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Introduction.

In this paper, we study a Noetherian graded ring R and the category of
graded R-modules. We consider injective objects of this category and we define
the graded Cousin complex of a graded R-module M. These concepts are es-
sential in this paper (see, (1.2.1), (1.2.4) and (1.3.3)).

We say that R is a graded ring defined over a field %, if R is positively
graded, R,=Fk and if R is finitely generated over k. We denote by m the unique
graded maximal ideal of R. m:R+:n€>BORn. In the latter part of this paper,

we treat graded rings defined over k. If R is a graded ring defined over &,
the category of graded R-modules has very simple dualizing functor and dualiz-
ing module. The dualizing functor is given by Hom,( , %) and the dualizing
module is Hom,(R, k) (see, (1.2.7) and (1.2.10)).

Also, in this category, the dual of a graded Noetherian (resp. Artinian) R-
module is a graded Artinian (resp. Noetherian) R-module. We need not consider
the completion of .

Let R be a graded ring defined over %2 and let M be a finitely generated
graded R-module. We know that several properties of M are determined by
its local cohomology groups Hi(M) (i=0, 1, ---). For example, M is a Macaulay
R-module if and only if HiL(M)=0 for i<d=dim M and M is a Gorenstein R-
module if and only if HL(M)=0 for i<d and H%(M) is an injective R-module.
So we study several techniques to calculate local cohomology groups for some
operations in the category of graded R-modules (see, (2.2.5), (3.1.1) and (4.1.5)).

The theory of the canonical module of a Noetherian local ring was developed
in [15]. We define the canonical module Ky of a graded ring R defined over
k as a graded R-module. Kp=(H%(R))* (d=dim R and ( )* denotes the dual).
If R is a Macaulay ring, R is a Gorenstein ring if and only if Kz=R(a) for
some integer a. This integer a=a(R) is an important invariant of R and plays
an essential role in Chapter 3 and Chapter 4 (see, (3.1.5), (3.2.1) and (4.4.7)).

A graded ring R has a geometric object attached to it—Proj (R). If R,
is generated by R,, the relationship of R and Proj(R) is treated in [8] But
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the condition “R. is generated by R,” is too strong for us. We must seek
better conditions to find more examples of graded rings. We introduce a con-
dition (#) in Chapter 5 and we will show that this condition is sufficiently strong
to relate the geometric languages and ring-theoretic languages. In particular,
we see how the canonical module of R and the dualizing module of Proj(R) is
related to each other when R is a graded ring defined over k.

In this paper, all rings are assumed to be commutative with identity element.
All modules are assumed to be unitary. All homomorphism of rings are assumed
to send identity element to identity element.
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Chapter 1. Noetherian graded rings.
In this chapter let R= EEBZ R, be a Noetherian graded ring.

By definition, a graded R-module is an R-module M with a family {M,} ez
of subgroups such that (1) M= EEQ M, and 2) R,M,.C M, for all n, me Z.
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A homomorphism f: M — N is, by definition, an R-linear map such that f(M,)
CN, for all neZ. We denote by My(R) the category of all the graded R-
modules and their homomorphisms.

Let M, N be graded R-modules and let n=Z. We denote by N(n) the
graded R-module which coincides with N as the underlying R-module and whose
grading is given by [N(n)],=Np+n for all meZ. Let Homgz(M, N), denote the
abelian group of all the homomorphisms from M into N(n). We put Homgz(M, N)
=nE€Bz Homg(M, N), and consider it as a graded R-module with {Homg(M, N} ez

as its grading. The derived functors of Homg( , ) will be denoted by Exti( , ).
Since Ris Noetherian, Extix(M, N)=Exti(M, N) as the underlying R-module if
M is a finitely generated graded R-module.
Let (M @N)n denote the subgroup of M(?N generated by the elements of
R

the form x®y where x&M; and yeN; with i+j=n. We consider MQN as a
R
graded R-module with {{(MQ N),}.e, as its grading and denote it by MK N.
% 7

1. Relation between y;(p, M) and p,(0*, M).

R is said to be an H-simple ring, if every non-zero homogeneous element
of R is invertible. A graded R-module is called free, if it is isomorphic to a
direct sum of graded R-modules of the form R(n) (neZ).

LEMMA (1.1.1). The following conditions are equivalent.

(1) R is an H-simple ring.

(2) Ro=F is a field, and either R=Fk or R=Fk[T, T "] for some homogeneous
nvertible element T which is transcendental over k.

(3) Every graded R-module is free.

Proor. (1)=>>(2) This is essentially proved by (cf. n°8, Section 1, Chap. 5).

(2)>(3) We may assume Rk and put d=deg T (d>0). Let M be a graded

R-module. Then every k-basis of d@ M; will do as an R-free basis of M.
1=0

(3)=>(1) This is obvious.

Let m be a graded ideal of R (m#R). Then m is called an H-maximal ideal
if R/m is an H-simple ring. R is said to be an H-local ring if R has a unique
H-maximal ideal.

Let p be a prime ideal of R and let S denote the set of all the homogeneous
elements of R not contained inp. Then S™*R (resp. S™'M for a graded R-module
M) is again a graded ring (resp. a graded S™'R-module) (cf. n°9, Section 2, [3]).
SR (resp. S7*M) is called the homogeneous localization of R (resp. of M) at
p and is denoted by Ry (resp. My). Let p* denote the largest graded ideal of
R contained in p. Then p* is again a prime ideal of R and (R, ¥*Rw) is an
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H-local ring.
Let A be an arbitrary Noetherian ring and let M be an A-module. For
every prime ideal » of A and for every integer =0, we put

#i(p) Aj):dimk(P)Ethp(k(p>y MP) .

(Here k(p) denotes the field A,/pA,.) and call it the i-th Bass number of M at
p. Bass [2] showed that, if 0 = M — E°— --- — E— ... is the minimal injective
resolution of M, p;(p, M) is equal to the number of the injective envelopes
E (A/p) of A/p which appear in E! as direct summands.

THEOREM (1.1.2). Let M be a graded R-module and let p be a non-graded

prime ideal of R. Then pp, M)=0 and p;,,(, M)=p,(0*, M) for every integer
1=0.

ProoF. After homogeneous localization at p, we may assume that (R, p¥)
is an H-local ring. Therefore we can express p=fR-+p* for some f= R—p*,
since R/p* is a principal ideal domain by (1.1.1). Applying Homy( , M) to the

s
exact sequence 0 — R/p* — R/p* — R/p— 0, we have a long exact sequence

0 —> Homp(R/p, M) —> Homg(R/v*, M) —— Homga(R/v*, M)
—> Exti(R/p, M) —> .

This vields a short exact sequence
! )
0 —> Extr(R/p*, M) —> Exti(R/p*, M) —> Extg(R/p», M) —> 0

and that Homg(R/p, M)=(0), since Exti(R/p*, M) is an R/p*-free module by
(1.1.1) and since fep*. Thus we have g(p, M)=0. On the other hand, because
Exti(R/p, M)=Exti(R/v*, M)/f Extx(R/p*, M) is also an R/p-free module, we
have

i, M)=dimw Extg (R(D), M;)

=rankg; ExtF(R/p, M)
=ranKkg Exti(R/p*, M)
=dimye Exth,(k(1*), M;.)
=p(v*, M).

REMARK. A similar argument is found in [34].

Let (A, m, k) be a Noetherian local ring and let M be a Macaulay A-module
of dim,M=n. We put »,(M)=dim, Ext%(k, M) (=p,(m, M)) and call it the type
of M. Various properties of the invariant »,(M) are discussed by [15]. M is
called a Gorenstein A-module if dim A=n and if M has injective dimension
equal to n. The concept of Gorenstein modules was given by Sharp in
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which we will find useful characterizations of Gorenstein modules. If A is not
necessarily a local ring, Gorenstein modules are defined by their local data.
CorOLLARY (1.1.3) ([19], [34] and [32]). Let M be a finitely generated graded
R-module and let v be a non-graded element of SupprM. Then Y*=SuppzM and
(1) dim My=dim M,.+1 and depth M,=depth M,.+1.
(2) M, is a Macaulay (resp. Gorenstein) Ry-module if and only if My is a
Macaulay (resp. Gorenstein) Rp-module. In this case r(My)=r(My).

2. Minimal injective resolutions.

Let M be a graded R-module. We denote by Ex(M) the injective envelope
of M in Myx(R).

THEOREM (1.2.1). (1) AsspEr(M)=AssgM for every graded R-module M.

(2) Let E be a graded R-module. Then E 1is an indecomposable injective
object of My(R) if and only if E=[Ex(R/p)](n) for some graded prime ideal p
of R and for some integer n. In this case Ass RE={p} and p is uniquely deter-
mined for E.

(3) Every injective object E of My(R) can be decomposed into a direct sum
of indecomposable injective objects of My(R). This decomposition is uniquely
determined for E up to isomorphisms.

The proof follows as in the non-graded case (cf. [20]).

LEMMA (1.2.2). Let E be a graded R-module. Then the following conditions
are equivalent.

(1) E is an injective object of My(R).

(2) Extk(R/a, E)=(0) for every graded ideal a of R.

(3) Extk( , E)=(0) for every integer i>0.

The proof is similar to the non-graded case (cf. Theorem 3.2, [4]). (2) is
equivalent to the condition: Let a be a graded ideal of R and let n=Z. Then
any homomorphism from a(n) into E can be extended over R(n).

COROLLARY (1.2.3). Suppose that R is an H-simple ring. Then every graded
R-module is an injective object of Muy(R).

THEOREM (1.2.4). Let M be a graded R-module and let

0 i
0—> M —> EYM) —> EWM) —> - —> EXM) —> EF{(M) —> -

be the minimal injective resolution of M in My(R). Then, for every graded
prime ideal P of R and for every integer i=0, p(p, M) is equal to the number
of the graded R-modules of the form [Ex(R/p)I(n) (n€Z) which appear in EEL(M)
as direct summands.

