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The curvatures of the analytic capacity
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§1. Introduction.

In Suita has shown that the analytic capacity ¢(z) of a plane region
D& 0,p is real analytic and that the curvature of the metric ¢(2)|dz| is =<—4.
He also raised the comjecture that the curvature is equal to —4 at one point
ze D if and only if De2p. D is said to belong to Dy if it is conformally
equivalent to the unit disc less (possibly) a closed set expressed as a countable
union of compact Ny sets. The papers and provide a different proof
for Suita’s result and actually resolve the conjecture of Suita in case De 9,
1=p<co. Here 9, denotes the class of all p-connected regions with no dege-
nerate boundary component. In the present paper we generalize the results
of and [5] to higher order curvatures (Theorem I). Specifically we show

n
that, for any point z in D& 0,3, c“””zé(yk )72 det |lc;zll7 k-0, where ¢ =c(2)

=1

j+k

and c;= —gZTazf;— . For n=1, we obtain the result of [4]. Moreover, if De 9,
then we have equality in the above inequality for each z€D and every n=0,
1,---. If D=9, then equality at one point z&D holds if and only if p=1.
Several other properties related to the analytic capacity are proved. Our
proofs are based on the “method of minimum integral” with respect to the
Szego kernel function. As in we also show that the above inequality is
strict if the Ahlfors function with respect to z has a zero in D other than z.

§ 2. Analytic capacity.

Let D be a plane region 0,5 and let H(D: 4) designate the class of all
analytic functions from D into the unit disc 4. Let {€D and set H.(D: 4)
={feHD: 4): f()=0}. The analytic capacity c({)=cp({) is given by c({)
=sup {| /()| : feH(D: 4)}. There exists (cf. a unique function F in
H.(D:4), called the Ahlfors function F(z)=F(z:{), such that F'({)=c({).
Clearly, c¢(2)|dz| is a conformal invariant metric. Using a canonical exhaus-

tion process (cf. it can be shown that c(z) is real analytic and hence we
can introduce
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jn(z) = det”le—z“?,k:O » n:O) 17 Tty

where ¢;z=c;z(2).
PROPOSITION 1. Ju(2)/[c(2)]™™* is conformally invariant (n=0, 1, ---).
ProOOF. Let w: D—D* w=w(z), be a conformal mapping of D onto D*.
Then cp(z)=cp.(w)|w’(z)|. Using the properties of Wronskians one can show
that J2(2)=/2(w)|w’(z)|“*>* and the assertion follows.

8§3. The Szego kernel.

Let De9,, 1=p<co. In what follows we can assume that D is bounded
by p analytic curves. As usual, H,=H,(0D) stands for the Hardy-Szeg6 space
of D. It is a Hilbert space of analytic functions in D with the scalar product

(f, g):jabf(z)gTz')ldzl and || fI*=(f, f). The integration is carried over the

boundary values of the analytic functions f and g (this refers to an arbitrary
non-tangential approach). H, admits a reproducing kernel K(z, ) which is the
classical Szegd kernel for D. In this case (cf. [1, pp. 117-118]) ¢(0)=2xK(, )
and F(2)=F(z: 0)=K(z, €)/L(z, ). Here F'({)=c() and L(z, &) is the adjoint
of K(z, §) satisfying the boundary relation

3.1) iK(z, §)|dz| =L(z, ©)dz; z=3D, ¢ D.

Therefore |F(z)|=1 for z£0D and |F(z)| <1 throughout D. Moreover, the
divisor of L(z, {) is exactly ™' with residue (27)"! and the analytic function
L(z, ©)—(2r)"%(z—{)"* vanishes at z={. The divisor of F(z) is therefore &, b,(0),
we, by (©) where b,(0), j=1, -+, p—1, are the p—1 (possibly repeated) zeros of
K(z, €) (none of which is on 8D). The functions b,({) are analytic in &, if they
are simple.

