. The fiber v7'(q) over a point g€ d«(R) of positive ug-measure can
be classified into three types l,, 1, and 1ll,, and there really exist an R and g€
Ax(R) of positive pg-measure such thal the fiber t7%(q) is of any given type 1,,
I, and IlI, (nEN).

Surfaces with given harmonic dimensions.

5.1. The cardinal number x(R)(x=b, d, d~) (cf. no. 2.2) is also called the X-
harmonic dimension (X=B, D, D) of R. We denote by R the class of open
Riemann surfaces and consider a mapping d: R— N3=N,X N, X N, such that
O(R)=(b(R), d(R), d~(R)) where N,={0}\UN=N\U{0, co}. We wish to determine
the range 6(R) in Ni. In other words we are interested in the following prob-
lem: Find an open Riemann surface R such that x(R)=x(x=b, d, d~) for a
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gwen triple (b, d, d~) of countable cardinal numbers. We will give a necessary
and sufficient condition on the triple (b, d, d) such that the above problem has
a solution.

5.2. As a preparation we consider a countable family {R,}J(1Zk<N)(Ne
N, N>1) of hyperbolic Riemann surfaces R,. Let U, be a parametric disk in
R,. For convenience we represent U, as the ‘disk’ 1/4<|z—(3k—2)| oo about
the point at infinity co of é:CU{OO}, where C is the finite complex plane.
We denote by V, the concentric parametric ‘disk’ 1< |z—(B8k—2)|<c0 and a,
the curve |z—(3k—2)|=1/2 in U,. Let w, be the harmonic measure of the
ideal boundary of R, with respect to R,—V, We extend w, to R, so as to
be in C(R,) by setting w,=0 on V, By choosing U, sufficiently small in R,
we may assume that
{ Dp,(wy)<1/2%

infw,>1/2.
ak

(13)

Let W:é—lgkézv{lz—(3k—2)|<1}. Weld each R,—V, to W by identifying

|z—(Bk—2)|=1 in R,—V, and W. The resulting Riemann surface will be
denoted by 15?2NR’“' As a consequence of we have the following identity :

(14) x(IS@NRk):l§§NX(Rk) (x:b: d; dw) .

This relation is trivial for N<oco and the condition [(13) is redundant for the
validity of for N<co. The relation must be well known even for the case
N=o00 but we cannot locate the exact reference except for [4].

5.3. A triple (b, d, &) of countable cardinal numbers (i.e. (b, d, d~)eN?})
will be referred to as being solvable if the following condition is satisfied:

If d°=1, then b is arbitrary and d=d~;
1) {

If d~=0, then b=d=0.

We will prove that the image set §(R)C N3} is the set of solvable triples, i.e.
we will prove the following

THEOREM. There exists a Riemann surface R such that x(R)=x (x=b, d, d™)
if and only if the triple (b, d, d~) is solvable.

For convenience we denote by R,;s~ a Riemann surface such that x(Rpaq~)
=x (x=b, d, d~). Observe that an HD-minimal function is always an HD"-
minimal function, i.e. d(R)<d~(R). Suppose that there exists an HB-minimal
function on R. Then 4g(R) contains a point p with ug(p)>0 and thus, by
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12(q)>0 with g=z(p) which implies the existence of an HD>-minimal func-
tion (cf. e. g. [6]). Therefore b(R)=1 implies d~(R)=1, or equivalently, d~(R)=0
implies b(R)=0. From these observations it follows that the existence of an
Rysa~ assures the solvability of the triple (b, d, d~). Conversely assume that
(b, d, d”) is a solvable triple. We will prove the existence of an R,q~ Any
(hyperbolic) subregion of € is an Ry, and the nontrivial case is when d~=1.
Let n=N, be arbitrarily given. There exists a hyperbolic Riemann surface
R(n) belonging to the class O%ys for the case n=1 (cf. e. g. [6]) and, e.g. R(0)
={]z] <1}, so that b(R(n))=n. Then an even TOki covering surface R(n)~ of
R(n) is an R,,. By Theorem 3.1 an admissible subsurface S~ of R(n)~ is an
R.o. Thus surfaces R, and R, exist for any n€N,. Assume first that d
=d~. There exists a sequence {b,} CN, such that 1§k§d+1bk:b. Let R,=R;,1

d consi . By (1 3 h R, is an R4~ Next con-
an nsxderlék@HRk y we see that 1§,§<9d+1 p 1S bdd

sider the case d<d~. We choose a sequence {b} CN, such that b= 3

1S k<A™~ +1

If d=0, then, by [I4), @ R, with Ry=Ry,0 is an Rye~ If d>0, then let

1 k<d™~+1

Ry=Rs,11 (1=k<d+1) and Ry=Ry,0; (d<k<d~-+1). Once more by we see
that ) k§2~+1Rk is an Rygq~.

=
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