The curvatures of the analytic capacity

By Jacob BURBEA

(Received Aug. 27, 1976)

§ 1. Introduction.

In [4] Suita has shown that the analytic capacity c(z) of a plane region $D \in 0_{AB}$ is real analytic and that the curvature of the metric c(z)|dz| is ≤ -4 . He also raised the conjecture that the curvature is equal to -4 at one point $z \in D$ if and only if $D \in \mathcal{D}_B$. D is said to belong to \mathcal{D}_B if it is conformally equivalent to the unit disc less (possibly) a closed set expressed as a countable union of compact N_B sets. The papers [5] and [2] provide a different proof for Suita's result and actually resolve the conjecture of Suita in case $D \in \mathcal{D}_p$, $1 \le p < \infty$. Here \mathcal{D}_p denotes the class of all p-connected regions with no degenerate boundary component. In the present paper we generalize the results of [2] and [5] to higher order curvatures (Theorem 1). Specifically we show that, for any point z in $D \in \mathcal{O}_{AB}$, $c^{(n+1)^2} \leq (\prod_{k=1}^n k!)^{-2} \det \|c_{j\bar{k}}\|_{j,k=0}^n$, where c = c(z)and $c_{j\bar{k}} = \frac{\partial^{j+k}c}{\partial z^j\partial\bar{z}^k}$. For n=1, we obtain the result of [4]. Moreover, if $D \in \mathcal{D}_B$ then we have equality in the above inequality for each $z \in D$ and every n=0, 1, If $D \in \mathcal{D}_p$ then equality at one point $z \in D$ holds if and only if p=1. Several other properties related to the analytic capacity are proved. Our proofs are based on the "method of minimum integral" with respect to the Szegő kernel function. As in [2] we also show that the above inequality is strict if the Ahlfors function with respect to z has a zero in D other than z.

§ 2. Analytic capacity.

Let D be a plane region $\oplus 0_{AB}$ and let $H(D:\Delta)$ designate the class of all analytic functions from D into the unit disc Δ . Let $\zeta \in D$ and set $H_{\zeta}(D:\Delta) = \{f \in H(D:\Delta): f(\zeta) = 0\}$. The analytic capacity $c(\zeta) = c_D(\zeta)$ is given by $c(\zeta) = \sup\{|f'(\zeta)|: f \in H_{\zeta}(D:\Delta)\}$. There exists (cf. [3]) a unique function F in $H_{\zeta}(D:\Delta)$, called the Ahlfors function $F(z) = F(z:\zeta)$, such that $F'(\zeta) = c(\zeta)$. Clearly, c(z)|dz| is a conformal invariant metric. Using a canonical exhaustion process (cf. [4]) it can be shown that c(z) is real analytic and hence we can introduce

$$J_n(z) = \det \|c_{j\bar{k}}\|_{j,k=0}^n$$
, $n = 0, 1, \dots$,

where $c_{j\bar{k}} = c_{j\bar{k}}(z)$.

PROPOSITION 1. $J_n(z)/[c(z)]^{(n+1)^2}$ is conformally invariant $(n=0, 1, \cdots)$.

PROOF. Let $w: D \to D^*$, w = w(z), be a conformal mapping of D onto D^* . Then $c_D(z) = c_{D^*}(w) |w'(z)|$. Using the properties of Wronskians one can show that $J_n^p(z) = J_n^{p^*}(w) |w'(z)|^{(n+1)^2}$ and the assertion follows.

§ 3. The Szegö kernel.

