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\S 1. Introduction and theorems.

The notion of shape was originally introduced by Borsuk and has been
extended by many authors (see Borsuk [2] and [3] for shape theory). In this
paper we shall use the ANR-systems aPproach to shape theory of Marde\v{s}i\v{c}
and Segal [9].

In [1], Borsuk introduced the notion of movability and raised the follow-
ing problem: Let $X$ and $A$ be movable compact metric spaces such that
$A\subset X$. Is the Cech homology sequence of such a pair (X, $A$) necessarily exact?
Concerning this problem, Overton [11] constructed a counter-example and
proved that Borsuk’s problem is true if a pair(X, $A$) is movable. In this paper
we shall consider Borsuk’s problem under a different condition. Specifically
we show the following theorem.

THEOREM 1. Let $X$ and $A$ be movable compact metric spaces such that
$A\subset X$ . If the n-th $\check{C}ech$ homology of $X$ is a countable group for each $n$ , then
the $\check{C}ech$ homology sequence of (X, $A$) is exact.

Recently Edward and Geoghegan [6] proved a very important theorem,
”stability theorem”, which gives algebraic characterizations of FANR-continua
in terms of the category of pro-groups or by using topologies on shape groups.
These characterizations, however, are not simple. Therefore, in this paper we
shall give some improvements on these characterizations. That is, we shall
show the following theorem.

THEOREM 2. Let (X, x) be a pOinted compact connected metric space with
finite dimension. Then the following conditions are equivalent:

(A) (X, x) is Pointed movable and the n-th shaPe group of (X, x) is a count-
able group for each $n\geqq 1$ .

(B) The n-th pro-homotoPy grouPs of (X, x) satisfies Mittag-Leffler condition
and the n-th shaPe group of (X, x) is a countable group for each $n\geqq 1$ .

(C) (X, x) is a pointed FANR-space.
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\S 2. Mittag-Leffler condition and lemmas.

In this section we consider only inverse sequences of groups, that is,
inverse systems of groups directed by all positive integers, simply denoted
by $\{G_{i}\}$ .

DEFINITION 1. Let $\{G_{i}, \pi_{i}^{j}\}$ be an inverse sequence of groups. It is said
to be a normal inverse sequence if $\pi_{i}^{j}(G_{j})$ is a normal subgroup of $G_{i}$ for each
$i,$ $j,$ $i\leqq j$ .

DEFINITION 2. An inverse sequence $\{G_{i}, \pi_{i}^{j}\}$ of groups satisfies Mittag-

Leffler condition if for each $i$, there exists $j,$ $j\geqq i$ such that $\pi_{i}^{j}(G_{j})=\pi_{i}^{k}(G_{k})$ for
each $k,$ $k\geqq j$ .

Let $\{G_{i}, \pi_{i}^{j}\}$ and $\{H_{i}, \rho_{i}^{j}\}$ be inverse sequences of groups. Then $\{g_{i}\}$ is
said to be a map from $\{G_{i}\}$ to $\{H_{i}\}$ if each $g_{i}$ : $G_{i}\rightarrow H_{i}$ is a group homomor-
phism such that $g_{i}\pi_{i}^{i+1}=\rho_{i}^{i+1}g_{i+1}$ for each $i$ (in notation $\{g_{i}\}$ : $\{G_{i}\}\rightarrow\{H_{i}\}$ ). A

sequence
$*\rightarrow\{K_{i}\}\rightarrow^{\{f_{i}\}}\{G_{i}\}\rightarrow^{\{g_{i}\}}\{H_{i}\}\rightarrow*is$

said to be exact if for each $i$,
$f_{i}$ $g_{i}$

$*\rightarrow K_{i}\rightarrow G_{i}\rightarrow H_{i}\rightarrow*is$ exact in the usual sense where $*means$ the
null group.

The following lemma is easily proved by the definition of Mittag-Leffler
condition.

LEMMA 1. Let
$\{G_{i}\}\rightarrow^{\{g_{i}\}}\{H_{i}\}\rightarrow*be$

exact. If $\{G_{i}\}$ satisfies Mittag-Leffler
condition, then $\{H_{i}\}$ satisfies Mittag-Leffler condition.