PrOOF. Since E&(M)=Egr(B") where Bi=Ker d%, it suffices to prove in case
1=0. Moreover, after homogeneous localization at b, we may assume that (R, )
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is an H-local ring. Now let us express

ExM)= & alo,n) [ER/0)In)

eV g(R),nEZ

where Vy(R) is the set of all the graded prime ideals of R and a(q, n) denotes
the multiplicity of [Er(R/q)1(n). Then, recalling that Homg(R/a, Ex(N))=
EroHomz(R/a, N)) for every graded ideal a of R and for every graded R-
module N (cf. [2]), we have by (1.2.3)
Hompg(R/p, M)=Homz(R/p, Ex(M))
= @ ag,n) Homa(R/p, [E&(R/0)](n))

4V (R, nez

= @  alg,n) Homz(R/p, [R/q](n))

1€V y(R),nez

= @ alp, WLR/FIR)

Thus we have the assertion: p,(p, M)= %}Z a(p, n) .

For a graded R-module M, let idgM(resp. idrM) denote the injective dimen-
sion of M in My(R) (resp. as the underlying R-module).

THEOREM (1.25). Let M be a graded R-module. Then

(1) deM <1dpM+1.

(2) Suppose that M is an injective object of My(R). Then idgM=1 if and
only if y*=AsspM for some non-graded prime ideal p of R.

Proor. (1) It suffices to prove in case M is an injective object of Mz(R).
Let p be a prime ideal of R. If p is graded, p,(p, M)=0 for every i>0 since
Extk(R/p, M)=(0) by (1.2.2). Suppose that pis not a graded ideal. Then, since
pivip, M)=p,(p*, M) by (1.1.2), we have p,.,(p, M)=0 for every i>0 by virtue
of the result in case p is a graded ideal. Thus p,(h, M)=0 for every prime
ideal p of R and for every integer i=2. This shows idpM=<1.

(2) By the above discussion, idgM=1 if and only if p(p,, M)+#0 for some
non-graded prime ideal p of R. By (1.1.2), the latter is equivalent to the condi-
tion that p*< AsszM.

COROLLARY (1.2.6). Let m be a maximal ideal of R and assume that m is
graded. Then Ex(R/m) is the injective envelope of R/m as the underlying R-
module.

PROOF. Since AsspEr(R/m)={m} by (1.2.1), Ex(R/m) is an injective R-module.
On the other hand py(m, Ex(R/m))=1 by (1.24).

For the rest of this section we assume that R= P R, and that R,=Fk is a

nzi
field. We put m= @ORTL and k=R/m.
n

Let M be a graded R-module. We define M*=Hom,(M, k) and call it the
graded k-dual of M. M* is a graded R-module with {Hom,(M_,, k)}.cz as its
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grading. Note that M=M%** if and only if [M,: k] is finite for all neZ.
CJ*: Mu(R)— Myx(R) is a contravariant exact functor.

THEOREM (1.2.7). R*=ERxr(k).

PROOF. KR* is an indecomposable object of My(R), since R=R**. Moreover
R* contains k=Fk* as a graded R-submodule. Thus it suffices to show that R*
is an injective object of Myz(R).

Let a be a graded ideal of R and let n=Z. For every homomorphism
fian)— R*, we can find g: R=R* — [R(n)]* so that i*-g=f* where
1: a(n) — R(n) denotes the inclusion map. Therefore g*-i=f and hence, by
(1.2.2), we have the assertion.

COROLLARY (1.2.8). R* is the injective envelope of k as the underlying R-
module.

COROLLARY (1.2.9). Let M be a graded R-module. Then the following con-
ditions are equivalent.

(1) M is an Artinian R-module.

t
(2) There is an exact sequence 0 — M — @ R*(n;) of graded R-modules.
t=1

The proof follows, by (1.2.8), as in the non-graded case (cf. [20].

Let Ny(R) (resp. Ax(R)) denote the full subcategory of My(R) consisting of
all the Noetherian (resp. Artinian) graded R-modules. By (1.2.9), we obtain

THEOREM (1.2.10). [ J*: Nzg(R) — Ayx(R) establishes an equivalence of cate-
gories.

THE INVERSE SYSTEM OF MACAULAY (1.2.11). Let k2 be a field, R=
E[X,, X, -+, X,] be a polynomial ring and put R*=pk[X7', X3', -+, X;¥]. For
fE€R and ¢ R* we define

f-¢=the non-positive part of the product fo

and call it the f-deviate of ¢ (cf. Section 60, [18]). We consider R* as a graded
R-module by this action and call it the inverse system of Macaulay. Now let
us identify R*¥ with R* by regarding {X71!, X7, -+, X;'} as the k-dual basis of
{X,, X, -+, X,}. We define, for every m-primary graded ideal q of R and for
every finitely generated graded R-submodule M of R*,

g '={peR*|f-¢=0 for all feq},
M*={feR|f-¢=0 for all pcM}.

g '=(R/q9)* is a finitely generated graded R-submodule of R* and M™! is an
m-primary graded ideal of R. (Note (q¢7*)"'=q and (M™)"'=M.) Later we will
show that R/q is a Gorenstein ring if and only if q™' is principal (cf. (2.1.3).
See and [29]).
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3. Cousin complexes and local cohomology modules.

The Cousin complexes were given by Hartshorne in terms of geometry
and in this section we will reconstruct them in terms of algebra——namely of
graded modules. The method is the same as that of Sharp [23] and so, though
he considered no sort of grading, we may refer the detail to [23].

Let M be a graded R-module and let V(M) denote the set of all the graded
prime ideals of R contained in SuppzM. We put UL(M)={pcV z(M)/dim M,=1}
for every integer :=0.

LEMMA (1.3.1) ([23]). Let U and U’ be subsets of Vy(R) such that U'CU
and suppose that every element of U—U’ is minimal in U. Let M be a graded
R-module and assume that Vg(M)CU. Then

o: M—> D My
yeu-u'

x— {x/1}

is a well-defined homomorphism of graded R-modules and V z(Coker ¢)CU’.
Construction of Cz(M).
Let M be a graded R-module. We put M 2=(0), M *=M and d*=0. Let
1=0 be an integer and assume that there exists a complex of graded R-modules

d-2 d-1 -2

M2 —> M1 MO Mi-2 ¢ Mi-t

such that Vg(Coker di")CU4(M). Of course this assumption is satisfied for
i=0. We put Mi= ) [Coker d*"*]; and define d'"'=¢@e-e where

revhon-vifion
e: M''— Coker d*"? is the canonical epimorphism and ¢: Coker d*~* — M*
denotes the homomorphism induced by (1.3.1). Then d*'-d*?=0, and
Vu(Coker di")C UG (M) by (1.3.1). Thus inductively we obtain a complex
Cr(M) of graded R-modules

-1 dt

0> M=M" > MO > e —> M o Mi#1 —> .

which we call the Cousin complex of M. The i-th cohomology module of Cr(M)
will be denoted by H(M).

LEMMA (1.3.2) ([23]). Let M be a graded R-module and let n>0 be an
integer. Suppose that H(M)=(0) for i<n—2. Then

Exti(L, M)=Extiz"(L, Coker d™2)
for every integer i and for every finitely generated graded R-module L with
Va(DNLV u(M)—Ug(M)]=0.

Recalling (1.1.3), the following theorem can be proved similarly as in the

non-graded case (cf. and [24]).
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THEOREM (1.3.3). Let M be a non-zero finitely generated graded R-module.
Then M is a Macaulay (resp. Gorenstein) R-module if and only if Cx(M) is exact
(resp. Cr(M) provides the minimal injective resolution of M in My(R)).

In the following we assume that (R, m) is an H-local ring. For every integer
1=0, we put

H( )=lim Exti(R/m’, )
t
and call it the i-th local cohomology functor (cf. [1L]). H%( ) is left exact and
{H%( )} izo Will do as its derived functors.

THEOREM (1.3.4). Let M be a Macaulay graded R-module of dim My=n.
Then

(1) Ext:(N, M)=Homg(N, Hi%(M)) for every finitely generated graded R-
module N such that Vg(N)C {m}.

(2) M"=Hy(M).

(3) M is a Gorenstein R-module if and only if Hy(M) is an injective object
of My(R).

PROOF. Cgr(M) is exact by (1.3.3), and we know that M*=(0) for every
i>n and that Vxz(M™)={m} by the construction of Cr(M). Thus we have
Extz(N, M)=Homgz(N, M") by (1.3.2), since M"=Coker d"">. Moreover, if we
take N=R/m‘ (1>0), Exta(R/m‘, M)=Homgz(R/m’, M™) and this implies H%(M)=
M™ as Vg(M™)={m}. Hence (1) and (2) are proved.

Now consider (3). The necessity follows from (1.3.3). For the sufficiency,
we note Exty™(R/m, M)=Exth(R/m, M") for every integer i>0, as Cr(M) is
exact. Thus Exti"(R/m, M)=(0) for every >0, as M*=H%(M) is an injective
object of My(R), and consequently p,(m, M)=0 for every integer :>n. This
implies that M is a Gorenstein R-module (cf. (1.1.3) and [24]).

Added in proof. The theorems (1.2.1), (1.2.4) and (1.2.5) are given inde-

pendently in and [36].

Chapter 2. The canonical module of a graded ring defined over a field.

Let 2 be a field. We say that a graded ring R is defined over £, if
() R=@ R,
(ii) R is finitely generated over &
(ili) Roy=k.
If R is a graded ring defined over %, then R is H-local with the maximal
ideal m=R,. We consider k itself as a graded ring defined over k.
As in Section 2 of Chapter 1, we put

k=R/m.
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Er=R*=Homy(R, k).

M*=Homy (M, k)=Homg(M, Er) (M is a graded R-module; cf. (2.1.1)).

If M and N are graded R-modules, M= N means that M and N are isomor-
phic as graded K-modules.

In this chapter, all rings are graded rings defined over £ and all modules
are graded modules. All homomorphisms are graded of degree 0 and k-linear.

1. of the canonical module and duality.

LeMMA (2.1.1). Let R, S be graded rings and S — R be a homomorphism of
graded rings. If P is a graded S-module and M, N are graded R-modules, then

Homgz(M, Homs(N, P))=Homs(MQrN, P).

