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This is a continuation of my paper [7]. In the previous paper, we proved:
the model of an abelian variety X projectively embedded by means of I'(L?)
with an ample invertible sheaf L of separable type and a=3 is projectively
normal, if the ground field is not of characteristic p=2, 3, 5. In the present
paper, we shall generalize the methods in the above paper to every charac-
teristic case, and prove the above statement affirmatively without exceptional
characteristic cases.

Section 0 will be devoted to showing that the facts, stated in §0 of [7],
are true even in the inseparable case. In Section 1, we shall discuss the Koi-
zumi’s rank theorem without any restriction on the characteristic, whose proof
almost follows the previous manner. In the last section, we shall give a proof
of our main result in every characteristic case.

The theta structure theorem in a positive characteristic case stated in
Section 0 is due to Mumford and appears in [6], but he has never published
his proof anywhere. He is kind enough to send me his note including a sketch
of the proof, and gave me the permission of reconstructing his proof in the
appendix of this paper. The author expresses his hearty thanks to Professor
D. Mumford for his generosity.

We follow the previous paper [7] in notation in this paper, for example,
X, Y denote abelian varieties of dimension g over an algebraically closed field
k of characteristic p, etc.

0. We shall freely use the fundamental facts on theta-groups given by
D. Mumford [4]. Throughout the paper, we denote by B any k-algebra.

In general, for every morphism f: S—7T of ringed spaces and for a sheaf
F of Or-modules, we can define a natural di-homomorphism

S*: HX (T, &) — H7(S, [*F);
or abbreviating the terminology,
[*: HY(F) — H?(/*9),
for every p. (Cf. E.G. A. III, Chap. 0, 12.1.3.)
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ProprosiTION 0.1. Let f: X — Y be an isogeny with K=kerf. Let L and
M be non-degenerate invertible sheaves on X and Y such that there exists an
isomorphism a: f*M = L. Then L and M have the same index, which we say
1. Let K* be the level subgroup corrvesponding to the isomorphism «; G(M)* be
the centralizer of K* in G(L); and f: G(M)* — @(M) be the canonical map.
Then jor any B-valued point z of G(M)*, we have a commutative diagram:

*

H(M)®XB — HY(L)®B

UTcz)l Iz le
HMYRB — HY(L)QB.

In fact, we can prove this in the same way as in the separable case.

Moreover, the next two propositions can also be seen by considering B-
valued points.

PrOPOSITION 0.2. Let L and M be non-degenerate invertible sheaves on X
and Y. Let iy and iy be the canonical inclusions of G, into @(L) and @(M)
respectively; ¢ denote the inverse morphism of G, ; and D be the image of the
morphism (ig, iyot): Gn — G(LYXG(M). Then we have a canonical isomorphism:

Q(PFLRpFM) > (L)X G(M)/D .

ReMARK 0.3. Frequently we identify every subgroup H (resp. H’) of
G(L) (resp. ¢(M)) with the canonical image of H X {1} (resp. {1} X H’) in
G(PFLQPFM).

PrOPOSITION 0.4. Let L and M be non-degenerate invertible sheaves on X
and Y of indices p and q respectively. Then for any B-valued point z=(z,, z,)
of @(LYx@(M), if we denote by Z its canonical image in G(p¥LRpF¥M), we have
a commutative diagram:

HY(LYQH(M)®B e ;d HP*(pFLQQpFM)Q B
U21® Uzz l unnet ecom. l Uz‘
HY(L)QH M)XB = HP*(pFLQPFM)QB.

Kinneth decom.

The next theorem, which is mentioned by D. Mumford in [6], gives a
foundation of our argument.

THETA-STRUCTURE THEOREM (D. Mumford). If L is a non-degenerate in-
vertible sheaf on X of index i, then the theta-group scheme G(L) is a non-
degenerate extension and HY(L) is its unique trreducible representation, with G,
acting naturally.

PropPOSITION 0.5. Let L be a non-degenerate invertible sheaf on X of index
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1 with |X(L) |':1. Let m,n be two positive integers such that (m,n)=1, and let
j=j(L™), Under these situations, if W is a j '(X,)-stable non-trivial subspace
in H(L™), then we have

dim W=n?.

PrOOF. Let H be a maximal isotropic subgroup of K(L™=X,, and =«:
X—X/H=Y be the canonical projection. Then there exists an invertible
sheaf M on Y such that z*M = L™, i. e, the diagram:

T
X—Y

Bime| | 9u

X—17
commutes. Since (m, n)=1, we have that
KM)=Y, and 7°%(Y.)=X,PH.
Therefore we have

GMY* =5 (x" (Y ) =7 (Xa) +j " (H) D H*,

eMy=g(M)*/H*=j(X,).
Hence by the theta-structure theorem, we obtain our assertion. Q.E.D.

