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\S 1. Introduction.

In the $r_{\vee\vee}^{a\wedge}ent$ development of the scattering theory, the Schr\"odinger operator
$-\Delta+V$ in $\mathfrak{H}=L^{2}(R^{N})$ with a real long-range potential $V$ has been one of the
main concerns. Roughly speaking, $V$ is said to be long-range when $V(x)=$

$O(|x|^{-\epsilon_{0}}),$ $|x|\rightarrow\infty,$ $\epsilon_{0}>0$ , while short-range when $\epsilon_{0}$ can be taken as $\epsilon_{0}>1$ . The
study of the long-range scattering was initiated by the work of Dollard [7]

for the pure Coulomb potential $V(x)=const./|x|$ . Among other things he
showed in [7] that the ordinary wave operator $W^{\pm}=s-\lim_{t\rightarrow\pm\infty}e^{itH_{2}}e^{-itH_{1}}$ , where
$H_{1}=-\Delta,$ $H_{2}=-\Delta+V$, does not exist, but alternatively the modified wave
operator $W_{D}^{\pm}=s-\lim_{t\rightarrow\pm\infty}e^{itH_{2}}e^{-itH_{1}-iX^{\pm}(t)}$ , where $X^{\pm}(\pm t)=\mathcal{F}^{-1}[\int_{\pm 1}^{\pm t}V(s\xi)ds\cdot]\mathcal{F}$ for $t>1$ ,

exists and is complete. Here $\mathcal{F}$ denotes the Fourier transformation in $L^{2}(R^{N})$

and by “complete” it is meant that the range of $W_{D}^{\pm}$ is equal to the absolutely
continuous subspace $\mathfrak{H}_{2,\alpha c}$ of $H_{2}$ . Dollard’s proof of the completeness is based
on the eigenfunction expansions of $H_{2}$ .

After Dollard’s work many authors have investigated general long-range
potentials and proved the existence of modified wave operators (cf. $e$ . $g$ . Buslaev
and Matveev [5], Alsholm and Kato [3], Alsholm [2], H\"ormander [8]). It
may be said that the study of the existence of modified wave operators has
now reached a rather satisfactory stage.

As to the completeness of modified wave operators, however, it seems that
no results have yet been published except for spherically symmetric long-range
potentials (cf. Amrein, Martin and Misra [4])1). In the case of short-range

1) Professor T. Ikebe also obtained a proof of the completeness of time dependent
modified wave operators for the case $\epsilon_{0}>1/2$ , but his method is different from ours
mentioned below (a lecture in 1975). Professor S. Agmon also informed the author that
he had obtained an eigenfunction expansion theorem and proved the completeness of
modified wave operators. His method covers general elliptic operators with general
long-range perturbations(private communication). The writer expresses his thanks
to Professor Agmon for kindly communicating these results.
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scattering, the completeness of wave operators was proved by using the “so-
called” stationary method (cf. $e$ . $g$ . Kato and Kuroda [14], Kuroda [17], [18],

Saito [23], [24], Agmon [1]). In these works the so-called limiting absorption
principle played an important role among others. Although this Principle
itself was extended to the long-range case by Ikebe and Saito [10], it was not
enough to assure the completeness of modified wave operators, as stationary
methods used in the short-range case could not be aPplied to the long-range
case. Recently Ikebe [9] and Sait6 $[25]\sim[28]$ developed an eigenfunction
expansion theory for $H_{2}=-\Delta+V$, where $V$ is a long-range potential. Using
their eigenfunctions (or more exactly eigenoperators), one can construct a
unitary operator $W_{I-S}^{\pm}$ from $\mathfrak{H}$ onto $\mathfrak{H}_{2,ac}$ which intertwines $H_{1}$ and $H_{2,ac}$ , where
$H_{2,ac}$ is the restriction of $H_{2}$ on $\mathfrak{H}_{2,ac}$ . However, the relation between $W_{I-S}^{\pm}$

and $W_{D}^{\pm}$ has not been clarified and the completeness of time dependent modified
wave operators has remained unproved.

The main purpose of the present and the succeeding Papers is to prove
the completeness of time dependent modified wave operators using a stationary
method which gives a connection between the time dependent modified wave
operators and the eigenfunction expansions of Ikebe and Saito mentioned above.
Our method has its origin in Kato-Kuroda theory [13], [14], but differs from
it in the proof of the completeness of stationary wave operators, inasmuch as
our proof is based on the modified Lippmann-Schwinger equation (see Theorem
5.1 and Remark 5.3 below) while the proof of Kato and Kuroda is based on
the construction of the inverse of the linkage operator $\hat{G}$ (see Theorem 2.4
of [13]). $\dot{H}$ owever the proof of the fact that the time dependent and the
stationary wave operators coincide with each other somewhat resembles their
proof. To clarify this logical situation, we summari $ze$ our abstract framework
in Part I, which will be applied to long-range scattering in Part II for a long-
range potential $V(x)=O(|x|^{-\epsilon_{0}}),$ $|x|\rightarrow\infty,$ $\epsilon_{0}>0$ . In [16], we have sketched a
proof of the completeness for the case $\epsilon_{0}>1/2$ . But the method of proof of
the present Paper is somewhat different from [16], and the key result, Theorem
3 of [16], which was left unproved, will be proved in Part II as one of the
consequences of more general result.

In addition to the results stated above, we prove the invariance Principle
for modified wave operators2). Moreover we shall prove that our stationary
wave operator coincides with those of Pinchuk [22] and Isozaki [11] which
are constructed on the basis of the eigenfunction expansions by Ikebe or Saito

2) In [6] Chandler and Gibson asserted that the invariance principle for long-
range scattering holds. However, it seems to the author that the proof is incomplete
because the uniform boundedness of $Q_{\varphi}(t)$ which was tacitly used at the end of the
proof of Theorem 1 of \S 2, [6], does not seem to follow from the assumptions adopted in
[6].
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mentioned before.
The plan of Part I is as follows: In \S 2, we summarize the main results

of this Part in a form which will be used in Part II to prove the completeness.
For the purpose of illustration we shall also give some applications to long-
range situation with $\epsilon_{0}>1/2$ , using the results given by the author in [15].

In \S 3, we review some fundamental concepts(especially, that of spectral forms)

of Kato-Kuroda theory, and in \S 4, we construct a stationary wave operator
in essentially the same way as Kato and Kuroda. \S 5 is devoted to studying
the sufficient conditions for the completeness of stationary wave operators, which
are different from those of Kato-Kuroda theory (see Theorem 5.1). Further-
more we shall prove the uniqueness theorem concerning stationary wave opera-
tors which will be used in Part II to verify that our stationary wave operator

coincides with those of Pinchuk and Isozaki stated above. The results in \S \S 3\sim 5

are described in a rather general abstract framework as in [13]. In \S 6, we
restrict ourselves to considering only self-adjoint operators and investigate the
relation between the time dependent and the stationary wave operator, and
at the same time prove our main results stated in \S 2.

Here the author wishes to express his sincere appreciation to Professor
S. T. Kuroda for encouraging and stimulating discussions in the course of the
Preparation of this Paper, and for a comment on the proof of Lemma 6.6
which simplified it.

\S 2. Main results and some applications.

2.1. Main theorems. In the present subsection the main results (Theorems

2.1\sim 2.3) of Part I will be presented in a form which will be used in Part II
to prove the completeness of time dependent wave operators for long-range
scattering. The theorems are fairly complicated and are combinations of a
few theorems, each of which can be stated in a more general context and
may have some interests of its own. In subsequent sections, while aiming at
proving Theorems 2.1\sim 2.3, we shall state and prove those separate theorems
in a general context. This is also a part of our purpose in the present part.

Let $H_{1}$ and $H_{2}$ be self-adjoint operators in a Hilbert space $\mathfrak{H}$ such that
$\mathcal{D}(H_{1})=\mathcal{D}(H_{2})^{3)}$ . Let $E_{j}$ be the spectral measure associated with $H_{j}$ and $E_{j.ac}$

be its absolutely continuous part. Let $\Gamma$ be a Borel set in $R^{1}$ , which we
shall fix throughout the Paper, and put $\mathfrak{H}_{j,ac}(\Gamma)\equiv E_{j,ac}(\Gamma)\mathfrak{H}$ . Let $\{X(t)\}_{t\in R^{1}}$ be
a family of self-adjoint operators in $\mathfrak{H}$ . We shall consider the existence and
the completeness of the modified wave operator

(2.1) $W_{D}^{\pm}(\Gamma)=s-\lim_{t\rightarrow\pm\infty}e^{itH_{2}}e^{-itH_{1}-iX(t)}E_{1,ac}(\Gamma)$ .
3) $\mathcal{D}(T)$ denotes the domain of an operator $T$ .
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The invariance principle will also be discussed. We shall first introduce various
conditions concerning $H_{j},$ $X(t)$ , etc.

We suPpose that there are given dense4) linear subspaces $\mathfrak{X}_{j},$ $j=1,2$ , of $\mathfrak{H}$

having the following Properties:
i) $\mathfrak{X}_{1}$ is a separable normed space with its own norm;

ii) $\mathfrak{X}_{2}$ is a separable Hilbert space with its own inner product;
iii) $\mathfrak{X}_{j}$ is continuously imbedded into $\mathfrak{H},$ $j=1,2$ ;
iv) $\mathfrak{X}_{1}\subset \mathcal{D}(H_{1})=\mathcal{D}(H_{2}),$ $\mathfrak{X}_{1}\subset \mathfrak{X}_{2}$ .

We denote by $I_{j}$ the imbedding operator $I_{j}$ : $\mathfrak{X}_{j}\rightarrow \mathfrak{H}$ . Then we can regard $\mathfrak{H}$

as being continuously imbedded into $\mathfrak{X}_{j}^{*}$ by $I_{j}^{*}$ .
Let $R_{j}(z)=(H_{j}-z)^{-1}$ for $z\in C^{\pm}=\{z\in C|{\rm Im} z\gtrless O\}^{5)}$ . We first suppose that

the following condition (L.A.P.) is satisfied.
(L. A. P.) Put $K_{\Gamma}^{\pm}=\{z\in C^{\pm}|{\rm Re} z\in\Gamma\}^{6)}$ . Let j $=1$ or 2. Then the maPping

(2.2) $K_{\Gamma}^{\pm}\times \mathfrak{X}_{j}\ni(z, x)-I_{j}^{*}R_{j}(z)I_{j}x\in \mathfrak{X}_{j}^{*}$

can be extended uniquely to a continuous mapping

(2.3) $\overline{K}_{\Gamma}^{\pm}\times \mathfrak{X}_{j}\rightarrow \mathfrak{X}_{j}^{*}$ ,

and satisfies

(2.4)
$z\in K^{\pm}\sup_{\Gamma}\Vert I_{j}^{*}R_{j}(z)I_{j}\Vert_{B(X\yen^{*})}<\infty jj$

Here $B(\mathfrak{X}, \mathfrak{Y})$ denotes the Banach space of all bounded linear operators from a
normed space $\mathfrak{X}$ to a Banach space $\mathfrak{Y}$ . (Condition (L.A.P.) is the so-called
limiting absorption Principle.)

Now put for $z\in C^{\pm},$ $x,$
$y\in \mathfrak{H}$, and $j=1,2$ ,

(2.5) $e_{j}(z;x, y)=\frac{sgn({\rm Im} z)}{2\pi i}(\{R_{j}(z)-R_{j}(\mathcal{Z})\}x, y)_{\mathfrak{H}^{7)}}$

$=\frac{|{\rm Im} z|}{\pi}(R_{j}(z)x, R_{j}(z)y)_{\mathfrak{H}}$ .

Then if $x,$ $y\in \mathfrak{X}_{j}$ and $\lambda\in\Gamma,$ $e_{j}(\lambda\pm i\epsilon;x, y)$ has a boundary value as $\epsilon\rightarrow+0$ . We
denote it also by $e_{j}(\lambda;x, y)^{8)}$ for $\lambda\in\Gamma,$ $x,$ $y\in \mathfrak{X}_{j}$ , and $j=1,2$ . Then $e_{j}$ satisfies

4) It is not indispensible to assume $\mathfrak{X}_{j}$ is dense in $\mathfrak{H}$ . It suffices to assume that

the set $\{\sum_{k=1}^{n}E_{j,ac}(\Delta_{k})x_{k}|\Delta_{k}\subset\Gamma, x_{k}\in \mathfrak{X}_{j}\},$ $j=1,2$ , is dense in $E_{j,ac}(\Gamma)\mathfrak{H}$ . See \S 6.

5) $C=complex$ numbers and ${\rm Im}=imaginary$ part.
6) ${\rm Re}=real$ part.
7) sgn $(t)=1$ for $t>0$ , and $=-1$ for $t<0$ .
8) Notice that the boundary values of $e_{j}(\lambda\pm i_{\epsilon} ; x, y)$ from the uPper and the lower

complex plain coincide with each other.
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the following two properties:
1 For each $x,$ $y\in \mathfrak{X}_{j}$ , one has $e_{j}(. ; x, y)\in L^{1}(\Gamma)$ and

(2.6) $\int_{\Delta}e_{j}(\lambda;x, y)d\lambda=(E_{j,ac}(\Delta)x, y)_{\mathfrak{H}}$

for any Borel subset $\Delta$ of $\Gamma$ .
$2^{o}$ For each $\lambda\in\Gamma,$ $e_{j}(\lambda;, )$ is a nonnegative Hermitian form on $\mathfrak{X}_{j}\times \mathfrak{X}_{j}$ .
As to the family $\{X(t)\}_{t\in R^{1}}$ of self-adjoint operators in $\mathfrak{H}$, we suppose that

the following conditions (X), $(BC)$ , and $(XA)$ are satisfied:
(X) a) $H_{1}e^{-iX(t)}\supset e^{-iX(t)}H_{1}$ for $t\in R^{1}$ ;

b) $e^{-iX(t)}u$ is continuous as an $\mathfrak{H}$-valued function of $t\in R^{1}$ for every
$\mathcal{U}\in \mathfrak{H}$.

$(BC)$ For any $x\in \mathfrak{X}_{1}$ and $u\in \mathfrak{H},$ $(e^{-isH_{1}-iX(s)}x, u)_{\mathfrak{H}}$ is of bounded variation in
$s$ on any finite interval of $R^{1}$ , and is continuous in $s\in R^{1}$ .