Next, we investigate the functors $\lim_{\leftarrow}$ and $\lim_{\leftarrow}^{1}$ for inverse sequences of

groups. In this Paper we use the definition of Bousfield and Kan [4, p. 251],

because we have to consider the non-abelian groups. Let $\{G_{i}, \pi_{i}^{j}\}$ be an inverse
sequence of groups. Then $\lim_{\leftarrow}\{G_{i}\}$ means the inverse limit group of $\{G_{i}\}$ ,

and $\lim_{\leftarrow}1\{G_{i}\}$ is the pointed set as follows; $\lim_{\leftarrow}^{1}\{G_{i}\}$ consists of the equivalence

classes of $\prod_{i=1}^{\infty}G_{i}$ under the equivalence relation given by $x\sim y$ if and only if

$y=gc\{X$ for some $g\in\prod_{i=1}^{\infty}G_{i}$ , where $(g_{1}, g_{2}, \cdots)\circ(x_{1}, x_{2}, \cdots)=(g_{1}x_{1}\pi_{1}^{2}g_{2}^{-1}, g_{2}x_{2}\pi_{2}^{3}g_{3}^{-1}, )$

and the class represented by $e=(e_{1}, e_{2}, )$ is a base point where each $e_{i}$ is the

unit element of $G_{i}$ . Let $\rho:\prod_{i=1}^{\infty}G_{i}\rightarrow\lim_{\leftarrow}^{1}\{G_{i}\}$ be the natural projection.

The following lemma is due to [4, p. 252].

LEMMA 2. Let
$*\rightarrow\{K_{i}\}\rightarrow^{\{f_{i}\}}\{G_{i}, \pi_{i}^{j}\}\{g_{i}\}\rightarrow\{H_{i}\}\rightarrow*be$

exact. Then we
$f$ $g$

have the following exact sequence; $*-\lim_{\leftarrow}\{K_{i}\}\rightarrow\lim_{\leftarrow}\{G_{i}\}\rightarrow\lim_{\leftarrow}\{H_{i}\}$

$\rightarrow^{\delta}\lim_{\leftarrow}^{1}\{K_{i}\}\rightarrow^{f^{\prime}}\lim_{\leftarrow}^{1}\{G_{i}\}\rightarrow\lim_{\leftarrow}g^{\prime}1\{H_{i}\}\rightarrow*$ where $f,$ $g,$
$f^{\prime}$ and $g^{\prime}$ are induced
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maps and $\delta$ is the connecting map.
Now, we recall the definition of the connecting map $\delta$ . Let $(x_{i})$ be an

element of $\lim_{\leftarrow}\{H_{i}\}$ . Since the given sequence is exact, there exists $y_{i}\in G_{i}$

such that $g_{i}(y_{i})=x_{i}$ for each $i$ . Since $(x_{i})\in\lim_{\leftarrow}\{H_{i}\},$
$g_{i}(y_{i}\pi_{i}^{i+1}(y_{i+1}^{-1}))=*for$ each

$i$ . Hence there exists $z_{i}\in K_{i}$ such that $f_{i}(z_{i})=y_{i}\pi_{i}^{i+1}(y_{i+1}^{-1})$ for each $i$ by the
exactness of the given sequence. The connecting map $\delta$ is well-defined by
$\delta(x_{i})=\rho(z_{1}, z_{2}, \cdots)$ . This description of the connecting map $\delta$ is used in the
latter lemma.

The following Property of Mittag-Lefller condition is very important, which
is due to [4, p. 256].

LEMMA 3. If $\{G_{i}\}$ satisfies Mittag-Leffler condition, then $\lim_{\leftarrow}^{1}\{G_{i}\}=*$ .
Furthermore the converse of Lemma 3 is true for special inverse sequences.

For it we have to calculate cardinalities of sets. Let $|A|$ be the cardinality
of a set $A$ .

LEMMA 4. Let $\{G_{i}, \pi f\}$ be a normal inverse sequence of groups such that
$G_{i}$ is a countable group for each $i$ . Then we have the followings:

(1) $\{G_{i}\}$ satisfies Mittag-Leffler condition if and only if $\lim_{\leftarrow}^{1}\{G_{i}\}=*$ , that
is, $|\lim_{\leftarrow}1\{G_{i}\}|=1$ .