1. First of all we notice that for any integers a, b, if we define a homo-
morphism £: XXX — XXX by (x, y) — (x—by, x+ay), we have an isomorphism

(0) E*(PT(L“®P(,)®P§‘(L”®P5>)éDT(L“‘“”@)PMI;)®P§"(L“”(“+”’®Pafs_ba)

for any symmetric invertible sheaf L on X and any «, ,Be)?. (Ct. [7], Prop. 1.2)

From now on let L be a principal symmetric invertible sheaf on X, and
a, b are positive integers such that (a, b)=1. From the above isomorphism ¢,
we have the injection

§: I(L*QPQI(L’QPg) —> I'(L*" QP s ) QI (L™ ™ @ Poj-pa) -

Now we fix non-zero sections u and v in I'(L*®P,) and I'(L*®P;) respec-
tively. Let {s;, ---, s} and {¢,, ---, t»} be bases of I'(L**’®P,.z) and I'(L***»
QPqs-v4), Where [=(a+b)* and m={ab(a+b)}*. Then we obtain an equation

*) u@v)=

2 syt for some ¢, Ek.

The isomorphism ¢ defines a lifting of the group K=Kker&:
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J
l1—> G, —> g(pik<La+b®Pa+ﬁ)®p§k(Lab(a+b>®Paﬁ-ba)) - Xa+b><Xab(a+b) — 0.
U U
K* o~ K

In the same way as in the separable case, we obtain

LEmMA 1.1. We have rank (c,,)=l, i. e, =(a-+b)*® for c,./s in (x). Therefore,
after choosing suitable independent sections t,, -+, 1, of I'(L™**PQPys_p), we
can express EX(uQv) in the form:

<1> @)= 3 5@t

for any given basis {s,, .-, s;} of I'(L***@P,.5). (Cf. [7], Prop. 1.3, (0).)
In the case of p}fa+b, we have more detail expression of &*(u@wv). In

fact, in the case & becomes separable and we have a GOpel decomposition of
K(La+b®Pa+‘g):

K(L***Q Pasp) = Xavo = H(a+0), D H(a+b),,

i. e, a decomposition of K(L***® P,.s) into maximal isotropic subgroups
H(a+b), and H(a+b), Let

2 GLP QR P o p) X QLY P Q Pog-pa) = GHFLY @ Posg) QDF (LY PR Pag-ba))

be the canonical map given in [Proposition 0.2l If we put

H(a+b)#={(by, y)|y € H(a+b)}

for each 1=1, 2, it is a subgroup of K={(by, y)|ye Xo:+s}. Therefore it is
automatically lifted up to a subgroup H(a+b)f* of K*. If we take a level
subgroup H(a+b)¥ in @(L***@P,.p) of H(a+b);, there exists a level subgroup
H'(a+b)¥ in @(L™**P® Pqg_p,) of H(a+b); and the subgroup H(a-+b)#* defines
an isomorphism ’: H(a+b)} — H'(a+b)¥ by the relation =(1, 2) H(a+b)4* for
every A< H(a+b)f. Let sel'(L***®P,.5) be a non-zero H(a+b)f-invariant
section. Then {U;s}icaa+s* becomes a basis of I'(L***@P,.5). Under these
notation we obtain

LEMMA 1.2. In the case of p } a-+b, there exists an H'(a+b)¥-invariant element
0 in I'(L®*QPqyg_p,) such that
(2) Fu@v)=_ 3  UsQUb.

A€ H (a+b),

PrOOF. From Lemma 1.1, we have the following expression of &*(u@v):

FuRQr)=_ 2 Us®b;,

icH{a+b)y
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where 0,’s are linearly independent sections of I'(L****®@Pgs 5.). Since
E*(u®v) is K*-invariant, for any z< H(a+b)¥, we obtain an equality

FuQQu)=_ X *Uzs®01= 2 *UZUAS®U2'91-

A€ H (a+b)] A€ H (u+b)y

If we take z from H(a+b)¥, U,0;,=80,,,, i.e., U,0,=80,. If we take z from
H(a+b)¥, U,U;s=2eX"(j’(2), j/(A)U,U,s = e~*"(j/(2), j/(A))U,s, where j’ =j(Lo+®
@P,.p). Therefore from the above equation, we obtain the equalities:

0, =e*"(j'(2), j/())U, 8,  for any A€ H(a+b)k.
In particular, we have
0,=U,10, for any z< H(a+b)¥.
Hence we obtain the requiring expression

FuRQv)=_ X UsQUrb,. Q.E.D.

AEH (wrb)]

Returning to general case, let H(a) and H(b) be any maximal isotropic
subgroup schemes of K(L*) and K(L®), and we denote by H(a)* and H(b)* the
level subgroups in @(L*“**P@P,5_,). In the following arguments, we identify
the subgroups H(a)* and H(b)* of ¢(L*"**PQP,s-s,) With subgroups of

G(PHL QP o p) QPF(L™ P Q Pag-ba))

by the way in Remark 0.3. Moreover, we put H(ab)*=H(a)*+H(b)*. If we
denote by &* the centralizer of K* in

G(PFLET QP ) QDEL " PR Pag-va)) ,

we have easily
g* D H(ab)*.