For fixed €D, let A,(Q)={f€H,: fP()=04, £=0,1, -, n}, n=0,1, ---.
A,(Q) is a closed convex subset of H, and it is not empty for, the function
o (2)=27F(2)"K(z, O/ne(@T* is in A, for each n=0,1---. Let ¢ be
the unique solution of the minimal problem 2,({)=min {|f||*: f€ A,())}. Then
(cf. Bergman [1, p. 26])

Q) =10/ 1Q); L) =det Kl -0,
(I.,(0)=1), where K;;=(37*#/0¢/0{"K, K=K(, ). Also
Kg(z, &y eenn Kz, 5)
Pa(2) = —(I:—(l(:))n— f:(oa ------ K . n=0,1,-.
Kyg oo K, =
Here ¢(2)=K(z, {)/K(¢, §). Clearly, I(0)=[2,() - 2,(0)]17* and 4,(0)=1/K(Z, {).
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It follows that
2O =gl = Il = ~rpagerss

and equality, for n=1, holds if and only if ¢,(z2)=¢,(2). This is equivalent to
(f, ¢2)=(f, ¢u) for all feH, or that

V(ORI F©0

(32 Gon="[ 3 |Ke =Ko |, fH.

However, for p>1 (3.2) does not hold. Indeed, by
nleQ" N/, g =2 [@F()"K(z, §)ldz|

= —ﬁ{ig))ﬁ—f((z, 8| dz|

_ 2 /(2
=] e L Odz

2 L : )n+1
:,_ZLLD f(z)—r—](é;@n dz

The function H(z)=L(z, {)(z—{) does not vanish in D also K(z, &)= (z—5b,(0)
o+ (2—bp_1(0))h(2), where h(z) does not vanish in D. Consider the function
Fo(2)=(z—b,(0))" z—b,(0)" -+ (z—bp-1(0)"(z—8)"*". Then f,€ H, and

L(Z, C)n+1 N 275 H(Z)n+1
K(z, O)" == LD h(2)"(z—b,(0))

e HOO)™
(e

On the other hand the right hand side of is zero for f,. Therefore

2 A@ dz

2n+1 2r 1
(3.3) c(©) = m) 4,0

where, for n=1, we have a strict inequality if p>1. Upon multiplying the
inequalities of for k=1,2, ---,n, using the fact that I,(0)*=2,(0) --- 2,(0),
we obtain

O 2 (IR (OO,  nzl.

Since c(Q)=2xK(Z, {)=2a[2,()]"* we get at once
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(3.4) O™ (L),  n=z1.

Here [,(0)=Q2r)"*' (0= det |ic;sll7 40, c=¢().

§4. The n-th order curvature.

The n-th order curvature of ¢({)|d{| is defined by
£a((: D)= —4c(Q)" ™ (L), n=z=1.

By this curvature is conformally invariant. Note also that, for
n=1 k,({: D)=—c 24 log ¢, c=c({), which is the usual curvature of ¢({)|d{|.

PROPOSITION 2. £,({: D):—-4(kfIk Ve for each De Dg.
=1

PrROOF. Due to the conformal invariance and the definition of 95 we only
have to establish this identity for D=4, the unit disc, and {=0. In this case
PP (2)=2"/k 1, k=0, 1, -, and so AP(0)=2x/(k!)? Therefore ]i,‘”(())z(kﬁk 12

=1
and the proposition follows.

Combining the things we said in § 3 we arrive at the following generaliza-

tion of a result in and [5].
THEOREM 1. Let De@,, 1=p<co. Then fcn(C:D)g——él(kl'[k!)2 for each
=1

{eD and each nz=1l. Equality holds for one point { and any nz=l if and
only if DeD,. Moreover, the identity

FQ) e FP)
K(z, C_)n N (ﬁ k 1)2emntDd C:o"o

'11—;50]%2) ld‘(iC)ridZ“— (=1)n!

Con—1
c=c({), fe H,, holds for any n=1 and some (D if and only if De9,.
COROLLARY 1. Let D045 Then k,(C: D)y<—4( kﬁk N2, n=1,2, .

=1

PrROOF. Let {D,} be a canonical exhaustion of D such that 0D, consists
of a finite number of analytic curves. Then, for each n=1, «,({: D)=

lim #,(C: D,,) and since £,(C: Dm)§—4(kﬁ k1)? for each m the corollary follows.
m—oo =1

The case n=1 of is the main result of Suita [4]. Following

Suita we conjecture that £,({: D):—4(kfI kY)? at one point {&D, D&0,5, and
=1

any n=1 implies that De 9p.