(2) $\{G_{i}\}$ does not satisfy Mittag-Leffler condition if and only if $\lim_{\leftarrow}1\{G_{i}\}|$

$>\aleph_{0}$ .
PROOF. Since we have Lemma 3, it is enough for our proof to show that

if $\{G_{i}\}$ does not satisfy Mittag-Leffler condition, then $\lim_{\leftarrow}1\{G_{i}\}|>\aleph_{0}$ . There-

fore we $suPpose$ that $\{G_{i}\}$ does not satisfy Mittag-Leffler condition. Then
there exists $n_{0}$ such that for infinitely many $n,$ $n\geqq n_{0},$ $\pi_{n_{0}}^{n}(G_{n})_{\neq}^{\supset}\pi_{n_{0}}^{n+1}(G_{n+1})$ . Let
$H_{n}=\pi_{n_{0}}^{n}(G_{n})$ for each $n,$ $n\geqq n_{0}$ . Then $\{H_{n}\}_{n\geqq n_{0}}$ forms an inverse sequence whose
bonding maps are inclusions. Next, we define a map $f_{n}$ : $G_{n}\rightarrow H_{n}$ such that
$f_{n}(x)=\pi_{n_{()}}^{n}(x)$ for each $x\in G_{n},$ $n\geqq n_{0}$ . We obtain the following exact sequence
by Lemma 2;

$f^{\prime}$

$\lim_{\leftarrow}^{1}\{G_{n}\}_{n\geqq n_{0}}\rightarrow\lim_{\leftarrow}^{1}\{H_{n}\}_{n\geqq n_{0}}\rightarrow*$ .

Since $\lim_{\leftarrow}1\{G_{n}\}=\lim_{\leftarrow}1\{G_{n}\}_{n\geqq n_{0}}$ , it is enough for our proof to show that

$|\lim_{\leftarrow}1\{H_{n}\}_{n\geqq n_{0}}|>\aleph_{0}$ . This fact is reduced to the following lemma.

LEMMA 5. Let $H_{i}$ be a countable group such that $H_{i}\supset H_{i+1}$ for each $i$, each
$H_{i}$ is a normal subgroup of $H_{1}$ and for infinitely many $i,$ $H_{i\neq}\supset H_{i+1}$ . Then
$|\lim_{\leftarrow}1\{H_{i}\}|>\aleph_{0}$ where $\{H_{i}\}$ is an inverse sequence whose bonding maps are
inclusions.

PROOF. Since each $H_{i}$ is a normal subgroup of $H_{1}$ , we can consider the
quotient group $H_{1}/H_{i}$ . Let $\pi_{i}$ : $H_{1}\rightarrow H_{1}/H_{i}$ be the natural projection. Thus we
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obtain the following exact sequence by Lemma 2;

(1) $*\rightarrow\lim_{\leftarrow}\{H_{i}\}\rightarrow\lim_{\leftarrow}\{H_{1}\}\rightarrow^{\pi}\lim_{\leftarrow}\{H_{1}/H_{i}\}\rightarrow\lim_{\leftarrow}^{1}\{H_{i}\}\rightarrow$

$\delta$

$\rightarrow\lim_{\leftarrow}^{1}\{H_{1}\}\rightarrow\lim_{\leftarrow}^{1}\{H_{1}/H_{i}\}\rightarrow*$ where $\pi=\lim_{\leftarrow}\{\pi_{i}\}$ .
Since each bonding map of $H_{1}$ is the identity map, then $\{H_{1}\}$ satisfies Mittag-
Leffler condition. Hence $\lim_{\leftarrow}^{1}\{H_{1}\}=*by$ Lemma 3. Therefore we obtain the

following exact sequence from (1);

(2) $*\rightarrow\bigcap_{i=1}^{\infty}H_{i}\rightarrow H_{1}\rightarrow^{\pi}\lim_{\leftarrow}\{H_{1}/H_{i}\}\rightarrow\lim_{\leftarrow}1\{H_{i}\}\rightarrow*$ .
$\delta$

Here, again we recall the definition of the connecting map $\delta$ . It is easily
proved by the definition that if $y\in H_{1}$ and $x=(x_{1}, x_{2}, \cdots)\in\lim_{\leftarrow}\{H_{1}/H_{i}\}$ , then
$\delta(x)=\delta(x_{1}\pi_{1}(y), x_{2}\pi_{2}(y),$ ) $=\delta(x\pi(y))$ . Hence naturally we can define the map
$\hat{\delta}:\hat{H}\rightarrow\lim_{\leftarrow}^{1}\{H_{i}\}$ by $\delta$ where $\hat{H}$ is the right coset of the group $\lim_{\leftarrow}\{H_{1}/H_{i}\}$

by the subgroup $\pi(H_{1})$ .
CLAIM 1. $\hat{\delta}$ is bijective.