$(XA)$ For any $u\in \mathfrak{H}$ and $s\in R^{1},\lim_{\rightarrow\pm\infty}e^{t(X(t+s)-X(t))}u=ut$

Now for every $u,$
$v\in \mathfrak{H}$ and $z\in C^{\pm}$ , put

(2.7) $S^{\pm}(z)u=\pm i\int_{-\infty}^{\infty}\chi_{\pm}(t)e^{-iX(t)}e^{it(z-H_{1})}udt$ ,

(2.8) $f^{\pm}(z;u, v)=\frac{|{\rm Im} z|}{\pi}(S^{\pm}(z)u, S^{\pm}(z)v)_{\mathfrak{H}}$ ,

where $\chi_{+}$ and $\chi_{-}$ denote the characteristic functions of $(0, \infty)$ and $(-\infty, 0)$ ,
respectively.

It is clear that $S^{\pm}(z)\in B(\mathfrak{H})\equiv B(\mathfrak{H}, \mathfrak{H})$ so that $f^{\pm}$ is well-defined. Moreover,
using the same argument as in the proof of (1.16) in the proof of Proposition
1.4 of [15], we can show that $S^{\pm}(z)u\in \mathcal{D}(H_{1})=\mathcal{D}(H_{2})$ if $u\in \mathcal{D}(H_{1})$ and $z\in C^{\pm}$ .

We now dePne for $u\in \mathcal{D}(H_{1})$ and $z\in C^{\pm}$ ,

(2.9) $G^{\pm}(z)u=(H_{2}-z)S^{\pm}(z)u$ ,

(2.10) $Q^{\pm}(z)u=G^{\pm}(z)u-u$ ,

and suPpose that the following conditions $(Q^{\pm})$ and $(f^{\pm})$ are satisfied.
$(Q^{\pm})$ a) For every $z\in C^{\pm}$ , the operator $Q^{\pm}(z)$ maps $\mathfrak{X}_{1}$ into $\mathfrak{X}_{2}$ ;
b) For every $\epsilon>0$ and $x\in \mathfrak{X}_{1},$ $Q^{\pm}(\lambda\pm i\epsilon)x$ belongs to $L^{2}(R^{1} ; \mathfrak{X}_{2})$ as an $\mathfrak{X}_{2^{-}}$

valued function of $\lambda$ in $R^{1}$ , and the limit $1.i.m$ .$Q^{\pm}(\lambda\pm i\epsilon)x\epsilon\rightarrow+0$ exists in $L^{2}(R^{1} ; \mathfrak{X}_{2})$ .
$(f^{\pm})$ For every $x,$ $y\in \mathfrak{X}_{1}$ , there exists the limit $1.i.m.f^{\pm}(\lambda\pm i\epsilon;x, y)\epsilon\rightarrow+0$ in $L^{2}(\Gamma)$

as a C-valued function of $\lambda$ in $\Gamma$ and we have

(2.11) $1.i.m.f^{\pm}(\lambda\pm i\epsilon;x, y)=e_{1}(\lambda;\epsilon\rightarrow+0x, y)$ , $a$ . $e$ . $\lambda\in\Gamma$ .

Now we can state a theorem concerning the existence of the limit (2.1).
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THEOREM 2.1. SuppOse that conditions $i$) $-iv$), (L.A.P.), (X), $(BC),$ $(XA),$ $(Q^{A})$ ,
and $(f^{\pm})$ are satisfied. Then the modified wave operator

(2.12) $W_{D}^{\pm}(\Gamma)=s-\lim_{t\rightarrow\pm\infty}e^{itH_{2}}e^{-itH_{1}-iX(t)}E_{1,ac}(\Gamma)$

exists. This operator $W_{D}^{\pm}(\Gamma)$ is a partial isometry in $\mathfrak{H}$ with initial set $\mathfrak{H}_{1,ac}(\Gamma)$

and final set contained in $\mathfrak{H}_{2,ac}(\Gamma)$ , and satisfies the intertwining property: for
any Borel set $\Delta$ in $R^{1}$ ,

(2.13) $W_{D}^{\pm}(\Gamma)E_{1}(\Delta)=E_{2}(\Delta)W_{D}^{\pm}(\Gamma)$ .

Next we state a theorem concerning the completeness of $W_{D}^{\pm}(\Gamma)$ .
THEOREM 2.2. SuppOse that conditions $i$) $-iv$), (L.A.P.), (X), $(BC),$ $(XA)$ , and

$(Q^{\pm})$ are satisfied. SuppOse further that there exist a Hilbert space $\mathfrak{h}$ and a
linear operator $\mathcal{F}_{j}^{\pm}(\lambda):\mathfrak{X}_{j}\rightarrow \mathfrak{h},$ $\lambda\in\Gamma,$ $j=1,2$ , satisfying the following conditions:

(a) For every $\lambda\in\Gamma$ and $x,$ $y\in \mathfrak{X}_{j}$ ,

(2.14) $(\mathcal{F}_{j}^{\pm}(\lambda)x, \mathcal{F}_{f}^{\pm}(\lambda)y)_{\mathfrak{h}}=e_{j}(\lambda;x, y)$ .
(b) The range of $\mathcal{F}_{1}^{\pm}(\lambda)$ is dense in $\mathfrak{h}$ for every $\lambda\in\Gamma$ .
(c) For every $x\in \mathfrak{X}_{1}$ ,

(2.15) $\mathcal{F}_{2}^{\pm}(\lambda)(x+1.i.m. Q^{\pm}(\lambda\pm i\epsilon)x)=\mathcal{F}_{1}^{\pm}(\lambda)x\epsilon\rightarrow+0$
$a$ . $e$ . $\lambda\in\Gamma$ .

Then the limit $W_{D}^{\pm}(\Gamma)$ in (2.12) exisls and satisfies the same properties as in
Theorem 2.1. Moreover $W_{D}^{\pm}(\Gamma)$ is complete, $i$ . $e$ . $\mathcal{R}(W_{D}^{\pm}(\Gamma))=\mathfrak{H}_{2,ac}(\Gamma)^{9)}$ .

We shall next discuss the invariance principle. Assume that $\Gamma$ is bounded.
Let $\varphi$ be a real-valued Borel measurable function on $R^{1}$ which belongs to $C^{2}(I)$

on some bounded open interval $I$ containing $F$ . Take $\eta\in C_{0}^{\infty}(R^{1})$ so that $\eta(\lambda)$

$=1$ on $\Gamma$ and $supp\eta\subset I$. Put

(2.16) $ a_{\varphi}(t, r)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\eta(\lambda)e^{-it\varphi(\lambda)+ir\lambda}d\lambda$ .

Then $a.(t, \cdot)\in L^{1}(R^{1})$ for any $t\in R^{1}$ . Thus if we put

(2.17) $Q_{\varphi}(t)u=\int_{-\infty}^{\infty}a_{\varphi}(t, r)e^{-irH_{1}-iX(r)}udr$

for $u\in \mathfrak{H}$ and $t\in R^{1}$ , then $Q.(t)\in B(\mathfrak{H})$ for every $t\in R^{1}$ .
THEOREM 2.3. Suppose that all the assumptions of Theorem 2.1 are satisfied

and assume that $\Gamma$ is bounded. Let $I,$
$\varphi,$ $\eta,$ $a_{\varphi},$

$Q_{\varphi}(t)$ be as above and let $\varphi^{\prime}>0$

on I. Suppose furthermore that the following conditions $(Q_{\varphi}^{as})$ and $(\mathfrak{X}_{1})$ are
satisfied:

$(Q_{\varphi}^{as})$ For any $t\in R^{1}$ , there exists an isometric operator $Q_{\varphi}^{u}(t):\mathfrak{H}_{1,ac}(\Gamma)\rightarrow \mathfrak{H}$

9) $\mathcal{R}(T)$ denotes the range of an operator $T$ .
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such that

(2.18) $\lim_{t\rightarrow\pm\infty}(Q_{\varphi}^{as}(t)u-Q_{\varphi}(t)u)=0$ for $u\in \mathfrak{H}_{1,ac}(\Gamma)$ .

$(\mathfrak{X}_{1})$ $\mathfrak{X}_{1}\cap \mathfrak{H}_{1,ac}(\Gamma)$ is dense in $\mathfrak{H}_{1,ac}(\Gamma)$ .
Then the limits

(2.19) $\left\{\begin{array}{l}W_{\varphi}^{\pm,os}(\Gamma)=s-\lim_{t\rightarrow\pm\infty}e^{it\varphi}(H_{2})Q ‘‘ (t)E_{1,ac}(\Gamma),\\W_{\varphi}^{\pm}(\Gamma)=s-\lim_{t\rightarrow\pm\infty}e^{it\varphi(H_{2})}Q_{\varphi}(t)E_{1,ac}(\Gamma)\end{array}\right.$

exist and we have

(2.20) $W_{D}^{\pm}(\Gamma)=W_{\varphi}^{\pm,as}(\Gamma)=W_{\varphi}^{\pm}(\Gamma)$ .
REMARK 2.4. Notice that in Theorem 2.2 we do not assume condition $(f^{\pm})$ .

This is possible because we assume the existence of $\mathfrak{h}$ and $\mathcal{F}_{j}^{\pm}(\lambda)$ satisfying
(a), (b), and (c). (See \S 6.4.) Similarly, we need not assume $(f^{\pm})$ in Theorem
2.3 if we assume the existence of such $\mathfrak{h}$ and $\mathcal{F}_{j}^{\pm}(\lambda)$ . (See \S 6.5.)

REMARK 2.5. In the theorems given above our main results are described
in the ”so-called” time dependent way. Our methods in the present paper,
however, are basically of “stationary” nature. Namely, under the assumptions
of these theorems we shall first construct a stationary wave operator $W_{\Gamma}^{\pm}$ and
then prove that $W_{D}^{\pm}(\Gamma),$ $W_{\varphi}^{\pm,as}(\Gamma)$ , and $W_{\varphi}^{\pm}(\Gamma)$ exist and coincide with $W_{\Gamma}^{\pm}$ .
Especially, the completeness of $W_{D}^{\pm}(\Gamma)$ follows from that of $W_{\Gamma}^{\pm},$ the proof of
which is essentially based on the $t$‘so-called” stationary (time independent)

method. Unfortunately, it is not so simple to write down briefly the stationary
definition of $W_{\Gamma}^{\pm}$ . Thus, in the present subsection we preferred to state our
main results in a form given above.

2.2. Some applications. In [15], we considered self-adjoint operators

$ H_{1}=-\frac{1}{2}\Delta$ and $H_{2}=H_{1}+U$ in $\mathfrak{H}=L^{2}(R^{N})$ under Assumption1.1 of [15] on
$U=V_{s}+V$ and constructed the stationary wave operator $W_{\Gamma}^{\pm},$ $\Gamma=[a, b],$ $0<a$

$<b<\infty$ , on the basis of the theorems which are almost identical with Theorems
4.1 and 4.4 of the present paper. Furthermore, we announced (see \S 4 of [15])

that we can prove the existence of time dependent modiPed wave operators,
its coincidence with $W_{\Gamma}^{\pm}$ , and moreover the invariance principle. In this sub-
section we shall Prove them using Theorems 2.1 and 2.3 given above and
some results given in \S 6 below.

Suppose that Assumption1.1 of [15] is satisfied. Put $\mathfrak{X}_{1}=\mathcal{F}^{-1}(C_{0}^{\infty}(R^{N}-\{0\}))$

endowed with the norm of $L_{\delta}^{2}(R^{N})\equiv L^{2}(R^{N}, (1+|x|)^{2\delta}dx)$ and $\mathfrak{X}_{2}=L_{\delta}^{2}(R^{N})$ , where
$\delta$ is taken as in page 320 of [15], and $\mathcal{F}$ denotes the Fourier transformation
in $L^{2}(R^{N})$ . Then obviously $\mathfrak{X}_{j}$ is dense in $\mathfrak{H}$ and satisfies $i$) $-iv$) of the previous
subsection. Furthermore (L.A.P.) is assured by Theorem 2.1 of [15] which is
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due to Ikebe and Saito [10]. (X) is obviously satisfied if we put $X(t)=$

$\mathcal{F}^{-1}[\int_{0}^{\iota}V(s\xi)ds\cdot]\mathcal{F}$ as in [15]. Conditions $(BC)$ and $(XA)$ are obviously satisfied
by the definition of $X(t)$ and Assumption 1.1 of [15]. $(Q^{\pm})$ and $(f^{\pm})$ hold by
Propositions2.3 and 2.4 of [15], respectively. Thus by Theorem 2.1 above,
the limit

(2.21) $W_{D}^{\pm}(\Gamma)=s-\lim_{t\rightarrow\pm\infty}e^{itH_{2}}e^{-itH_{1}-iX(t)}E_{1,ac}(\Gamma)$

exists. Furthermore by the result of \S 6.4 below, we have

(2.22) $W_{D}^{\pm}(\Gamma)=W_{\Gamma}^{\pm}$ ,

where $W_{\Gamma}^{\pm}$ is the stationary wave operator constructed in [15].

Next we shall prove the invariance principle. Let $I,$
$\varphi,$ $\eta,$ $a_{\varphi}$ , and $Q_{\varphi}(t)$ be

as in the previous subsection for $\Gamma=[a, b]$ and $ H_{1}=_{2}^{1}---\Delta$ . Then the follow-
ing lemma holds.

LEMMA 2.6 (due to Matveev [21]). Let Assumption1.1 of [15] be satisfied.
Let $\varphi\in C^{\infty}(I)$ and $\varphi^{\prime}>0,$ $\varphi^{f}\neq 0$ on I. Put

$Q_{\varphi}^{as}(t)=e^{-it\varphi(H_{1})-iX(t\varphi^{\prime}(H1))}$ on $\mathfrak{H}_{1,ac}(\Gamma)$ ,

where $X(t\varphi^{\prime}(H_{1}))$ is defined as follows:

$X(t\varphi^{\prime}(H_{1}))=\mathcal{F}^{-1}[\int_{0}^{t\varphi^{\prime}(|\xi|^{2}/2)}V(s\xi)ds\cdot]\mathcal{F}$ on $\mathfrak{H}_{1,ac}(\Gamma)$ .
Then $Q_{\varphi}^{as}(t):\mathfrak{H}_{1,ac}(\Gamma)\rightarrow \mathfrak{H}$ is an isometric oPerator and satisfies

$\lim_{l\rightarrow\pm\infty}\Vert(Q_{\varphi}^{as}(t)-Q_{\varphi}(t))E_{1,ac}(\Gamma)\Vert_{B(\mathfrak{H})}=0$ .

For the proof of this lemma, see the proof of Theorem 4 of Matveev [21].