PROOF. See Cartan-Eilenberg [4], Proposition 5.2 of Chapter II.
The following is due to Kunz-Herzog [15].
DerFINITION (2.1.2). If R is a graded ring and dim R=n, we put

Kr=(H3(R))*=Homp(H%(R), Ex)

the dual of the n-th local cohomology group of R. As H3(R) is an Artinian
graded R-module, Ky is a finitely generated graded R-module by (1.2.10). We
call Ky the canonical module of K.

ProposITION (2.1.3). If R is a Macaulay ring, then R is a Gorenstein ring
if and only if Ke=R(d) for some d&Z.

Proor. If

0 R R° R" 0

is the graded Cousin complex of R, then by (1.34), R"= H%(R) and R is Goren-
stein if and only if H%(R) is injective. As Ep(k)=R*, R is Gorenstein if and
only if HZ(R)= R*(—d) for some integer d. Taking duals of both sides, we get
the proposition.

REMARK. If R is a Gorenstein ring and Kr= R(d), this integer d is uniquely
determined by R and is an important invariant of R.

ExaMPLE (2.14). If R=k[X], then the graded Cousin complex of R is

00— R—R'=k[X, X']—>R'—> 0.

As R is a Macaulay ring, the graded Cousin complex is exact and HL(R)=R!
by (1.3.4). Thus we have

Hiy(R)=k[X, X 1/k[X]1= X "R[ X ']=R*(d) (d=deg X)

and
Kr=(HWR)*=X-E[X]1=R(—d).
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PROPOSITION (2.1.5). If M is a finitely generated graded R-module, there is
a natural isomorphism

(Hu(M))y*=Homg(M, Kr)  (n=dim R).

Proor. We put T°M)=(H%(M))* for a finitely generated graded R-module
M. Then T° is a covariant left-exact functor. As T%R)=Kp, the proof is the
same as that of [1I], Proposition 4.2.

PROPOSITION (2.1.6). The following conditions are equivalent for a graded
ring R of dimension n.

(1) R is a Macaulay ring.

(ii) For every finitely generaled graded R-module M and for every integer
j, there is a natural isomorphism

(Hi (M)*=Exti(M, Kz) .

Proor. We put T/ M)=(H7%/(M))* for a finitely generated graded R-module
M. As T°M)=Homg(M, Kr) and Exti(*, Kz) (j>0) are derived functors of
Homgz(*, Kz), it suffices to show that 77 (j>0) are derived functors of T° To
show this, it suffices to show

@ if0—-M->M-—-M"—0 is an exact sequence of finitely generated
graded R-modules, then there exists a long exact sequence

00— T(M") —> T M) —> T (M") —> T M") —> T M) —> -+,

(b) TIR(d))=0 for j>0 and for every integer d.

The statement (a) follows from the exact sequence of local cohomology modules
and the exactness of the functor ( )* considering that Hi(M)=0 for j>n and
for every R-module M. The statement (b) is equivalent to say that R is a
Macaulay ring.

LEMMA (2.1.7). Let F, M be finitely generated graded R-modules and f: F—M
be a surjective homomorphism of graded R-modules. Then f is minimal
(Ker(f)CmF) if and only if f*: M* — F* is essential.

PROOF. f is minimal
& for every proper graded R-submodule F’ of F, the composition map

7
F’ < F— M is not surjective
& for every proper graded quotient module F” of F*, the composition map

M* i>F * — F7 (the right arrow is the canonical surjection) is not injective
& f* is essential.
NoTATION. For a finitely generated graded R-module M, we write v(M)
=[M/mM: EkJ.
PROPOSITION (2.1.8). If R is a Macaulay ring, then
(1) Kg is a Macaulay R-module
(ii) Kpg has a finite injective dimension as an R-module
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(iii) TR(KR):l
(iv) r(R)=y(Kpg).
Proor. By (2.1.6),

k (j=n)

Exti(k, Kn) = (B3 (£)* =]
0 (j#n) (n=dim R).

The statements (i), (ii) and (iii) follow from this isomorphism. If f: F— Kz is

a minimal free resolution of Kz, f*: (Kp*=H7%(R)— F* is an essential exten-

tion by (2.1.7). If u(Kx)=r and F=® R(d;), F*= O R*(—d;) and Exti(k, R)=
i=1 1=1
Hompg(k, H%(R))= @1 E(—d;) by (1.3.4). Thus n(R)=r.

ExAMPLE (2.1.9). Let H be a numerical semigroup. That is, H is an ad-
ditive subsemigroup of NN (the set of natural numbers), 0= H and H contains all
but finite natural numbers. We say that H is symmetric if there exists an
integer d such that for every integer n, n= H if and only if d—n& H.

We put R=k[H]=k[T"|he H]Ck[T]. We put deg(T)=1 and consider R
as a graded ring defined over k. As R is a one-dimensional domain, R is a
Macaulay ring. It was proved by Herzog-Kunz that R is a Gorenstein ring
if and only if H is symmetric. We will put a new proof of this fact using the
graded Cousin complex of R and we will compute Kr for general H.

The graded Cousin complex of R is

0—> R—> R*=Ek[T, T7'] —> Hu(R)—>0.

As this sequence is exact, HLZ(R)=E[T, T *]/R. Thus HL(R) is generated
by {T"|nsZ, n& H} as k-vector space and Kp=(HL(R))* is the fractional ideal
of R generated by {T "|neZ, n& H} as a k-vector space and as an R-module.
By (2.1.3), R is Gorenstein if and only if Kz~R(d) for some integer d. It is
easy to see that this condition is equivalent to say that H is symmetric.

2. Calculation of local cohomology groups and canonical modules.

LEMMA (2.2.1). If a graded R-module M satisfies the condition

(*) For every element x+0 of M, Anng(x) is an m-primary ideal,
then HY(M)=M and H%W(M)=0 for q+0.

PROOF. Let (I') be the minimal injective resolution of M in the category
of graded R-modules. As Assp(M)={m}, Assg(I?)={m} for every j and H%(M)
=HY HI)=HYI).

LEMMA (2.2.2). If a graded R-module M satisfies the condition
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(**) There exists fE Ry, d>0, such that the multiplication map fu is bijective,
then H4(M)=0 for every integer gq.

PrROOF. The multiplication map fj induces the multiplication map of f on
H%(M) and the latter map must be bijective. But this is impossible unless
Hi(M)=0.

LEMMA (2.2.3). If E=Eg(R/p) where p is a homogeneous prime ideal of R
and p#m, E satisfies the condition (**).

PROOF. We consider M=R/p as a submodule of £E. We denote by fi (resp.
fE) the multiplication map of f on M (resp. on E). If fe R, and if fe&d, fi is
injective. As E is an essential extension of M, fz: E — E(d) is injective, too.
As FE is an injective module, fr must split. But as E(d) is indecomposable, fx
is bijective.

The following is a standard technique of homological algebra.

LEmMA (2.24). If 0—-M— K°— K!'— -+ is a resolution of a graded R-
module M by graded R-modules and if HL(K“)=0 for every i and every q+0,
then HL(M)=HYH%K")) for every q=0.

THEOREM (2.2.5). Let R, S be graded rings defined over k and m=R,, n=S,
be their H-maximal ideals. We put T=RK,S and M=T,. If A (resp. B) is a
graded R- (vesp. S-) module, we have

HY(AGB)= § (HYARWHLB)) .

Before proving this theorem, we need some notations.

NOTATION (2.2.6) If M is a graded R-module and if (I') is the minimal
injective resolution of M in the category of graded R-modules, we put ['=
'I7I for every j, where Assp(’[/)={m} and me Assz(”I’). Note that ('I") is
a subcomplex of (I') and HYW('I)=H?(M). We denote by (“I') the quotient
complex (I'//I'). This decomposition depends on (1.2.1).

PROOF OF (2.25). We put C=AQ,B. Let (I') (resp. (J)) be the minimal
injective resolution of A (resp. of B) in the category of graded R- (resp. S-)
modules. We define the complex (E") by putting

E'= @ (I'QuJ?).

Then by the Kiinneth formula of tensor products of complexes over a field
(cf. [37], Chapter V, (10.1)), (E") is a resolution of C. We put

B'= @ (I'QVJY) and "E= © [I'QIIS(T QI TRT)]

1

where ‘I%, 71, /J7 and 7]/ are defined as in (2.2.6). Then it is easy to see that
'E? satisfies the condition (*) and ”E? is a direct sum of modules which satisfy
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the condition (**) for every ¢. By (2.24), we have HE(C)=HY'E") and as 'E"
='I'Q,’J’, we have (2.2.5) again by the Kiinneth formula.
COROLLARY (2.2.7). If R, S and T be as in (2.25). Then K;=Kr:Ks.
COROLLARY (2.2.8). If R=k[X,, -+, X,] where deg(X,)=d,, then

Kp=X,X; -+ X, R=R(—d) (d=d,+ - +d,).

Proor. This follows from (2.1.4) and (2.2.7).

PROPOSITION (2.2.9). Let f: R— S be a homomorphism of graded rings
defined over k. We assume that R is a Macaulay ring and that S is a finite
R-module. (We do not assume that f is injective.) If we put t=dim R—dim S,
then

Ks=Ext&(S, Kg).

PrROOF. We put r=dim R, s=dim S, m=R, and n=S,. As S is finite over
R, HL.(M)=HI(M) for every graded S-module M and every j. By (2.1.6),
Exti(S, Kr)=(Hu (S)*=(Hi(S)*=Ks.

PrOPOSITION (2.2.10). If S=R/(x, -+, x:), where (x, -+, x;) is an R-regular
sequence and if R is a Macaulay ring, then

Ks=(Kr/(x1, -, 2)Kp)d)  (d=di+ - +dy).

Proor. It suffices to treat the case t=1. (We omit the subscript 1.) By
the exact sequence

0—>R(—d)—> R —>S—>0,

we have Ks=Extk(S, Kg)=(Kr/xKzr)d).

REMARK. If R is not a Macaulay ring, (2.2.10) is not true in general.

