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1. Introduction.

Let I'={T,; t>0} be a strongly continuous semigroup of bounded linear
operators on L, of a o-finite measure space. In [5], Dunford-Schwartz proved
that if all the T, are contractions on L, and satisfy |T,.f|l.=|fll. for every
feL,NL., then the limit

. 1 r?
W lim—-f, T/ df
exists and is finite a.e. for any feL,. In [2], Berk proved that if all the T\
are positive contractions on L,, then the limit

@ tim ( { :Tz rat) /(f :Tt g df)

b—oo

b
exists and is finite a.e. on the set b\>J {f T.g dt>0} for any f, gL, with g=0;
0 0

this extends the Chacon-Ornstein theorem [3] to the continuous case and was
also proved, by different methods, by Akcoglu-Cunsolo and Fong-Sucheston
[7]. Only assuming that all the T, are contractions on L,, generalizations of
these results are discussed in Kubokawa [11], Tsurumi [17], and Hasegawa-
Sato [9].

In this paper, we shall assume that all the T, are positive and that I”
1 b

5 Tt
fe L, the vector valued function {—T,f is Bochner integrable with respect to

Lebesgue measure on every finite interval (0, b), and there exists a constant
MZ=0 such that

satisfies sup
>0

<oo in the sense of strong integral, i.e., for each
1

sup
b>0

[ Tf at] =mi5,

for all feL,. Under these conditions on I', we investigate the almost every-
b

where and strong convergence of the average %}« j T,fdt as b—oo, In par-
0

ticular we observe that, under these conditions on I, if there exists a strictly
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positive function h=L, such that T,h/h<L. for all t>0 and also such that
b
sup “(—;—J‘Oﬂh dt)/h" <co, then the limit (1) exists and is finite a.e. for any

>0
feL, with f/he L., (cf. [Theorem 6). This extends a result due to Derriennic-
Lin ([4] Theorem 4.2) to the continuous case.

The main tools employed below are the continuous version of the Chacon-
Ornstein theorem and the decomposition theorem given in [15].

The author is grateful to the referees for valuable comments.

2. Definitions and notation.

Let (X, %, m) be a probability space and let L (X)=L (X, M, m), 1<p=<oo,
be the (complex) Banach spaces defined as usual with respect to (X, #, m).
All sets and functions introduced below are assumed to be measurable; all
relations are assumed to hold modulo sets of measure zero. If A is a subset
of X, then 1, is the indicator function of A and L,(A) denotes the Banach
space of all L,(X)-functions that vanish on X—A. Also, L} (A) denotes the
positive cone of L,(A) consisting of nonnegative L,(A)-functions. A linear
operator T on L,(X) is called positive if T(L} (X))C L} (X) and a contraction
if |T],=1. It is well-known that if T is positive then [|T]|,<oco. The adjoint
of T is denoted by T*.

Let I'={T,; t>0} be a semigroup of positive linear operators on L,(X),
i.e, all the T, are positive linear operators on L,(X) and T,T,=T;,, for all
t,’>0. In this paper we assume that I" is strongly continuous on (0, o), i.e.,
for each feL,(X) and each {,>0 we have ILHP T, f—T:,fll:=0, and that I’
satisfies the following condition: °

e sup| 11T ] <o

>0

in the sense of strong integral.
It is then known (cf. [6], VIIL. 7) that for any f=L,(X) there exists a
scalar function T,f(x) on (0, c0)X X, measurable with respect to the product
of Lebesgue measure and m, such that for almost all ¢>0, T,f(x) belongs, as
a function of x, to the equivalence class of T,f. Moreover there exists a set
N(f)c X with m(N(f))=0, dependent on f but independent of ¢, such that if
xe& N(f) then the function {—T,f(x) is Lebesgue integrable over every finite

b
interval (a, b)) (0, o) and the integral f T,f(x) dt, as a function of x, belongs

to the equivalence class of JbT, fdt (eL,(X)).