PROOF OF CLAIM 1. Since $\delta$ is onto by (2), then $\hat{\delta}$ is onto. Next, let $x=$

( $x_{1},$ x,&’’ ), $\tilde{x}=(\tilde{x}_{1},\tilde{x}_{2}, \cdots)$ be elements of $\lim_{\leftarrow}\{H_{1}/H_{i}\}$ such that $\delta(x)=\delta(\tilde{x})$ . Let
$y_{i},\tilde{y}_{i}$ be elements of $H_{1}$ such that $\pi_{i}(y_{i})=x_{i},$ $\pi_{i}(\tilde{y}_{i})=\tilde{x}_{i}$ for each $i$ . Hence $\delta(x)$

$=\rho(y_{1}y_{2}^{-1}, y_{2}y_{3}^{-1}, )$ and $\delta(\tilde{x})=\rho(\tilde{y}_{1}\tilde{y}_{2}^{-1},\tilde{y}_{2}\tilde{y}_{3}^{-1}, )$ by the definition of $\delta$ . Since
$\delta(x)=\delta(\tilde{x})$ , there exists $z_{i}\in H_{i}$ such that $y_{i}y_{i+1}^{-1}=z_{i}\tilde{y}_{i}\tilde{y}_{i+1}^{-1}z_{i+1}^{-1}$ for each $i$ . Thus
$y_{i}^{-1}z_{i}\tilde{y}_{i}=y_{i+1}^{-1}z_{i+1}\tilde{y}_{i+1}$ for each $i$ . This means that for each $i,$ $j,$ $y_{i}^{-1}z_{i}\tilde{y}_{i}=y_{j}^{-1}z_{j}\tilde{y}_{j}$ .
Let $z=y_{i}^{-1}z_{i}\tilde{y}_{i}\in H_{1}$ . Since $z_{i}\in H_{i}$ , we obtain that $\pi_{i}(z)=\pi_{i}(y_{i}^{-1})\pi_{i}(z_{i})\pi_{i}(\tilde{y}_{i})=$

$\pi_{i}(y_{i}^{-1})\pi_{i}(\tilde{y}_{i})$ for each $i$ . This means that $\tilde{x}_{i}=x_{i}\pi_{i}(z)$ for each $i$ . Therefore
$\tilde{x}=x\pi(z)$ . That is, $\hat{\delta}$ is injective. This completes the proof of Claim 1.

CLAIM 2. $\lim_{\leftarrow}\{H_{1}/H_{i}\}|>\aleph_{0}$ .
PROOF OF CLAIM 2. If we forget the group structure of $\lim_{\leftarrow}\{H_{1}/H_{i}\}$ , then

$\lim_{\leftarrow}\{H_{1}/H_{i}\}=\prod_{i=1}^{\infty}(H_{i}/H_{i+1})$ as sets. Since for infinitely many $i,$ $H_{i\neq}\supset H_{i+1}$

$|\lim_{\leftarrow}\{H_{1}/H_{i}\}|=\prod_{i=1}^{\infty}|H_{i}/H_{i+1}|>\aleph_{0}$ . This completes the Proof of Claim 2.
Finally we calculate the cardinality of $\lim_{\leftarrow}^{1}\{H_{i}\}$ . By Claim 1, $\lim_{\leftarrow}1\{H_{i}\}|$

$=|\hat{H}|$ . By the definition of $\hat{H}$, $\lim_{\leftarrow}\{H_{1}/H_{i}\}|=|\hat{H}||\pi(H_{1})|$ , and by Claim 2,

$|\lim_{\leftarrow}\{H_{1}/H_{i}\}|>\aleph_{0}$ . Hence $\lim_{\leftarrow}1\{H_{i}\}|>\aleph_{0}$ , because $|H_{1}|\leqq\aleph_{0}$ . This completes

the proof of Lemma 5, and hence completes the proof of Lemma 4.
REMARK 1. The (1) of Lemma 4 was obtained by Gray [7], but he did

not point out the (2) of Lemma 4. However our proof depends on his tech-
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niques. In [13], the author used the (2) of Lemma 4 without detailed proof.
REMARK $2^{(*)}$ . In Lemma 4 we have assumed that an inverse sequence

$\{G_{i}\}$ is normal. However Lemma 4 is true without the assumption of normality,
because essentially in our proof we have not used the group structure of
$\{H_{1}/H_{i}\}$ .