Let $D \in \mathcal{D}_p$, $1 \leq p < \infty$. In what follows we can assume that D is bounded by p analytic curves. As usual, $H_2 = H_2(\partial D)$ stands for the Hardy-Szegö space of D. It is a Hilbert space of analytic functions in D with the scalar product $(f,g) = \int_{\partial D} f(z)\overline{g(z)} |dz|$ and $||f||^2 = (f,f)$. The integration is carried over the boundary values of the analytic functions f and g (this refers to an arbitrary non-tangential approach). H_2 admits a reproducing kernel $K(z,\bar{\zeta})$ which is the classical Szegö kernel for D. In this case (cf. [1, pp. 117-118]) $c(\zeta) = 2\pi K(\zeta,\bar{\zeta})$ and $F(z) = F(z:\zeta) = K(z,\bar{\zeta})/L(z,\zeta)$. Here $F'(\zeta) = c(\zeta)$ and $L(z,\zeta)$ is the adjoint of $K(z,\bar{\zeta})$ satisfying the boundary relation

(3.1)
$$\overline{iK(z,\bar{\zeta})} |dz| = L(z,\zeta)dz; z \in \partial D, \zeta \in D.$$

Therefore $|F(z)| \equiv 1$ for $z \in \partial D$ and $|F(z)| \leq 1$ throughout D. Moreover, the divisor of $L(z,\zeta)$ is exactly ζ^{-1} with residue $(2\pi)^{-1}$ and the analytic function $L(z,\zeta)-(2\pi)^{-1}(z-\zeta)^{-1}$ vanishes at $z=\zeta$. The divisor of F(z) is therefore $\zeta,\overline{b_1(\zeta)},\cdots,\overline{b_{p-1}(\zeta)}$ where $\overline{b_j(\zeta)},j=1,\cdots,p-1$, are the p-1 (possibly repeated) zeros of $K(z,\overline{\zeta})$ (none of which is on ∂D). The functions $b_j(\zeta)$ are analytic in ζ , if they are simple.

For fixed $\zeta \in D$, let $A_n(\zeta) = \{f \in H_2 : f^{(k)}(\zeta) = \delta_{kn}, k = 0, 1, \cdots, n\}, n = 0, 1, \cdots$. $A_n(\zeta)$ is a closed convex subset of H_2 and it is not empty for, the function $\varphi_n(z) = 2\pi F(z)^n K(z, \bar{\zeta})/n! [c(\zeta)]^{n+1}$ is in $A_n(\zeta)$ for each $n = 0, 1 \cdots$. Let ψ_n be the unique solution of the minimal problem $\lambda_n(\zeta) = \min \{\|f\|^2 : f \in A_n(\zeta)\}$. Then (cf. Bergman [1, p. 26])

$$\lambda_n(\zeta) = I_{n-1}(\zeta)/I_n(\zeta); \quad I_n(\zeta) = \det \|K_{i\bar{k}}\|_{i,k=0}^n$$

 $(I_{-1}(\zeta)\equiv 1)$, where $K_{j\bar{k}}=(\partial^{j+k}/\partial \zeta^j\partial \bar{\zeta}^k)K$, $K=K(\zeta,\bar{\zeta})$. Also

$$\psi_n(z) = rac{(-1)^n}{I_n(\zeta)} egin{array}{cccc} K_{0\overline{0}}(z,\,\overline{\zeta}) & \cdots & K_{0\overline{n}}(z,\,\overline{\zeta}) \\ K_{0\overline{0}} & \cdots & K_{0\overline{n}} \\ \vdots & \vdots & \ddots & K_{n-1\overline{n}} \end{array} \end{array} \Bigg|, \quad n = 0,\,1,\,\cdots.$$

Here $\psi_0(z) = K(z, \bar{\zeta})/K(\zeta, \bar{\zeta})$. Clearly, $I_n(\zeta) = [\lambda_0(\zeta) \cdots \lambda_n(\zeta)]^{-1}$ and $\lambda_0(\zeta) = 1/K(\zeta, \bar{\zeta})$.