If ¢ is a o-finite measure on (X, “#) equivalent to m, then L,(X, %, #) and
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L,(X, M, m) are isometric by the Radon-Nikodym theorem, and thus a semi-
group {T,; t>0} on L, of a o-finite measure space can be represented as a
semigroup {S,; t>0} on L, of a finite measure space, which preserves also
pointwise convergence.

3. Some known results.

Throughout this section and the remainder of the paper, ['={T,; t>0}
will be a fixed semigroup of positive linear operators on L,(X) which is
strongly continuous on (0, o) and satisfies condition (*).

b
For 0<a<b< oo, the integral j T*fdt (€ Lo(X)) for fe L.(X) is defined
by the relation:

<v, j:T,*fa't>:< [T ar, f> weL(X).

The following lemma is used to obtain a decomposition of the space X.

LEMMA A ([15], Lemma 1). For any f€ L.(X) there exists a scalar function
T*f(x) on (0, 00) X X, measurable with respect to the product of Lebesgue measure
and m, and a set N(f)X with m(N(f))=0, dependent on f but independent of
t, such that if x& N(f) then lhe function t—T*f(x) is Lebesgue integrable over

b
every finite interval (a, b)C(0, o0) and the integral j T*f(x) dt, as a function
. b a
of x, belongs to the equivalence class off T.*f di.

SKETCH OF PROOF. Without loss of generality we may assume that f is
nonnegative. Let I=(c, d], where 0<c¢<d<oo. Then, since sup{|T;fl.| c<t=d}
<oo for all feL,(X), the uniform boundedness principle (cf. [6], Corollary II.
3.21) implies that

sup T ],=M<co.

Define, for &« a Lebesgue measurable subset of / and A= ¥,
Nax A)={ (T.1, f>dt.

Then it may be readily seen that A can be extended to a finite measure on
the product space IXX. Moreover, since

Hax A< [ I TLallf - dt

< Mn(A)£1-{ vat,
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4 is absolutely continuous with respect to the product of Lebesgue measure
(on I) and m. Let g(t, x) be the Radon-Nikodym derivative of 4 with respect
to this product measure. . Fix an A=#. Then, for any a a Lebesgue meas-
urable subset of I, we have, by Fubini’s theorem,

j (T,1,, f>dt:2(a><A):LLg(l, Odm dt .

This shows that, for almost all (=1, (T,1,, f>= Lg(t, X)dm.

Since (0, o) is a disjoint union of countably many such intervals I, it
follows that there exists a nonnegative function g(¢, x) on (0, c0) X X, measurable

with respect to the product of Lebesgue measure and m, such that if A= ¥
then

(Tily £5=] g(t, )dm

for almost all t=(0, ). Let 0<a<b<co. Then we have, again by Fubini’s
theorem,

(Lo f ot 0at)={"f gt vdmdr=[<T1, frat

_ < [Taga, f>:<1A, [rar dt>,

Since this holds for any A=.%, a standard approximation argument shows
that, for all veL,(X),

<v, fabg(t, x)dt>:<v, j:Tt*f dt> .

Thus the lemma is proved.

We note that the function 7.*f(x) in Lemma A is uniquely determined up
to equivalence modulo sets of the product measure zero.
Next, using Lemma A, let us set

3) u(x) =lim sup % | :Tt*l(x)dt (xe N(1).

b
Since the function b—*—é f T.*1(x)dt is continuous on (0, o) for each xe& N(1),
0

if D denotes the set of all positive rationals, then we have

u(x) =1lim sup =+ :Tt*l(x)a’t (xe& N().

b—oo,bE

Hence we observe that the function u(x) belongs to the equivalence class of
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lim sup — j THdt  (eL.(X)).

b—oo

Now, fix t>0 arbitrarily, and let feL{#(X). Then

<, Toruy=lim [(Tuf)(sup - f 741 ds)dm

> lim | f(sup j:’”Ts*l ds)dm

a—oo

=[rudm=<f,w,

and so it follows that T,*u=u. Therefore, by Fubini’s theorem and Lemma
A, we can choose a set N, with N(u)CN and m(N)=0, such that if x&¢ N and
0<b<b’<o then

+ j Tru()dt =, j TrAudt .
Therefore we can define
b
(4) s()=lim < [ Truar  (ren).

