Ergodic theorems for semigroups of positive operators

By Ryotaro SATO

(Received Feb. 18, 1974) (Revised Nov. 4, 1976)

1. Introduction.

Let $\Gamma = \{T_t; t>0\}$ be a strongly continuous semigroup of bounded linear operators on L_1 of a σ -finite measure space. In [5], Dunford-Schwartz proved that if all the T_t are contractions on L_1 and satisfy $\|T_t f\|_{\infty} \leq \|f\|_{\infty}$ for every $f \in L_1 \cap L_{\infty}$, then the limit

$$\lim_{b \to \infty} \frac{1}{b} \int_0^b T_t f \, dt$$

exists and is finite a.e. for any $f \in L_1$. In [2], Berk proved that if all the T_t are positive contractions on L_1 , then the limit

(2)
$$\lim_{b \to \infty} \left(\int_0^b T_t f \, dt \right) / \left(\int_0^b T_t g \, dt \right)$$

exists and is finite a.e. on the set $\bigcup_{b>0} \left\{ \int_0^b T_t g \, dt > 0 \right\}$ for any $f,g \in L_1$ with $g \ge 0$; this extends the Chacon-Ornstein theorem [3] to the continuous case and was also proved, by different methods, by Akcoglu-Cunsolo [1] and Fong-Sucheston [7]. Only assuming that all the T_t are contractions on L_1 , generalizations of these results are discussed in Kubokawa [11], Tsurumi [17], and Hasegawa-Sato [9].

In this paper, we shall assume that all the T_t are positive and that Γ satisfies $\sup_{b>0} \left\| \frac{1}{b} \int_0^b T_t \ dt \right\|_1 < \infty$ in the sense of *strong integral*, i.e., for each $f \in L_1$ the vector valued function $t \to T_t f$ is Bochner integrable with respect to Lebesgue measure on every finite interval (0, b), and there exists a constant $M \ge 0$ such that

$$\sup_{b>0} \left\| \frac{1}{b} \int_0^b T_t f \, dt \right\|_1 \le M \|f\|_1$$

for all $f \in L_1$. Under these conditions on Γ , we investigate the almost everywhere and strong convergence of the average $\frac{1}{b} \int_0^b T_t f \, dt$ as $b \to \infty$. In particular we observe that, under these conditions on Γ , if there exists a strictly

positive function $h \in L_1$ such that $T_t h/h \in L_\infty$ for all t>0 and also such that $\sup_{b>0} \left\|\left(\frac{1}{b}\int_0^b T_t h\ dt\right)/h\right\|_\infty < \infty$, then the limit (1) exists and is finite a.e. for any $f \in L_1$ with $f/h \in L_\infty$ (cf. Theorem 6). This extends a result due to Derriennic-Lin ([4], Theorem 4.2) to the continuous case.

The main tools employed below are the continuous version of the Chacon-Ornstein theorem and the decomposition theorem given in [15].

The author is grateful to the referees for valuable comments.

2. Definitions and notation.

Let (X, \mathcal{M}, m) be a probability space and let $L_p(X) = L_p(X, \mathcal{M}, m)$, $1 \leq p \leq \infty$, be the (complex) Banach spaces defined as usual with respect to (X, \mathcal{M}, m) . All sets and functions introduced below are assumed to be measurable; all relations are assumed to hold modulo sets of measure zero. If A is a subset of X, then 1_A is the indicator function of A and $L_p(A)$ denotes the Banach space of all $L_p(X)$ -functions that vanish on X-A. Also, $L_p^+(A)$ denotes the positive cone of $L_p(A)$ consisting of nonnegative $L_p(A)$ -functions. A linear operator T on $L_p(X)$ is called positive if $T(L_p^+(X)) \subset L_p^+(X)$ and a contraction if $\|T\|_p \leq 1$. It is well-known that if T is positive then $\|T\|_p < \infty$. The adjoint of T is denoted by T^* .