Thus condition $(Q_{\varphi}^{as})$ is satisfied. Since $(\mathfrak{X}_{1})$ is obviously satisfied by the
definition of $\mathfrak{X}_{1}$ , it follows from Theorem 2.3 that there exist the limits

$\left\{\begin{array}{l}W_{\varphi}^{\pm,a\$}(\Gamma)=s-\lim_{t\rightarrow\pm\infty}e^{it\varphi}(H_{2})Q_{\varphi}^{as}(t)E_{1,ac}(\Gamma) ,\\W_{\varphi}^{\pm}()=s-\lim_{t\rightarrow\pm\infty}e^{it\varphi(H)}Q_{\varphi}(t)E_{1,ac}(\Gamma),\end{array}\right.$

and we have

(2.23) $W_{\varphi}^{\pm,as}(\Gamma)=W_{\varphi}^{\pm}(\Gamma)=W_{D}^{\pm}(\Gamma)=W_{\Gamma}^{\pm}$ .
The completeness of $W_{D}^{\pm}(\Gamma)=W_{\Gamma}^{\pm}$ will be proved in Part II using Theorem

2.2 given above as one of the consequences derived from more general result
including the long-range potential $V(x)=O(|x|^{-\epsilon_{0}}),$ $\epsilon_{0}>0$ .
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\S 3. Some fundamental concepts.

In the subsequent two sections $(i$ . $e$ . \S \S 4\sim 5 $)$ , we shall consider a stationary
wave operator in a rather general context, and prove its completeness and
uniqueness under certain assumptions. This section is devoted to reviewing
several fundamental concepts due to Kato and Kuroda [13], [14] which will
be used as our basic framework in those sections. We shall also Prepare a
Proposition which will be used to verify the uniqueness theorem in \S 5.

Let $(\Gamma_{0}, B)$ be a measurable space and $m$ a $\sigma- finite$ , complete, and non-
negative scalar measure on $(\Gamma_{0}, B)$ . Let $\mathfrak{H}$ be a complex Hilbert space and $E$

a spectral measure with values in the set of all orthogonal projections in $\mathfrak{H}$ .
We denote by $E_{ac}$ the absolutely continuous part of $E$. We call the 5-tuple
$(\Gamma_{0}, B, m, \emptyset, E)$ a spectral system.

Suppose that a subset $\Gamma\subset\Gamma_{0},$ $\Gamma\in B$, and a linear subspace $\mathfrak{X}\subset \mathfrak{H}$ are given.
A triple $(\Gamma, \mathfrak{X}, e)$ is called a spectral form for $(\Gamma_{0}jB, m, \mathfrak{H}, E)$ , if $e$ is a com-
plex valued function on $\Gamma\times \mathfrak{X}\times \mathfrak{X}$ satisfying the following two Properties:

1 For each $x,$ $y\in \mathfrak{X},$ $e(. ; x, y)\in L^{1}(\Gamma)$ and

(3.1) $\int_{\Delta}e(\lambda;x, y)m(d\lambda)=(E_{ac}(\Delta)x, y)_{\mathfrak{H}}$

for any $\Delta\subset\Gamma,$ $\Delta\in B$.
$2^{o}$ For each $\lambda\in\Gamma,$ $e(\lambda;\cdot, )$ is a nonnegative Hermitian form on $\mathfrak{X}\times \mathfrak{X}$ .
Given a spectral form $(\Gamma, \mathfrak{X}, e)$ , put $\mathfrak{N}(\lambda)=\{x\in \mathfrak{X}|e(\lambda;x, x)=0\}$ and let $\mathfrak{X}(\lambda)$

be the quotient space $\mathfrak{X}/\mathfrak{N}(\lambda)$ for $\lambda\in\Gamma$ . Then $\mathfrak{X}(\lambda)$ is a pre-Hilbert space with
respect to the inner product induced by $e(\lambda;\cdot, \cdot)$ . We denote by $\tilde{\mathfrak{X}}(\lambda)$ the
completion of $\mathfrak{X}(\lambda)$ , by $(, )_{\lambda}$ and $\Vert\Vert_{\lambda}$ the inner product and the norm of $\tilde{\mathfrak{X}}(\lambda)$ ,
and by $J(\lambda)$ the canonical homomorphism from $\mathfrak{X}$ to $\sim \mathfrak{X}(\lambda)$ . Then the range of

$J(\lambda)$ is equal to $\mathfrak{X}(\lambda)$ . Consider the product vector space $\tilde{\mathfrak{X}}=\prod_{\lambda\in\Gamma}\mathfrak{X}(\lambda)\sim$ consisting

of all vector fields $g=\{g(\lambda)\}_{\lambda\in\Gamma}$ with $ g(\lambda)\in \mathfrak{X}(\lambda)\sim$ . We say two elements $g_{1},$
$g_{2}\in\tilde{\mathfrak{X}}$

are equivalent, in symbol $g_{1}\sim g_{2}$ , if $g_{1}(\lambda)=g_{2}(\lambda)$ for m-a. $e$ . $\lambda\in\Gamma$ , and denote by
$[g]$ the equivalence class of $g\in\tilde{\mathfrak{X}}$ by $\sim$ . We define the space $S$ of all simple
functions from $\Gamma$ to X as follows:

(3.2) $S=\{h:\Gamma\rightarrow \mathfrak{X}|h(\lambda)=\sum_{k=1}^{n}\chi_{\Delta_{k}}(\lambda)x_{k}, x_{k}\in \mathfrak{X}, \Delta_{k}\in B, \Delta_{k}\subset\Gamma\}$ ,

where $\chi_{\Delta}$ denotes the characteristic function of $\Delta\in B$ . A vector field $g=$

$\{g(\lambda)\}_{\lambda\in\Gamma}\in\tilde{\mathfrak{X}}$ is called e-measurable, if there exists some sequence $\{h_{n}\}\subset S$ such
that

(3.3) $\lim_{n\rightarrow\infty}\Vert g(\lambda)-J(\lambda)h_{n}(\lambda)\Vert_{\lambda}=0$ , m-a. $e$ . $\lambda\in\Gamma$ .
Put



674 H. KITADA

(3.4) $\mathfrak{M}=\{[g]\in\tilde{\mathfrak{X}}/\sim|g$ is e-measurable, $\Vert[g]\Vert_{\mathfrak{M}}=[\int_{\Gamma}\Vert g(\lambda)\Vert\frac{9}{\lambda}m(d\lambda)]^{1/2}<\infty\}$ .
Then $\mathfrak{M}$ is a Hilbert space with respect to the inner product:

(3.5) $([f], [g])_{\mathfrak{M}}=\int_{\Gamma}(f(\lambda), g(\lambda))_{\lambda}m(d\lambda)$ , $[f],$ $[g]\in \mathfrak{M}$ .

Furthermore $(JS)/\sim=\{[\{J(\lambda)h(\lambda)\}_{\text{{\it \‘{A}}}\in\Gamma}]|h\in S\}$ is a dense linear subspace of $\mathfrak{M}$ .
DePne

(3.6) 2 $\alpha c(\Gamma)=\{\sum_{k=1}^{\eta}E_{ac}(\Delta_{k})x_{k}|\Delta_{k}\subset\Gamma, \Delta_{k}\in B, x_{k}\in \mathfrak{X}\}$

and let $\mathfrak{L}_{ac}(\Gamma)$ be the closure of $\mathfrak{L}_{ac}(\Gamma)\circ$ in $\mathfrak{H}$ . Then $\mathfrak{L}_{ac}(\Gamma)$ is $a$ closed linear
subspace of $\mathfrak{H}_{ac}(\Gamma)\equiv E_{ac}(\Gamma)\mathfrak{H}$ and reduces $E$ . Furthermore we denote by $\mathfrak{L}$

the smallest closed subspace of $\mathfrak{H}$ containing X and reducing $E$ . Then we have
$\mathfrak{L}_{ac}(\Gamma)=E_{ac}(\Gamma)\mathfrak{L}$ . $\mathfrak{L}_{ac}(\Gamma)$ coincides with $\mathfrak{H}_{ac}(\Gamma)$ if $\mathfrak{X}$ is dense in $\mathfrak{H}$ . In the
sequel, equivalent elements are to be identified in $\mathfrak{M}$ . (As to the several facts
stated here, see Kato and Kuroda [13], [14].)

Following Kato and Kuroda we now define a unitary operator $\pi:\mathfrak{L}_{ac}(\Gamma)$

$\rightarrow \mathfrak{M}$ with the following properties:
(a) For any $\Delta\in B$ and $u\in \mathfrak{L}_{ac}(\Gamma)$ ,

(3.7) $\pi E_{ac}(\Delta)u=\{\chi_{\Delta}(\lambda)(\pi u)(\lambda)\}_{\lambda\in\Gamma}$ .

(b) For any $x\in \mathfrak{X}$ ,

(3.8) $\pi E_{ac}(\Gamma)x=\{J(\lambda)x\}_{x\in\Gamma}$ .

Thus $\pi$ gives a spectral representation of $E_{ac}$ . (See Kato and Kuroda [13],

Theorem 1.11.)

Next we consider another spectral form $(\Gamma, \mathfrak{X}^{\prime}, e^{\prime})$ for the same spectral
system $(\Gamma_{0}, B, m, \mathfrak{H}, E)$ , and investigate some relation between $(\Gamma, \mathfrak{X}, e)$ and
$(\Gamma, \mathfrak{X}^{\prime}, e^{\prime})$ which will be used in \S 5 to prove the uniqueness theorem. For this
purpose we use the obvious notations such as $\mathfrak{N}^{\prime}(\lambda),$

$\mathfrak{X}^{\prime}(\lambda),\tilde{\mathfrak{X}}^{\prime}(\lambda)$ , etc., defined
as above for $(\Gamma, \mathfrak{X}^{\prime}, e^{\prime})$ .

PROPOSITION 3.1. Assume that the following conditions $(a)-(d)$ are satisfied:
(a) $\mathfrak{X}$ and $\mathfrak{X}^{\prime}$ are Hausdorff linear $topolo\dot{\ovalbox{\tt\small REJECT}}cal$ spaces;
(b) $J(\lambda)$ and $J^{\prime}(\lambda)$ are continuous for all $\lambda\in\Gamma$ ;
(c) $\mathfrak{X}^{r}\equiv \mathfrak{X}q\mathfrak{X}^{\prime}$ is dense in X and $\mathfrak{X}^{\prime}$ ;
(d) $e(\lambda;x, y)=e^{r}(\lambda;x, y)$ for all $x,$ $y\in \mathfrak{X}$“ and $\lambda\in\Gamma$ .

Then for any $\lambda\in\Gamma$ there exists a unitary operatOr $ I(\lambda)\sim$ from \yen (\lambda ) onto $\mathfrak{X}^{\prime}(\lambda)$

such that for any $x\in \mathfrak{X}^{r}$ ,

(3.9) $ I(\lambda)J(\lambda)x=J^{\prime}(\lambda)x\sim$ .
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Define $ Ig=\sim\{I(\lambda)g(\lambda)\}_{\lambda\in\Gamma}\in\tilde{\mathfrak{X}}^{\prime}\sim$ for $g\in\tilde{X}$ . Then $ I|_{\mathfrak{M}}\sim$ is a unitary operator from $\mathfrak{M}$

onto $\mathfrak{M}^{\prime}$ , and we have $\mathfrak{L}_{ac}(\Gamma)=\mathfrak{L}_{ac}^{\prime}(\Gamma)$ and $ I|_{\mathfrak{M}}\pi=\pi^{\prime}\sim$ .
PROOF. Put $e^{\prime\prime}(\lambda;x, y)\equiv e(\lambda;x, y)=e^{\prime}(\lambda;x, y)$ for $\lambda\in\Gamma$ and $x,$

$y\in \mathfrak{X}^{\prime\prime}$ . Then
$(\Gamma, \mathfrak{X}^{\prime\prime}, e^{\prime\prime})$ is also a spectral form for $(\Gamma_{0}, B, m, \mathfrak{H}, E)$ . Thus we can define
$\mathfrak{N}^{\prime\prime}(\lambda),$ $\mathfrak{X}^{\prime\prime}(\lambda)$ , etc.

Now define $K(\lambda)J^{\prime\prime}(\lambda)x=J(\lambda)x$ and $K^{\prime}(\lambda)J^{\prime\prime}(\lambda)x=J^{\prime}(\lambda)x$ for $x\in \mathfrak{X}^{\prime/}$ and $\lambda\in\Gamma\sim$ .
Then it is easy to see that $K(\lambda)$ and $K^{\prime}(\lambda)$ are well-defined and can be extended
to isometric operators $\tilde{K}(\lambda):\sim l^{\prime\prime}(\lambda)\rightarrow\tilde{\mathfrak{X}}(\lambda)$ and $\tilde{K}^{\prime}(\lambda):\tilde{\mathfrak{X}}^{\prime\prime}(\lambda)\rightarrow\tilde{\mathfrak{X}}^{\prime}(\lambda)$ . Furthermore
by (b) and (c) we can easily show that $\tilde{K}(\lambda)$ and $\tilde{K}^{\prime}(\lambda)$ are unitary. Let $\tilde{K}$ be
defined by $\tilde{K}g^{\prime\prime}=\{\tilde{K}(\lambda)g^{\prime\prime}(\lambda)\}_{\lambda\in\Gamma}\in\tilde{\mathfrak{X}}$ for $g^{\prime\prime}\in\tilde{\mathfrak{X}}^{\prime\prime}$ . Then $\tilde{K}$ has an inverse $\tilde{K}^{-1}$

such that $\tilde{K}^{-1}g=\{\tilde{K}(\lambda)^{-1}g(\lambda)\}_{\lambda\in\Gamma}\in\tilde{\mathfrak{X}}^{\prime\prime}$ for $g\in\tilde{\mathfrak{X}}$ . It is clear that $\tilde{K}|_{\mathfrak{M}^{\prime}}$ is an iso-
metry from $\mathfrak{M}^{\prime\prime}$ to $\mathfrak{M}$, since $S^{\prime\prime}\subset S$ and $\tilde{K}(\lambda)$ is unitary for $\lambda\in\Gamma$ . Furthermore
$\tilde{K}|_{\mathfrak{M}^{\prime}}$ is unitary. In fact, from the relation $\tilde{K}(\lambda)J^{\prime\prime}(\lambda)=J(\lambda)$ on $\mathfrak{X}^{\prime\prime}$ , it can be
easily seen that $\tilde{K}^{-1}(JS^{\prime\prime})=J^{\prime\prime}S^{\prime\prime}$ . Since $JS^{\prime/}$ is dense in $\mathfrak{M}$ by conditions (b)
and (c), it follows from this that $\tilde{K}^{-1}\mathfrak{M}\subset \mathfrak{M}^{\prime\prime}$ because $\tilde{K}(\lambda)^{-1}$ is unitary for
$\lambda\in\Gamma$ . This proves the unitarity of $\tilde{K}|_{\mathfrak{M}^{\prime}}$ . Quite similarly we can dePne $\tilde{K}^{J}$

and prove that $\tilde{K}^{\prime}|_{\mathfrak{M}}$. : $\mathfrak{M}^{\prime\prime}\rightarrow \mathfrak{M}^{\prime}$ is unitary.