The obtained function s(x) has the following useful properties:
THEOREM B ([15], Theorem 1). s LL(X) and T¥s=s for all t>0. If we
denote Y={x|s(x)>0} and Z=X—-Y, then T (L, (Z)CL(Z) for all t>0 and

5) lim “% | :Tt 7 dtIl:

b—oo ||
for all feL,(Z).
The following example shows that there exists a strongly continuous
semigroup I'={T,; t>>0} of positive linear operators on L, of a o-finite measure
space which is not bounded, i.e., sup |T,ll,=o0, but satisfies condition (*).

EXAMPLE. Set a,=1, a,=2, a,=4a,_, (n=2); b, ——Ea@ n=0);c,= 2_,b (n
=>0). Define (h,) a sequence of functions on (0, o) as follows:

if xe(—o0, ¢yl

hy(x) :{ (1)

lf X e (CO) OO) ’

I ooy (%) if xe(—oo, ¢z-y]

2" if x€(ca-1 Cr-1taal
ha(x)= nz=1).
l hn—l(x_bn) if xe (cn—1+am cn:l

0

if x&(cp )
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Then, clearly, 0<h,=h,< --- =1, and thus we can define

h(x) = lim hy(x) (xS (=00, 9)).

It is direct to see that £ satisfies
(i) for each >0

sup {h(t+x)/h(t) | —co<t< oo, 0<x< b} =M() <0,
but
lim M(b)=co;

b—roo

(ii) for all 6>0 and all —oo<f<c0

%— | "h(t+x)dx<4h(t) .

0

Hence if we set L,(h dx)z{f | f:‘ |f1h dx<00}- and, for feL,(hdx) and‘t>0,

(TR =fx—t) (—oo<x<e0),

then I'={T,; t>0} is a semigroup of positive linear operators on L,(h dx) and
satisfies 03;}3) |T.]l,=M(b)<oo for each b>0. Thus we have sup IT;ll,=cc. On
>0

the other hand, an easy approximation argument implies that tlim()liT,f——f]h
—+

=0 for all feL,(hdx). Therefore we see that I' is strongly continuous on
(0, ), Using Fubini's theorem and (ii), it also follows that

sup
b>0

L[ nra| sanl (FeLdn).

Hence I’ satisfies condition (*).

4. Mean ergodic theorem.

In this section we investigate the strong convergence properties of —%X

b
L T.f dt as b—oo, The first theorem gives a sufficient (and obviously neces-

sary) condition for the strong convergence of the average as b—co.
THEOREM 1. Let I'={T,; t>0} be a strongly continuous semigroup of posi-

tive linear operators on L,(X) which satisfies condition (*). Let feL,(X), and

assume that there exists a strictly increasing sequence (b,) of positive reals, with

bn .
lim b,==o0, such that the sequence (—bl—f T.f dt) converges weakly in L,(X).
n 0

Nn—sc0
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) .
Then the average —113—5‘0th dt converges strongly as b—oo to some f.< L,(X)

with T, fw=f. for all t>0.