Let $\Gamma = \{T_t; t>0\}$ be a semigroup of positive linear operators on $L_1(X)$, i. e., all the T_t are positive linear operators on $L_1(X)$ and $T_tT_{t'}=T_{t+t'}$ for all t,t'>0. In this paper we assume that Γ is strongly continuous on $(0,\infty)$, i. e., for each $f \in L_1(X)$ and each $t_0>0$ we have $\lim_{t\to t_0} \|T_tf-T_{t_0}f\|_1=0$, and that Γ satisfies the following condition:

$$\sup_{b>0} \left\| \frac{1}{b} \int_0^b T_t \, dt \right\|_1 < \infty$$

in the sense of strong integral.

It is then known (cf. [6], VIII. 7) that for any $f \in L_1(X)$ there exists a scalar function $T_t f(x)$ on $(0, \infty) \times X$, measurable with respect to the product of Lebesgue measure and m, such that for almost all t > 0, $T_t f(x)$ belongs, as a function of x, to the equivalence class of $T_t f$. Moreover there exists a set $N(f) \subset X$ with m(N(f)) = 0, dependent on f but independent of f, such that if $f \in X \in X$ then the function $f \in X \in X \cap X$ is Lebesgue integrable over every finite interval $f \in X \cap X$ and the integral $f \in X \cap X \cap X$ as a function of $f \in X \cap X \cap X$, belongs to the equivalence class of $f \in X \cap X \cap X \cap X$.

If μ is a σ -finite measure on (X, \mathcal{M}) equivalent to m, then $L_1(X, \mathcal{M}, \mu)$ and

 $L_1(X, \mathcal{M}, m)$ are isometric by the Radon-Nikodym theorem, and thus a semigroup $\{T_t; t>0\}$ on L_1 of a σ -finite measure space can be represented as a semigroup $\{S_t; t>0\}$ on L_1 of a finite measure space, which preserves also pointwise convergence.

3. Some known results.

Throughout this section and the remainder of the paper, $\Gamma = \{T_t; t>0\}$ will be a fixed semigroup of positive linear operators on $L_1(X)$ which is strongly continuous on $(0, \infty)$ and satisfies condition (*).

For $0 \le a < b < \infty$, the integral $\int_a^b T_t *f \, dt \ (\in L_{\infty}(X))$ for $f \in L_{\infty}(X)$ is defined by the relation:

$$\left\langle v, \int_a^b T_t *f \, dt \right\rangle = \left\langle \int_a^b T_t v \, dt, f \right\rangle \quad (v \in L_1(X)).$$

The following lemma is used to obtain a decomposition of the space X. Lemma A ([15], Lemma 1). For any $f \in L_{\infty}(X)$ there exists a scalar function $T_t^*f(x)$ on $(0,\infty)\times X$, measurable with respect to the product of Lebesgue measure and m, and a set $N(f) \subset X$ with m(N(f))=0, dependent on f but independent of f, such that if f if f then the function f is Lebesgue integrable over every finite interval f interval f and the integral f integral f in f in

SKETCH OF PROOF. Without loss of generality we may assume that f is nonnegative. Let I=(c,d], where $0 < c < d < \infty$. Then, since $\sup\{\|T_tf\|_1 | c < t \le d\}$ $< \infty$ for all $f \in L_1(X)$, the uniform boundedness principle (cf. [6], Corollary II. 3.21) implies that

$$\sup_{c < t \le d} \|T_t\|_1 = M < \infty.$$

Define, for α a Lebesgue measurable subset of I and $A \in \mathcal{M}$,

$$\lambda(\alpha \times A) = \int_{\alpha} \langle T_t 1_A, f \rangle dt$$
.

Then it may be readily seen that λ can be extended to a finite measure on the product space $I \times X$. Moreover, since

$$\lambda(\alpha \times A) \leq \int_{\alpha} ||T_t 1_A||_1 ||f||_{\infty} dt$$

$$\leq Mm(A) ||f||_{\infty} \int_{\alpha} 1 dt,$$

 λ is absolutely continuous with respect to the product of Lebesgue measure (on I) and m. Let g(t, x) be the Radon-Nikodym derivative of λ with respect to this product measure. Fix an $A \in \mathcal{M}$. Then, for any α a Lebesgue measurable subset of I, we have, by Fubini's theorem,

$$\int_{\alpha} \langle T_t 1_A, f \rangle dt = \lambda(\alpha \times A) = \int_{\alpha} \int_{A} g(t, x) dm dt.$$

This shows that, for almost all $t \in I$, $\langle T_t 1_A, f \rangle = \int_A g(t, x) dm$.