PROPOSITION (2.2.11). If R is a one-dimensional graded integral domain
defined over k and if k is algebraically closed, R is isomorphic to a semigroup
ring. Moveover, if R, is generated by R,, R is a polynomial ring over k.

PrROOF. Let 0 — R — R°=Q — R'=HL(R)— 0 be the graded Cousin complex
of R. (@ is the graded total quotient ring of R. As R is an integral domain, Q
is H-simple and by (1.1.1), Q=K[T, T Y] where K=0Q, isa field. Butas R,=k
and (HL(R)), is a finite-dimensional k-vector space (HL(R) is an Artinian R-
module), K is a finite extension of k. As k is algebraically closed, we have
K=F and R is a graded subring of R[T]. Then it is clear that R is a semi-
group ring.

REMARK (2.2.12). Let R be a graded ring defined over k and let %k’ be an
extension field of k. If we put R"=R&;k’ and m’=(R’),, then R’ is a graded
ring defined over &’. If M is a graded R-module and if we put M=M&,.k’
=MQrR’, there is a natural isomorphism
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Ha(M")y=Hy(M)Q,k

for every integer p.

PrROOF. Let (I') be an injective resolution of M in the category of graded
R-modules. As in (2.2.6), we write I'="I"®”"I’ for every j. Then, 'I'Q .k’
satisfies the condition (*) of (2.2.1) and 7"I'®Q.k’ is a direct sum of modules
which satisfy the condition (**) of (2.2.2). Thus

He(M)=HP(Hy (I'Qu k)= HY (' T Quk) = Ha(M)QiE' -

REMARK. If we discuss some properties of a graded R-module M using
the local cohomology groups of M, it frequently occurs that we may consider
M’ instead of M by the aid of (2.2.12). In these cases, we may assume that &
is an infinite field.

Chapter 3. The Veronesean subrings of a graded ring.

Let R be a graded ring. For a positive integer d, we define

R(d): @ Rnd
n=z

and call it the Veronesean subring of R of order d. We consider R‘® as a’
graded ring by (R‘¥),=R,; In this Chapter, we continue the study of and
investigate the condition for R‘® to be a Gorenstein ring when R is a graded
ring defined over a field & and R is a Gorenstein ring.

As R jg a direct summand of R as an R‘®-module, R‘® is a pure subring
of R (cf. [17], Section 6), and R is integral over R‘®. So, if R is a Macaulay
ring, so is R and if R is an integrally closed domain, so is R‘®.

In this Chapter, R is a graded ring defined over k (cf. Chapter 2). We use
the notations of Chapter 2. We fix a positive integer d and we put

R'=R®
m'=(R"),=m®,
If M is a graded R-module, we put
MP=OD M,q.
n<ez

M@ is a graded R’-module in a natural way and the functor ( )** is an exact
functor.

1. Calculation of local cohomology groups and the canonical module.

THEOREM (3.1.1). If M is a graded R-module, we have
Ho (M) =(H (M)
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for every integer p.

To prove this, we need a lemma.

LEMMA (3.1.2). Let M be a graded R-module. If M satisfies the condition (*)
of (2.2.1), (resp. the condition (**) of (2.2.2),) so does M‘®,

ProoFr oF (3.1.1). Let

0 M I° I

be the minimal injective resolution of M. If we apply the functor ( )** to this
sequence,

0 —> M@ —» ([OD —5 (JI)D 5 ...

is a resolution of M@ and for every j, (I/)® is a direct sum of modules which
satisfy condition (*) or condition (**) by (3.1.2) and (2.2.3). By (2.24),

Hy (M )= HP(HW (1)) = HP(HW(I) @) = (HP(HYI ) P =(Hu(M)@ .

COROLLARY (3.1.3). Krp=(Kg)?.

PROOF. As dim R’=dim R and the functor ( )* commutes with the functor
( ), this is a direct consequence of (3.1.1).

DEFINITION (3.1.4). We put

a(R)=—min{m|(Kz)n+0} =max{m|(H2(R),#0} (n=dim R).

If R is a Gorenstein ring, a(R) is defined so that Kp=R(a(R)). If R is an
Artinian ring, we define

H{R)=max{m|R,+0}.

If R is an Artinian ring, Kz=R* and we have a(R)=t(R).

COROLLARY (3.1.5). If R is a Gorenstein ring and if a(R)=0 (mod d), R‘®
is a Gorenstein ring.

Proor. If we put a(R)=b-d, Kp =(R(bd))®=R'(b) by (3.1.3). As R’ is a
Macaulay ring, R’ is a Gorenstein ring by (2.1.3).

REMARK (3.1.6). If R isa Macaulay ring and if (f,, -+, f;) is a homogeneous
R-regular sequence, then

a(R/(fy -, fN=a(R)+ 3 deg fi.

This is an immediate consequence of (2.2.10).

ExampLE (8.1.7). We put R=Ek[X, Y, Z]/(XP+Y?+Z"). We can consider
R as a graded ring by putting deg X=gr, deg Y=rp and deg Z=pq. In this
case, a(R)=pqr—pq—qr—rp. a(R)<0 if and only if R is a “ rational singularity”
and a(R)=0 if and only if R is a “simple elliptic singularity” (cf. [31]).
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2. Veronesean subrings of R which satisfies the condition R=FE[R,].

In this section, we assume the following conditions for R.

(i) R=k[R,]. '

(ii) R is a Macaulay ring.

The following gives the converse to (3.1.5).

THEOREM (3.2.1). If R‘“ is a Gorenstein ring and if dim R=2, R is a
Gorenstein ring and a(R)=0 (mod d).

REMARK. The two conditions in (3.2.1) for R is necessary. Counterexamples
will be shown in Section 3.

PROOF OF THE THEOREM. As R’'=R‘ is a Gorenstein ring, we have Kz
~(Kp)®=R/(p) for some integer p. We will show that Kr=R(pd). Let us
take fe(Kg)_,q which generates the R’-module [Kz]‘®. First we will show
that anng(f)=0. Let x be a homogeneous element of R such that xf=0. If y
is any homogeneous element of R such that xye R/, xy=0 since anng(f)=0. As
m—=R, is generated by R,, anng(x) is an m-primary ideal. As R is a Macaulay
ring and dim R=1, x=0. Thus we have an exact sequence

0 —> Rf = R(pd) —> Kz —> Kz/Rf —> 0.

As [Kp]P=R'f=[Rf]1?, [Ke/Rf]®=0. So, depth (Kz/Rf)=0. But, on the
other hand, as R is a Macaulay ring and dim R=2, depth Rf=depth Kzp=dim R
>2. So, if Kg/Rf+0, depth Kg/Rf>0. Thus we have Kr=Rf=R(pd). By
(2.1.3), R is a Gorenstein ring.

NoTATION (3.2.2). We put H(n, R)=[R,: k].

LEmMA (3.2.3). If dim R=1, H(n+1, R)=H(n, R) for every integer n.

ProoF. Considering R@,JE instead of R (E_is.; the algebraic closure of k),
we may assume that % is an infinite field. ThenTwe can take an R-regular
element x€ R,. Then we have

H(n+1, R)—H(n, R)=H(n+1, R/xR)=0.

LEMMA (3.24). [R(a)]‘® is generated by R(a),=Ra., over R’, where n is
the smallest integer such that n=0 mod d and n+a=0.

Proor. As R=F[R,], R,..=R.R, and R,,,=R4R, for every integer n=0.

THEOREM (3.2.5). If R is a Gorenstein ring and if R=k[R],

r(R")=H(n+a(R), R)

where n is the smallest integer such that n=0 mod d and n+a(R)=0.

Proor. By (2.1.8), r(R")=v(Kr)=v([Kz]‘®). But, as Kz=R(a(R)), the
result follows from (3.2.4).

The following was proved by Matsuoka [21].
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COROLLARY (3.26). r(k[X,, -+, Xs]“)):(?__ll) where n 1s the smallest integer

such that n=s and n=0 mod d. (We put deg(X;)=1 for every i.)

Proor. If R=k[X,, -, X;], R is a Gorenstein ring and a(R)=—s.

COROLLARY (3.2.7). If R is a Gorenstein ring, dim R=1 and if H(1, R)=2,
then R‘® is a Gorenstein ring if and only if a(R)=0 mod d.

Proor. By (3.2.5), r(R")=H(n+a(R), R). But by the assumption and (3.2.3),
Hn+a(R), R)=1 if and only if n+a(R)=0. The result follows from the defini-
tion of n in (3.2.5).

REMARK. If H(1, R)=1, R’ is Gorenstein for every d.

When R is an Artinian ring, the following was proved in [7].

THEOREM (3.2.8). If R is an Artinian Gorenstein ring, R=Ek[R,] and if
H(1, R)=2, then R‘® is a Gorenstein ring if and only if a(R)=0 modd or d>a(R).

3. Examples.

(3.3.1). “R“® is a Gorenstein ring” does not imply “R is a Macaulay ring”.
We put S=klx, v, z]=Fk[X, Y, Z]/(F) where F is a homogeneous polynomial
of degree 3. We assume that xyz++0 in S. If we put

R=Fk[x% x%y, xy%, ¥°, vz, yz?, 2% z%x, zx*]JCS®,

R is not a Macaulay ring. But for every d=2, R‘@=S5%? js a Gorenstein ring
since a(S)=0.

(3.3.2). Examples of Gorenstein rings whose Veronesean subrings of all
order are Gorenstein rings.

(a) If R is a Gorenstein ring and if a(R)=0, R‘® is a Gorenstein ring for
every d. For example, if R=k[X, Y, Z]/(X2+Y*+2Z°), deg (X)=3, deg (Y )=2,
deg (Z)=1, a(R)=0 and R‘® is Gorenstein for every d. If we write the images
of X, Yand Zin R by x, y and z, it is easy to see that R‘®=Fk[2% y, xz]=
RLU, V, W1/ (W*+UV*+U*, R®=pk[z* yz, x]J=k[U, V, W]/(U*+V:+UW?)
and RW=Fk[z4 2%, 3%, xz|=k[U, V, W, T1/(V*—=UW, T?+VW+U?. (Cf.
and Section 2 of Chapter 5.)