Now we can prove the proposition. Put $ I(\lambda)=\tilde{K}^{\prime}(\lambda)\tilde{K}(\lambda)^{-1}\sim$ for $\lambda\in\Gamma$ . Then
$ I(\lambda)\sim$ is a unitary operator from $\sim \mathfrak{X}(\lambda)$ onto $\tilde{\mathfrak{X}}^{\prime}(\lambda)$ and satisfies (3.9). Furthermore
by definition we have $ I=\tilde{K}^{\prime}\tilde{K}^{-1}\sim$ . Thus $ I|_{\mathfrak{M}}\sim$ is a unitary operator from $\mathfrak{M}$ onto

$\mathfrak{M}^{\prime}$ . From (3.7), (3.8), and the dePnition of $\tilde{K}$, we get $\pi^{-1}\tilde{K}\pi^{\prime\prime}\mathfrak{L}_{ac}^{\prime\prime}(\Gamma)=\mathfrak{L}_{ac}^{\prime\prime}(\Gamma)\subset oo$

$\mathfrak{L}_{ac}(\Gamma)$ . Since $\pi^{-1},\tilde{K},\circ$ and $\pi^{\prime\prime}$ are unitary and $\mathfrak{L}_{ac}^{\prime\prime}(\Gamma)\circ$ is dense in $\mathfrak{L}_{ac}^{\prime\prime}(\Gamma)$ , it fol-
lows from this that $\mathfrak{L}_{ac}^{\prime\prime}(\Gamma)$ is dense in $\mathfrak{L}_{ac}(\Gamma)$ . Hence we have $\mathfrak{L}_{ac}^{\prime\prime}(\Gamma)=\mathfrak{L}_{ac}(\Gamma)$ .
Similarly we can prove $\mathfrak{L}_{ac}^{\prime\prime}(\Gamma)=\mathfrak{L}_{ac}^{\prime}(\Gamma)$ . Thus $\mathfrak{L}_{ac}(\Gamma)=\mathfrak{L}_{ac}^{\prime}(\Gamma)$ . $ I\pi=\pi^{\prime}\sim$ follows
easily from (3.7), (3.8), and (3.9). Q. E. D.

\S 4. Stationary wave operators.

In this and the next section we consider two spectral systems $(\Gamma_{0},$ $B,$ $m$ ,
$\mathfrak{H}_{j},$ $E_{j}$) with spectral forms $(\Gamma, \mathfrak{X}_{j}, e_{j}),$ $j=1,2$ , where the measure space $(\Gamma_{0}, B, m)$

and $\Gamma\in B$ are common to the two systems. We use the obvious notations
such as $E_{r,ac},$ $\mathfrak{N}_{j}(\lambda),$ $\mathfrak{X}_{j}(\lambda),\tilde{X}_{j}(\lambda),$ $(, )_{j,\lambda},$ $\Vert\Vert_{j,\lambda},$ $J_{j}(\lambda),\tilde{\mathfrak{X}}J’ SJ’\sim J’ \mathfrak{M}_{j},$ $\mathfrak{L}_{j,ac}(\Gamma),$

$\mathfrak{L}_{j,ac}(\Gamma)0$

$\mathfrak{H}_{j,ac}(\Gamma),$ $\mathfrak{L}_{j}$ , etc.
We denote by $\mathcal{M}(\Gamma;\mathfrak{X}_{2})$ the linear space of all strongly B-measurable

functions on $\Gamma$ to $\mathfrak{X}_{2}$ . The following theorem constructs an isometric operator
$\hat{G}$ which will be used to construct a stationary wave operator.

THEOREM 4.1. Let $\mathfrak{X}_{2}$ be a Banach space. SuppOse that the following con-
ditions $(J2)$ and $(\Phi)$ are satisfied:
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$(J2)$ For every $\lambda\in\Gamma$ , the linear oPerator $J_{2}(\lambda):\mathfrak{X}_{2}\rightarrow \mathfrak{X}_{2}(\lambda)$ is bounded $10_{j}$

$(\Phi)$ There exists a linear operatOr $\Phi:\mathfrak{X}_{1}\rightarrow \mathcal{M}(\Gamma;\mathfrak{X}_{2})$ which satisfies the fol-
lowing relation for all $x,$ $y\in \mathfrak{X}_{1}$ :

(4.1) $e_{2}(\lambda;(\Phi x)(\lambda), (\Phi y)(\lambda))=e_{1}(\lambda;x, y)$ , m-a. $e$ . $\lambda\in\Gamma$ .
Here the exceptiOnal m-null set may depend on $x$ and $y$ .

Then there exists a unique isometric oPerator $G:\mathfrak{M}_{1}\rightarrow \mathfrak{M}_{2}$ which satisfies the
following two conditions:

(a) For any $\Delta\subset\Gamma,$ $\Delta\in B$ and any $u\in \mathfrak{M}_{1}$ ,

(4.2) $\hat{G}\{\chi_{\Delta}(\lambda)u(\lambda)\}_{\lambda\in T}\cdot=\{\chi_{\Delta}(\lambda)(\hat{G}u)(\lambda)\}_{\lambda\in I^{}}$ .

(b) For every $x\in \mathfrak{X}_{1}$ ,

(4.3) $\hat{G}\{J_{1}(\lambda)x\}_{\lambda\in\Gamma}=\{J_{2}(\lambda)(\Phi x)(\lambda)\}_{\lambda\in\Gamma}$ .
PROOF. Quite similar to the proof of Theorem 2.8 of [15]. Q. E. D.
REMARK 4.2. In many cases of practical aPplication, the maPping $\Phi$ is

given by an operator of decomposable type:

(4.4) $(\Phi x)(\lambda)=G(\lambda)x$ , $\lambda\in\Gamma,$ $x\in \mathfrak{X}_{1}$ .
$N$amely Assumption $(\Phi)$ follows immediately from the following condition $(G)$

if we define $\Phi$ as in (4.4):
$(G)$ For every $\lambda\in\Gamma$ , there exists a linear operator $G(\lambda):\mathfrak{X}_{1}\rightarrow \mathfrak{X}_{2}$ such that:
(a) for every $\lambda\in\Gamma$ and every $x,$ $y\in \mathfrak{X}_{1}$ ,

(4.5) $e_{2}(\lambda;G(\lambda)x, G(\lambda)y)=e_{1}(\lambda ; x, y)$ ;

(b) for every $x\in \mathfrak{X}_{1},$ $G(\lambda)x$ is strongly B-measurable as an $\mathfrak{X}_{2}$ -valued func-
tion of $\lambda$ in $\Gamma$ .

The conditions $(J2)$ and $(G)$ are essentially the same as the assumptions of
Theorem 4.5 of Kato and Kuroda [14], so far as the assumptions needed to
construct the isometric operator $\hat{G}$ are concerned. Thus, as to the construc-
tion of $\hat{G}$ , Theorem 4.1 is a generalization of Kato and Kuroda’s Theorem 4.5.
The construction of $\hat{G}$ under condition $(\Phi)$ of Theorem 4.1 was actually used
in [15], and we shall also use it in Part II of this Paper when we consider
modified wave operators of Alsholm’s type (cf. [2]). But in our most impor-

tant applications considered in Part II, the condition $(G)$ will suffice.
REMARK 4.3. There may exist several $\Phi’ s$ (or $G’ s$) satisfying $(\Phi)$ (or $(G)$ ).

In fact, in the long-range scattering, there actually exist at least two $\Phi’ s$, the
one by us ([15] and $P$art II of this $P$ aper) and the one by Pinchuk [22] or Isozaki

10) This condition is equivalent to the continuity of the sesquibilinear form
$e_{2}(\lambda;\cdot, )$ on $X_{2}\times \mathfrak{X}_{2}$ for $\lambda\in\Gamma$ .
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[11]. This situation is quite different from the short-range case in which
there is $a$ natural choice of $G$ given by $G^{\pm}(\lambda)=1+VR_{1}(\lambda\pm i0)$ , where $V$ is a
short-range potential and $R_{1}(\lambda\pm i0)$ denotes the boundary value of the resolvent
$R_{1}(\lambda\pm i\epsilon),$ $\epsilon>0$, of the unperturbed Schr\"odinger operator $-\Delta$ (cf. $e$ . $g.$ , Kato and
Kuroda [14], Kuroda [17], [18]). However, even in the long-range case, we
can show that the isometric operator $\hat{G}’ s$ constructed as in Theorem 4.1 using
our $\Phi$ and Pinchuk’s or Isozaki’s $\Phi$ coincide with each other except a factor
of unitary operator, and hence the stationary wave operators $W_{\Gamma}’ s$ constructed
in Theorem 4.4 below from those $\Phi’ s$ essentially coincide. This will be proved
in Part II by using the uniqueness theorem proved in the next section.

Now using $\hat{G}$ constructed in Theorem 4.1, we can define $a$ stationary wave
operator.

THEOREM 4.4. Let an isometric oPerator $C:\mathfrak{M}_{1}\rightarrow \mathfrak{M}_{2}$ satisfy (a) and (b) of
Theorem 4.1, and Put

(4.6) $W_{\Gamma}=\{$

$\pi_{2}^{-1}6\pi_{1}$ on $\mathfrak{L}_{1,ac}(\Gamma)$ ,

$0$ on $\mathfrak{H}O-\mathfrak{L}_{1,ac}(\Gamma)$ .
Then $W_{\Gamma}$ is a Partially isometric oPerator in $\mathfrak{H}$ with initial set $\mathfrak{L}_{1,ac}(\Gamma)$ and final
set contained in $\mathfrak{L}_{2,ac}(\Gamma)$ , and satisfies the following two conditions:

(a) For every $\Delta\in B$,

(4.7) $W_{\Gamma}E_{1}(\Delta)=E_{2}(\Delta)W_{\Gamma}$ .
(b) For every $x\in \mathfrak{X}_{1},$ $y\in \mathfrak{X}_{2}$ and $\Delta_{1},$ $\Delta_{2}\in B,$ $\Delta_{1},$ $\Delta_{2}\subset\Gamma$,

(4.8) $(W_{\Gamma}E_{1,ac}(\Delta_{1})x, E_{2,ac}(\Delta_{2})y)_{\mathfrak{H}}=\int_{\Delta_{1}\cap\Delta_{2}}e_{2}(\lambda;(\Phi x)(\lambda), y)m(d\lambda)$ .

PROOF. Quite similar to the proof of Theorem 2.10 of [15]. Q. E. D.
DEFINITION 4.5. The partially isometric operator $W_{\Gamma}$ constructed in

Theorem 4.4 is called a stationary wave operator and is said to be complete if
its range is equal to $\mathfrak{L}_{2,ac}(\Gamma)$ .

Our next aim is to consider a sufficient condition for the completeness of
$W_{\Gamma}$ , and this will be discussed in the next section together with the unique-
ness theorem concerning $W_{\Gamma}$ referred to in Remark 4.3 above.

\S 5. Completeness and the uniqueness of stationary wave operators.

We continue to consider two spectral systems $(\Gamma_{0}, B, m, \mathfrak{H}_{j}, E_{j})$ with spec-
tral forms $(\Gamma, \mathfrak{X}_{j}, e_{j}),$ $j=1,2$, as in the previous section. To prove the com-
pleteness of stationary wave operator $W_{\Gamma}$ constructed in Theorem 4.4, it suf-
fices to show that $\hat{G}$ constructed in Theorem 4.1 is a unitary operator from
$\mathfrak{M}_{1}$ onto $\mathfrak{M}_{2}$ . In the following Theorem 5.1, we shall prove the unitarity of $\hat{G}$
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under the assumption stronger than the one needed to construct $\hat{G}$ in Theorem
4.1. Under this stronger assumption we can choose another way in construct-
ing $\hat{G}$ . As this way of construction clarifies situation and gives some more
detailed informations, we adopt this way in Proving the unitarity of $\hat{G}$ . This
proof will give an alternative proof of Theorem 4.1 under the assumption of
Theorem 5.1. However the proof of completeness will be somewhat simpler
if we use Theorem 4.1.

THEOREM 5.1. Let $\mathfrak{X}_{1}$ be a seParable normed sPace, $\mathfrak{X}_{2}$ a Banach sPace, and
$\mathfrak{h}$ a Hilbert sPace. SuPpose that the following conditions $(Jj)$ for $j=1,2$ , $(\mathcal{F})$ ,
and $(\mathcal{F}\Phi)$ are satisfied:

$(Jj)$ For every $\lambda\in\Gamma$ , the linear oPerator $J_{j}(\lambda):\mathfrak{X}_{j}\rightarrow\tilde{k}_{j}(\lambda)$ is bounded.
(S1) For every $\lambda\in\Gamma$ and $j=1,2$ , there exists a linear operatOr $\mathcal{F}_{j}(\lambda):\mathfrak{X}_{j}\rightarrow \mathfrak{h}$

such that:
(a) for every $\lambda\in\Gamma$ and $x,$ $y\in \mathfrak{X}_{j}$ ,

(5.1) $(\mathcal{F}_{j}(\lambda)x, \mathcal{F}_{j}(\lambda)y)_{\mathfrak{h}}=e_{j}(\lambda;x, y)$ ;

(b) for every $\lambda\in\Gamma$, the range of $\mathcal{F}_{1}(\lambda)$ is dense in $\mathfrak{h}$ .
$(\mathcal{F}\Phi)$ There exists a linear oPerator $\Phi:\mathfrak{X}_{1}\rightarrow \mathcal{M}(\Gamma;\mathfrak{X}_{2})$ which satisfies the

following relation for every $ x\in \mathfrak{X}_{1}.\cdot$

(5.2) $\mathcal{F}_{2}(\lambda)(\Phi x)(\lambda)=\mathcal{F}_{1}(\lambda)x$ , m-a. $e$ . $\lambda\in\Gamma$ .
Here the excePtional m-null set may depend on $x$, and $\mathcal{M}(\Gamma;\mathfrak{X}_{2})$ is the same
space as in \S 4.

Then there exists a unique unitary operatOr6: $\mathfrak{M}_{1}\rightarrow \mathfrak{M}_{2}$ which satisfies con-
ditions (a) and (b) of Theorem 4.1, and hence by Theorem 4.4 we can construct
a complete stationary wave operatOr $W_{\Gamma}$ which satisfies $(a)$ and (b) of Theorem
4.4. (Notice that if $\Phi$ here coincides with $\Phi$ in Theorem 4.1, then 6 and $W_{\Gamma}$

here coincide with $C$ and $W_{\Gamma}$ in Theorems 4.1 and 4.4.)