Since $(0, \infty)$ is a disjoint union of countably many such intervals I, it follows that there exists a nonnegative function g(t, x) on $(0, \infty) \times X$, measurable with respect to the product of Lebesgue measure and m, such that if $A \in \mathcal{M}$ then

$$\langle T_t 1_A, f \rangle = \int_A g(t, x) dm$$

for almost all $t \in (0, \infty)$. Let $0 \le a < b < \infty$. Then we have, again by Fubini's theorem,

$$\left\langle 1_{A}, \int_{a}^{b} g(t, x) dt \right\rangle = \int_{a}^{b} \int_{A} g(t, x) dm dt = \int_{a}^{b} \left\langle T_{t} 1_{A}, f \right\rangle dt$$
$$= \left\langle \int_{a}^{b} T_{t} 1_{A} dt, f \right\rangle = \left\langle 1_{A}, \int_{a}^{b} T_{t}^{*} f dt \right\rangle.$$

Since this holds for any $A \in \mathcal{M}$, a standard approximation argument shows that, for all $v \in L_1(X)$,

$$\langle v, \int_a^b g(t, x) dt \rangle = \langle v, \int_a^b T_t * f dt \rangle.$$

Thus the lemma is proved.

We note that the function $T_t * f(x)$ in Lemma A is uniquely determined up to equivalence modulo sets of the product measure zero.

Next, using Lemma A, let us set

(3)
$$u(x) = \limsup_{b \to \infty} \frac{1}{b} \int_0^b T_t *1(x) dt \qquad (x \in N(1)).$$

Since the function $b \to \frac{1}{b} \int_0^b T_t *1(x) dt$ is continuous on $(0, \infty)$ for each $x \in N(1)$, if D denotes the set of all positive rationals, then we have

$$u(x) = \lim_{b \to \infty, b \in D} \sup_{b \in D} \frac{1}{b} \int_{0}^{b} T_{t} *1(x) dt$$
 $(x \in N(1))$.

Hence we observe that the function u(x) belongs to the equivalence class of

$$\limsup_{b\to\infty} \frac{1}{b} - \int_0^b T_t *1 \, dt \qquad (\in L_\infty(X)).$$

Now, fix t>0 arbitrarily, and let $f\in L_1^+(X)$. Then

$$\langle f, T_t^* u \rangle = \lim_{a \to \infty} \int (T_t f) \Big(\sup_{b > a} \frac{1}{b} \int_0^b T_s^* 1 \, ds \Big) dm$$

$$\geq \lim_{a \to \infty} \int f \Big(\sup_{b > a} \frac{1}{b} \int_t^{b+t} T_s^* 1 \, ds \Big) dm$$

$$= \int f u \, dm = \langle f, u \rangle,$$

and so it follows that $T_t^*u \ge u$. Therefore, by Fubini's theorem and Lemma A, we can choose a set N, with $N(u) \subset N$ and m(N) = 0, such that if $x \in N$ and $0 < b < b' < \infty$ then

$$\frac{1}{b} \int_{0}^{b} T_{t} u(x) dt \leq \frac{1}{b'} \int_{0}^{b'} T_{t} u(x) dt.$$

Therefore we can define

(4)
$$s(x) = \lim_{b \to \infty} \frac{1}{b} \int_0^b T_t u(x) dt \qquad (x \in N).$$

The obtained function s(x) has the following useful properties:

THEOREM B ([15], Theorem 1). $s \in L_{\infty}^+(X)$ and $T_t^*s = s$ for all t>0. If we denote $Y = \{x \mid s(x)>0\}$ and Z = X - Y, then $T_t(L_1(Z)) \subset L_1(Z)$ for all t>0 and

$$\lim_{b \to \infty} \left\| \frac{1}{b} \int_0^b T_t f \, dt \right\|_1 = 0$$

for all $f \in L_1(Z)$.

The following example shows that there exists a strongly continuous semigroup $\Gamma = \{T_t; t>0\}$ of positive linear operators on L_1 of a σ -finite measure space which is not bounded, i. e., $\sup_{t>0} \|T_t\|_1 = \infty$, but satisfies condition (*).