Since (ab, a+b)=1, we have furthermore
Hao*NnK*=1 and Hb*nK*=1

scheme-theoretically. Therefore the subgroups H(a)* and H(b)* are canonically
isomorphic to subgroups of

@ K* = g(pH(L*QP)QpH(L'QPp) = ¢(L* QP )X G(L*QPy)/ D,

which we denote by H(a)* and H(b)* respectively. These subgroups can be
identified with subgroups of ¢(L*®P,) and @(L’®Ps) by the way of Remark
0.3, because (a, b)=1. For any element z€ H(a)*\UH(b)*, we denote by Z its
canonical image in H(a)*\J H(b)*. Now we put



714 T. SEKIGUCHI
Wo :<t1’ Tty Zll>C‘l—'<]4ab(a-lib)®Pa,,3’—ba »

where {,, ---, {, are elements given in the equality (1). Under these notation,
we have the key proposition in the same way as in the separable case.

PROPOSITION 1.3. We put j” =j(L*“*® QP pq) -

(0) Wy is j? " (Xgup)-stable subspace of I'(L**“*PRQPgp_4,) of dim L.

() If v is H(b)*-invariant, W, is not only j" *(Xg,,)-stable, but H(b)*-
nvariant,

Gi) If pta and {Uju} ey is a basis of I'(L*QP,); and we put

LV: E UZWO in F(Lab(a+b)®Paﬁ—ba) s
ASH(a)*
then W is the direct sum of U;W,'s.
(iii) If p i ab, and {Uzu}sepcar (resp. {Uzv}cney) be a basis of I'(L*QP,)
(resp. I'(L*QP5)), then we have
F(Lab(a+b)®Pa1§—ba): UZ+aW0 .
A, S H(@)*XH (b)* ’
THEOREM 1.4. (The rank theorem; cf. [2], Th. 25 and [7], Th. 1.4.) Let
Y be any abelian variety of dimg and M be any principal invertible sheaf on
Y. Let ¢, d be positive integers such that b=|c—d|>0, p Y c and (c,d)=1. Let
K(M®)=H(c),/DH(c), be a Gipel decomposition. Then H(c); (1=1.2) are lifted up
to level subgroups:

1—G,— ¢M*)—Y.,.,—0.
U U
H(of* = H(c)

Let {6,,--,0,} be a basis of L(MHEOF*  where 1=d%., Then we have the
equality

rank (Ulei(y»(l,i)e}uc)ikx(1,---,!) =Min (c?, d¥)

for any closed point yeY.
Proor. Without loss of generality, we may assume y=0. For the assump-

tion is not essential in the following proof. In the same way as in the proof
of in [7], there exists an abelian variety X, an isogeny 7: X — Y
and a principal symmetric invertible sheaf L on X such that

a*(M?) = L[4 Py for some 7ye X,

and ker 7 is a maximal isotropic subgroup scheme H(b) of K(L°)=X, The
above isomorphism defines a lifting of the group H()):
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]'II
1 —> Gp —> QL QP;) —> Xpoq —> 0.
U U
HbY* = Hb)

Moreover if we denote by @(M)* the centralizer of H(b)*, we have the
canonical isomorphism ¢(M®)=g(M®)*/H(b)*. Since H(b)* is contained in the
center of ¢(M**)* and (cd, b)=1, the given level subgroup H(c)¥* in ¢(M**) is
naturally isomorphic to a subgroup H(¢)f of ¢(M*¥)* for each i=1,2. By the
map ©*, ['(M*°%) is isomorphic to H(b)*-invariant subspace I'(L**QP;)#®", and
the isomorphism is compatible with the actions of ¢(M*®%) and ¢(M*®)*. There
fore we have been able to reduce our assertion to the equality

rank (Uiﬂi(o))u,i>5}1cc);< w0 = Min (c#, d¥)

for a basis {4, ---, 0,} of I'(L*¢R P,)HE®r+H©ys

Here we put Min (¢, d)=a, and Max (¢, d)=a-+b. Let a, ‘BEX be a solution
of the equation af—ba=y,and &: XX X — XX X be the homomorphism defined
by (x,y)— (x—>by, x+ay). Under the notation in [Proposition 1.3, let v be a
non-zero H(b)*-invariant section of I'(L’®QPp).