It follows that

$$\lambda_n(\zeta) = \|\psi_n\|^2 \le \|\varphi_n\|^2 = \frac{2\pi}{(n!)^2 c(\zeta)^{2n+1}}$$

and equality, for $n \ge 1$, holds if and only if $\psi_n(z) = \varphi_n(z)$. This is equivalent to $(f, \psi_n) = (f, \varphi_n)$ for all $f \in H_2$ or that

(3.2)
$$(f, \varphi_n) = \frac{(-1)^n}{I_n(\zeta)} \begin{vmatrix} f(\zeta) & \cdots & f^{(n)}(\zeta) \\ K_{0\overline{0}} & \cdots & K_{n\overline{0}} \\ \vdots \\ K_{0\overline{n-1}} & \cdots & K_{n\overline{n-1}} \end{vmatrix}, f \in H_2.$$

However, for p>1 (3.2) does not hold. Indeed, by (3.1)

$$\begin{split} n! \, c(\zeta)^{n+1}(f,\,\varphi_n) &= 2\pi \int_{\partial D} f(z) \overline{F(z)^n} \overline{K(z,\,\bar{\zeta})} \, |\, dz\,| \\ &= 2\pi \int_{\partial D} \frac{f(z)}{F(z)^n} \overline{K(z,\,\bar{\zeta})} \, |\, dz\,| \\ &= \frac{2\pi}{i} \int_{\partial D} \frac{f(z)}{F(z)^n} \, L(z,\,\zeta) dz \\ &= \frac{2\pi}{i} \int_{\partial D} f(z) \frac{L(z,\,\zeta)^{n+1}}{K(z,\,\bar{\zeta})^n} \, dz \,. \end{split}$$

The function $H(z)=L(z,\zeta)(z-\zeta)$ does not vanish in D also $K(z,\bar{\zeta})=(z-\overline{b_1(\zeta)})$ $\cdots (z-\overline{b_{p-1}(\zeta)})h(z)$, where h(z) does not vanish in D. Consider the function $f_0(z)=(z-\overline{b_1(\zeta)})^{n-1}(z-\overline{b_2(\zeta)})^n\cdots (z-\overline{b_{p-1}(\zeta)})^n(z-\zeta)^{n+1}$. Then $f_0\in H_2$ and

$$egin{aligned} rac{2\pi}{i} \int_{\partial D} f_0(z) \, rac{L(z,\zeta)^{n+1}}{K(z,ar{\zeta})^n} \, dz &= rac{2\pi}{i} \int_{\partial D} rac{H(z)^{n+1}}{h(z)^n (z - ar{b_1}(\zeta))} \, dz \ &= 4\pi^2 \, rac{H(ar{b_1}(ar{\zeta}))^{n+1}}{h(ar{b_1}(ar{\zeta}))^n}
eq 0 \; . \end{aligned}$$

On the other hand the right hand side of (3.2) is zero for f_0 . Therefore

(3.3)
$$c(\zeta)^{2n+1} \leq \frac{2\pi}{(n!)^2} \frac{1}{\lambda_n(\zeta)}$$

where, for $n \ge 1$, we have a strict inequality if p > 1. Upon multiplying the inequalities of (3.3) for $k=1, 2, \cdots, n$, using the fact that $I_n(\zeta)^{-1} = \lambda_0(\zeta) \cdots \lambda_n(\zeta)$, we obtain

$$c(\zeta)^{n(n+2)} \leq (\prod_{k=1}^{n} k!)^{-2} (2\pi)^n \lambda_0(\zeta) I_n(\zeta), \qquad n \geq 1.$$

Since $c(\zeta) = 2\pi K(\zeta, \bar{\zeta}) = 2\pi [\lambda_0(\zeta)]^{-1}$ we get at once

758 J. Burbea

(3.4)
$$c(\zeta)^{(n+1)^2} \leq (\prod_{k=1}^n k!)^{-2} J_n(\zeta), \qquad n \geq 1.$$

Here $J_n(\zeta) = (2\pi)^{n+1} I_n(\zeta) = \det \|c_{j\bar{k}}\|_{j,k=0}^n$, $c = c(\zeta)$.

\S 4. The n-th order curvature.

The *n*-th order curvature of $c(\zeta)|d\zeta|$ is defined by

$$\kappa_n(\zeta:D) = -4c(\zeta)^{-(n+1)^2} J_n(\zeta)$$
, $n \ge 1$.

By Proposition 1 this curvature is conformally invariant. Note also that, for n=1 $\kappa_1(\zeta:D)=-c^{-2}\Delta\log c$, $c=c(\zeta)$, which is the usual curvature of $c(\zeta)|d\zeta|$.