EXAMPLE. Set $a_0 = 1$, $a_1 = 2$, $a_n = 4a_{n-1}$ $(n \ge 2)$; $b_n = \sum_{i=0}^n a_i$ $(n \ge 0)$; $c_n = \sum_{i=0}^n b_i$ $(n \ge 0)$. Define (h_n) a sequence of functions on $(0, \infty)$ as follows:

$$h_{0}(x) = \begin{cases} 1 & \text{if } x \in (-\infty, c_{0}] \\ 0 & \text{if } x \in (c_{0}, \infty), \end{cases}$$

$$h_{n}(x) = \begin{cases} h_{n-1}(x) & \text{if } x \in (-\infty, c_{n-1}] \\ 2^{-n} & \text{if } x \in (c_{n-1}, c_{n-1} + a_{n}] \\ h_{n-1}(x - b_{n}) & \text{if } x \in (c_{n-1} + a_{n}, c_{n}] \\ 0 & \text{if } x \in (c_{n}, \infty) \end{cases}$$

$$(n \ge 1).$$

Then, clearly, $0 \le h_0 \le h_1 \le \cdots \le 1$, and thus we can define

$$h(x) = \lim_{n \to \infty} h_n(x)$$
 $(x \in (-\infty, \infty))$.

It is direct to see that h satisfies

(i) for each b>0

$$\sup \{h(t+x)/h(t) \mid -\infty < t < \infty, \ 0 < x < b\} = M(b) < \infty$$
,

but

$$\lim_{b\to\infty} M(b) = \infty$$
;

(ii) for all b>0 and all $-\infty < t < \infty$

$$\frac{1}{\mathbf{b}} \int_0^b h(t+x) dx < 4h(t).$$

Hence if we set $L_1(h dx) = \{ f \mid \int_{-\infty}^{\infty} |f|h dx < \infty \}$ and, for $f \in L_1(h dx)$ and t > 0,

$$(T_t f)(x) = f(x-t)$$
 $(-\infty < x < \infty)$,

then $\Gamma = \{T_t; t>0\}$ is a semigroup of positive linear operators on $L_1(h\,dx)$ and satisfies $\sup_{0< t< b} \|T_t\|_1 = M(b) < \infty$ for each b>0. Thus we have $\sup_{t>0} \|T_t\|_1 = \infty$. On the other hand, an easy approximation argument implies that $\lim_{t\to +0} \|T_tf-f\|_1 = 0$ for all $f \in L_1(h\,dx)$. Therefore we see that Γ is strongly continuous on $(0,\infty)$. Using Fubini's theorem and (ii), it also follows that

$$\sup_{b>0} \left\| \frac{1}{b} \int_0^b T_t f \, dt \right\|_1 \le 4 \|f\|_1 \qquad (f \in L_1(h \, dx)).$$

Hence Γ satisfies condition (*).

4. Mean ergodic theorem.

In this section we investigate the strong convergence properties of $\frac{1}{b} \times \int_0^b T_t f \, dt$ as $b \to \infty$. The first theorem gives a sufficient (and obviously necessary) condition for the strong **convergence** of the average as $b \to \infty$.

THEOREM 1. Let $\Gamma = \{T_t; t>0\}$ be a strongly continuous semigroup of positive linear operators on $L_1(X)$ which satisfies condition (*). Let $f \in L_1(X)$, and assume that there exists a strictly increasing sequence (b_n) of positive reals, with $\lim_{n\to\infty} b_n = \infty$, such that the sequence $\left(\frac{1}{b_n} \int_0^{b_n} T_t f \, dt\right)$ converges weakly in $L_1(X)$.

Then the average $\frac{1}{b}\int_0^b T_t f dt$ converges strongly as $b\to\infty$ to some $f_\infty \in L_1(X)$ with $T_t f_\infty = f_\infty$ for all t>0.

For the proof of this theorem we need two lemmas. The first one is a continuous extension of the Banach space mean ergodic theorem given in [16]; essentially the same idea has been used by Yosida-Kakutani [19] (see Yosida [18], pp. 213-214) to prove a mean ergodic theorem for power bounded linear operators in Banach space.