First of all, we consider the case of ¢<d, i.e.,, c=a and d=a+b. Under
the notation in the same proposition, we take a non-zero H(a)¥-invariant sec-
tion » in I'(L*®P,). Then we have

EuR)eN(L* " QP ) QW C (L QP 0 p) QI'(L*" P Q Py)

where W, is j77'(X,.,)-stable and invariant under the action of H(b)* and
H(a)¥. Moreover, since dim W,=[, we obtain

I/VO — F(Lab(a+h)®PT)H(b)~+H(a)§ ,

i.e., {#,,---,0,} is a basis of W,. By Lemma 1.1, for suitable basis {s,, ---, s;}
of I'(L***QP,.5), we have

Fu@v) = 5@

On the other hand, we have a commutative diagram:

5*
F(L*QP QUL QP5) —> 'L QP oy ) QT (LD R Py)
l Uz g l U

F(L*QPIQI(L'QPs) —> I'(L** QP p) QI (LY@ Py)

for each ze H(a)f\J H(b)* C G(pF(L QP 41 0) QpF(L* D& P,)). Hence, apply-
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ing this diagram to the above equality, we obtain
i
EHUTu®v) = 35, Q U

for every A= H(a)f. Moreover the commutative diagram:

X% {0}
l \
¢
X 3
XX XXX

leads us to the equality
(¥ Uz u@v)icncar = Sh=isUr0:40))c v uxmy ,

where ( )icmay; and ( )izisc mean row vectors. Since the components of the
left side of this equality are linearly independent, we obtain the requiring
equality :

rank (U,Zﬁi(o))(i,l)eu,-n,l)XH(a)i‘ =a®.

Secondly, we consider the case of d<¢, i.e.,, a=d and c¢=a-+b. In this
case, we take the given H(c)¥ as H’(a+b)f in Let {uy, -, u;} be
a basis of I'(L*®P,). Then by the same lemma and [Proposition 1.3, there
exists a H'(a+b)¥-+ H(b)*-invariant section &} in I'(L**“*®QP,) such that

FuQu)=_ 3 UsQUarb;
1eH@+by

for each i=1, ---,[. Therefore by the same argument in the first case, we
obtain the equality

rank (U207’:<0))(2,i)eH(a+b)j‘x{1,"-.1) =1,
Moreover, since 61, ---, 0, are linearly independent, they form a basis of
F(Lab(ﬂ-”))®PT)H(b)*+H((L+D)§ .
Hence we have a linear relation:
(04, -+, 00)=(0;, -, 0P,
where P is a non-singular matrix of size /, i.e.,
(U8 per@rvyixi, o= (Ui nen@nixi,—nP .

Therefore from the above equality, we obtain our assertion. Q.E.D.
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2. In the section, @, b, d denote positive integers such that (ad, a+b)=1,
abd>a+b and p}fd. As in Section 1, we define a homomorphism &: XXX —
XXX by (x, y)— (x—by, x+ay).

ProrosiTiON 2.1. (Cf. [2], Prop. 3.2, and [7], Prop. 2.1.) Let L be a sym-
metric principal invertible sheaf on X, and a, 8 be two closed points on X Let
ﬁ(d) be a maximal isotropic direct summand of K((¢z')*L?). Then

2 I(L*QPap)RI(L'QPgir) —> I'(L***QPosp)

reA @

is surjective.

Proor. Let Y=X/A(d); #: X — ¥ be the canonical map; andlet 7: ¥ —
X be the dualized map of #. Then there exists a principal invertible sheaf
M on Y such that #*L =M% and ker n is a maximal isotropic direct summand
of K(M?%), which we put H(d). Here we have an isomorphic relation:

ﬂ*(Mabd(aM)@Pm?ﬁ—br? a) ~ ”*(n*(Lab(a+b)®Paﬂ—ba))
= E Lab(a+b)®Paﬂ ba+7T »
*’CH(d)
which leads us to a decomposition

77.'*

(1 Zj L(L*** QP parr) == I'(M®H*PQPosg_pia) -
H(d

First of all we shall consider the case of ptab. The proof, except the last

part, will follow the one of [7], Prop. 2.1. In this case, there exists a Gopel
decomposition of Y4

K(MPHD QP ozs pia) = Yapacassy D Yapa = H(abd), D H(abd),

such that H(abd),DH(d). Here we put H(a),=H(abd),N\Y, and H(b),=H(abd),
NY,. Let H(abd)¥*DH(d)** and H(abd)¥*DH(a)¥*, H(b)}* be level subgroups
of them in QIM®¥ DR P zs s7a), such that H(d)** corresponds to the isomor-
phism M#¥ QP s pze (LR Pagp,). Let @** be the centralizer of
H(d)** in g(M®¥**DQ Pyzs_s7.). Then we have the canonical isomorphism

G [H(d)** = @(L™ P Q Pog-sa) »

and H(abd)¥*, H(a)¥*, H(b)¥* are contained in ¢**. We denote by H(ab)¥ the
image of H(abd)¥* by this canonical map, and we put

H(a)} = H(ab)¥ N Xa, HOF =H(@ab¥ N X, .