\S 3. Proof of Theorem 1.

In this section we prove Theorem 1. For our purpose we need the follow-
ing lemma.

LEMMA 6. Let $\{K_{i}\},$ $\{G_{i}\}$ and $\{H_{i}\}$ be inverse sequences of abelian groups
$\{f_{i}\}$ $\{g_{i}\}$

such that each $K_{i}$ is a countable group. Let $*\rightarrow\{K_{i}\}\rightarrow\{G_{i}\}\rightarrow\{H_{t}\}\rightarrow*$

be exact. If $\{G_{i}\}$ satisfies Mittag-Leffler condition and $\lim_{\leftarrow}\{H_{i}\}$ is a countable
$f$

group, then $\{K_{i}\}$ satisfies Mittag-Leffler condition and $*\rightarrow\lim_{\leftarrow}\{K_{i}\}\rightarrow\lim_{\leftarrow}\{G_{i}\}$

$g$

$\rightarrow\lim_{\leftarrow}\{H_{i}\}\rightarrow*is$ exact.

PROOF. Since $\{G_{i}\}$ satisfies Mittag-Leffler condition, then $\lim_{\leftarrow}^{1}\{G_{i}\}=*by$

Lemma 3. Thus we obtain the following exact sequence from Lemma 2;
$f$ $g$

$\delta$

$*\rightarrow\lim_{\leftarrow}\{K_{i}\}\rightarrow\lim_{\leftarrow}\{G_{i}\}\rightarrow\lim_{\leftarrow}\{H_{i}\}\rightarrow\lim_{\leftarrow}^{1}\{K_{i}\}\rightarrow*$ . Since $\lim_{\leftarrow}\{H_{i}\}$ is a
countable group, $\lim_{\leftarrow}1\{K_{i}\}|\leqq\aleph_{0}$ by the above sequence. Therefore by Lemma

4, $\{K_{i}\}$ satisfies Mittag-Leffler condition and $\lim_{\leftarrow}1\{K_{i}\}=*$ . This completes the
proof of Lemma 6.

Now, we are going to prove Theorem 1.
PROOF OF THEOREM 1. Since (X, $A$) is a compact metric pair, there exists

an inverse sequence $\{(X_{i}, A_{i})\}$ such that each $X_{i}$ is a finite simplicial complex,
each $A_{i}$ is a subcomplex of $X_{i}$ and $\lim_{\leftarrow}\{(X_{i}, A_{i})\}=(X, A)$ . Let $H_{*}$ be the usual

homology with integral coefficients. Then for each $i$ , we obtain the following
usual exact homology sequence of $(X_{i}, A_{i})$ ;

$\kappa_{n+1l ,\rightarrow H_{n+1}(X_{i},A_{i})}\rightarrow H_{n}(A_{i})\rightarrow H_{n}(X_{\ell})\rightarrow H_{n}(X_{i}, A_{i})\rightarrow\delta_{ni}\mu_{ni}\kappa_{ni}\delta_{n- 1i}\ldots$ .

Thus we obtain the following exact sequence;

(1) .. . $\underline{\{\kappa_{n+1i}\}}\{H_{n}(X_{i}, A_{i})\}\rightarrow\underline{\{\delta_{ni}\}}\{H_{n}(A_{i})\}\rightarrow\underline{\{\mu_{ni}\}}$

$\{H_{n}(X_{i})\}\underline{\{\kappa_{ni}\}}\rightarrow\{H_{n}(X_{i}, A_{i})\}\underline{\{\delta_{n-1i}\}}\rightarrow\ldots$ .
(*) The author thanks the referee who pointed out this fact.
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By taking inverse limits of (1), we obtain the following sequence of Cech
homology by the continuity Tbeorem of Cech homology;

(2) . .. $\kappa_{n+1 ,\rightarrow\check{H}_{n}(X,A)}\rightarrow\check{H}_{n}(A)\delta_{n}\rightarrow\check{H}_{n}(X)f^{\ell_{n}}\rightarrow\check{H}_{n}(X, A)\rightarrow\kappa_{n}\delta_{n- 1}\ldots$

where $\check{H}_{*}$ means Cech homology functor, $\kappa_{n},$
$\delta_{n}$ and $\mu_{n}$ are induced maps. We

have to show that (2) is exact. Since $X$ and $A$ are movable, it is easily
proved by the definition of movability that

(3) $\{H_{n}(X_{i})\}$ and $\{H_{n}(A_{i})\}$ satisfy Mittag-Leffler condition
for each $n\geqq 0$ (see [11]).