PROOF. By (5.1) and (5.2), we can prove $(\Phi)$ of Theorem 4.1 so that we
can construct $\hat{G}$ in the same way as in Theorem 4.1. But as stated before,
we adopt another way. We divide the proof into 7 steps, and in each step
we first state the result to be proved in that step.

1st step: For every $\lambda\in\Gamma$ and $j=1,2$, there exists an isometric operator
$F_{j}(\lambda):\tilde{\mathfrak{X}}_{j}(\lambda)\rightarrow \mathfrak{h}$ such that for every $\lambda\in\Gamma$ and every $x\in \mathfrak{X}_{1},$ $\mathcal{F}_{j}(\lambda)x=F_{j}(\lambda)J_{j}(\lambda)x$ .

Proof is easy by (5.1) and the denseness of $\mathfrak{X}_{j}(\lambda)=J_{j}(\lambda)\mathfrak{X}_{j}$ in $\tilde{\mathfrak{X}}_{j}(\lambda)$ .
2nd step: For every $\lambda\in\Gamma,$ $F_{1}(\lambda):\tilde{\lambda}_{1}(\lambda)\rightarrow \mathfrak{h}$ is unitary.
This can be easily proved using (b) of $(\mathcal{F})$ .
3rd step: There exists a subset $A\subset\Gamma,$ $A\in B$ such that $m(\Gamma-A)=0$ and

such that for every $\lambda\in A,$ $F_{2}(\lambda):\tilde{\mathfrak{X}}_{2}(\lambda)\rightarrow \mathfrak{h}$ is unitary.
Let $\{x_{k}\}_{k=1}^{\infty}$ be a countable dense subset of $\mathfrak{X}_{1}$ . It follows from $(\mathcal{F}\Phi)$ that

there exists a subset $A\subset\Gamma,$ $A\in B$ such that $m(\Gamma-A)=0$ and such that, for
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every $\lambda\in A$ and $k$, one has $\mathcal{F}_{2}(\lambda)(\Phi x_{k})(\lambda)=\mathcal{F}_{1}(\lambda)x_{k}$ . Thus for every $\lambda\in A$ , the
range of $\mathcal{F}_{2}(\lambda)$ contains $\{\mathcal{F}_{1}(\lambda)x_{k}\}_{k=1}^{\infty}=\{F_{1}(\lambda)J_{1}(\lambda)x_{k}\}_{k=1}^{\infty}$ , which is dense in $\mathfrak{h}$ for
every $\lambda\in\Gamma$ by the 2nd steP, $(J1)$ , and the denseness of $\{x_{k}\}_{k=1}^{\infty}$ in $\mathfrak{X}_{1}$ . This
completes the proof of 3rd step.

4th step: For every $\lambda\in\Gamma$ , define $\hat{G}(\lambda)\equiv F_{2}(\lambda)^{*}F_{1}(\lambda):\vee k_{1}(\lambda)\rightarrow\tilde{\mathfrak{X}}_{2}(\lambda)\sim$ . Then for
every $\lambda\in A,\hat{G}(\lambda)$ is unitary.

This is obvious by the 2nd and the 3rd steps.

5th step: For. every $\varphi\in J_{1}S_{1}\subset \mathfrak{M}_{1}$ , put $\hat{G}\varphi=\{\hat{G}(\lambda)\varphi(\lambda)\}_{\lambda\in\Gamma}\in\tilde{\mathfrak{X}}_{2}$ . Then one
has $\hat{G}\varphi\in \mathfrak{M}_{2}$ and $\Vert C\varphi\Vert_{\mathfrak{M}_{2}}=\Vert\varphi\Vert_{\mathfrak{M}_{1}}$ . Thus $\hat{G}$ can be extended to an isometric
operator from $\mathfrak{M}_{1}$ to $\mathfrak{M}_{2}$ (which will be denoted also .by $\hat{G}$ ).

Since $G(\lambda)$ is unitary for every $\lambda\in A$ , it suffices to see the $e_{2}$-measurability
of $\hat{G}J_{1}x$ for every $x\in \mathfrak{X}_{1}$ because every $\varphi\in J_{1}S_{1}$ can be represented as $\varphi=J_{1}h$ ,
where $h\in S_{1}$ is finitely-valued. But we have $\hat{G}J_{1}x=\{\hat{G}(\lambda)J_{1}(\lambda)x\}_{\lambda\in\Gamma}=$

$\{F_{2}(\lambda)^{*}\mathcal{F}_{1}(\lambda)x\}_{\lambda\in\Gamma}=\{F_{2}(\lambda)^{*}\mathcal{F}_{2}(\lambda)(\Phi x)(\lambda)\}_{\lambda\in\Gamma}=\{J_{2}(\lambda)(\Phi x)(\lambda)\}_{\lambda\in\Gamma}$ . Thus by $\Phi x\in$

$\mathcal{M}(\Gamma;\mathfrak{X}_{2})$ and $(J2),\hat{G}J_{1}x$ is $e_{2}$-measurable as desired.
6th step: The isometric operator $\hat{G}:\mathfrak{M}_{1}\rightarrow \mathfrak{M}_{2}$ is unitary.
Let $v\in \mathfrak{M}_{2}$ , and let $(\hat{G}\varphi, v)_{\mathfrak{M}_{2}}=0$ for every $\varphi\in J_{1}S_{1}$ . We have to prove $v=0$

in $\mathfrak{M}_{2}$ . Take a countable dense subset $\{x_{k}\}_{k=1}^{\infty}$ of $\mathfrak{X}_{1}$ . Then we have $(\hat{G}J_{1}\chi_{\Delta^{X}k}$

$v)_{\mathfrak{M}_{2}}=0$, namely, $\int_{\Delta}(\hat{G}(\lambda)J_{1}(\text{\‘{A}})x_{k}, v(\lambda))_{2,\lambda}m(d\lambda)=0$ for every $k$ and $\Delta\subset\Gamma,$ $\Delta\in B$ .
Thus there exists a subset $B\subset A,$ $B\in B$ such that $m(\Gamma-B)=0$ and such that
$(\hat{G}(\lambda)J_{1}(\lambda)x_{k}, v(\lambda))_{2,\lambda}=0$ for every $\lambda\in B$ and $k$ . Since $C(\lambda)$ is unitary for every
$\lambda\in B\subset A$ and since $\{J_{1}(\lambda)x_{k}\}_{k=1}^{\infty}$ is dense in $\tilde{\mathfrak{X}}_{1}(\lambda)$ for every $\lambda\in\Gamma$ by $(J1)$ , it
follows from this that $v(\lambda)=0$ for every $\lambda\in B$ and hence $v=0$ in $\mathfrak{M}_{2}$ .

7th step: The unitary operator $\hat{G}$ satisfies (a) and (b) of Theorem 4.1.
(a) is clear by the definition of $\hat{G}$ . (b) has already been proved in the

5th step. Q. E. D.
REMARK 5.2. Assumption $(\mathcal{F}\Phi)$ of Theorem 5.1 follows immediately from

the following condition $(\mathcal{F}G)$ if we put $(\Phi x)(\lambda)=G(\lambda)x$ for $\lambda\in\Gamma$ and $x\in \mathfrak{X}_{1}$ :
$(\mathcal{F}G)$ For every $\lambda\in\Gamma$, there exists $a$ linear operator $G(\lambda):\mathfrak{X}_{1}\rightarrow \mathfrak{X}_{2}$ such

that:
$(a)$ for every $\lambda\in\Gamma$ and $x\in \mathfrak{X}_{1}$ ,

(5.3) $\mathcal{F}_{2}(\lambda)G(\lambda)x=\mathcal{F}_{1}(\lambda)x$ ;

(b) for every $x\in \mathfrak{X}_{1},$ $G(\lambda)x$ is strongly B-measurable as an $\mathfrak{X}_{2}$ -valued func-
tion of $\lambda$ in $\Gamma$ .
If we assume this condition $(9G)$ instead of $(\mathcal{F}\Phi)$ in Theorem 5.1, the results
of the 3rd and the 4th steps in the proof are improved as follows:

3rd step: For every $\lambda\in\Gamma,$ $F_{2}(\lambda):\tilde{\mathfrak{X}}_{2}(\lambda)\rightarrow \mathfrak{h}$ is unitary.
4th step: For every $\lambda\in\Gamma,\hat{G}(\lambda):\mathfrak{X}_{1}(\lambda)\rightarrow k_{2}(\lambda)\sim$ is unitary.

In our main aPplications considered in Part II, the condition $(\mathcal{F}G)$ will be
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satisfied.
REMARK 5.3. Let us consider the short-range case. Then, for $G^{f}(\lambda)$

referred to in Remark 4.3, the relation (5.3) can be written as $\mathcal{F}_{2}(\lambda)G^{\pm}(\lambda)x=$

$\mathcal{F}_{1}(\lambda)x$ and hence
$\mathcal{F}_{2}(\lambda)x+\mathcal{F}_{2}(\lambda)VR_{1}(\lambda\pm i0)x=\mathcal{F}_{1}(\lambda)x$ .

In actual aPplications considered in Part II, $\mathcal{F}_{j}(\lambda)$ corresponds to the eigen-
operator constructed by Ikebe [9] or Sait6 $[25]\sim[28]$ . Thus the relation (5.2)

or (5.3) can be regarded as the weak form of the LiPpmann-Schwinger equa-
tion. Thus in the case of long-range scattering, we may call the relation (5.2)

or (5.3) the modified Lippmann-Schwinger equation, because in the long-range
case $\Phi$ or $G$ has $a$ form somewhat different from $G^{\pm}(\lambda)$ . Incidentally, we add
a comment that, even in the short-range case, our Theorem 5.1 can be aPplied

to prove the completeness of ordinary wave operators.

Next let us prove a certain kind of uniqueness theorem concerning $W_{\Gamma}$

referred to in Remark 4.3. Let $(\Gamma, \mathfrak{X}_{j}^{\prime}, e_{f}^{\prime})$ be another spectral form for the
same spectral system $(\Gamma_{0}, B, m, \mathfrak{H}_{j}, E_{j})$ for $j=1,2$ . Then we can define $\mathfrak{N}_{j}^{\prime}(\lambda)$ ,
$\mathfrak{X}_{j}^{\prime}(\lambda),\tilde{\mathfrak{X}}_{j}^{\prime}(\lambda)$ , etc., as in \S 3.

THEOREM 5.4. SuppOse that all the assumptiOns of Theorem 5.1 are satisfied
not only for $\mathfrak{X}_{j}$ and $e_{j}$ but also for $\mathfrak{X}_{j}^{\prime}$ and $e_{j}^{\prime}$ with $\Phi$ and $\mathcal{F}_{j}(\lambda)$ rePlaced by some
other $\Phi^{\prime}$ and $\mathcal{F}_{j}^{\prime}(\lambda)$ with the same Hilbert sPace $\mathfrak{h}$ . SuPpose furthermore that
the following conditions are satisfied for $j=1,2$ :

$(a)$ $t_{j}^{\prime\prime}\equiv \mathfrak{X}_{j}\cap \mathfrak{X}_{j}^{\prime}$ is dense in $\mathfrak{X}_{j}$ and $\mathfrak{X}_{j}^{\prime}$ ;
(b) for every $\lambda\in\Gamma$ and $x,$ $y\in \mathfrak{X}_{f}^{\prime\prime},$ $e_{j}(\lambda;x, y)=e_{j}^{\prime}(\lambda;x, y)$ ;
(c) for every $\lambda\in\Gamma$ and $x\in \mathfrak{X}_{1}^{\prime\prime},$ $\mathcal{F}_{1}(\lambda)x=\mathcal{F}_{1}^{\prime}(\lambda)x$ ;
(d) for every $\lambda\in\Gamma$ there exists a unitary operalOr $U(\lambda)$ in $\mathfrak{h}$ such that

$\mathcal{F}_{2}(\lambda)x=U(\lambda)\mathcal{F}_{2}^{\prime}(\lambda)x$ for every $x\in \mathfrak{X}_{2}^{\prime\prime}$ and $\lambda\in\Gamma$ .
Then, according to Theorem 5.1, we can construct unitary operatOrs $\hat{G}$ and

$G^{\prime}$ , and complete stationary wave operatOrs $W_{\Gamma}$ and $W_{\Gamma}^{\prime}$ . Moreover, by ProPosi-
tion 3.1, we can construct a unitary operator $I_{j}\equiv I_{j}\sim\sim|_{\mathfrak{M}_{j}}$ from $\mathfrak{M}_{j}$ onto $\mathfrak{M}_{j}$ for $j=$

$1,2$ . Now put $ M(\lambda)=I_{2}(\lambda)^{*}F_{2}^{\prime}(\lambda)^{*}U(\lambda)F_{2}^{\prime}(\lambda)I_{2}(\lambda)\sim\sim$ for $\lambda\in\Gamma$ and define $M\varphi=$

$\{M(\lambda)\varphi(\lambda)\}_{\lambda\in\Gamma}$ for $\varphi\in J_{2}S_{2}$ . Then $M$ can be extended to a unitary $oPerator$ in $\mathfrak{M}_{2}$

(which will be denoted also by $M$). Define $L=\pi_{2}^{-1}M\pi_{2}$ . Then, for these opera-
tors, we have

(5.4) $\sim\sim I_{2}M\hat{G}=\hat{G}^{\prime}I_{1}$ ,

(5.5) $LW_{\Gamma}=W_{\Gamma}^{\prime}$ .
PROOF. From the definition of $M(\lambda),$ $(d),$ $(c)$ , and the denseness of $J_{j}(\lambda)\mathfrak{X}_{j}^{\prime\prime}$

in $\sim\chi_{j}(\lambda)$ , it follows that $ M(\lambda)^{*}I_{2}(\lambda)^{*}\hat{G}^{f}(\lambda)I_{1}(\lambda)=I_{2}(\lambda)^{*}F_{2}^{\prime}(\lambda)^{*}U(\lambda)^{*}F_{2}^{\prime}(\lambda)\hat{G}^{\prime}(\lambda)I_{1}(\lambda)=\sim\sim\sim\sim$

$(U(\lambda)F_{0,-}^{\prime}(\lambda)I_{2}(\lambda))^{*}F_{1}^{\prime}(\lambda)I_{1}(\lambda)=F_{2}(\lambda)^{*}F_{1}^{\prime}(\lambda)I_{1}(\lambda)=F_{2}(\lambda)^{*}F_{1}(\lambda)=\hat{G}(\lambda)\sim\sim\sim$ for every $\lambda\in\Gamma$ .
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Therefore $M$ can be written as $ M=I_{2}^{*}\hat{G}^{\prime}I_{1}\hat{G}^{*}\sim\sim$ and hence is a unitary operator
in $\mathfrak{M}_{2}$ . Moreover we $h$ave proved(5.4). Relation (5.5) follows from (5.4) at
once by Proposition 3.1, (4.6), and the definition of $L$ . Q. E. D.