LEMMA 2. Let $\mathbf{E} = \{\xi_t; t>0\}$ be a strongly continuous semigroup of bounded linear operators on a Banach space \mathfrak{B} which is assumed to be strongly integrable over every finite interval, and let (b_n) be a strictly increasing sequence of positive reals, with $\lim_{n\to\infty}b_n=\infty$. Assume that $\sup_{n\ge 1}\left\|\frac{1}{b_n}\int_0^{b_n}\xi_t\,dt\right\|<\infty$ in the sense of strong integral. Let $\mathfrak{f}\in\mathfrak{B}$. Then the sequence $\left(\frac{1}{b_n}\int_0^{b_n}\xi_t\,\mathfrak{f}\,dt\right)$ converges strongly to some $\mathfrak{f}_\infty\in\mathfrak{B}$ with $\xi_t\mathfrak{f}_\infty=\mathfrak{f}_\infty$ for all t>0 if and only if

(i)
$$\lim_{n\to\infty} \left\| \frac{1}{b_n} \int_{b_n}^{a+b_n} \xi_t dt \right\| = 0$$
 for all $a>0$, and

(ii) there exists a subsequence (n') of (n) such that

weak-lim
$$\frac{1}{b_{n'}} \int_0^{b_{n'}} \xi_t dt$$

exists in B.

PROOF. Since the necessity of the conditions (i) and (ii) of the lemma is obvious, we prove here only the sufficiency of these conditions.

Since
$$\sup_{n\geq 1} \left\| \frac{1}{b_n} \int_{b_n}^{a+b_n} \xi_t dt \right\| < \infty$$
 for all $a>0$, if we let

$$\mathfrak{A} = \left\{ \mathfrak{b} \in \mathfrak{B} \mid \lim_{n \to \infty} \left\| \frac{1}{b_n} \int_{b_n}^{a+b_n} \xi_t \mathfrak{b} \, dt \right\| = 0 \text{ for all } a > 0 \right\},$$

then $\mathfrak A$ is a closed subspace of $\mathfrak B$ containing $\mathfrak f$ and $\xi_t \mathfrak A \subset \mathfrak A$ for all t>0. Let $\mathfrak f_\infty \in \mathfrak B$ be such that

$$f_{\infty} = \underset{n' \to \infty}{\text{weak-lim}} \frac{1}{b_{n'}} \int_{0}^{b_{n'}} \xi_{t} f dt.$$

Then, as in [16], we observe that $\xi_t \mathfrak{f}_{\infty} = \mathfrak{f}_{\infty}$ for all t > 0 and that $\mathfrak{f} - \mathfrak{f}_{\infty}$ belongs to the closed subspace generated by the set $\{\mathfrak{a} - \xi_t \mathfrak{a} \mid \mathfrak{a} \in \mathfrak{A}, t > 0\}$. Therefore, by an approximation argument, we have

$$f_{\infty} = \text{strong-lim} \frac{1}{b_n} \int_0^{b_n} \xi_t f \, dt.$$

Lemma 3. Let $\Gamma = \{T_t; t>0\}$ be a strongly continuous semigroup of positive linear operators on $L_1(X)$ which satisfies condition (*). Then, for any $f \in L_1(X)$

and any a>0, we have

(6)
$$\lim_{b\to\infty} \left\| \frac{1}{b} \int_b^{b+a} T_t f \, dt \right\|_1 = 0.$$

PROOF. This is an adaptation of the proof of Theorem 2.1 of [4]. Write $M = \sup_{b>0} \left\| \frac{1}{b} \int_0^b T_t \ dt \right\|_1 (<\infty)$. Let a>0 be given. To prove the lemma, it is enough to consider the case where f is nonnegative. Then

$$\frac{1}{t_0} \left\| \int_b^{b+a} T_t f \, dt \right\|_1 \leq \frac{1}{t_0} \left\| \int_0^{t_0} T_t (T_{b+a-t_0} f) dt \right\|_1$$

$$\leq M \| T_{b+a-t_0} f \|_1$$

for all $a < t_0 < b$, and thus we may apply Fubini's theorem to obtain that

$$\begin{split} \left\| \frac{1}{b} \int_{b}^{b+a} T_{t} f \ dt \right\|_{1} & \int_{a}^{b} \frac{1}{t} \ dt \leq M \frac{1}{b} \int_{a}^{b} \|T_{b+a-t} f\|_{1} \ dt \\ & \leq M \frac{1}{b} \int_{0}^{b} \int_{X} T_{t} f(x) \ dm \ dt = M \frac{1}{b} \int_{X} \int_{0}^{b} T_{t} f(x) \ dt \ dm \\ & = M \frac{1}{b} \left\| \int_{0}^{b} T_{t} f \ dt \right\|_{1} \leq M^{2} \|f\|_{1} \ . \end{split}$$

Hence, letting $b\rightarrow\infty$, the desired conclusion follows.