(b) If R=FR[T? T%] (a is a positive odd integer) or R=k[T? T*], R is
Gorenstein for every d but a(R)=0. If R=k[T? T* T*] or R=k[T*4 TS, T7, T*],
R is not Gorenstein but R‘® is Gorenstein for every d=2.

(¢) If R is a Gorenstein ring, a(R)+0 and if the set {d>0| R‘® is a Goren-
stein ring} is an infinite set, then we can show that dim R<1 by the aid of
(3.1.3). The detailed proof is omitted.

(3.3.3) We put R=k[X, Y] with deg X=p and deg Y=4q. We assume that
p and ¢ are relatively prime. Then R‘® is Gorenstein if and only if p'¢+pq’
=0 mod d where p'=(p, d) and ¢’=(q, d). We can further say that R‘® is a
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polynomial ring if and only if p’¢=0 mod d. If, for example, p=2 and ¢=3,
R is Gorenstein if and only if d=1, 2, 3,4, 5,6, 8,9 or 12 and R‘® is a poly-
nomial ring if and only if d=1, 2, 3 or 6.

(3.34) We put R=kr[X, Y, Z1/(Z*+Y*+X°®) with deg X=6, deg Y=10 and
deg Z=15. Then R is a Gorenstein ring and a(R)=—1. In this case, R‘® is a
Gorenstein ring if and only if d=1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 18, 20, 21, 25, 30,
36, 40, 45 or 60. R® is a polynomial ring if and only if d=2, 3, 5, 6, 10, 15 or
30. Thus if R is not generated by R, over £k, it is rather complicated to

determine whether R‘® is a Gorenstein ring or not.
(3.35) We put S=k[X, Y1/(X°+2Y®)=Fk[x, y]

and R=S[y*/x]=kLx, 3, y*/x],

where deg X=deg Y=1, ch(k)#2. R is a Macaulay ring, dim R=1 and »(R)=2.
But R is a Gorenstein ring. Thus (3.2.1) is not true if dim R=1.

Chapter 4. Segre product of two graded rings defined over a field.

Let us consider the ring R=FkF[X,;;|1=i<7r, 1=<j=<s]/a where X;; are indeter-
minates over a field k£ and a is the ideal generated by 2X2 minors of the matrix
(X;;). Then, as is well known, R is isomorphic to the subring k[S,T;|1=i=7,
1<j<s] of the polynomial ring k[S;, -, S,, Ty, ==+, Ts1=Ek[S;, -, SA 1K kLT,
-+, Ts]. The ring R is the homogeneous coordinate ring of the Segre embed-
ding of P™"*X P*! in P™"!, This concept was generalized by Chow to the
concept of the Segre products of two graded rings defined over the same field
k. We also define Segre products of two graded modules. We compute the
canonical modules and the local cohomology modules of the Segre products.

In this Chapter, we use the following

NoTATIONS (4.0.1). R and S are graded rings defined over % with H-maximal
ideals m=R, and n=S, respectively. We put r=dim R and s=dim S.

T=R%S= @ORn(X)k Sn.

We consider T as a graded ring by T,=R,Q; S, .
T"=RQ®:S.
For a graded R-module M and a graded S-module N, we put
Mt N:n@Mn@)k Ny .
We consider M # N as a graded T-module by (M § N),=M,Q:N,. If x€M, and
yeN,, we denote the image of xXy in M3 N by x#y.
P=T,=R. %S..

ProprosITION (4.0.2). (i) T is a Noetherian ring. (So, T is also a graded
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ring defined over k.) ' v :

(ii) If M and N are finitely generated modules, M # N is a finitely generated
T-module.

PrRooF. (i) As T is a direct summand of 77 as a T-module, T is a pure
subring of 7/. As T’ is Noetherian, T is Noetherian by Proposition 6.15 of [17].

(i) If Q is a T-submodule of M# N, Q'=T’-Q is a T’-submodule of MQ,N
and Q=Q'"\(M#EN). If (Q.)xze is an ascending chain of T-submodules of M %
N, this ascending chain terminates because M&,N is a finitely generated 7"-
module.

REMARK (4.0.3). (i) The functors Mé£- and -# N are exact functors and
commute with direct sums.

(ii) If M, and N, are finite-dimensional k-vector spaces for every integer
n, there is a natural isomorphism

(MEN*=M*EN*.

(iii) If M (resp. N) is an Artinian R- (resp. S-) module, M % N is an Artinian
T-module.

(iv) If T’ is a normal domain, T is a normal domain.

(v) 1If P is algebraically closed and if R and S are normal domains, 7T is a
normal domain.

ProoF. (i) and (ii) are direct consequences of definitions. (iii) follows from
the duality between Noetherian modules and Artinian modules and (4.0.2).

(iv) As T is a pure subring of 77, this follows from Proposition 6.15 of [17].

(v) In this case, T’ is an integrally closed domain by [10], (6.5.4).

1. Calculation of local cohomology groups and the canonical module.

In this section, M is a graded R-module and N is a graded S-module. We
write the minimal injective resolution of M (resp. N) in the category of graded
R- (resp. S-) modules by (E*) (resp. by (I)). For each i, we write

E'='E'D"E* (resp. I'='I'®"I")

as in (2.2.6).

LEMMA (4.1.1). (i) If M or N satisfies the condition (*) of (2.2.1), MEN
satisfies the condition (*) as a T-module.

(ii) If M and N satisfy the condition (**) of (2.2.2), M £ N satisfies the con-
dition (**) as a T-module.

Proor. If feR; and geS, are such that fi and gy are bijective, the mul-
tiplication map of f¢#g% on M# N is bijective.

LEMMA (4.1.2). If N satisfies the condition (**),
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Hy(M% N)=Hu(M)§ N

for every integer q.

'Proor. By (2.24) and (4.1.1), ﬂ%(M#N)zHq(ﬁ?g(E’#N)):Hq(’E'#N)
=H('E)Ys N=HL(M)% N, for -4 N is an exact functor.

REMARK. If S=k[Y], deg Y=d and N=k[Y, Y '], R#S=R® and M} N
=M. So (3.1.1) is a corollary of (4.1.2). '

REMARK (4.1.3). As 0—’E'—E*—"E"—( is an exact sequence of com-
plexes, we have the long exact sequence of cohomology groups of these com-
plexes. But as H(E")=M and HYE")=0 for g=1, we have

HY("E)=H™(E)=Hy'(M)  (¢=1)
and we have an exact sequence
0 — HYWM) —> M — H("E") —> Hu(M) —> 0.
- Lemma (414) Let (A%, di) (resp. (BY, d})) be a complex of graded R- (resp.
S-) modules. If we define a complex (C%, d,) of graded T-modules by
Ci= @ (A*$B’) and dq:i+]2=q (dig1+(—1)1%d7),

itj=q

then we have
H“(C')Eig}:q(Hi(A')#H"(B‘))-'

PROOF. As the Segre product is the direct sum of tensor products over &'
of all degrees, we can use the usual Kiinneth formula of tensor products of
complexes over a field. (Cf. [37], Chapter V, (10.1).)

THEOREM (4.1.5). We assume that HL(M) (resp. HX(N)) vanishes for ¢=0, 1.
Then

HYM#N)=(M% HIN)S HEOD § NJB(, © | (HW(M)§ HIN))
for every g=0. , | |
Proor. If we put Fq»——HEB:qE"#If and make a complex (F°) as in (4.14),
(F") is a resolution of M# N I;y (4.1.4). If we put
Fi= @ (B4 T)BCE S I)BUE 1Y)

and
//Fq: - @ (”Ei#”]j) ,

itj=q
'F'? gatisfies the condition (¥) and ”F? satisfies the condition (**) for every gq.
Moreover, (F*) is a subcomplex of (F*) and by the assumption, 'F?=0 for ¢
=0, 1. As usual, we denote by (”F-) the quotient complex (F*/'F*). By (2.24),
H3(M$ N)=HY(H%(F))=H'F"). Using the same argument as in (4.1.3), H{F")
=HY("F) for ¢=z2 and HY'F)=0 for ¢=0, 1 by the assumption. We use,
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(4.1.4) again for (F") and we get
HYM$ N)=HC(F)= @ (H(CE)§H(T).

By (4.1.3) and by the assumption, H("E)=M, H*("I')=N and H("E" )= H{'(M),
Hi("I')=HY'(N) for i=1. The assertion follows from these facts.

REMARK (4.1.6). If we do not assume that HZ(M) (resp. H+(N)) vanishes
for ¢=0, 1, (4.1.5) must be modified a little. We put M”"=H*"E") and N"=
HY”I"). By (4.1.3), there are exact sequences

0—A M M B 0
0 C—N N7 D 0

where A, B, C and D are modules which satisfy the condition (*). By the aid
of local cohomology long exact sequences, we have Hi(M)=HZI(M”) and H¥N)
=~ HIN") for ¢=2 and for ¢=0, 1, Hi(M”)=0 and HI¥N”)=0. On the other
hand, we have Hi(M £ N)=H{(M” § N”) for ¢=2. Thus we have

Hi(M % N)=(M" % Hi(N)D(Hu(M) % NB(, D, (Hu(M") % HI(N"))
for ¢g=2.

REMARK (4.1.7). Let M be a Macaulay R-module of dim M=1. Then the
Cousin complex

0 M M° M! 0

of M is exact, M° satisfies the condition (**) and M'=H' (M) satisfies the con-
dition (*). Applying the functor - # N to this exact sequence, we get the exact

sequence
0O— MEN—>M"$N—> M*'4$N—>0.

In this exact sequence, M'# N satisfies the condition (*). So, by the local
cohomology long exact sequence and by (4.1.2), we have an exact sequence

0 — Hy(MEN) — M°4 HXN) — Hu(M)¥ N
—> Hy(M$ N) — M°§ Hy(N) — 0

and isomorphisms H3(M # N)=M"*4% Hi(N) for ¢=2. If M% Hi(N)=0 for some
integer ¢=2, we have

Hi(M% N)=H(M) % HxN).