\S 6. Time dependent wave operators and the invariance principle
(proof of Theorems 2.1\sim 2.3).

In this section, we consider as in \S 2.1 two self-adjoint operators $H_{1}$ and
$H_{2}$ in a Hilbert space $\mathfrak{H}$ with $\mathcal{D}(H_{1})=\mathcal{D}(H_{2})$ . Let $\mathcal{B}$ be the Borel field on $R^{1}$ ,
$m$ the Lebesgue measure on $R^{1}$ , and $E_{j}$ the spectral measure associated with
$H_{j}$ for $j=1,2$ . Then $(R^{1}, \mathcal{B}, m, \mathfrak{H}, E_{j})$ becomes a spectral system. The pur-
pose of the present section is to construct, using the results of \S \S 4\sim 5, a sta-
tionary wave operator for the spectral systems $(R^{1}, \mathcal{B}, m, \mathfrak{H}, E_{j}),$ $j=1,2$, under
some of the assumptions on $H_{j}$ stated in \S 2.1, and then to prove Theorems
2.1\sim 2.3.

As shown in Theorem 4.1, the operator $\Phi$ plays a crucial role in the con-
struction of stationary wave operators, and as mentioned in Remark 4.3, there
may exist several $\Phi’ s$ satisfying $(\Phi)$ . But in order to establish $a$ connection
with the time dependent wave operator, we must choose $\Phi$ suitably. Our
assumptions stated in \S 2.1 are selected on the basis of the form of time
dependent modiPed wave operators for long-range scattering (cf. Buslaev and
Matveev [5], Alsholm and Kato [3], Alsholm [2], H\"ormander [8], etc.), and
are suitable for constructing such $\Phi$ as will be shown below. (As to the
motivation of our approach, see the introduction of [15].)

6.1. Construction of stationary wave operators. We shall construct $a$

stationary wave operator. Let $\Gamma$ be a Borel set in $R^{1},$ $\mathfrak{X}_{j}$ a linear subspace11)

of $\mathfrak{H}$ for $j=1,2$ satisfying i)-iv)l2) of \S 2.1, and suppose that (L.A.P.) of \S 2.1

is satisfied. Then by 1 and $2^{o}$ of \S 2.1, $(\Gamma, \mathfrak{X}_{j}, e_{j})$ is a spectral form for
$(R^{1}, \mathcal{B}, m, \mathfrak{H}, E_{j})$ for $j=1,2$ , where $e_{j}$ is the complex valued function on $\Gamma\times \mathfrak{X}_{j}$

$\times \mathfrak{X}_{j}$ defined in \S 2.1. Furthermore $(Jj)$ of \S 5 is satisfied for $j=1,2$ by (2.4).
SuPpose that condition (X) of \S 2.1 is satisfied. Then it is easy to see that
the following relation holds for every $u,$ $v\in \mathcal{D}(H_{1})$ and $z\in C^{\pm}$ ,

(6.1) $e_{2}(z;G^{\pm}(z)u, G^{\pm}(z)v)=f^{\pm}(z;u, v)$ ,

where $e_{j}$ is defined by (2.5), $G^{\pm}(z)$ by (2.9), and $f^{\pm}$ by (2.8) (cf. Proposition1.4
of [15]). Thus if we assume $(Q^{\pm})$ and $(f^{\pm})$ of \S 2.1, and put for $x\in \mathfrak{X}_{1}$ and
$\lambda\in\Gamma$,

11) Note that we do not assume the denseness of $X_{j}$ in $\mathfrak{H}$ here.
12) Throughout the remainder of this $\circ ection$ , we assume $i$ ) $-iv$ ) of \S 2. 1 for $\mathfrak{X}_{j}$ ,

$j=1,2$ .
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(6.2) $(\Phi^{\pm}x)(\lambda)=x+1.i.m$ .$Q^{\pm}(\lambda\pm i\epsilon)x\epsilon\rightarrow+0$

then $\Phi=\Phi^{\pm}$ satisfies $(\Phi)$ of \S 4. Therefore we have proved the following
theorem.

THEOREM 6.1. Suppose that conditions $i$ ) $-iv$), (L.A.P.), (X), $(Q^{\pm})$ , and $(f^{\pm})$

of \S 2.1 are satisfied. Then there exists a unique isometric operator $C^{\pm}:$
$\mathfrak{M}_{1}\rightarrow \mathfrak{M}_{2}$

satisfying (a) and (b) of Theorem 4.1 with $\Phi=\Phi^{\pm}$ , where $\Phi^{\pm}$ is defined by (6.2).

Hence we can define a stationary wave operator $W_{\Gamma}^{\pm}$ following Theorem 4.4,
which is a partial isometry in $\mathfrak{H}$ with initial set $\mathfrak{L}_{1,ac}(\Gamma)$ and final set contained
in $\mathfrak{L}_{2,ac}(\Gamma)$ , and satisfies (a) and (b) of Theorem 4.4 with $\Phi=\Phi^{\pm}$ .

REMARK 6.2. When $(\mathcal{F})$ and $(\mathcal{F}\Phi)$ of Theorem 5.1 are satisfied with $\Phi=\Phi^{\pm}$ ,
we need not assume condition $(f^{\pm})$ in the above theorem, because $(\mathcal{F})$ and
$(\mathcal{F}\Phi)$ imply condition $(\Phi)$ . Furthermore $W_{\Gamma}^{\pm}$ above becomes complete (see

Theorem 5.1).

REMARK 6.3. Suppose that in addition to a), b) of $(Q^{\pm})$ , the following
condition c) is satisfied:

c) For every $\lambda\in\Gamma$ and $x\in\vee \mathfrak{X}_{1}$ , the limit $\lim_{\epsilon\rightarrow+0}Q^{\pm}(\lambda\pm i\epsilon)x$ exists in $\mathfrak{X}_{2}$ .

Then we can define a linear operator $G^{\pm}(\lambda):t_{1}\rightarrow \mathfrak{X}_{2}$ as $G^{\pm}(\lambda)x=x+\lim_{\epsilon\rightarrow\tau 0}Q^{\pm}(\lambda\pm i\epsilon)x$

for $\lambda\in\Gamma$ and $x\in \mathfrak{X}_{1}$ . This $G^{\pm}(\lambda)$ obviously satisfies (b) of $(\mathcal{F}G)$ in Remark 5.2
(cf. b) of $(Q^{\pm}))$ . Thus if in addition to condition $(\mathcal{F})$ of Theorem 5.1 relation
(5.3) is satisfied for $\lambda\in\Gamma$ and $x\in \mathfrak{X}_{1}$ , we have $(\mathcal{F}G)$ . Moreover $(G)$ of Remark
4.2 holds, since $(\mathcal{F})$ and $(\mathcal{F}G)$ are satisfied. What we wanted to say in Remarks
4.2 and 5.2 is that this is the case in our main applications considered in
Part II.

6.2. Preparatory lemmas and some definitions. $W$ state and prove several
lemmas which we need in the next subsection. We denote by $H^{2}(C^{\pm} ; \mathfrak{X})$ an

$\mathfrak{X}$-valued Hardy class on $C^{\pm}$ , where $\mathfrak{X}$ is a separable Hilbert space.
LEMMA 6.4. Let (L.A.P.) be satisfied. Put

(6.3) $\delta_{2}(z)=\frac{sgn({\rm Im} z)}{2\pi i}(R_{2}(z)-R_{2}(\overline{z}))$

for $z\in C^{\pm}$ . Then for every $u\in \mathfrak{H}$, we have

(6.4) $I_{2}^{*}\delta_{2}(\cdot)E_{2}(\Gamma)u\in H^{2}(C^{\pm} ; f_{2}^{*})$ .

PROOF. Since $I_{2}^{*}\delta_{2}(\cdot)E_{2}(\Gamma)u:C^{\pm}\rightarrow\vee \mathfrak{X}_{2}^{*}$ is holomorpbic, we have only to prove
that for some positive constant $C$,

(6.5) $\sup_{\text{\’{e}}>0}\int_{-\infty}^{\infty}\Vert I_{2}^{*}E_{2}(\Gamma)R_{2}(\lambda\pm i\epsilon)u\Vert_{\star_{2}^{*}}^{2}d\lambda\leqq C\Vert u\Vert_{\not\in}^{2},$ .

But this means that $I_{2}^{*}$ is $H_{2}$-smooth on $\Gamma$ in the terminology of Lavine [20],
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and hence follows from the estimate (2.4) of (L.A.P.) (cf. Lavine [19], Theorem,
1, and [20], Lemma 2.1). Q. E. D.

LEMMA 6.5. Let (L.A.P.) be satisfied. Suppose that $\Gamma$ is bounded. Then
for any bounded Borel measurable function $\alpha$ on $R^{1}$ with supp $\alpha\subset\Gamma$ , and any
$x,$ $y\in \mathfrak{X}_{2}$ , we have

(6.6) $e_{2}(\lambda\pm i\epsilon;x, \alpha(H_{2,ac})y)\in L^{1}(R_{\lambda}^{1})$ , $\epsilon>0$

and

(6.7)
$e_{2}(\lambda\pm i\epsilon;x, \alpha(H_{2,ac})))\rightarrow\overline{\alpha(\lambda)}e_{2}(\lambda;\overline{(\epsilon\rightarrow+0})x,$

$\gamma$) in $L^{1}(R_{\lambda}^{1})$ .

Furthermore, the family $\{e_{2}(\lambda\pm i\epsilon;\cdot, \alpha(H_{2,ac})y)|\lambda\in\Gamma, \epsilon>0\}$ of linear forms on
$\mathfrak{X}_{2}$ is equi-continuous.

PROOF. Since $e_{2}$ is a spectral form for $H_{2}$ , we have

(6.8) $ e_{2}(\lambda\pm i\epsilon;x, \alpha(H_{2,\alpha c})y)=\frac{\epsilon}{\pi}\int_{-\infty}^{\infty}\frac{1}{(\lambda-\mu)^{2}+\epsilon^{2}}\overline{\alpha(\mu})e_{2}(\mu;x, y)d\mu$ .

Hence, $e_{2}(\lambda\pm i\epsilon;x, \alpha(H_{2,\alpha c})y)$ is the Poisson integral of $f(\mu)=\overline{\alpha(\mu})e_{2}(\mu;x, y)$ ,

where $f\in L^{1}(R^{1})$ by supp $\alpha\subset\Gamma$ and (2.4). (6.6) and (6.7) are then immediate
consequences of well-known property of the Poisson integral. The equi-con-
tinuity of the family in the lemma is obvious by (L.A.P.) and (6.8). Q.E.D.

LEMMA 6.6. Let (L.A.P.), (X), and $(Q^{\pm})$ be satisfied. Let $\Gamma$ be bounded
and let $\alpha$ be as in Lemma 6.5. Then for any $x\in \mathfrak{X}_{1}$ and $y\in \mathfrak{X}_{2}$ , there exist a
sequence of positive numbers $\{\epsilon_{m}\}$ , a Borel subset $D$ of $\Gamma$ and a Borel set $A$ in
$R^{1}$ which satisfy the following conditions $(a)-(d)$ :

(a) $\lim_{m\rightarrow\infty}\epsilon_{m}=0$ .
(b) $m(\Gamma-D)=0,$ $m(R^{1}-A)=0$ and $D\subset A$ .
(c) For each $\lambda\in A$ , there exist the following three limits:

$\lim_{m\rightarrow\infty}Q^{\pm}(\lambda\pm i\epsilon_{m})x$ in $\mathfrak{X}_{2}$ ,

$\lim_{m\rightarrow\infty}I_{2}^{*}\delta_{2}(\lambda\pm i_{\hat{c}_{m}})\alpha(H_{2,ac})y$ in $\mathfrak{X}_{2}^{*}$ ,

$\lim_{m\rightarrow\infty}e_{2}(\lambda\pm i\epsilon_{m} ; Q^{\pm}(\lambda\pm i\epsilon_{m})x, \alpha(H_{2,ac})y)$ in $C$ .

(d) For each $\lambda\in D(\subset A)$ , we have

(6.9) $\lim_{m\rightarrow\infty}e_{2}(\lambda\pm i\epsilon_{m} ; Q^{\pm}(\lambda\pm i\epsilon_{m})x, \alpha(H_{2,ac})y)$

$=\overline{\alpha(\lambda)}e_{2}(\lambda;\lim_{m\rightarrow\infty}Q^{\pm}(\lambda\pm i\epsilon_{m})x, y)$ .

PROOF. We know by $(Q^{\underline{\tau}})$ and Lemma 6.4 that $1.i.m$ .$Q^{\pm}(\lambda\pm i\epsilon)x\epsilon\rightarrow+0$ in $L^{2}(R_{\lambda}^{1} ; \mathfrak{X}_{2})$

and $1.i.m$ .$I_{2}^{*}\delta_{2}(\lambda\pm i\epsilon)\alpha(H_{2,ac})y\epsilon\rightarrow+0$ in $L^{2}(R_{\lambda}^{1} ; \mathfrak{X}_{2}^{*})$ exist. Hence there exist a sequence
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$\{\epsilon_{m}\}$ of positive numbers and a Borel set $A$ in $R^{1}$ such that $\lim_{m\rightarrow\infty}\epsilon_{m}=0,$ $m(R^{1}-A)$

$=0$, and (c) holds. Thus it remains to prove the existence of $ D\subset\Gamma$ that
satisfies (b) and (d). But this follows immediately from the equi-continuity
of $\{e_{}(\lambda\pm i\epsilon_{m} ; \cdot, \alpha(H_{2,ac})y|\lambda\in\Gamma, m=1, 2, \}$ , the existence of the limit
$\lim_{m\rightarrow\infty}Q^{\pm}(\lambda\pm i\epsilon_{m})x$, and (6.7). (We switch to another subsequence, if necessary.)

Q. E. D.
LEMMA 6.7. Let (L.A.P.), (X), and $(Q^{\pm})$ be satisfied. Let $\Gamma$ be bounded

and Put $\Gamma^{\prime}=R^{1}-\Gamma$ . Let $\alpha$ be as in Lemma 6.5. Then for any $x\in \mathfrak{X}_{1},$ $y\in \mathfrak{X}_{2}$ ,
and $\psi\in L^{\infty}(\Gamma^{\prime})$ , we have

(6.10)
$L_{\epsilon}^{\pm}\equiv\int_{\Gamma^{\prime}}\psi(\lambda)e_{2}(\lambda\pm i\epsilon;Q^{\pm}(\lambda\pm i\epsilon)x, \alpha(H_{2,ac})y)d\lambda\rightarrow 0(\epsilon\rightarrow+0)$

PROOF. From the definition of $e_{2}(i. e. (2.5))$ , we see that the integrand of
(6.10) is equal to

$\psi(\lambda)(Q^{\pm}(\lambda\pm i\epsilon)x, \delta_{2}(\lambda\pm i\epsilon)\alpha(H_{2,ac})y)_{\mathfrak{H}}$ .