Moreover, in view of the fact that (H(a)F*\U H(b)*) N\ H(d)**={1} scheme-
theoretically, H(a)f* and H(b)¥* are canonically isomorphic to subgroups of
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QL™ DR Pys_s,), which we denote by H(a)f and H(b)¥ respactively. By Pro-
position 0.1, for any A€ H(a)F*UH(b)¥*JH(abd)¥*, we obtain a commutative
diagram :

72'*
F<Lab(a+b)®Pa|§_b,y) s F(Mabd(a+b)®Par?ﬁ—bﬁa)
(2) Ux l T* l Ui

(LD Q Posope) —> I'(MP* P @ Pogg_pia)

where A’ is the canonical image of 4 in H(a)¥\J H(b)¥\J H(ab)¥. Furthermore,
for any p=(y, )= H(abd)¥*, we obtain a commutative diagram :

(L @Pyg )~ T(M™*"@Puis 11.)
S
/ T3 i
/ L
/ *
3) Ul [(T#,L Y@ Pap-pa) — L(TEM@ P Q@Paz i) | U
\
\ S (2
\
N\ | s
L(L™**PQPog_pasascarns pzv) (M PQP o p-ai o) -

Here we denote by U’ the composite of the left vertical arrows. On the other
hand, for any x= X, the diagram:

'3
XxX— XxX

T(o,m J( E l T(—bz,ax)
XxX— XxX

commutes. Hence we have an isomorphism
EXT* 2,0 (PF(L* QP ) QDF(LQ Pp))) = T, ¥ (PF(L* Q@ Po) QPF(LQ Pp))
i.e.,
EX(PH(L @ Pa-avg 1) QIF (L' QPpravg )
= PH(LA QP s 5) QDXL ™ P Q Pos_varacasnrs () -

Therefore we obtain a commutative diagram :
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£ 3

.- I(L*QP)QI(L*®Py) T(L*Y QP QI (L¥ QP40

/",
// T?ibﬂy,axu) 1®T7fy
!
1
4 Uiy T2l QP)QL (T 'R Py)

\

*

'
F(La+b®Pa+ﬁ)®I‘(T;|;yLab(a+b)®P¢ﬁ_bu) 1®U;,

\ S 5

\

A
F(L0®Pa-EWLfry))®r(Lb®Pﬂ+ab¢L(:y))

*

[(L QP )T (L
®Paﬁ<ba+ab<a+b7¢,_(xv)) .

Similarly, we denote by U/, the composite of the left vertical arrows. The
subgroups H(a)¥ and H(b)¥ of G(L*“*PRQP,s_s,) are canonically isomorphic to
subgroups H(a)¥ and H(b)¥ of ¢(L*®P,) and G(L*QPg) respectively, and we

denote by Z the canonical image in ,\2 (H(a)*\JH(b)¥) of an element

ze ig (H(a)¥\U H(bYY) .

Now we take a non-zero H(a)¥-invariant section u and H(b)¥-invariant one v
from I'(L*®P,) and I'(L>®P;) respectively. Then by Lemma 1.1 and Proposi-
tion 1.3, for a basis {s,, -+, ;} of I'(L**®®P,. ) and linearly independent H(ab)¥-
invariant sections 6,, -+, 6, of I'(L*“*®QPys_,,), we have

§*u®@v) :gi $:i®0; .
Applying the diagram (3) and (4) to this equality, we obtain
®) (AIQm*)EXUL(uQINX, ¥)) pencasary
= (8:()12=((U(T*0)) (D)), e tn, - i x b cavary,

On the other hand, by the commutative diagram (2),

(a*0y, -, 70> =T (M®PXHD QP oro pra)? @O,
Therefore by the rank theorem, we obtain the equality

rank (U#(fr*ﬁi)(O))ci,wgu,.-.,uxgcam;' =(a+0b)k.

Here we obtain our assertion, putting y=0 in (5).
Secondly, we shall consider the case of p J a+0b. Combining the homomor-
phism £* and the isomorphism (1), we have

*

2 I(L*QP QT (L' QPgsr) —>

reH(d)
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L @Pup)@( B T(L™ P @ Paposascasvn)

yeH()

ETLMQP ) QT (MM QP 2y 1)

Let {u{®, - um} and {v{”, -+, v} be bases of I'(L*QP,_r) and ['(L’QPs.1)
for each reH(d), where m=a® and n=>5% From the assumption p } a+b, we
can decompose K(L***QP,.p) into maximal isotropic subgroups:

K(L***@ P 4p) = H(a+b),D H(a+b), .

We denote by H(a+b)¥ the level subgroups of them. By for each
reH(d), there exist level subgroups

Hy(a+b)¥, Hy(a+b)F C@(L**PQPas_parcarsyr

and an isomorphism ’: H(a+b)F — Hy(a-+b)¥. Moreover there exists H(a-+b)¥-
invariant element 67} in I'(L®“*®@Pys_pascarnr) for each pair (i, j), such that

Eul @) =3 UsQU0;.