Actually, we have shown a little more. According to the
positive domain function
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3 S @bt
pn=1a(C: D)=~y 17y

is conformally invariant. Let

un:vn(C:D):(kgk!)‘Z%’)‘((g—m—, n=0,

s0 v,(C: D)=1 by [34). However, v,/¢,=v,.;=1 for n=1 and thus v, =pu,=1.
Combining this with the previous results we obtain at once. (Note that v;,=g,.)

THEOREM 2. Let De9,, 1=<p<oo. Then v,({:D)=u,({: D)=1 for each
{eD and n=1. Equality, in any one of the two inequalilies, holds for one point
 and any n=2 if and only if De D,.

This theorem implies the main part of [Theorem 1.

COROLLARY 2. Let D&0yp. Then v,({: D)=p,(L: D)=1.

COROLLARY 3. v,(: D)=p,(L: D)=1 for each D& Dp.

§ 5. Sharper results.
For {eD we write 6,(0)= seua%[z—CI whence if coeD and {+#o0,0,({)<é

<oco. Designate by 9%, 1=p< oo, the class of all plane regions bounded by p
analytic Jordan curves. The following is an improvement on (see

also [2]).
THEOREM 3. Let De9®, p>1 and {=D. Then, for n=1,

el DY <~ (T k1t =it O,

where {; is any one of the (p—1) zeros of K(z, §), (i.e., £=b;0), 1=j=p—1).
ProOF. Clearly, {;#{. Let

g/(2)=(=z-0"F(z)L(z, (), 1=j=p—1.

Since F(£;)=0 it is clear that g;= H, and g#({)=0, £=0,1,-,n.  Also, by
BRI lgI*=o3(QK(;, €;). Let

hj=@n,— “(gﬁ;;flgz])* gj, 1=j=p—-1.

Then h;= A,(L) and therefore

L(gj’ ‘fjn)lz
lg;l®

AQ = h1*=leall*—

Here

s __ 27
l@nll = (T
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and
(8 o0 =Ty 1), (= O"L(z, £)Lz Ddz
= e (GO, O
Therefore
10 = e (1—A)),
with

4= 2r 15=CILE, 01
Tl BOQKE,C)

Clearly, 0<A,;<1 and therefore (1—A;)<(1+A4,)"'. Consequently,

AFAY <2 c=aD), =0

Upon multiplication of these inequalities (running from k=1 to k=n) we obtain
(1+Aj)nc(n+1)2<(f1 k !)*Zjn .
=1

The assertion now follows from (1+A;)"=1+nA;.

The next theorem sharpens the assertions of [Corollary 1. Let D& 0,45 and
let {D,} be a canonical exhaustion of D such that 0D, consists of a finite
number of analytic curves. In every D,, we have the Szegd kernel K,(z, ),
its adjoint L,(z, ) and the Ahlfors function F,(2)=F,(z: {). Then, the
sequences {F,(2)} and {K,(z, C-)} converge uniformly on compacta of D to
F(z) and K(z, §) respectively [4]. Of course, c¢(&)=2xK(, ). Therefore,
{La(z, ©)} converges uniformly on compacta of D—{¢} to L(z, Q).

THEOREM 4. Let D&0yp and {€D. Assume the Ahlfors function F(z)=

F(z:{) has a zero {, in D other than {. Then x,,(C:D)<——4(kﬁk N2
=1

PrOOF. We may assume that coeD and {, {,#c. Let {D,} be a cano-
nical exhaustion of D as before. Since F({,:{)=0, {+{,, it follows from
Hurwitz's theorem that, for a sufficiently large m, F,(z:{) has a zero {,#(
near {,. This zero must be a zero of K,(z, §) and thus D, 9%, p.>1, for

Pm>

such large m. Since 0p,({)=<0,,({)<0<0o, it follows from that

: r 2 4r’n lCm—Clznle<Cm; C)IZ
£a(C: D) <—4(TL k1) [1+-255 - Lo | akSe ]

for a sufficiently large m. Since L,(z, {) has no zero in D,—{{} it follows
by another application of Hurwitz’s theorem that L,,({,,, O)—L(L,, {)#0. Letting



The curvatures of the analytic capacily 761

m—co in the above inequality concludes the proof.

Ll]
(2]
(3]

(4]
(5]
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