Hence we know by $(Q^{\pm})$ and Lemma 6.4 that $\lim_{\epsilon\rightarrow+0}L_{\epsilon}^{\pm}$ exists. Thus using Lemma
6.6, we obtain

(6.11) $|\lim_{\text{\’{e}}\rightarrow+0}L_{e}^{\pm}|\leqq\Vert\psi\Vert_{L^{\infty}(\Gamma^{\prime})}[\int_{\Gamma^{\prime}}\Vert\lim_{m\rightarrow\infty}Q^{\pm}(\lambda\pm i\epsilon_{m})x\Vert_{\chi_{2}}^{2}d\lambda]^{1/2}$

$\times[\int_{\Gamma^{\prime}}\Vert\lim_{m\rightarrow\infty}I_{2}^{*}\delta_{2}(\lambda\pm i\epsilon_{m})\alpha(H_{2,ac})y\Vert_{X_{2}^{*}}^{2}d\lambda]^{1/2}$ .
On the other hand, by Lemma 6.5, $(\delta_{2}(\lambda\pm i\epsilon)\alpha(H_{2,ac})y, z)_{\mathfrak{H}}=e_{2}(\lambda\pm i\epsilon;y,\overline{\alpha}(H_{2,ac})z)$

converges to $\alpha(\lambda)e_{2}(\lambda;y, z)$ in $L^{1}(R_{\lambda}^{1})$ as $\epsilon\rightarrow+0$ for each $z\in \mathfrak{X}_{2}$ . Thus for any
$z\in \mathfrak{X}_{2}$ and any Borel subset $\Delta$ of $\Gamma^{\prime}$ such that $ m(\Delta)<\infty$ , we have

$\int_{\Gamma},$
$\langle\lim_{m\rightarrow\infty}I_{2}^{*}\delta_{2}(\lambda\pm i\epsilon_{m})\alpha(H_{2,ac})y, x_{\angle}(\lambda)z\rangle d\lambda$

$=\int_{T^{\prime}}\chi_{\Delta}(\lambda)\lim_{m\rightarrow\infty}(\delta_{2}(\lambda\pm i\epsilon_{m})\alpha(H_{2,ac})y, z)_{\mathfrak{H}}d\lambda$

$=\int_{\Gamma^{\prime}}\chi_{\Delta}(\lambda)\alpha(\lambda)e_{2}(\lambda;y, z)d\lambda=0$

since $\alpha=0$ on $\Gamma^{\prime}$ . Thus, from the fact that $\{\chi_{\Delta}(\lambda)z|\Delta\subset\Gamma^{\prime}, m(\Delta)<\infty, z\in \mathfrak{X}_{2}\}$

is a fundamental subset of $L^{2}(\Gamma^{\prime} ; \mathfrak{X}_{2})$ , we obtain

(6.12) $\lim_{m\rightarrow\infty}I_{2}^{*}\delta_{2}(\lambda\pm i\epsilon_{m})\alpha(H_{2,ac})y=0$ in $L^{2}(\Gamma^{\prime} ; \mathfrak{X}_{2}^{*})$ .

From (6.11) and (6.12), we obtain the desired result. Q. E. D.
Now in order to formulate and provea proposition in the next subsection,

let us introduce some notations. Let (X) be satisPed. For each $z\in C^{\pm},$ $u\in \mathfrak{H}$,
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and $v\in \mathcal{D}(H_{1})=\mathcal{D}(H_{2}),$ Put

(6.13) $\tau^{\pm}(z)u=(S^{\pm}(z)-S^{\mp}(\overline{z}))u/2\pi i$ ,

(6.14) $D^{\pm}(z)v=(G^{\pm}(z)-G^{\mp}(\overline{z}))v/2\pi i=(Q^{\pm}(z)-Q^{\mp}(\overline{z}))v/2\pi i$ .
Then by (2.9) we $h$ave for $z\in C^{\pm}$ and $u\in \mathcal{D}(H_{1})$ ,

(6.15) $\tau^{\pm}(z)u=\pm\delta_{2}(z)G^{\pm}(z)u+R_{2}(\overline{z})D^{\pm}(z)u$ .

6.3. A proposition. Our aim in this subsection is to prove a Proposition
which will play an important role in the proof of the invariance principle, etc.
Let (L.A.P.) be satisfied. Then it can be easily seen that there exists a non-
negatlve, self-adjoint and bounded operator $K_{2}(\lambda)$ in $\mathfrak{X}_{2}$ for any $\lambda\in\Gamma$ which
satisfies the following three conditions:

(6.16) $K_{2}(\cdot)y:\Gamma\rightarrow \mathfrak{X}_{2}$ is strongly continuous for each $y\in \mathfrak{X}_{2}$ ;

(6.17) $e_{2}(\lambda;z, y)=(K_{2}(\lambda)z, y)_{\chi_{2}}=(z, K_{2}(\lambda)y)_{\chi_{2}}$ for every $z,$ $y\in \mathfrak{X}_{2}$

and $\lambda\in\Gamma$ ; and

(6.18) $\sup_{\lambda\in\Gamma}\Vert K_{2}(\lambda)\Vert_{B(\chi_{2})}<\infty$ .

Now we can prove the following proposition.
PROPOSITION 6.8. Let $i$) $-iv$), (L.A.P.), (X) and $(Q^{\pm})$ be satisfied and let $\Gamma$

be bounded. Let $\alpha$ be a bounded Borel measurable function on $R^{1}$ such that
supp $\alpha\subset\Gamma$ . Then for any $x\in \mathfrak{X}_{1}$ and $y\in \mathfrak{X}_{2}$ , we have

(6.19) $(\tau^{\pm}(\lambda\pm i\epsilon)x, \alpha(H_{2,ac})y)_{\mathfrak{H}}\in L^{1}(R_{\lambda}^{1})$

for any $\epsilon>0$ . Furthermore let $\Psi\in L^{\infty}(R^{1})$ . Then the limit in the following in-
equality exists and we have

(6.20) $|\lim_{\epsilon\rightarrow+0}\int_{-\infty}^{\infty}\Psi(\lambda)(\tau^{\pm}(\lambda\pm i\epsilon)x, \alpha(H_{2,ac})y)_{f},d\lambda$

$\mp\int_{\Gamma}\Psi(\lambda)\overline{\alpha(\lambda)}e_{2}(\lambda;(\Phi^{\pm}x)(\lambda), y)d\lambda|^{2}$

$\leqq C(x)\Vert\Psi\Vert_{L^{\infty}(R^{1})}^{2}\int_{0}^{\infty}\Vert\int_{\Gamma}\alpha(\lambda)e^{\mp is\lambda}K_{2}(\lambda)yd\lambda\Vert_{K2}^{2}ds$ .

Here $C(x)$ is a Positive constant depending only on $x$, and $\Phi^{\pm}$ is defined by (6.2).

PROOF. From (6.15) and (2.10), we have

(6.21) $(\tau^{\pm}(\lambda\pm i\epsilon)x, \alpha(H_{2,ac})y)_{5}=\pm A_{1,\epsilon}^{\pm}(\lambda)\pm A_{2,\epsilon}^{\pm}(\lambda)+A_{a\epsilon}^{\pm}(\lambda)$ ,

where
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(6.22) $\left\{\begin{array}{l}A_{1\epsilon}^{\pm}(\lambda)=e_{2}(\lambda\pm i\epsilon;x, \alpha(H_{2,ac})y),\\A_{2,\epsilon}^{\pm}(\lambda)=e_{2}(\lambda\pm i\epsilon;Q^{\pm}(\lambda\pm i\epsilon)x, \alpha(H_{2,ac})y),\\A_{3,\epsilon}^{\pm}(\lambda)=(D^{\pm}(\lambda\pm i\epsilon)x, R_{2}(\lambda\pm i\epsilon)\alpha(H_{2,ac})y)_{\mathfrak{H}}.\end{array}\right.$

Let us investigate some properties of $A_{j,\epsilon}^{\pm}(j=1,2,3)$ for the moment.
$A_{1\epsilon}^{\underline{\star}}$ : By Lemma 6.5, we have $A_{1,\epsilon}^{\pm}\in L^{1}(R^{1})$ for $\epsilon>0$ and

(6.23) $\lim_{\epsilon\rightarrow+\infty}\int_{-\infty}^{\infty}\Psi(\lambda)A_{1,\epsilon}^{\pm}(\lambda)d\lambda=\int_{I}\Psi(\lambda)\overline{\alpha(\lambda)}e_{2}(\lambda;x, y)d\lambda$ .

$A_{2,\text{\’{e}}}^{\pm}$ : Lemma 6.4 and $(Q^{\pm})$ show that $A_{2,\epsilon}^{\pm}\in L^{1}(R^{1})$ for $\epsilon>0$ and that $\lim_{\text{\’{e}}\rightarrow+0}A_{2,\epsilon}^{\pm}$

exists in $L^{1}(R^{1})$ . Thus we have by Lemma 6.7,

(6.24) $\lim_{\epsilon\rightarrow+0}\int_{-\infty}^{\infty}\Psi(\lambda)A_{2\epsilon}^{\pm}(\lambda)d\lambda=\lim_{\epsilon\rightarrow+0}(\int_{\Gamma}+\int_{\Gamma},)\Psi(\lambda)A_{2\epsilon}^{\pm}(\lambda)d\lambda$

$=\int_{\Gamma}\Psi(\lambda)\lim_{\epsilon\rightarrow+0}A_{2\epsilon}^{\pm}(\lambda)d\lambda$ .

Lemma 6.6 shows that this is equal to

(6.25) $\int_{\Gamma}\Psi(\lambda)\lim_{m\rightarrow\infty}A_{2,\epsilon m}^{\pm}(\lambda)d\lambda$

$=\int_{\Gamma}\Psi(\lambda)\overline{\alpha(\lambda)}e_{2}(\lambda;\varliminf Q^{\pm}(\lambda\pm i\epsilon_{m})x, y)d\lambda$

where $\{\epsilon_{m}\}$ is the sequence aPpearing in Lemma 6.6.
$A_{3,\epsilon}^{\pm}$ : Since $D^{\pm}(\lambda\pm i\epsilon)x\in \mathfrak{X}_{2}$ for all $\lambda\in R^{1}$ and $\epsilon>0$ by $(Q$ ‘ $)$ and (6.14), and

since $e_{2}$ is $a$ spectral form for $H_{2}$ , we have for $\lambda\in R^{1}$ and $\epsilon>0$

(6.26) $ A_{3,\epsilon}^{\pm}(\lambda)=\int_{\Gamma}\frac{\overline{\alpha(\mu)}}{\mu-(\lambda\mp i\epsilon)}e_{2}(\mu;D^{\pm}(\lambda\pm i\epsilon)x, y)d\mu$ .

By (6.18), we have $\alpha(\cdot)K_{2}(\cdot)y\in L^{1}(R^{1} ; \mathfrak{X}_{2})\cap L^{2}(R^{1} ; \mathfrak{X}_{2})$ . Thus the integral

(6.27) $ h^{\pm}(\lambda\pm i\epsilon)=\int_{\Gamma}\frac{\alpha(\mu)}{\mu-(\lambda\pm i\epsilon)}K_{2}(\mu)yd\mu$

converges in $\mathfrak{X}_{2}$ for any $\lambda\in R^{1}$ and $\epsilon>0$, and moreover we have $h^{\pm}\in H^{2}(C^{\pm} ; \mathfrak{X}_{2})$ .
Therefore using (6.17), we can write

(6.28) $A_{3,\epsilon}^{\pm}(\lambda)=(D^{\pm}(\lambda\pm i\epsilon)x, h^{\pm}(\lambda\pm i\epsilon))_{\chi_{2}}$

for $\lambda\in R^{1}$ and $\epsilon>0$ . Hence by $(Q^{\pm})$ and $h^{\pm}\in H^{2}(C^{\pm} ; \mathfrak{X}_{2})$ , we have $A_{3,\epsilon}^{\pm}\in L^{1}(R^{1})$

and

(6.29) $\lim_{\epsilon-+0}\int_{-\infty}^{\infty}\Psi(\lambda)A_{3\epsilon}^{\pm}(\lambda)d\lambda$

$=\int_{-\infty\epsilon\rightarrow+0}^{\infty}\Psi(\lambda)(1.i.m. D^{\pm}(\lambda\pm i\epsilon)x, h^{\pm}(\lambda))_{\chi_{2}}d\lambda$ ,
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where $h$ ‘ $(\lambda)=1.i.m$ .$h^{\pm}(\lambda\pm i\epsilon)\epsilon\rightarrow+0$ in $L^{2}(R_{\lambda}^{1} ; \mathfrak{X}_{2})$ . On the other hand, by the theory

of Fourier transformation for Hilbert space valued functions, we get

(6.30) $\int_{-\infty}^{\infty}\Vert h^{\pm}(\lambda)\Vert_{X_{2}}^{2}d\lambda=2\pi\int_{0}^{\infty}\Vert\int_{\Gamma}\alpha(\lambda)e^{\mp is\lambda}K_{2}(\lambda)yd\lambda\Vert_{x_{2}}^{2}ds$ .

Thus using Schwarz inequality we obtain

(6.31) $|\lim_{\epsilon\rightarrow+0}\int_{-\infty}^{\infty}\Psi(\lambda)A_{a\epsilon}^{\pm}(\lambda)d\lambda|^{2}$

$\leqq C(x)\Vert\Psi\Vert_{L^{\infty}(R^{1)}}^{2}\int_{0}^{\infty}\Vert\int_{\Gamma}\alpha(\lambda)e^{\mp is\lambda}K_{2}(\lambda)yd\lambda\Vert_{x_{2}}^{2}ds$ ,

where $C(x)=2\pi\int_{-\infty\text{\’{e}}\rightarrow+0}^{\infty}\Vert 1.i.m$ . $ D^{\pm}(\lambda\pm i\epsilon)x\Vert_{\chi_{2}}^{2}d\lambda$ .
Now it is easy to see that Proposition 6.8 holds. The relation (6.19) fol-

lows from $A_{J^{\epsilon}}^{\pm},\in L^{1}(R^{1})(j=1,2,3, \epsilon>0)$ . The inequality (6.20) can be easily
proved by using (6.21), (6.23), (6.24), (6.25), and (6.31). Q. E. D.