AsH (a+b);

Now, for any row vectors a,, ---, a, and matrices M,, ---, M, of same size, we
put

a,
(ahsisr=(ay, -, a,), “(ahzisr=| !
a,
and
(M)1<i<r=(M,, -+, M,) : the new matrix.

Then from the above equality, we have

® (@@ Oeien) )

rEHW@

U ! *0(7‘)

=( zs(x))zeﬂ(a+b>; ((((Uﬂf i,j(O))léiém)léjén)reﬁ(d)>z,eH(a+byi

Here since (d, a-+b)=1, Hy(a+b)¥'s are naturally lifted up to only one subgroup,
which we also denote by H(a+b)¥, in Q(M“b"(“”’)@Pa,,ﬁ »na). Therefore noting
the Hy(a-+b)¥-invariantness of {7, we have

{m*0} - m, TemdQ L(M®* DR Pazg_yra) ;.
]_
Hence by the rank theorem, the rank of the matrix in the right side of the

equality (6) is (a-+b)%, which implies our assertion in the second case.
Q.E.D.



On projective normality of abelian varieties 723

COROLLARY 2.2. Let L be a principal invertible sheaf on X, and (R, M) be
any local ring over k with the residue field k. Let a, 8 be two R-valued points
of Xfor which there exist R-valued points u,v,w of X such that ¢,.(u)=a,
o(v)=PB and ¢, p(w)=a+B. Moreover, let ﬁ(d) be a maximal isotropic direct
summand of K((¢z")*L?). Then

Zid)F (PFL*Q@P o) QI (PEL* Q@ Pair) —> I'(PFL P QP i)

7SH

is surjective, where p,: XX Spec (R) — X is the projection to the first factor.
PrROOF. Since every invertible sheaf is algebraically equivalent to a sym-

metric invertible sheaf, by slight modification, if necessary, of a and 8, we

may assume that our L is symmetric. Let ¢: Spec (R/M)— Spec (R) be the

canonical inclusion, and we denote by % the (R/M)-valued point xo¢, for any

R-valued point x. Then, from the commutative diagram:

(Lgxxo)*
T(pFL*QP,) — > I'(L*@P5)
T T 1
T (p¥L? T
Ul (1xXo)*
FLY®R ———— (LY@ (R/M)=T (L%,

and the surjectivity of the bottom arrow in this diagram,
(Lexo*: I'(pFL*QP,) —> I'(L*Q Pz)

is surjective and I'(p¥L*®P,) a free R-module of rank dim I'(L%). Similarly,
these assertions are true for I'(p¥L*®@Pz) and I'(p¥L***RP,.5). Moreover,

we have a commutative diagram :

T
X (L QPan) QL (PFL*QPgir) —> I'(PFLY @ Py p)

refd)
(LeX*@(Lex)* | | o
S IL*@Pe)®:(L’® Ps.r) —> (L@ Pa.z).
r€H(d)

The bottom arrow is surjective by [Proposition 2.1, and (1 X¢)*’s are surjective.
Therefore there exist [ elements fi, ---, f, of

2 (L QP QI (PFL*Q Ppsr)

7EH(D)

whose images in I'(L***@Pz.5) make a basis of it, where /=(a+b)%. Let e,
-+, ¢, be a basis of the free R-module I'(p¥L**’QP,.p). Then z(f;)’s can be
written in the form:
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/
f(fi)z.Eauej with a;;€R,
=1

for i=1, ---,[. By the way of choice of f;’s, det(Z;;)#0 in R/M, i.e., det(a;;)
is a unit in R. If we consider
Y I'(pFL QP r)®kF(Pf<Lb®P5+r>
rEH )
as an R-module by the multiplication of elements of R to the first factor, 7
becomes an R-module homomorphism. Hence we obtain the surjectivity of <.
Q.E.D.

THEOREM 2.3. Let L be any ample invertible sheaf on X, and a, B be two
closed points on X. Let H be a maximal isotropic subgroup of K(L), and we put
w: X —>Y=X/H: the canonical map. Let H(d) be a maximal isotropic subgroup
of K(L® such that n(H(d)) is a maximal isotropic direct summand of K(M%),

where M is a principal invertible sheaf on Y such thal e*M=L. Moreover we
put H(d) ¢ (H(LY). Then

5! T(L*@Po )@ (LY@ Paur) —> T(L@ Py )

yEH(D)
is surjective.

PrOOF. In the same way as in the separable case, we can reduce our
assertion to the case where X(L) is a power of p. So we suppose that X(L)
is a power of p. We put W=Imr, and let R be any local ring over k with
the residue field .. Here we take two points a’, 8/ from #~'(a) and #7'(B)
respectively. Then we have the following commutative diagram:

2 M(L*QPn)RI(L*QPpgr) ————> I'(L**Q@Parp)

TEH(d)
7c*®7r*T Tn-*
I'M*@P, )QI(M*QPgr) —> I'(M**QPyyp).