From (1) we obtain the following exact sequences;

$*\rightarrow\{Ker\delta_{ni}\}\rightarrow\{H_{n+1}(X_{i}, A_{i})\}\rightarrow\{{\rm Im}\delta_{ni}\}\rightarrow*$ ,

(4) $*\rightarrow\{Ker\kappa_{ni}\}\rightarrow\{H_{n}(X_{i})\}\rightarrow\{{\rm Im}\kappa_{ni}\}\rightarrow*$

$*\rightarrow\{Ker\mu_{ni}\}\rightarrow\{H_{n}(A_{i})\}\rightarrow\{{\rm Im}\mu_{ni}\}\rightarrow*$ ,

where ${\rm Im} f$, Ker $f$ denotes the image of $f$, the kernel of $f$ for a group homo-
morphism $f$ respectively. Since $\{Ker\delta_{ni}\}=\{{\rm Im}\kappa_{n+1i}\}$ and $\{Ker\kappa_{ni}\}=\{{\rm Im}\mu_{ni}\}$

by (1), $\{Ker\delta_{ni}\}$ and $\{Ker\kappa_{ni}\}$ satisfy Mittag-Leffler condition by (3) and
Lemma 1. Therefore we obtain the following exact sequences by Lemmas 2
and 3;

$\vee$

(5) $\{$

$*\rightarrow\lim_{\leftarrow}\{Ker\delta_{ni}\}\rightarrow H_{n+1}(X, A)\rightarrow\lim_{\leftarrow}\{{\rm Im}\delta_{ni}\}\rightarrow*$

$*\rightarrow\lim\{Ker\kappa_{ni}\}\rightarrow\check{H}_{n}(X)\rightarrow\lim_{\leftarrow}\{{\rm Im}\kappa_{ni}\}\rightarrow*$ .

Since $\check{H}_{n}(X)$ is a countable group, then $\lim_{\leftarrow}\{{\rm Im}\mu_{ni}\}=\lim_{\leftarrow}\{Ker\kappa_{ni}\}$ is a countable

group. Hence we obtain the following exact sequence from (4) by Lemma 6
and (3);

(6) $*\rightarrow\lim_{\leftarrow}\{Ker\mu_{ni}\}\rightarrow\check{H}_{n}(A)\rightarrow\lim_{\leftarrow}\{{\rm Im}\mu_{ni}\}\rightarrow*$ .

, By using the arguments of [11], it is easily proved by (5) and (6) that (2) is
exact. This completes the proof of Theorem 1.

Since every compact metric FANR-space is movable and its n-th Cech
homology is a countable group for each $n$, then we obtain the following.

COROLLARY 1. Let $X$ be a compact metric FANR-space and $A$ be a movable
compact subset of X. Then the \v{C}ech homology sequence of (X, $A$) is exact.

REMARK 3. The countability condition of Theorem 1 is essential, because
we have the Overton’s example (see [11, Th. 2]).

REMARK 4. In the next section, we shall show that if $X$ is a movable
metric space such that $\check{H}_{n}(X)$ is a countable group, then $\check{H}_{n}(X)$ is finitely
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generated.
REMARK 5. By the same argument as in the proof of Theorem 1, the

following is easily proved by the fact of Remark 2.
THEOREM 1’. Let $(A, p)$ and (X, p) be pOinted movable compact connected

metric spaces such that $P\in A\subset X$ . If the n-th shape group of (X, p) is a count-
able group for each $n$ , then the shape groups sequence of (X, $A,$ $p$) is exact.

\S 4. Proof of Theorem 2.

In this section we prove Theorem 2. For our purpose we need the fol-
lowing theorem (see [5], [8] and [10] for the category of pro-groups).

THEOREM 3. Let $\{G_{i}, \pi_{i}^{j}\}$ be an inverse sequence of groups. If $\{G_{i}\}$ satisfies
Mittag-Leffler condition and $\lim_{\leftarrow}\{G_{i}\}$ is a countable group, then $\{G_{i}\}$ is isomor-

phic to $\lim_{\leftarrow}\{G_{i}\}$ in the category of Pro-groups.