PROPOSITION 2.
$$\kappa_n(\zeta:D) = -4(\prod_{k=1}^n k!)^2$$
 for each $D \in \mathcal{D}_B$.

PROOF. Due to the conformal invariance and the definition of \mathcal{D}_B we only have to establish this identity for $D=\mathcal{A}$, the unit disc, and $\zeta=0$. In this case $\psi_k^{(\mathcal{A})}(z)=z^k/k!$, $k=0,1,\cdots$, and so $\lambda_k^{(\mathcal{A})}(0)=2\pi/(k!)^2$. Therefore $J_n^{(\mathcal{A})}(0)=(\prod_{k=1}^n k!)^2$ and the proposition follows.

Combining the things we said in § 3 we arrive at the following generalization of a result in [2] and [5].

THEOREM 1. Let $D \in \mathcal{D}_p$, $1 \leq p < \infty$. Then $\kappa_n(\zeta:D) \leq -4(\prod_{k=1}^n k!)^2$ for each $\zeta \in D$ and each $n \geq 1$. Equality holds for one point ζ and any $n \geq 1$ if and only if $D \in \mathcal{D}_1$. Moreover, the identity

$$\frac{1}{i} \int_{\partial D} f(z) \frac{L(z,\zeta)^{n+1}}{K(z,\zeta)^{n}} dz = \frac{(-1)^{n} n!}{(\prod_{k=1}^{n} k!)^{2} c^{n(n+1)}} \begin{vmatrix} f(\zeta) & \cdots & f^{(n)}(\zeta) \\ c_{0\overline{0}} & \cdots & c_{n\overline{0}} \\ \vdots \\ c_{0\overline{n-1}} & \cdots & c_{n\overline{n-1}} \end{vmatrix},$$

 $c=c(\zeta)$, $f\in H_{\mathbf{2}}$, holds for any $n\!\ge\!1$ and some $\zeta\!\in\!D$ if and only if $D\!\in\!\mathcal{D}_{\mathbf{1}}$.

COROLLARY 1. Let
$$D \in \mathcal{O}_{AB}$$
. Then $\kappa_n(\zeta:D) \leq -4(\prod_{k=1}^n k!)^2$, $n=1,2,\cdots$.

PROOF. Let $\{D_m\}$ be a canonical exhaustion of D such that ∂D_m consists of a finite number of analytic curves. Then, for each $n \ge 1$, $\kappa_n(\zeta:D) = \lim_{m \to \infty} \kappa_n(\zeta:D_m)$ and since $\kappa_n(\zeta:D_m) \le -4(\prod_{k=1}^n k!)^2$ for each m the corollary follows.

The case n=1 of Corollary 1 is the main result of Suita [4]. Following Suita we conjecture that $\kappa_n(\zeta:D)=-4(\prod\limits_{k=1}^n k!)^2$ at one point $\zeta\in D$, $D\oplus 0_{AB}$, and any $n\geq 1$ implies that $D\in \mathcal{D}_B$.

Actually, we have shown a little more. According to Proposition 1 the positive domain function

$$\mu_n = \mu_n(\zeta : D) = \frac{(n!)^{-2}}{c(\zeta)^{2n+1}} \frac{J_n(\zeta)}{J_{n-1}(\zeta)}$$

is conformally invariant. Let

$$\nu_n = \nu_n(\zeta:D) = (\prod_{k=1}^n k!)^{-2} \frac{J_n(\zeta)}{c(\zeta)^{(n+1)2}}, \quad n \ge 0$$

so $\nu_n(\zeta:D) \ge 1$ by (3.4). However, $\nu_n/\mu_n = \nu_{n-1} \ge 1$ for $n \ge 1$ and thus $\nu_n \ge \mu_n \ge 1$. Combining this with the previous results we obtain at once. (Note that $\nu_1 = \mu_1$.)

