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In the present paper we use the same definitions and notations as ones in
[1]. Moreover, using the inequalities in [1] and [2], we give an interesting
characterization of Veronese manifolds as follows;

THEOREM. Let $M$ be an n-dimensional compact orientable submanifold which
is minimally immersed in an $(n+p)$ -dimensional sphere of constant curvature $\delta$ .
If the immersion is full and the sectional curvatures of $M$ are not smaller than
$\frac{n\tilde{c}}{2(n+1)}$ then $M$ is a sphere of constant curvature $\delta$ or $M$ is a Veronese mani-

fold.
PROOF. Since $M$ is compact, let $c$ be the minimum of all sectional curva-

tures of $M$. In this case, in [2], S. T. Yau gave the following inequality:

(1) $\Sigma h_{ij}^{a}\Delta h_{ij}^{\alpha}\geqq n(a+1)cS-a\delta nS+aL_{N}-\frac{1-}{2}$
a

$K_{N}$ ,

where $a$ is a constant such that $a+1\geqq 0$ . Using the inequality (2.1) $K_{N}\leqq nL_{N}$

in [1], from (1) we get

(2) $\sum h_{ij}^{a}\Delta h_{ij}^{a}\geqq(a+1)cnS-a\mathcal{E}nS+(\frac{a}{n}-\frac{1-a}{2})K_{N}$ ,

where $a$ is a positive constant.

Now, setting $a=\frac{n}{n+2}$ in (2), we have the inequality

(3) $\Sigma h_{tj}^{\alpha}\Delta h_{ij}^{\alpha}\geqq\frac{2n(n+1)}{n+2}\{c-\frac{n}{2(n+1)}\partial\}S$ .

On the other hand, by definition we know $\frac{1}{2}\Delta S=\Sigma(h_{ijk}^{a})^{2}+\Sigma h_{tj}^{\alpha}\Delta h_{ij}^{\alpha}$ . This

equality, together with (3) and our assumption, implies

(4) $\frac{1}{2}\Delta S\geqq\Sigma(h_{tjk}^{\alpha})^{2}+\frac{2n(n+1)}{n+2}\{c-\frac{n}{2(n+1)}e\}S\geqq 0$ .

Since $M$ is compact and orientable, $\Delta S=0$ on $M$. Then all equalities in (1), (2), (3)

and (4) hold everywhere on $M$, that is, the immersion is isotropic,
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(5) $h_{ijk}^{a}=0$ for all $i,$ $j,$ $k$ and $\alpha$

and

(6) $S=0$ or $c=\frac{n\tilde{c}}{2(n+1)}>0$ on $M$ .

Therefore, as the the same reason in the proof of Theorem 1 in [1]; we easily
see that $M$ is a sphere of constant curvature $\tilde{c}$ or $M$ is a Veronese manifold

of constant curvature
$\underline{n\tilde{c}}$

Q. E. D.
$2(n+1)$

.
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