For the proof of this theorem we need two lemmas. The first one is a
continuous extension of the Banach space mean ergodic theorem given in [16];
essentially the same idea has been used by Yosida-Kakutani (see Yosida
[187], pp. 213-214) to prove a mean ergodic theorem for power bounded linear
operators in Banach space. ‘

LEMMA 2. Let E={&,;t>0} be a strongly continuous semigroup of bounded
linear operators on a Banach space B which is assumed to be strongly integrable
over every finite interval, and let (b,) be a strictly increasing sequence of positive

reals, with lim b,—=oco. Assume thal sup

N—roo nz1

by .
—bl j & dtn<oo in the sense of strong
nvo

bn

integral, Let 1&€B. Then the sequence (—bl—f &t dt) converges strongly to some
nvo
{8 with &f.=f. for all t>0 if and only if
(i) lim —bl—j:HnEzT dt“:O for all a>0, and

(ii) there exists a subsequence (n’) of (n) such that

. 1 bn/
weak-lim —5—{ &/ dt
exists in ‘B.

PROOF. Since the necessity of the conditions (i) and (ii) of the lemma is
obvious, we prove here only the sufficiency of these conditions.

1 a+b, .
TL &, dt“<oo for all a>0, if we let
n

n

Since sup
nzl

1
ba

m;@emnm

N—oo0

a+bn
L g5 dt“:O for all a>0},

then U is a closed subspace of B containing f and §ACA for all t>0. Let
f-=B be such that

b
f.= weak-lim—b—lnl—j0 Efdt.

n' —oo

Then, as in [16], we observe that &;J.=f. for all £>0 and that j—f. belongs
to the closed subspace generated by the set {a—&.alacs¥, t>0}. Therefore, by
an approximation argument, we have

. 1 rb= d
fo = strglg-hmTL &l dt.

LEMMA 3. Let I'={T,; t>0} be a strongly continuous semigroup of positive
linear operators on L,(X) which satisfies condition (*). Then, for any feL,(X)
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and any a>0, we have

(6) lim

b—oo

1 b+a
("1 dt“ —=0.
b 1

PROOF. This is an adaptation of the proof of Theorem 2.1 of [4]. Write

M=sup
b>0

enough to consider the case where f is nonnegative. Then

b
—é—f T, dtu (<o), Let a>0 be given. To prove the lemma, it is
0 1

b+a

1
Ly

nral

4

[T hat],
< MTorauf s

for all a<t,<b, and thus we may apply Fubini’s theorem to obtain that

b+a
il

b b

[ dt= M [T L dt

<M (" Tof) dm dt=M 1 ("Tf0) d
<M | | Tof() dmdt=M [ [ T.f(x)dt dm

- M%“ j:T, I dt“ =M.

Hence, letting b—oo, the desired conclusion follows.
PrOOF OF THEOREM 1. Let f.=L,(X) be the weak limit function of the

\ bn

sequence (—bl—Jo T.f dt), and let (¢,) be any strictly increasing sequence of
n

positive reals, with {b,|n=1}C{c,|n=1}. Then, by Lemmas 2 and 3, we have

1 f:"Tt f dt=fu| =0 and T,fu=fu for all >0,

Hence the theorem is established.
The following theorem extends a result due to Fong-Sucheston ([8], Theo-
rem 2.1) to the continuous case. See also [4].

THEOREM 4. Let I'={T,; t>0} be a strongly continuous semigroup of posi-
tive linear operators on L,(X) which satisfies condition (*). Let Y, Z, and s be

the same as in Theorem B. Let f, g= L,(X) satisfy lim fthf—gIs dm=0. Then
t—oo

lim

T—r00

b
strong-lim —li—j T.g dt=g.. exists, and we have
b—oo 0

. 1 r?
) lim —- j 1T f—gwll: dt=0.
bh-»00 0

In particular, if I'={T,; t>0} satisfies sup |T,|; <o, then we have
t>0
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® Im |7,/ —g[,=0.

PrROOF. By Theorem B, we may and will assume without loss of generality
that g L,(Y). For t>0 and sfeL,(Y), where f=L,(Y), define

Vi(sf)=s(T.f).