THEOREM 2. Let $D \in \mathcal{D}_p$, $1 \leq p < \infty$. Then $\nu_n(\zeta:D) \geq \mu_n(\zeta:D) \geq 1$ for each $\zeta \in D$ and $n \geq 1$. Equality, in any one of the two inequalities, holds for one point ζ and any $n \geq 2$ if and only if $D \in \mathcal{D}_1$.

This theorem implies the main part of Theorem 1.

COROLLARY 2. Let $D \in 0_{AB}$. Then $\nu_n(\zeta : D) \ge \mu_n(\zeta : D) \ge 1$.

COROLLARY 3. $\nu_n(\zeta:D) = \mu_n(\zeta:D) = 1$ for each $D \in \mathcal{D}_B$.

§ 5. Sharper results.

For $\zeta \in D$ we write $\delta_D(\zeta) = \sup_{z \in \partial D} |z - \zeta|$ whence if $\infty \in D$ and $\zeta \neq \infty$, $\delta_D(\zeta) \leq \delta < \infty$. Designate by $\mathcal{D}_p^{(a)}$, $1 \leq p < \infty$, the class of all plane regions bounded by p analytic Jordan curves. The following is an improvement on Theorem 1 (see also [2]).

THEOREM 3. Let $D \in \mathcal{D}_p^{(a)}$, p > 1 and $\zeta \in D$. Then, for $n \ge 1$,

$$\kappa_n(\zeta:D)\!<\!-4(\prod_{k=1}^n k!)^2\!\left[1\!+\!\frac{4\pi^2n}{\delta_D^{2n}(\zeta)}\cdot \frac{|\zeta_j\!-\!\zeta|^{2n}|L(\zeta_j,\zeta)|^2}{c(\zeta)c(\zeta_j)}\right],$$

where ζ_j is any one of the (p-1) zeros of $K(z, \bar{\zeta})$, (i. e., $\zeta_j = \overline{b_j(\zeta)}$, $1 \le j \le p-1$). PROOF. Clearly, $\zeta_j \ne \zeta$. Let

$$g_{i}(z) = (z - \zeta)^{n} F(z) L(z, \zeta_{i}), \quad 1 \leq j \leq p-1.$$

Since $F(\zeta_j)=0$ it is clear that $g_j \in H_2$ and $g_j^{(k)}(\zeta)=0$, $k=0,1,\cdots,n$. Also, by (3.1), $\|g_j\|^2 \le \delta_D^{2n}(\zeta)K(\zeta_j,\bar{\zeta}_j)$. Let

$$h_j = \varphi_n - \frac{(\varphi_n, g_j)}{\|g_j\|^2} g_j, \quad 1 \leq j \leq p-1.$$

Then $h_j \in A_n(\zeta)$ and therefore

$$\lambda_n(\zeta) \leq \|h_j\|^2 = \|\varphi_n\|^2 - \frac{|(g_j, \varphi_n)|^2}{\|g_j\|^2}.$$

Here

$$\|\varphi_n\|^2 = \frac{2\pi}{(n!)^2 c(\zeta)^{2n+1}}$$

760 J. Burbea

and

$$(g_j, \varphi_n) = \frac{2\pi}{n! c(\zeta)^{n+1}} \frac{1}{i} \int_{\partial D} (z - \zeta)^n L(z, \zeta_j) L(z, \zeta) dz$$
$$= \frac{2\pi}{n! c(\zeta)^{n+1}} (\zeta_j - \zeta)^n L(\zeta_j, \zeta).$$

Therefore

$$\lambda_n(\zeta) \leq \frac{2\pi}{(n!)^2 c(\zeta)^{2n+1}} (1-A_j)$$
,

with

$$A_{j} = \frac{2\pi}{c(\zeta)} \frac{|\zeta_{j} - \zeta|^{2n} |L(\zeta_{j}, \zeta)|^{2}}{\delta_{D}^{2n}(\zeta) K(\zeta_{j}, \zeta_{j})}.$$

Clearly, $0 < A_j < 1$ and therefore $(1 - A_j) < (1 + A_j)^{-1}$. Consequently,

$$(1+A_j)c^{2n+1} < \frac{2\pi}{(n!)^2} \frac{1}{\lambda_n}; \quad c = c(\zeta), \quad \lambda_n = \lambda_n(\zeta).$$

Upon multiplication of these inequalities (running from k=1 to k=n) we obtain

$$(1+A_j)^n c^{(n+1)^2} < (\prod_{k=1}^n k!)^{-2} J_n$$
.