7' ¢ yaCHLDY)

Therefore, if we show the inclusive relation
Uy(m* (UM QP 1) QR)CWRR

for any R-valued point u of K(L***®P,.s), by the theta-structure theorem,
we have the equality W=I"(L***@P,.s). Here we consider K(L**’QP,.5) as
a subscheme of G(L***®P,.s), embedding it by a cross-section of the canonical
map j: G(L¥QP i p) — K(L*"*QPqsp).

So let u be any R-valued point of K(L***®P,.5). Then

T:”<p?<A[a+b®Pa'+ﬁ') gpikMa+b®P¢M<nu')+a’+@' ’
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where u'=(a+b)usK(L). Since (a, b)=1, either a or b, say a, is prime to
X(L). Therefore there exists an R-valued point u” of K(L) such that au”=u’,
and we have

Ty"iu'ﬁik(l\/f‘Z@Pa'-rf) EPTMG®Pa¢M(ﬂu')+a’—T’

= PEMOQPypycaniyio -1
Since uAs K(L)CK(L®),
7C*

I(pEM* Q@Ppyausea-1) —> I'(L*Q@Par) QR .
Moreover we have a commutative diagram :
TE%@)(F(L“@Pa_r)@R)@k(F(L”®P,e+r)®R) —> I'(L*YQPar ) QR
T T Qa* T o+

L(PEM QP yeursw -1)QL (BFEM QP g v )——>T (DM QP yrusrar4)-

r'EdMa(HLE))

By the bottom arrow is surjective. Therefore we have the re-
quired relation

UM QP o1 5)) QR) =m*I'(pFEM " QP yzursa+8) CWQR.

Q.E.D.
Inductively applying we have

THEOREM 24. Let L be any ample invertible sheaf on X; and a, B be two
closed points on X. Then

I(L*QPHIRI(L'QPyg) —> I'(L*** @ Posp)

is surjective for all integers a, b such that a=2, b=3.

ApPENDIX (this is reconstructed from Mumford’s note). Here we shall
consider only group schemes over k, and we denote by B any k-algebra. We
assume the fundamental results on theta groups given in [5], §23.

DEFINITION A.l. A theta group 1— G, — ¢ — K —0 is a finite Heisenberg
group if it is non-degenerate and K is a finite group scheme.

Hereafter we fix a finite Heisenberg group 1— G, La 2, K— 0. We note
that the order of K becomes d® for some integer d.

DEFINITION A.2. Let V be a finite dimensional k-vector space, and [ be
an integer. A representation of ¢ on V of weight | is a homomorphism o
¢ — GL(V) such that ¢(A)=2"1, for A€G,.

Let : K— ¢ be a cross-section of j, and we put K=SpecR and ¢=
Spec A. Then A is a k-algebra and R is a finite dimensional k-algebra. Let
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P GXG— @G (resp. m: KXK — K) be the multiplication morphism of & (resp.
of K). Here we notice that A and Hom, (¢, A') are canonically identified. So,
frequently we consider an element of A a function defined over ¢. The re-
stricted multiplication morphism f|gy<¢: Gn X2 — G defines a homomorphism

s: A— k[t TR ,A.

For any element a€ A, let s(a):i_ug t'Q@mn,(a). Then m;: A— A is a “k-linear

map for each 7. Let Im(7;)=A;. Then we have
LEMMA A.3.

@) A:ji/li.

(ii) For feA, feA; & f(Ax)=2"f(x) for any B-valued points 2€G,(B) and
xeG(B).

(iii) According to the co-multiplication p*: A— AQA, p*(A) T AR A, for
each 1.

(iv) A,=R and there exists an element t< A such that A;=Ayt* for each 1.

PrROOF. Let e: Speck— G, be the identity morphism. Then we have
commutative diagrams :

A kLt tT1IRA

\ R,

/ kLt IR A W) ®La
\ kLt IRk, 1IRA.
k[[ . 1]@1‘1/

Therefore we have equalities

and

:izimﬂ'i(a)
and
2R Qm mi(a) = QIR (a) for all a A,
L) 7
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m;(a) if i=j
0 if i#7.
These imply the assertion (i).

For (ii), let f€A; and 2 be any B-valued point of G,. Then the right
translation R, by 2 is given by R;=(p;, po(AxX1g)): Spec BX ¢ — Spec BX g,
where p,: Spec BX g — Spec B is the projection to the first factor. Therefore
we have a commutative diagram :

%

1:Qf
BRA «—" _ B[f]
(Rl)*T '[ mult. by %)Y,
BQA e———— B[]

B

which implies the required equality f(Ax)=2*f(x) for all B-valued points' xe
G(B) and 2=G,(B). The converse is a direct consequence of (i) and of this
result.