Since {sf|feL,(Y)} is a dense subspace of L,(Y) in the strong topology and
I V(sHI = Isfll; (ef. [14]), V. may be considered to be a positive linear con-
traction on L,(Y). By an approximation argument, we observe that V,V, =
Vise on Li(Y) for all ¢, t’>0 and that the semigroup 4={V,; >0} on L,(Y)
is strongly continuous on (0, ). It follows from the hypothesis of the theo-
rem that }HE 1V.(sf)—sgll,=0. Therefore we observe that s(T,g)=V,(sg)=sg

for all t>0. Since g=0 on Z, it then follows that T,g*=g"* and T,g =g~
for all >0, where g*(x)=max {g(x), 0} and g~(x) =max {—g(x), 0}. By this
and condition (*), there exist two functions 2; and %, in L{(X) such that

.1 ¢®
h, =strong-lim —5-5 T.g" dt,
b 0

.1 ¢?
h,=strong-lim T‘y T,g” dt.
b—oo [}
If we set g.=h,—h,, then it follows that
b
g =strong-lim 71;‘5' T,gdt,
b—oo 0

T.80.=g for all >0,

and
go=g on Y.
Hence, in order to prove (7), it suffices to show that
9) lim [|T.fls dm=0  implies lim— | IT.fl,dt=0.
t—o0 b—oo 0

To prove this, let t,>0 be fixed arbitrarily. Then, by Fatou’s lemma, we
have

b
tim sup - [ I T 1, dt

o 1
=tlim sup - | |7/l dt
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. 1 (? .
élln;_'silp b LO<[Tcof|, Tt—to 1) dt
1 b
=<lim sup < [ Twf1, ‘b—j T.*1 dl>
b—oo 0
) 1 ¢?
<J_1Tus|(lim sup-f To*1 dt) dm

=[ ITefludm=| |T,f|sdm,
X X

since 0=u<=<s. This establishes (9), because the right hand side of the last
inequality can be arbitrarily small.
Next let us assume that (7) holds and that I satisfies Stlép IT.}i<oo. Then,
0

by (7), we have itr>x‘f) IT.f—g.ll;=0. Therefore, given an ¢>0, we can find a

t,>0 such that |T;,f—g.l,<e. Then we have, for all t>{,
1T f—golls = Tsoey(T2y f =81 < (Sglo) Tl e .

Consequently we have ltim IT.f—g-],=0, and this completes the proof.

Let us now assume that X=Y in It may be readily seen
from Theorem B that this condition is equivalent to the following condition:

0=feLy(X) and | f;>0 imply lim sup “%ﬁﬂf df”?‘)-

It is then known (cf. and [15]) that the ratio ergodic theorem holds
for I'={T,;t>0}, i.e., for any f and g in L,(X), with g=0, the ratio limit

(10) tim ([ 7o) a) /([ Togo) dt)

b—oo

exists and is finite a.e. on the set {x | j :Tt g(x) dt>0}. Thus Hopf’s decomposi-

tion holds, i.e.,, X decomposes into two sets C and D, called, respectively, the
conservative and dissipative parts of the semigroup I, such that if 0<ge L, (X),

then j.:Ttg(x) dt=co or 0 a.e. on C, and f:Ttg(x) dt<oo a.e.on D. The semi-

group I is called conservative, if C=X.

PROPOSITION 5. Let I'={T,; t>0} be a strongly continuous semigroup of
positive linear operators on L,(X) which satisfies condition (¥). Assume that
X=Y in Theorem B and that I' is conservative. Let weL.(X) satisfy w>0
a.e. on X and TFXw=w for all t>0. Then, for any f and g in L(X),
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ltimle,f—glw dm=0

implies
(11) ltimj|th——g|sdm:0.

PROOF. As in the proof of we get T,g=g for all t>0. There-
fore if we write A=f—g, then it follows that

lim \|Thlw dm=0.