2. Dimension and depth of the Segre product.

(4.2.1) We first recall two fundamental facts. If M is a finitely generated
graded R-module,
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dim M=max {q | HL(M)=0}
and
depth M=min{q | HL(M)+0}.

PROPOSITION (4.2.2). If R=Fk[X,, -+, X,] and S=k[Y,, -+, Y] are poly-
nomial rings with deg(X;)=deg(Y;)=1 for every i, j and if M=R(a) and N=
S(b) for some integers a and b, then

(i) dim M# N=r+s—1 if r=1 and s=1.

(i) If r=2 and s=2,

(@) M#N is a Macaulay T-module if and only if s>a—b>—r,
(b) if a—b=s, depth M # N=s,
() if a—b=—r, depth M % N=r.
(iii) If r=1 and s=2,
(@) if a=b, M N=S(b) and M# N is a Macaulay T-module,
(b) if a<b, depthM§ N=1.
(iv) If r=s=1, M N is a Macaulay T-module for every a and b.
Proor. By (2.2.8) and (2.1.5), we have

R¥a+n)  (¢g=7)

HiM)={ e
HYN)= S*b+s)  (g=9)
= ”{ 0 (g#5).

If =2 and s=2, then by (4.1.5),

M# HiN)=R(a)§ S*(b+s)  (g=s)
[ Hi(M)% N=R*(a+r)$S0b) (¢g=r)
Ho(M)$ Hi(N)=R*(a+r)# S*(b+s) (g=r+s—1)

ﬁ%(M# N)= L
0 (otherwise).

The assertions (i) and (ii) follow from the above isomorphisms by the aid of
(4.2.1). The assertions (iii) and (iv) follow from (4.1.7).

THEOREM (4.2.3). Let R and S be graded rings defined over k. We put
dim R=r and dim S=s.

(1) If r=1 and s=1, dim T=r+s—1.

(i) If r=2,s=2 and if R and S are Macaulay rings, T is a Macaulay ring
if and only if R# H%(S)=0 and H,(R)# S=0.

(iii) If r=1, s=2 and if R and S are Macaulay rings, T is a Macaulay ring
if and only if Hw(R)#S=0.

(iv) If r=s=1 and if R and S are Macaulay rings, T is a Macaulay ring.

PrROOF. (i) We can take a parameter system (x;, --, x,) of R (resp.
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(¥1,°+, ¥s) of S) such that x;€R,; for every i (resp.y;€S, for every j). If
we put R'=k[x,, -+, x,], S"=k[y;, -+, ys] and T'=R’#S’, dim T'=r+s—1 by
(4.2.2). As T is a finite module over 77 and as 7'CT, dim T=dim T'=r+s—1.

(ii) follows from (4.1.5). (iii) and (iv) follow from (4.1.7).

PROPOSITION (4.24). If M (resp. N) is a Macaulay R (resp. S) module of
dimension r=1 (resp. s>l) dim M ¢ N=r+s—1 or M4 N=0.

Proor. Let (xy, -+, x,) and (y,, -+, ¥,) be parameter Systéms of M and N
respectively. We assume x;€R,; and y;&€S,; for every 7 and j. If we put R’
=k[x,, -+, x,] and S’=k[y,, -+, ys], R’ and S’ are polynomial rings over k2 and
M and N are finitely generated free modules over R’ and S’ respectively.
Thus M$N is a direct sum of modules of the form R'(a)$#S'(b). If a%b
mod d, R'(a)#S'(h)=0. If a=b-+nd for some integer n, as R'(a)%S(b)=
(R'(nd) $ S")(b), dim R'(a) 4 S'(b)=r—+s—1. ‘

REMARK. If we put R=S=k[X,, -, X,] where deg X;=d>1 for every i,
M=R(1) and N=S, then M#N=0. If we put M=R(1)DR/(X,, -, X;) and N
=S, dim M=dim N=r and dim M # N=2r—1—i. Thus the assumption “M and
N are Macaulay” in (4.2.4) is necessary. v

PROPOSITION (4.2.5). Let M (resp. N) be a Macaulay R- (resp. S-) module of
dimension v (resp. s). We assume that M3 N+0. ’

(1) If r=2 and s=2, M4 N is a Macaulay T-module if and only if M % Hi(N)
=0 and HHW(M)% N=0.

(i) If r=1 and s=2, M N is a Macaulay T-module if and only if
HW(M) $ N=0.

({ii) If r=s=1, ME N is a Macaulay T-module.

PRrROOF. These results follow from(4.1.5), (4.1.7) and (4.2.4).

3. The canonical modulé of the Segre product.

In this section, we put dim R=r and dim S=s. We assume r=1 and s=1.

THEOREM (4.3.1). If r=2 and s=2, K;=~Kp# Ks.

Proor. By (4.2.3), dim T=r+s—1 and by .(4.1.5) and (4.1.6), H%* (T)=
H7.(R)# HX(S). By (4.0.3), Kp=(H5* NT)*=(Hu(R)*  (HXS)*=Kr # K.

COROLLORY (4.3.2). If r=2, s=2 and if T is a Macaulay ring, T is a
Gorenstein ring if and only if Kp# Ks=T(d) for some integer d. -

COROLLARY (4.3.3). We assume that R and S are Gorenstein rings, r=2 and
s=2. If T is a Macaulay ring and if a(R)=a(S), T is a Gorenstein ring.

Proor. If we put a=a(R)=a(S), Krp# Ks=R(a)#S(a)=T(a).

COROLLARY (4.34). If R is a Gorenstein ring, vr=2 and if RER is a Ma-
caulay ring, R4 R is a Gorenstein ring.

REMARK (4.3.5). If r=1, s=2 and if R is Macaulay ring, there is an exact
sequence
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O‘*KR#KS_'*KT%R*#KS—QO.

Proor. Let 0— R— R*— R'— (0 be the Cousin complex of R in the
category of graded R-modules. As R is a Macaulay ring, this complex is
exact and Hy(R)=R!. By 4.1.7), H%(T)=R"# Hi(S). So there is an exact
sequence '

00— R HXS) — Hp(T) — Hi(R) #Eiis) —0.

If we take the dual of this exact sequence, we have the desired result by
(4.0.3).

4. Segre product of R and S which satisfy the conditions R=F[R,] and
S=F[S,].

In this section, we assume that R=FkF[R,] and S=k[S,]. We put r=dim R,
s=dim S and assume that r=1, s=1.

LEMMA (4.4.1). (Hu(R)»#0 for n=a(R). . :

ProOF. If depth R=0, we put R=R/H%(R). Then depth R>0 and H}(R)
=H7(R). So we may assume that depth R>0. - Also, we may assume that k
is an infinite field. If we take an R-regular element x& R,, the exact sequence

0 —> R(~1) —> R —> R/xR —> 0

induces the following exact sequence of local cohomology groups

Hi(R/xR) —> Hu(RX—1) —> Hu(R) —> 0.

This exact sequence shows that [(H7u(R)), : k1Z[(Ha(R))a+: k] for every integer
n. As (Hu(R))em #0 by the definition of a(R), the result follows.

LEMMA (4.4.2). dim (R(a) % S(b))=r-+s—1 for every integer a and .

PrOOF. If #=2 and s=2, then by (4.1.5), (4.1.6) and (4.4.1), H5"*"'(R(a) 2 5(b))
= H7(R)a) # Hi(S)(b)+0 and HH(R(a)£S(b)=0 if g=r+s. So dim R(a) % S(b)
=r+s—1 by (4.2.1). If r=1, we may assume that R is a Macaulay ring by the
same argument as in (4.4.1). Then putting M=R(a) in (41.7), we have
dim R(a) % S(b)=s. R : :

PROPOSITION (4.4.3). If M and N are finitely generated and if neither is an
Artinian module, dim M # N=dim M-+dim N—1.

PrROOF. By (4.15), (4.1.6), (4.1.7) and (4.2.1), dim M # N <dim M - dim N—1.
On the other hand, there is a cyclic R-submodule A" of M (resp. cyclic S-
submodule N’ of N) with dim M=dim M’ (resp. dim N'=dim N). By (4.4.2),
dim M’ 4 N'=dim M+dim N—1. As M’ # N’ is a submodule of M &N, dim M& N
=dim M-+dim N—1. , o : o

THEOREM (4.4.4). We assume that R and S _dre Ma}c.aulay ,fings.
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(1) If r=2 and s=2, T is a Macaulay ring if and only if a(R)<0 and
a(S)<0.

(1)) If r=1 and s=2, T is a Macaulay ring if and only if R is a polynomial
ring.

Proor. (i) By (4.23), T is Macaulay if and only if R# Hi(S)=0 and
Hr(R)£#S=0. So T is Macaulay if and only if (H%(R))¢=0 and (H%(S));=0 for
every d=0. The latter condition is equivalent to say that a(R)<0 and a(S)<0
by (4.4.1).

(ii) By (4.2.3), T is Macaulay if and only if a(R)<0. This condition is then
equivalent to say that R is a polynomial ring by the following lemma.

LEMMA (4.4.5). If R is a Macaulay ring, dim R=r and if R=Fk[R,], then
a(R)=—r and a(R)=—r if and only if R is a polynomial ring over k.

Proor. If r=0, a(R)=t(R)=0 (cf. (3.1.4)) and a(R)=0 if and only if R=k.
If r=1, we may assume that 2 is an infinite field and we may take an R-regular
element xR,. Then a(R/xR)=a(R)+1 by (3.1.6). R is a polynomial ring if
and only if R/xR is a polynomial ring. Thus we can proceed by induction on 7.

LEMMA (4.4.6). If a=b, vr(R(a) % S(b)=[R4-»: k1.

PROOF. R(a)#S(b) is generated by the elements of (R(a)#Sb)).,=
R(a)-5Q:S(b)-»=Rq-s-

THEOREM (44.7). We assume that R, S are Gorenstein rings, r=2, s=2 and
that T is a Macaulay ring. We put a=a(R), b=a(S) and we assume that a=b.
Then

r(T)=[Re-p: k].