(iii) is easily induced from (ii).

Moreover, if we put g=po(iX7): G, X K—g, then ¢ defines an isomorphism
of G,-spaces. Hence, in view of (ii), ¢*: A— R®kFk[t,t"'] is an isomorphism
of graded rings. So we obtain (iv). Q.E.D.

We define an action of ¢X &g on A; by f(x)— f(uxv™") for any function f(x)
in 4, and any points u, ve¢(B). Then we have the key theorem

THEOREM Ad. A, is irreducible ¢X @-module.

For proving this theorem, we need the following lemma.

LEMMA Ab. Lelt ¢=Spec A be an affine group scheme over k, with the
multiplication morphism p: @XQ— @ and the identity morphism e: Spec k— @.
Let W be a non-trivial k-subspace in A closed under right translations, i.e.,
rIWYCTWRA. Then we have

(i) W is closed under any left-invariant k-linear map D: A — A.

(ii) For any k-rational point x € g, there exists a function f W such that
Sf(x)+0. .

PrOOF. The left-invariantness of D means the commuteness of the
diagram:

D
A > A
/x*l lﬂ*
AXA > AX A,



726 T. SEKIGUCHI

Therefore, for any f€ W, p*(D(f)=(1QD)*(/)e WRA4, i.e.,

D(f)=1,4Qe") (D)1 QeNWRRA) =W,

which implies (i). Moreover, since W is right-stable and W0, we may assume
x=e, and there exists a function f€W such that f#0in O,¢. Therefore there
exists a k-linear map D,: O, — k such that Dy(f)#0. Here we put also D,:
A—0,c—k, and put D=(1,RD,)op*. Obviously this D: A— A is a left-
invariant k-linear map. Hence, in view of (i), D(f) satisfies our required pro-
perties. Q.E.D.

PROOF OF THEOREM A.4. We define an action U of ¢ on A; by (Uyf)(x)
=f(axa™) for any function f(x) = A, and any B-valued point a = 2(B). Then,
from the definition of the skew-symmetric bilinear form e: KX K — G, and
Lemma A3, (ii), (U./)(x)=e(j(a), j())f(x), i e, UAQS)=7(j(@)*®)(ARS)
where y: K — K is the isomorphism defined by e. Especially, if we take
['(K,03)=A¥ as B and z(;7!) as a, y(y )*()e A¥® A, corresponds to the
identity map 1,,: A, — A,. Therefore, if we write r(r'l)*(t):;a;“(@ai with a
basis {a}} of A¥, {a;} is also a basis of A,.

Now let W be a non-trivial &¢XxXg-submodule of A,. Then W is stable
under the action U of &. Especially, for any feW,

Ur-n(1Qf) = (Zaf @a)(1Qf) € AFQW,

i.e.,, we obtain an inclusive relation A,WC W.

But, since A, and A, are isomorphic as A,;-imodule, W is isomorphic to an
ideal 4 in A,. Therefore, if WE A,, 4 is a proper ideal of A,. Hence there
exists a maximal ideal # of A, containing J. Let x be the point of K=
Spec A, corresponding to #, and put y=t(x). Then, in view of Lemma A.5,
(ii), there exists a function f€ W such that f(y)#0. This contradicts the fact
IJCH. l Q.E.D.

THEOREM A.6. Any finite Heisenberg group @ has one and only one irredu-
cible representation of weight 1, ana all representations of weight 1 are completely
reducible, Moreover, if ord (K)=d? then the dimension of the irreducible G-
module is d.

PROOF. Let V, be a finite dimensional k-vector space, and g,: ¢— GL(V,)
be a representation of weight 1. Since GL(V,)CHom (V,, V,)=Spec S(VFRV,)
where S denotes the symmetric algebra, the o, defines a ¢Xx¢-module homo-
morphism of : VFQV,— A,. Therefore, by virtue of Theorem A4, if V, is
an irreducible ¢-module, o becomes an isomorphism. Hence, as ¢-module,

A= Vo - DV,.
N ————~
dim V,
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We have further (dim V,)*=dim A,=dim A,=d? and dim V,=d.

Moreover, if V is any ¢-module of weight 1, and ¢: V— ARV is the
dual action, we have indeed o: V ==, ao(V)CA,QV. If we consider A,QV as
a g-module by ¢ acting to the first factor A4,, ¢ becomes a ¢-module injection,
ie,0: V— AP - PA, as g-module. Therefore, in view of the above

A
dim V «
results, we can deduce the complete reducibility of V. Q.E.D.

For a non-degenerate invertible sheaf L of index ¢ on an abelian variety
X, g(L) acts on H*(L) and the action is of weight 1. Moreover, dim H WL)=
[X(L)|=+/ord (K(L)) . Therefore Theorem A.6is applicable to the case. That
is, we have the theta structure theorem stated in Section 0.
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