The assertion now follows from $(1+A_j)^n \ge 1+nA_j$.

The next theorem sharpens the assertions of Corollary 1. Let $D \in 0_{AB}$ and let $\{D_m\}$ be a canonical exhaustion of D such that ∂D_m consists of a finite number of analytic curves. In every D_m we have the Szegö kernel $K_m(z,\bar{\zeta})$, its adjoint $L_m(z,\zeta)$ and the Ahlfors function $F_m(z)=F_m(z:\zeta)$. Then, the sequences $\{F_m(z)\}$ and $\{K_m(z,\bar{\zeta})\}$ converge uniformly on compacta of D to F(z) and $K(z,\bar{\zeta})$ respectively [4]. Of course, $c(\zeta)=2\pi K(\zeta,\bar{\zeta})$. Therefore, $\{L_m(z,\zeta)\}$ converges uniformly on compacta of $D-\{\zeta\}$ to $L(z,\zeta)$.

THEOREM 4. Let $D \in 0_{AB}$ and $\zeta \in D$. Assume the Ahlfors function $F(z) = F(z:\zeta)$ has a zero ζ_0 in D other than ζ . Then $\kappa_n(\zeta:D) < -4(\prod_{k=1}^n k!)^2$.

PROOF. We may assume that $\infty \in D$ and ζ , $\zeta_0 \neq \infty$. Let $\{D_m\}$ be a canonical exhaustion of D as before. Since $F(\zeta_0:\zeta)=0$, $\zeta \neq \zeta_0$, it follows from Hurwitz's theorem that, for a sufficiently large m, $F_m(z:\zeta)$ has a zero $\zeta_m \neq \zeta$ near ζ_0 . This zero must be a zero of $K_m(z,\bar{\zeta})$ and thus $D_m \in \mathcal{D}_{pm}^{(a)}$, $p_m > 1$, for such large m. Since $\delta_{D_m}(\zeta) \leq \delta_{D_1}(\zeta) \leq \delta < \infty$, it follows from Theorem 3 that

$$\kappa_n(\zeta:D_m) < -4 (\prod_{k=1}^n k \,!)^2 \Big[1 + \frac{4\pi^2 n}{\delta^{2n}} \, \cdot \, \frac{|\zeta_m - \zeta|^{2n} \, |L_m(\zeta_m,\,\zeta)|^2}{c_m(\zeta) c_m(\zeta_m)} \Big]$$

for a sufficiently large m. Since $L_m(z, \zeta)$ has no zero in $D_m - \{\zeta\}$ it follows by another application of Hurwitz's theorem that $L_m(\zeta_m, \zeta) \to L(\zeta_0, \zeta) \neq 0$. Letting

 $m\rightarrow\infty$ in the above inequality concludes the proof.

Bibliography

- [1] S. Bergman, The Kernel Function and Conformal Mapping, Math. Surveys 5, Amer. Math. Soc., Providence, 1970.
- [2] J. Burbea, The Carathéodory metric in plane domains, Kodai Math. Sem. Rep., to appear.
- [3] S. Ja. Havinson, Analytic capacity of sets, joint nontriviality of various classes of analytic functions and the Schwarz lemma in arbitrary domains, Amer. Math. Soc. Transl., (2) 43 (1964), 215-266.
- [4] N. Suita, On a metric induced by analytic capacity, Kodai Math. Sem. Rep., 25 (1973), 215-218.
- [5] N. Suita, On a metric induced by analytic capacity II, Kodai Math. Sem. Rep., 27 (1976), 159-162.

Jacob Burbea

Department of Mathematics University of Pittsburgh Pittsburgh, Pennsylvania 15260 U.S.A.