In particular, T is a Gorenstein ring if and only if a=b.

PrOOF. 7(T)=vr(Kr)=vr(Kr$ Ks)=vr(R(a) $S(0))=[Ra-»: k] by (4.4.6),
(4.3.1) and (2.1.8).

EXAMPLE (4.4.8). We put R=k[X,, ---, X,] and S=k[Y,, -+, Y] and assume
that r=s. Then T is a Macaulay ring with
r—1
s—1/°

ProoF. By (2.2.8), Kg=R(—r) and Ks=S(—s). T is a Macaulay ring by
(4.4.4) and by (44.7),

r(T)=

()=LS-: 11=("_7).

THEOREM (4.4.9). We assume that R, S are Macaulay rings and that r=2,
s=2. If T is a Gorenstein ring, then R and S are Gorenstein rings and a(R)
=a(S)<0.

To prove this theorem, we need two lemmas.

LEMMA (4.4.10). We take xM,, y= N, and assume that N,#0 for m=n.
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If x4y generates M$ N over T, Ryx=M,.q for every d=0.
PROOF. If Ryx#M,., for some d=0, then Ty(x % y)=xRs@rSay#*(M & N)p1q
since N,.q%0.

LEMMA (4.4.11). If R is a Macaulay ring, r=2 and if n>—a(R), [(Kg)n: k]
2.

ProOF. By (2.1.8), Kr is a Macaulay R-module of depth . Extending the
base field, if necessary, we may assume that 2 is an infinite field. Then we
can take a parameter system (x;, -+, x,) of Ky from R, If we put R'=
k[ x, -, x,], R’ is a polynomial ring over k2 and Kz is a free R’-module. If
we take a k-basis of (Kgz)_acm, then we may assume these elements form a
subset of a free basis of Kz over R’. Thus we have an inequality, [(Kz),: k]
Z[(Rnsam : 122 if n>—a(R).

Proor oF (4.4.9). We assume that T is a Gorenstein ring. Then Kr=
Kr# Ks is a cyclic T-module. If we put b=—a(T),

1=vr(Kr # Ks)=[(Kg)y: EJ[(Ks)y: k].

So, by (4.4.11), b=—a(R)=—a(S) and by (4.4.10), Kz and Kj are cyclic modules.
Thus R and S are Gorenstein rings.

PROPOSITION (4.4.12). We assume that R and S are Macaulay rings of
dimension 1 and that R is not a polynomial ring. If T is a Gorenstein ring,
then S is a polynomial ring and R is a Gorenstein ring.

PrOOF. We may assume that 2 is an infinite field. We take a T-regular
element z=T,. Then T/zT is an Artinian Gorenstein ring. So, if we put n
=¢(T/zT), H(n, T/zT)=1. But on the other hand, H(n, T/zT)=H(n, T)—
H(n—1, T)=H(n, R)-H(n, S)—H(n—1, R)-H(n—1, S). It is easy to show that
the equality 1=H(n, R)-H(n, S)—Hn—1, R)-H(n—1, S) is impossible unless
H(n, S)=1. Thus we have proved that S is a polynomial ring. Then R=T
is a Gorenstein ring.

ExAMPLE (4.4.13). If R and S are Macaulay rings, r=2, s=2 and a(R)=0,
T is not a Macaulay ring by (4.4.4). But if a(S)<—a(R)—2 and if we choose
an integer n such that —a(S)>n>a(R), then R(n)#S is a Macaulay T-module
and depth (R(n) #S)=dim T.

ExaMpPLE (4.4.14). If R or S is not generated by homogeneous elements of
degree 1 over k, (444) is not true. If we put R=Fk[X, Y, Z]/(X*+Y?*+2Z™)
where 7 is an integer prime to 6 and n=7. R is a graded ring over k if we
put deg(X)=3n, deg(Y )=2n and deg(Z)=6. In this case, R # R is a Macaulay
(and also a Gorenstein) ring but a(R)=n—6>0.

I\
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Chapter 5. Geometric Backgrounds.
1. Proj(R) of a class of graded rings.

Proj(R) of a graded ring R is discussed in [8]. But, there, most part is
written under the assumption that “R. is generated by R,”. But this condition
is too strong for us. Instead, we assume the following condition for a graded
ring R= @ R,.

nzo - . .

(#) There exists an integer d, such that for every d=d,, R‘® is generated

by R,=[R‘“], over R,. -

(5.1.1). We use the following notations in this section.

Rzr;@() R, is a Noetherian graded ring which satisfies the condition ().

X:Proj(R)Z{p; p is a graded prime ideai of R, pDRJ.
DAN=WEX; fap  (fERy d>0).

Rip={—t ERs; r€Ruaf=(R  (fERa d>0).

n

We know that D.(f)=Spec(R(s). _

Oy is the structure sheaf of X. ,M is the Oy-module associated to M if M
is a graded R-module. We know that ]\7I]D+<f):(2b~1(f)) on D,(f)=Spec(R(ys,).

OX(n):R’Z;z) for a integer #.

LEMMA . (5.1.2). If M and N ave finitely generated graded R-module, then
the homomorphisms

1 M®o N —> (MQrN)™
p: (Homg(M, N)y* —> Homox(M, N)
defined respectively in (2.5.11) and (2.5.12) of [8] are isomorphisms. In particular,

9 (Mo yO x(M) =0 x(n+m)
FHome (O x(n), Ox(m))= OX(m~n}

and Ox(n) is an invertible Ox-Module for every integer n.

~Proor. First, we prove a sublemma.

‘SUBLEMMA (5.1.3). Assume that R satisfies the condition (#). If we take f
€R4(d>0) such that R;+0, then every finitely generated graded R -module M is
generated over M, as an R ~module. ' '

PrROOF. Take a graded prime p of R such that p-R ; is an H-maximal ideal
of R;. Then, by (1.1.1), R;/p-Ry=KI[T, T™'] where K=(Rs/PR), is a field
and 7T is an indeterminate over K. By (#), there exists an element g R,, (d, ¢)
=1, g&p. So, deg(T)=1. Now, let M’ be the submodule of M generated by
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M, over R;. Then, by (1.1.1), M/pM is a free R;/pR-module and so is generated
by M,. So M/(M'4+p»M)=0 and thus (M/M’),=0 by Nakayama’s lemma. As
bR, is arbitrary H-maximal ideal of R;, we have M=AM".

ProOF OF (5.1.2). We take f€ R, (d>0)such that R,#0. We have to show
that

M, Qg psNep 2(MQrN )y = (M Qrs Ny .

As M; and N, satisfy the condition of (5.1.3), we have (M;),=(R,), (M), and
(Nf)—n:(Rf>—n'<Nf>0 for every integer n. Thus (Mf>n®R(f)(1vf)-n:M(f)®R(f)N(f)
and we have proved that 4 is an isomorphism. The same argument shows that
p is an isomorphism.

NoTATION (5.1.4). Let & be a coherent Ox-Module. We put F(n)=
FRoxO0x(n) and ['y(F)= é}z I'(X, F(n)). I'x(F)is a finitely generated graded R-

module if Ass(F) has no component of dimension 0.
LEMMA (3.1.5). The homomorphism

ﬁ:%)—%fl

defined in (2.7.5) of [8] is an isomorphism.

ProoF. The proof of [8], (2.7.5) works in this case, too.

REMARK. If R does not satisfy the condition (%), then (5.1.2) and (5.1.5)
are not true in general. For example, if R is generated by R, (d=2) over R,,
then ©x(n)=0 if n is not a multiple of d.

(5.1.6) (E.G.A. III (215)). (1) If R is a graded ring defined over a field
k, satisfies the condition (%) and if M is a finitely generated graded R-module,
there is an exact sequence of graded R-modules

0 —> HY(M) —> M —> I'y(M) —> Hy(M) —> 0 (m=R,)
and isomorphisms of graded R-modules

O HYX, Mu)=H2 (M) (p=1).

(i) If dim M=2, M is a Macaulay R-module if and only if the following
conditions are satisfied.

(a) M— I'«(M) is an isomorphism.

(b) HP(X, M(n)):O for 0<p<dim(Supp(M)) and for every integer n.

NotATION (5.1.7). Until the end of this chapter, we use the following
notations.

X is a projective variety defined over a field & with H%X, Oy)==E.

£ is an ample invertible sheaf on X. We write £=04(1) and L®"=0(n).

R=Ry, = T@DH%X, Ox(n)). Note that R is a graded ring defined over &,

satisfies the condition (#) and that Proj(R)=X. We have L 215(11) by (5.1.5).
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F(n)=FQe,0(n) for an Ox-Module &F.

wx is the dualizing Module of X. (Cf. Altman-Kleiman [1].)

(5.1.8) If Kz is the canonical module of R=Ry,,, then Kp=I'y(wx) and
wx =Kz

ProOOF. If dim X=d, dim R=d+1 and by the definition, (Kz),=((H*'(R))_,)*
~(HYX, Ox(—n)y*= H(X, wx(n)). Thus we have the first statement and the
second follows from (5.1.5).

(5.1.9) If R=Ry,, is a Macaulay ring, R is a Gorenstein ring if and only
if wx=0x(n) for some integer n.

Proor. This follows from (2.1.3) and (5.1.8).

LEMMA (5.1.10). If R satisfies the condition (§) and if R is a Macaulay
(resp. Gorenstein) ring, then X=Proj(R) is a Macaulay (resp. Gorenstein) scheme.

PrOOF. Let feR, (d>0) be such that R,;+#0 and let p be a graded prime ideal
of R such that p- R, is an H-maximal ideal of R;,. By the condition (#), there
exists an element geR,, (d, e)=1, g&p. So the homogeneous localization Ry,
has an invertible element of degree 1 and Ry =(Rp)l T, T *]. So if R is a
Macaulay (resp. Gorenstein) ring, (Rw), is a Macaulay (resp. Gorenstein) ring.
As f and p are arbitrary, Proj(R) is a Macaulay (resp. Gorenstein) scheme.