PROOF. Let $G$ be the inverse limit group of $\{G_{i}\}$ and let $\pi_{i}$ ; $G\rightarrow G_{i}$ be
the natural projection for each $i$ . Then $\{\pi_{i}(G)\}$ forms an inverse sequence.
Since $\{G_{i}\}$ satisfies Mittag-Leffler condition, the following claim is easily proved
by Morita’s diagonal Theorem ([10, Th. 1.1]).

CLAIM 1. The inclusion map from $\{\pi_{i}(G)\}$ to $\{G_{i}\}$ is an isomorphism in the
category of Pro-groups.

Next, we show the following claim.
CLAIM 2. $\{\pi_{\ell}(G)\}$ is isomorphic to $\lim_{\leftarrow}\{G_{i}\}$ in the category of Pro-groups.

PROOF OF CLAIM 2. Let $K_{i}$ be the kernel of $\pi_{i}$ for each $i$ . Then by
Lemma 2, we obtain the following exact sequence;

(1) $*\rightarrow\lim_{\leftarrow}\{K_{i}\}\rightarrow\lim_{\leftarrow}\{G\}\rightarrow^{\pi}\lim_{\leftarrow}\{\pi_{i}(G)\}\rightarrow\lim_{\leftarrow}1\{K_{i}\}\rightarrow$

$\rightarrow\lim_{\leftarrow}^{1}\{G\}\rightarrow\lim_{\leftarrow}^{1}\{\pi_{i}(G)\}\rightarrow*$ where $\pi=\lim_{\leftarrow}\{\pi_{i}\}$ .

Since each bonding map of $\{G\}$ is the identity map, then $\lim_{\leftarrow}\{G\}=G$ and

$\lim_{\leftarrow}^{1}\{G\}=*by$ Lemma 3. It is easily proved by the definition of $\pi=\lim_{\leftarrow}\{\pi_{i}\}$

that $\pi$ is the identity map. Therefore it follows from (1) that $\lim_{\leftarrow}\{K_{i}\}=*and$

$\lim_{\leftarrow}^{1}\{K_{i}\}=*$ . It is immediate from the definition of $K_{i}$ that $\{K_{i}\}$ is a normal

inverse sequence such that each $K_{i}$ is a countable group. Hence we can
apply Lemma 4 for $\{K_{i}\}$ . Then $\{K_{i}\}$ satisfies Mittag-Leffler condition. Since
$ K_{1}\supset K_{2}\supset K_{3}\cdots$ , there exists $n_{0}$ such that $K_{n_{0}}=K_{m}$ for each $m,$ $m\geqq n_{0}$ . Since
$\lim_{\leftarrow}\{K_{i}\}=\bigcap_{i=1}^{\infty}K_{i}=*$ , we obtain that $*=\bigcap_{l=1}^{\infty}K_{i}=K_{n_{0}}=K_{m}$ for each $m,$ $m\geqq n_{0}$ . This

means that $\pi_{i}$ is injective for each $i,$ $i\geqq n_{0}$ . Since $\pi_{i}$ ; $G\rightarrow\pi_{i}(G)$ is onto, hence
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we have the following;

(2) there exists $n_{0}$ such that $\pi_{i}$ ; $G\rightarrow\pi_{i}(G)$ is an isomorphism
for each $i,$ $i\geqq n_{0}$ .

Since $\pi_{i}=\pi_{i}^{j}\pi_{j}$ for each $i,$ $j,$ $i\leqq j$ , it is easily proved by (2) that $\{\pi_{i}\}$ : $G\rightarrow\{\pi_{i}(G)\}$

is an isomorphism in the category of Pro-groups. This completes the proof
of Claim 2.

Now, our Theorem 3 is completely proved by Claims 1 and 2.
Next, we consider special cases of Theorem 3.
COROLLARY 2. Let $X$ be a movable compact metric space. If $\check{H}_{n}(X)$ is a

countable group, then $\check{H}_{n}(X)$ is finitely generated.
PROOF. Let $\{X_{i}\}$ be an inverse sequence such that each $X_{i}$ is a finite

simplicial complex and $\lim_{\leftarrow}\{X_{i}\}=X$ . Since $X$ is movable, $\{H_{n}(X_{i})\}$ satisfies

Mittag-Leffler condition. By the continuity Theorem of Cech homology,
$\check{H}_{n}(X)=\lim_{\leftarrow}\{H_{n}(X_{i})\}$ . Since $\check{H}_{n}(X)$ is a countable group, then by Theorem 3

there exists $k$ such that $\check{H}_{n}(X)$ is isomorphic to a subgroup of $H_{n}(X_{k})$ (see

the proof of Theorem 3). Since $X_{k}$ is a finite simplicial complex hence $H_{n}(X_{k})$

is finitely generated. Therefore $\check{H}_{n}(X)$ is finitely generated. This completes
the proof of Corollary 2.