6.4. Time dependent wave operators. In this subsection we shall prove
Theorems 2.1 and 2.2. In the proof we do not assume $\mathfrak{X}_{j}$ is dense in $\mathfrak{H}$ (cf.

footnote 4)). For this purpose, it suffices to prove that, under the assumptions
of Theorem 2.1 or 2.2, we have

(6.32) $W_{\Gamma}^{\pm}u=\lim_{t\rightarrow\pm\infty}W_{D}(t)u$ for $u\in \mathfrak{L}_{1,ac}(\Gamma)$ ,

where $W_{D}(t)=e^{itH_{2}}e^{-itH_{1}-iX(t)}$ , and $W_{\Gamma}^{\pm}$ is the stationary wave operator in Theorem
6.1. In fact, Theorem 2.1 follows from Theorem 6.1 and (6.32), and Theorem
2.2 from Theorem 6.1, Remark 6.2 and (6.32), because conditions $(a)-(c)$ of
Theorem 2.2 are equivalent to $(\mathcal{F})$ and $(\mathcal{F}\Phi)$ of Theorem 5.1 with $\Phi=\Phi^{\pm}$ .

Now let us prove(6.32). Since $W_{D}(t)$ is unitary and $\cup \mathfrak{L}_{1,ac}(\tilde{\Gamma})$ is funda-
$\tilde{\Gamma}\subset\Gamma$

mental in $\mathfrak{L}_{1,ac}(\Gamma)$ , where $\tilde{\Gamma}$ varies over the set of all bounded Borel subsets
of $\Gamma$, we may and shall assume $\Gamma$ is bounded.

Let $x\in \mathfrak{X}_{1},$ $y\in X_{2}$ and a Borel subset $\Delta$ of $\Gamma$ be arbitrary but fixed. In
Proposition 6.8, put $\Psi(\lambda)=e^{-it\lambda}$ and $\alpha(\lambda)=e^{-it\lambda}x_{\Delta}(\lambda)$ . Then from (6.20), we obtain
for all $t\in R^{1}$ ,

(6.33) $|\lim_{\epsilon\rightarrow+0}\int_{-\infty}^{\infty}e^{-it\lambda}(\tau^{\pm}(\lambda\pm i\epsilon)x, e^{-itH_{2}}E_{2,ac}(\Delta)y)_{\mathfrak{H}}d\lambda$

$\mp\int_{\Gamma}\chi_{\Delta}(\lambda)e_{2}(\lambda;(\Phi^{\pm}x)(\lambda), y)d\lambda|^{2}$

$\leqq C(x)\int_{0}^{\infty}\Vert\int_{\Gamma}\chi_{\Delta}(\lambda)e^{-it\lambda\mp is\lambda}K_{2}(\lambda)yd\lambda\Vert_{x_{2}}^{2}ds$ ,

where $C(x)$ is $a$ positive constant depending only on $x$ .
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Now let us put for $t\in R^{1}$ and $\epsilon>0$,

$f_{\epsilon,t}(s)=e^{-\epsilon|s|}(e^{-tsH_{1}-iX(s)}x, e^{-itH_{2}}E_{2,ac}(\Delta)y)_{\mathfrak{H}}$ .
Then for any $t\in R^{1}$ and $\epsilon>0$, we have $f_{\epsilon,t}\in L^{1}(R^{1})$ . Thus from the definitions
of $\tau^{\pm}$ and $S^{\pm}$ , and (6.19), we get

$-2\frac{1}{\pi}\int_{-\infty}^{\infty}e^{is\lambda}f_{\epsilon,t}(s)ds=\pm(\tau^{\pm}(\lambda\pm i\epsilon)x, e^{-itH_{2}}E_{2,ac}(\Delta)y)_{\mathfrak{H}}\in L^{1}(R_{\lambda}^{1})$

for $t\in R^{1}$ and $\epsilon>0$ . Moreover by $(BC),$ $f_{\epsilon,t}(s)$ is of bounded variation in $s$ on
any finite interval and continuous in $s$ . Thus we can aPply the inversion
formula for Fourior transforms to $f_{\epsilon,t}$ and we obtain

\langle 6.34) $ f_{\epsilon,t}(s)=\pm\int_{-\infty}^{\infty}e^{-is\lambda}(\tau^{\pm}(\lambda\pm i\epsilon)x, e^{-itH_{2}}E_{2,ac}(\Delta)y)_{\mathfrak{H}}d\lambda$

for any $t,$ $s\in R^{1}$ and $\epsilon>0$ . Therefore, putting $s=t$, letting $\epsilon\rightarrow+0$ in (6.34), and
remembering the definition of $f_{\epsilon,t}(s)$ , we have for any $t\in R^{1}$

(6.35) $\lim_{\epsilon\rightarrow+0}\int_{-\infty}^{\infty}e^{-it\lambda}(\tau^{\pm}(\lambda\pm i\epsilon)x, e^{-itH_{2}}E_{2,ac}(\Delta)y)_{\mathfrak{H}}d\lambda$

$=\pm(W_{D}(t)x, E_{2,ac}(\Delta)y)_{\mathfrak{H}}$ .
On the other hand, by Theorem 6.1 and Remark 6.2, we have

(6.36) $\int_{\Gamma}\chi_{\Delta}(\lambda)e_{2}(\lambda;(\Phi^{\pm}x)(\lambda), y)d\lambda=(W_{\Gamma}^{\pm}x, E_{2,ac}(\Delta)y)_{\mathfrak{H}}$ ,

under either assumptions of Theorem 2.1 or Theorem 2.2. Thus from (6.33),
(6.35), (6.36), and the fact that the right-hand side of (6.33) converges to zero
as $ t\rightarrow\pm\infty$ , we obtain

\langle 6.37) $\lim_{t\rightarrow\pm\infty}((W_{D}(t)-W_{\Gamma}^{\pm})x, E_{2,ac}(\Delta)y)_{\mathfrak{H}}=0$

for any $x\in \mathfrak{X}_{1},$ $y\in \mathfrak{X}_{2}$ , and $\Delta\subset\Gamma,$ $\Delta\in \mathcal{B}$ .
Now from (6.37), we can show that for any $u\in \mathfrak{L}_{1}$ and $w\in \mathfrak{L}_{2,ac}(\Gamma)$ .

(6.38) $\lim_{t\rightarrow\pm\infty}(W_{D}(t)u, w)_{\mathfrak{H}}=(W_{\Gamma}^{\pm}u, w)_{\mathfrak{H}}$ .

In fact, since $W_{D}(t)$ and $W_{\Gamma}^{\pm}$ are uniformly bounded and the vectors of the
form $E_{2,ac}(\Delta)y,$ $y\in \mathfrak{X}_{2},$ $\Delta\subset\Gamma,$ $\Delta\in \mathcal{B}$ , are fundamental in $\mathfrak{L}_{2,ac}(\Gamma)$ , it is easy to
see that (6.38) holds for any $u\in \mathfrak{X}_{1}$ and $w\in \mathfrak{L}_{2,ac}(\Gamma)$ . To prove (6.38), it now
suffices to consider the case $u=e^{-isH_{1}}x,$ $x\in \mathfrak{X}_{1},$ $s\in R^{1}$, and $w\in \mathfrak{L}_{2,ac}(\Gamma)$ , for such
$u’ s$ are fundamental in $\mathfrak{L}_{1}$ . But using $(XA),$ $e^{isH_{2}}w\in \mathfrak{L}_{2,ac}(\Gamma)$ , and the intertwin-
ing property (4.7) of $W_{\Gamma}^{\pm}$ , we obtain $\lim_{\iota\rightarrow\pm\infty}(W_{D}(t)e^{-isH_{1}}x, w)_{\mathfrak{H}}=$

$\lim_{t\rightarrow\pm\infty}(W_{D}(t+s)e^{i(X(t+s)-X(t))}x, e^{isH_{2}}w)_{\mathfrak{H}}=\lim_{t\rightarrow\pm\infty}(W_{D}(t+s)x, e^{isH_{2}}w)_{\mathfrak{H}}=(W_{\Gamma}^{\pm}x, e^{isH_{2}}w)_{\mathfrak{H}}=$
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$(W_{\Gamma}^{\pm}e^{-isH_{1}}x, w)_{\mathfrak{H}}$ , as desired.
Suppose now that $u\in \mathfrak{L}_{1,ac}(\Gamma)\subset \mathfrak{L}_{1}$ . Since $\Vert W_{D}(t)\Vert_{B(\mathfrak{H})}\leqq 1$ and $\Vert W_{\Gamma}^{\pm}u\Vert_{\mathfrak{H}}=\Vert u\Vert_{\mathfrak{H}}$ ,

we have $\Vert W_{D}(t)u-W_{\Gamma}^{\pm}u\Vert_{\mathfrak{H}}^{2}\leqq 2{\rm Re}(W_{\Gamma}^{\pm}u-W_{D}(t)u, W_{\Gamma}^{\pm}u)_{\mathfrak{H}}$ . The right-hand side
tends to zero as $ t\rightarrow\pm\infty$ by (6.38), since $W_{\Gamma}^{\pm}u\in \mathfrak{L}_{2,ac}(\Gamma)$ . Thus we have proved
(6.32).

6.5. The invariance principle. We shall prove Theorem 2.3 and the last
half of Remark 2.4 without assuming the denseness of $\mathfrak{X}_{j}$ in $\mathfrak{H}$ as in the pre-
vious subsection. For this purpose, it is sufficient to prove

(6.39) $W_{\Gamma}^{\pm}u=\lim_{t\rightarrow\pm\infty}W_{\varphi}^{as}(t)u=\lim_{t\rightarrow\pm\infty}W_{\varphi}(t)u$ for $u\in \mathfrak{L}_{1,ac}(\Gamma)$ ,

where $W_{\varphi}^{as}(t)=e^{it\varphi(H_{2})}Q_{\varphi}^{as}(t)$ and $W_{\varphi}(t)=e^{it\varphi(H_{2})}Q_{\varphi}(t)$ , with $\mathfrak{H}_{1,\alpha c}(\Gamma)$ in conditions
$(Q_{\varphi}^{as})$ and $(\mathfrak{X}_{1})$ replaced by $\mathfrak{L}_{1,ac}(\Gamma)$ .

Let $x\in \mathfrak{X}_{1},$ $y\in \mathfrak{X}_{2}$ and $\Delta\subset\Gamma,$ $\Delta\in \mathcal{B}$ be arbitrarily fixed. In Proposition 6.8,
put $\Psi(\lambda)=e^{-it\varphi(\lambda)}\eta(\lambda)$ and $\alpha(\lambda)=e^{-it\varphi(\lambda)}x_{\Delta}(\lambda)$ , where $\eta$ is taken as in \S 2.1. Then
from (6.20), we obtain for all $t\in R^{1}$

(6.40) $|\lim_{\epsilon\rightarrow T0}\int_{-\infty}^{\infty}\eta(\lambda)e^{-it\varphi(\lambda)}(\tau^{\pm}(\lambda\pm i\epsilon)x, e^{-it\varphi(H_{2})}E_{2,ac}(\Delta)y)_{\mathfrak{H}}d\lambda$

$\mp\int_{\Gamma}\chi_{\Delta}(\lambda)e_{2}(\lambda;(\Phi^{\pm}x)(\lambda), y)d\lambda|^{2}$

$\leqq C(x)\int_{0}^{\infty}\Vert\int_{\Gamma}\chi_{\Delta}(\lambda)e^{-it\varphi(\lambda)\mp is\lambda}K_{2}(\lambda)yd\lambda\Vert_{x_{2}}^{2}ds$ .

Since $\sup_{\lambda\in R^{1}}\Vert\tau^{\pm}(\lambda\pm i\epsilon)\Vert_{B(\mathfrak{H})}<\infty$ for any $\epsilon>0$ by definition, the following integral

converges in $\mathfrak{H}$ for any $\epsilon>0$ and $u\in \mathfrak{H}$ :

$\int_{-\infty}^{\infty}\eta(\lambda)e^{-it\varphi(\lambda)}\tau^{\pm}(\lambda\pm i\epsilon)ud\lambda$ .

By Fubini’s theorem and the definition of $\tau^{\pm}$ , this becomes equal to

$\pm\int_{-\infty}^{\infty}a_{\varphi}(t, r)(e^{-\epsilon|\mathcal{T}|}e^{-irH_{1}-iX(r)}u)dr$ ,

and hence converges to $\pm Q_{\varphi}(t)u$ as $\epsilon\rightarrow+0$, since $a_{\varphi}(t, \cdot)\in L^{1}(R^{1})$ for $t\in R^{1}$ .
Thus for every $t\in R^{1}$, we have

(6.41) $\lim_{\in\rightarrow+0}\int_{-\infty}^{\infty}\eta(\lambda)e^{-it\varphi(\lambda)}(\tau^{\pm}(\lambda\pm i\epsilon)x, e^{-it\varphi(H_{2})}E_{2,ac}(\Delta)y)_{\mathfrak{H}}d\lambda$

$=\pm(W_{\varphi}(t)x, E_{2,ac}(\Delta)y)_{\mathfrak{H}}$ .
On the other hand, under either assumptions of Theorem 2.3 or the last half
of Remark 2.4, relation (6.36) holds. Thus from (6.40), (6.41), (6.36), and the
fact that the right-hand side of (6.40) converges to zero as $ t\rightarrow\pm\infty$ since $\varphi^{\prime}>0$
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on $I$ (cf. Lemma 4.6 of Chapt. X of Kato [12], and Lemma 7.6 of Kato and
Kuroda [13]), we obtain

(6.42) $\lim_{r\rightarrow\pm\infty}(W_{\varphi}(t)x-W_{\Gamma}^{\pm}x, E_{2,ac}(\Delta)y)_{\mathfrak{H}}=0$

for all $x\in \mathfrak{X}_{1},$ $y\in \mathfrak{X}_{2}$ , and $\Delta\subset\Gamma,$ $\Delta\in \mathcal{B}$ . From this and (2.18) in $(Q_{\varphi}^{as})$ , we get

(6.43) $\lim_{f\rightarrow\pm\infty}(W_{\varphi}^{as}(t)x-W_{\Gamma}^{\pm}x, E_{2,ac}(\Delta)y)_{\mathfrak{H}}=0$

for any $x\in \mathfrak{X}_{1}\cap \mathfrak{L}_{1,ac}(\Gamma),$ $y\in \mathfrak{X}_{2}$ and $\Delta\subset\Gamma,$ $\Delta\in \mathcal{B}$ . Thus by $\Vert W_{\varphi}^{as}(t)\Vert_{B(\mathfrak{L}_{1,ac^{(\Gamma)\mathfrak{H})}}}$,
$\leqq 1$ and $(\mathfrak{X}_{1})$ , we can easily prove(6.39) in a way similar to the last part of
\S 6.4.
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