(6.1.11) If R=Ry,, is a Macaulay ring, then H?(X, 0x)=0 for 0<p<dim X.
Conversely, if X is a connected Macaulay scheme and if H?(X, ©x)=0 for 0<p
<dim X, then R‘™ is a Macaulay ring for every sufficiently large n.

PrRooOFr. The first statement follows from (5.1.6). As for the second state-
ment, as £ is ample, H?(X, Ox(n))=0 for p>0 and for every sufficiently large
n. On the other hand, if »n is sufficiently small,

HY(X, 0x(n)=H"™*"2(X, wx(—n))=0

for every p<dim X. (As X is a Macaulay scheme, we can use the Grothendieck
duality theorem.)

(6.1.12) If Ry, . is a Gorenstein ring, one of the following cases occurs.

(a) wx=0yx, (b) wy is ample, (¢) wz' is ample.

PROOF. As . is ample, this is obvious by (5.1.9).

ExampLE (5.1.13). Let X be a non-singular projective surface defined over
an algebraically closed field k. Assume that Ry, is a Gorenstein ring. Then
by (5.1.12) and the classification theory of surfaces, there are following three
cases.

(1) When wy is ample, X is a surface of general type without exceptional
curves.

(2) When wy=0Oy, X is a “K3-surface” because HY(X, ©x)=0 by (5.1.11).

(3) When wy' is ample, X is a rational surface. As structure of rational
surfaces are well-known (cf. [22]), we can determine all cases where Ry, . is a
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Gorenstein ring. Let us write the canonical divisor of X by K. wx=0x(K).
As —K is ample, KC<0 for every curve C on X. So, if C is a non-singular
rational curve on X, C*=—1. Thus we can see that either X is obtained from
P? by successive blow-ups or X=P!'x P! If X has an exceptional curve C of
the first kind, then KC=-—1. So, if D is an ample divisor on X with nD=K,
then n=—1. Conversely, if X is a rational surface and £ is an ample inver-
tible sheaf on X with £®=w3' for some positive integer =, then it is not
difficult to see H(X, £8™)=0 for every integer m (if ch(k)=0, Kodaira vani-
shing theorem and Serre duality are sufficient to prove this statement). So, by
(5.1.6) and (5.1.9), Ry, is a Gorenstein ring.

Now, let us make the list of (X, £) and Ry, where X is a rational surface
and Ry,r is a Gorenstein ring.

(a) X=P?, £=0(H) (H is a hyperplane of X), Ry,,=k[T,, Ty, T.].

(b) X=P? £=008H)=wz', Rx,:=(k[To, Ty, T:])*®.

(¢) X=P'XxX P! £=0(H)Q:0(H,) (H, and H, are hyperplanes of the first
and the second factor, respectively), Rx,.=Fk[S,, S;]1% k[T, T.].

(d) X=P'X P!, £=0Q2H,)X:002H,)=wy,
Ry, r=Fk[S, SoSi, ST14$ kLTS, ToTy, T1l.

(e), (n=1, 2, ---, 8 We select n points P, ---, P, on P? satisfying the
conditions

(i) no three points lie on a line of P?

(ii) no six points lie on a conic of P2

Then, we define X to be a surface obtained from P? by blowing up these
n points and we put L=w3'. In these cases, the ring Ry, . is the subring
of k[T, T, T.] generated by all homogeneous polynomials of degree 3m
(m=1, 2, ---) which vanish m-times at P, -, P,.

2. Point divisors on smooth curves.

In this section, let 2 be an algebraically closed field and X be a complete
smooth curve defined over k. We treat point divisors on X and we will find
a relationship of Ry . and a semigroup ring.

NoTATION (5.2.1). X is a complete smooth curve of genus g defined over
k. We assume g=1.

P is a closed point on X. We consider P as a divisor on X.

L=0x(P) is the invertible sheaf associated to the divisor P. As deg £=1,
L is ample.

R=Ryx,;. R is a two-dimensional normal domain.

h(n)=dim,H(X, Ox(nP))=dimy(Rx,r)» -
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By Riemann-Roch formula, we have the following properties for A(n).
(1) h(n)=0 for n<0 and A(n)=n—g-+1 for n=2g—1.
(i) R0)=hr1)=1. (We have assumed g=1.)
(iii) For every integer n, h(n)—h(n—1) is either 0 or 1.
DeriniTION (5.2.2). We put

H=Hy p={neZ; h(n)—h(n—1)=1}.

Then H is an additive subsemigroup of N. If n=2g, ne H. (Cf. Gunning [30]
Section 4.)

NoTATION (5.2.3). The multiplicity m(H) and embedding dimension emb(H)
of a numerical semigroup H was defined by

m(H)=min{n>0; ne H}

emb(H) is the number of minimal generators of H.
For a graded ring R defined over k, we write

m(R)=the multiplicity of the local ring Ru

emb(R)=y(R.)=embedding dimension of R. (where m=R, as usual).

ProrosITION (5.2.4). Let t be a non-zero element of R,. Then t is a prime
element of R and R/tR=k[H] (the semigroup ring of H).

ProoOF. Let B(X) be the rational function field of X. Then R can be seen
as a graded subring of k(X)[T] in the following way.

R,.={fT"ek(X)T™ ; vp(f)=—n and vo(f)=0 for Q+P}

where vo(f) is the order of zero (or pole, if vo(f) is negative) of f at QeX.
As R,=F-T by this identification, we may assume that =7. If fT"eR,, fT"
& tR if and only if ve(f)=—n. Let fT"€R,, gT"€R, and assume that fT"
&tR and gT™etR. Then ve(fg)=—n—m and fgT™* ™ tR. Thus (R is a prime
ideal. As £ is algebraically closed and dim R/tR=1, R/tR is a semigroup ring
by (2.2.11). Then it will be clear that the corresponding semigroup is H=Hy p.

PROPOSITION (5.2.5). m(Ryx,p)=m(Hx p) and emb(Rx,p)=emb(Hx p)+1.

Proor. We know that m(k[H])=m(H) and that emb(k[ H])=emb(H) (cf.
[14]). As R/tR=ER[H], the equality emb(R)=emb(H)+1 is clear. We will
compute m(R). Let (¢4, f3, =-, fo) be a minimal generator system of R, by
homogeneous elements. We assume that deg(t)=1. We put q=(f,, -+, f.) and
q=(R/tR).=(fy, ---, f.). We will evaluate length (R/m") for large n. We can
write m*=(t", {* g, .-, q*). We consider the filtration

m*C ("7, mM)C(@E"E, m™M)C - C(E, mMCR.

As t is a non-zero divisor of R, £!R/t""*R=R/tR (forgetting the grade) and it is
easy to see that ("% m™)/(#" ", m™) = R/(t, ) =k[H]/(q"). We know that
length(k[ H1/q®)=n-m(H)-+const. for n sufficiently large. So we can conclude
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that m(R)=m(H).

PROPOSITION (5.2.6). Ryx,p is a Gorenstein ring if and only if Hyp is a
symmetric semigroup.

PrROOF. As R/tR=Fk[H], R is a Gorenstein ring if and only if k[H] is a
Gorenstein ring. k[H] is a Gorenstein ring if and only if H is a symmetric
semigroup by (cf. (2.1.9)).

REMARK. We can put another proof of this fact. By (5.1.9), Rx,r is a
Gorenstein ring if and only if wy=0x(nP) for some integer. But as deglwy)
=2g—2, n=2g—2. wy=0x((2g—2)P) if and only if HY(X, 0x((2g—2)P)=H(X,
0x(2—2g)P))+0. By Riemann-Roch theorem, this is equivalent to h(2g—2)=g
and by (5.2.1), this is equivalent to 2g—1& Hy p. As ${neN|neH}=g, it is
easy to show that 2g—1« H if and only if H is symmetric.

ExaMPLE (5.2.7). (i) If g=1, Hx,p={0, 2, 3, 4, ---} for every point>P of X.
This Hy,p is of course symmetric.

(ii) If g=2, there are two possibilities for Hyxp. If Hy p=1{0, 2, 4,5, 6, ---}
this point P is a hyperelliptic point. There are 6 hyperelliptic points on X and
for other point P, Hx,p=1{0, 3,4, 5, ---}. If P is a hyperelliptic point, Rxp is
a Gorenstein ring and if P is not hyperelliptic, r(Rx,p)=2=g. If Pisa
hyperelliptic point, Rx p=Fk[T, U, V]/(F) where F is the form

F(T, U, V)=V*~U—a,T*U—a,T? - (U—asT?),
a;€k, a;#a; for i#j, deg(T)=1, deg(U)=2 and deg(V)=5.

On the other hand, let X be the smooth curve defined by the equation x°*=y*+y
and P=(0, 0)X. Then P is not a hyperelliptic point.

Rx,p=Fk[T, fT? gT*, hT"]
~p(T, U, V, W]/(V?*=UW, U*~VW—=VT? U*V-WT*—-W?)

where f=x"¥y+1), g=x"*(y+1) and A=x"%(y+1).

(iii) In general, if P is not a Weierstrass point of X (the set of Weierstrass
points on X is a finite set), Hy,p={0, g+1, g+2, -~} and we have m(Rx p)=g+1,
emb(Ry,p)=g-+2 and r(Rx,r)=g (we have assumed that g=2).

REMARK (5.2.8). In [27], the following theorem was proved.

For given integers m and n such that m—1=n>=4, there exists
a numerical semigroup H which is symmetric with emb(H)=n, m(H)=m and
which is not a complete intersection.

If for every numerical semigroup H, there exist a smooth curve X and a
point P on X such that Hyx p=H, the following is true.

CoNJECTURE. For given integers m and n such that m=n=5, there exists
a two-dimensional normal Gorenstein local domain R with m(R)=m, emb(R)=n
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and which is not a complete intersection.

QUESTION. For given positive integers m, n and d such that m-+d—1=n

=d—+4, do there exist a smooth d-dimensional projective variety X and ample
invertible sheaf £ on X such that Ry, isa Gorenstein ring with m(Rx, .)=m,
emb(Rx,)=n and which is not a complete intersection?

L1]
£z]
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