{—oo

Set w,(x)=min {s(x), nw(x)} (n=1). It then follows that T *w,<w, for all t>0.
Hence, for any g’=L#(X) and any ¢,>0, we have

b
0=lim <50Ttg’ dt, wn—T,o*wn>

b—oo

=lim <g’, jtoTt*wndt—f:Ho Tt*wndt>
0

b—soo

§<g', j;°T,*wndt> <o,

This shows that T, *w,=w,, since I is conservative. Hence T *(s—w,)=s—w,
for all >0, and we have

lim sup fthh s dm
{00
< lim sup j | Tuh |, dm-+-lim sup f | Tk (s—w,)dm
=lim sup [111 15— wnydm= [ |k | (s—wn)dm,

from which the proposition follows, because lim‘f\hl(s—wn)dm=0.

5. Individual ergodic theorem.
In this section we investigate the almost everywhere convergence of the

b
average —é—fo T.f dt as b—co. The main result of the section is the following

theorem; we refer the reader to and for the discrete case.
THEOREM 6. Let I'={T,; t>0} be a strongly continuous semigroup of posi-

tive linear operators on L,(X) which satisfies condition (*¥). Assume that T\le
L.(X) for all t>0, and also that
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(12) sup

>0

b
%LT‘I dt

\:M(m,

Then, for any fe L.(X), the limit
(13) lim — T, f(x)dt
b—oo 0

exists and is finite a.e. on X,
PrROOF. Let Y, Z, and s be the same as in [Theorem B. For f& Lo(X)
and t>0, define

S:ef=T*f.

It follows that [S./1,={IT.f |dm=[T:*|f|dm=[1/|T.1 dm<|fl:|T:). Since

IT,1]|.<co by hypothesis and since L.(X) is a dense subspace of L,(X), this
shows that S, can be extended to a positive linear operator on L,(X). By an
approximation argument, we see that S,S,=S,,, on L,(X) for all ¢, #>0.

To prove that the semigroup 4=1{S,; ¢t>0} on L,(X) is strongly continuous
on (0, o), fix an f& L.(X). Then, since the vector valued function t—S,f is
weakly continuous on (0, c0), it follows that this function is also strongly
measurable on (0, o). Now let feL,(X) be given arbitrarily. Choose (f,) a
sequence of functions in L..(X) satisfying 112ir2 \f—7fnl,=0. Then, since

lim |S, /=S, /fzll,=0 for all >0,

we observe that the vector valued function t—S,f is also strongly measurable
on (0, ). Therefore 4={S,; t>0} is strongly continuous on (0, o), by Lemma

VIIL. 1.3 of [6].
For feL.(X) and >0, we have

|- sir at| =4[ il = [ <171, T

:<|f1, -};f:m dt>§M|!fi|1-

Hence, by an approximation argument, we observe that 4=1{S,; ¢t>0} satisfies
condition (*), replacing T, by S,.

To complete the proof of the theorem, we now fix an f in L&(X) and define
two functions f and f in LZ(X) by the relations:

f@=limsep [ Tf@) dt e,
b—re0 0

and
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b
fo)=limint [ T.fx) dt  a.e.
- b-—oo 0
Then, since T,/=f=f=T,f for all £>0, we can define

f4()=lim % f jTt Fodt  ae,

and
. 1 ?
f«(x) =1lim —[75' T.f(x) dt a.e,
b—oo 0 -

Clearly f*, fxe Li(X), T.f*=/f* and T,f«=/f+ for all t>0.
On the other hand, since S;*=T, on L.(X) for all t>0 and S;s=T*s=s

for all t>0, we may apply Corollary 2 of to 4={S,; t>0} to obtain that
F=f=f*=fx on Y={x|s(x)>0}. It follows that f*—f.cLi(Z) and T,(f*—fs)
=f*—f4 for all £>0. Therefore, by Theorem B,

Lre=fuli=tim |4 [ T rr=roai] =o,

and thus f*—f+=0 on X.
Hence the theorem is established.
Let (a,) be a sequence of functions on (0, co) satisfying

(14) j:lan(f)ldf<w for n=1,2, - ;
(15) lim | T, (Ddt=1;
n-—oo ¥ (
(16) lim | “a,(Ob(s+Ddt=b  for every s>0
n!—oov Q

whenever b(f) is a continuous bounded function on (0, c0) for which
lim | “a, (Dbdt=b
n'—oo ¥

exists and is finite, where (n’) is a subsequence of (n).