By a similar argument we obtain the following.
COROLLARY 3. Let $X$ be a compact metric space and $x$ be a point of $X$ such

that (X, x) is p0inted movable. Then we have the followings.
(1) If the first shape group of (X, x) is a countable group, then it is finitely

generated.
(2) If the first shape group of (X, x) is a null group and the n-th shape

group of (X, x) is a countable group, then the n-th shape group is finitely gener-
ated.

Now, we are going to show Theorem 2.
PROOF OF THEOREM 2. First we note that every finite dimensional com-

pact metric space is always embedded in a finite dimensional Euclidian space
by well-known Menger’s embedding theorem. Thus the assumption of Theorem
5.1 of [6] is not essential. Now we show that (C) implies (A). Since (X, x)

is a pointed FANR, there exists a finite simplicial complex $P$ such that (X, x)

is shape dominated by $(P, p)$ where $p$ is a point of $P$ . Since $P$ is a simplicial
complex, then $\check{\pi}_{n}(P, p)=\pi_{n}(P, p)$ for each $n$ , where $\check{\pi}_{*},$

$\pi_{*}$ mean shape group
functor, usual homotopy group functor respectively. Since $P$ is a finite sim-
plicial complex, it is well known that $\pi_{n}(P, p)$ is a countable group for each $n$ .
Since (X, x) is shape dominated by $(P, p)$ , then $\check{\pi}_{n}(X, x)$ is dominated by $\check{\pi}_{n}(P, p)$

$=\pi_{n}(P, p)$ for each $n$ . Hence $\check{\pi}_{n}(X, x)$ is a countable group for each $n$ . It is
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trivial that (X, x) is pointed movable, because (X, x) is shape dominated by
the pointed movable $(P, p)$ . This means that (C) implies (A). Next, we
show that (A) implies (B). However it is trivial, because in general if
(X, x) is pointed movable, then the n-th pro-homotopy groups of it satisPes
Mittag-Leffler condition for each $n$ . Finally we show that (B) implies (C).
According to [6, Th. 5.1] our condition (C) is equivalent to the following con-
dition; for each $i$, the i-th pro-homotopy groups of (X, x) is isomorphic to the
i-th shape group of (X, x) in the category of pro-groups. (Note the i-th shape
group is the inverse limit group of the i-th pro-homotoPy groups.) Therefore
the implication, (B) implies (C), is obvious by Theorem 3. This completes the
proof of Theorem 2.

REMARK 6. The condition (A) of Theorem 2 is an improvement of the
condition (iv) of [6, Th. 5.1] and also (B) is an improvement of the condition
(i) of [6, Th. 5.1].

Now, we consider the following special case.
COROLLARY 4. Let (X, x) be a pointed compact connected metric space with

finite dimension. If (X, x) is l-shape connected, then the following conditions
are equivalent:

(A) (X, x) is Pointed movable and the n-th shaPe group of (X, x) is finitely
generated for each $n\geqq 1$ .

(B) The n-th pro-homotoPy grouPs of (X, x) satisfies Mittag-Leffler condi-
tion and the n-th shaPe group of (X, x) is finitely generated for each $n\geqq 1$ .

(C) (X, x) has the pointed shape of a finite simplicial complex.
PROOF. First we show that (C) implies (A). Let $(P, p)$ be a pointed

finite simplicial complex such that (X, x) has the same shape of $(P, p)$ . Then
$\check{\pi}_{n}(X, x)=\check{\pi}_{n}(P, p)=\pi_{n}(P, p)$ for each $n\geqq 0$ . Note $P$ is connected. Since $P$ is
Pnite simplicial complex, then $H_{n}(P)$ is finitely generated for each $n$ . Hence
by 16 Corollary of [11, p. 509], each $\pi_{n}(P, p)$ is finitely generated. Therefore
$\check{\pi}_{n}(X, x)=\pi_{n}(P, p)$ is finitely generated. This means that (C) implies (A). It
is obvious that (A) implies (B). Moreover it is easily proved by Corollary
5.2 of [6] and Theorem 3 that $(B^{\prime})$ implies $(C^{\prime})$ . This completes the proof of
Corollary 4.
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