Under these conditions, we have the following theorem, which is a con-
tinuous extension of the individual ergodic theorem given in [13].

THEOREM 7. Let 4={S,; t>0} be a strongly continuous semigroup of posi-
tive linear contractions on L,(X). Suppose there exists a strictly positive function
h in L(X) such that the set

{jjan(t)Tzh dt | n= 1}
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is weakly sequentially compact in L,(X). Then there exists a function fy= L{(X),
with S,f,=f, for all >0 and C={x|f,(x)>0}, where C denotes the conservative
part of 4; consequently, for any fe L (X), the limit

a7 lim < :S, Fx) dt

exists and is finite a.e. on X.
PrROOF. Choose a subsequence (n’) of (n) and an f,L,(X) such that f,

n!'—oe

=weak-lim j:an,(t)szh dt. Then, for any weL..(X) and any s>0, we have

[ fow dm= lim < | :an/(t)Sth dt, w>

n! —oo

=lim [ a, (1)XSh, wydt
n'—oe ¢ ()

= lim | ()¢S, h, wdt
N —oo v

= lim | :a,,,(txsth, S*wddt

n'—oo

~ lim < [Tausn dt, Ss*w>

n! —oo

=< fo, SFWY =S, o, wy= [(SefJw dm.
This implies that S,f,=f, for any s>0. Next let we L.(X) satisfy j fw dm

=j(Stf)w dm for all feL,(X) and all £>0. Then we have

Jfow dm=tim {"an(tXSih, whdt
=lim [ au(t)Ch, whdt
n' —oo ¥ (

=<h, w):fhw dm.,

This implies that f,—h belongs to the closed subspace generated by the set
{f—S.flfeL,(X), t>0}. Hence we have

lim =

b—reoo ?

1 b
-+ f Stk di—F,

1

and so f, is nonnegative. Write A={x|f,(x)=0}. Since S,f,=f, and | S;[:=1
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for all t>0, it follows that X—CC A and S,*1,<1, for all £>0. It also follows

from an argument used in the proof of that S,*1,=1, on CNA
for all £>>0. Therefore

[ ndm=ch, 10,0 lim [ <k, S*Ldr
cN4 bp—roo 0

N
=lim - [ <Sih, Lodt=(f,, 10=0.

Since 4 is strictly positive, we have m(C "\ A)=0 and hence AC X—C. Conse-
quently, we have C={x]|f,(x)>0}.

Since the ratio ergodic theorem holds for the semigroup 4={S,; t>0} and
since

[t

1 b
[ s rwdt=i 0 T4
o, s

a.e. on C

for any feL,(X), the remainder of the theorem is immediate.

COROLLARY 8. Let 4=1{S,;t>0} be a strongly continuous semigroup of
positive linear contraclions on L,(X). Suppose there exists a strictly increasing
sequence (b,) of positive reals, with lim b,=oo, such that

n—o0

(18) sup

nx=1

bl { S 1 dt
n ‘0

<o,

Then, for any feL,(X), the limit (17) exists and is finite a.e. on X,

PrROOF. For each integer n=1, define a,(1)=1/b, if t=(0, b,] and a,({)=0
if t=(b,, ). Then it is direct to see that (a,) satisfies conditions (14),
and [16). Moreover, since (X, M, m) is a probability space and since

sup

nz1

[Tawsi dt“ < oo
0 oo

by [I8), the set {j‘:an(t)scl dt | nzl} is weakly sequentially compact in L,(X).
Hence completes the proof of the corollary.
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