PROOF OF THEOREM 1. Let $f_{\infty} \in L_1(X)$ be the weak limit function of the sequence $\left(\frac{1}{b_n} \int_0^{b_n} T_t f \ dt\right)$, and let (c_n) be any strictly increasing sequence of positive reals, with $\{b_n \mid n \geq 1\} \subset \{c_n \mid n \geq 1\}$. Then, by Lemmas 2 and 3, we have $\lim_{n \to \infty} \left\|\frac{1}{c_n} \int_0^{c_n} T_t f \ dt - f_{\infty}\right\|_1 = 0$ and $T_t f_{\infty} = f_{\infty}$ for all t > 0.

Hence the theorem is established.

The following theorem extends a result due to Fong-Sucheston ([8], Theorem 2.1) to the continuous case. See also [4].

THEOREM 4. Let $\Gamma = \{T_t; t>0\}$ be a strongly continuous semigroup of positive linear operators on $L_1(X)$ which satisfies condition (*). Let Y, Z, and s be the same as in Theorem B. Let f, $g \in L_1(X)$ satisfy $\lim_{t\to\infty} \int |T_t f - g| s \ dm = 0$. Then strong- $\lim_{b\to\infty} \frac{1}{b} \int_0^b T_t g \ dt = g_\infty$ exists, and we have

(7)
$$\lim_{b\to\infty} \frac{1}{b} \int_0^b ||T_t f - g_\infty||_1 dt = 0.$$

In particular, if $\Gamma = \{T_t; t>0\}$ satisfies $\sup_{t>0} \|T_t\|_1 < \infty$, then we have

(8)
$$\lim_{t \to \infty} ||T_t f - g_{\infty}||_1 = 0.$$

PROOF. By Theorem B, we may and will assume without loss of generality that $g \in L_1(Y)$. For t>0 and $sf \in L_1(Y)$, where $f \in L_1(Y)$, define

$$V_t(sf) = s(T_t f)$$
.

Since $\{sf|f\in L_1(Y)\}$ is a dense subspace of $L_1(Y)$ in the strong topology and $\|V_t(sf)\|_1 \leq \|sf\|_1$ (cf. [14]), V_t may be considered to be a positive linear contraction on $L_1(Y)$. By an approximation argument, we observe that $V_tV_{t'}=V_{t+t'}$ on $L_1(Y)$ for all t, t'>0 and that the semigroup $\mathcal{L}=\{V_t;t>0\}$ on $L_1(Y)$ is strongly continuous on $(0,\infty)$. It follows from the hypothesis of the theorem that $\lim_{t\to\infty}\|V_t(sf)-sg\|_1=0$. Therefore we observe that $s(T_tg)=V_t(sg)=sg$ for all t>0. Since g=0 on Z, it then follows that $T_tg^+\geq g^+$ and $T_tg^-\geq g^-$ for all t>0, where $g^+(x)=\max\{g(x),0\}$ and $g^-(x)=\max\{-g(x),0\}$. By this and condition (*), there exist two functions h_1 and h_2 in $L_1^+(X)$ such that

$$h_1 = \operatorname{strong-lim}_{b \to \infty} \frac{1}{b} \int_0^b T_t g^+ dt$$
,

$$h_2 = \text{strong-}\lim_{b\to\infty} \frac{1}{b} \int_0^b T_t g^- dt$$
.

If we set $g_{\infty}=h_1-h_2$, then it follows that

$$g_{\infty} = \text{strong-}\lim_{b\to\infty} \frac{1}{b} \int_0^b T_i g \ dt$$

$$T_t g_{\infty} = g_{\infty}$$
 for all $t > 0$,

and

$$g_{\infty} = g$$
 on Y .

Hence, in order to prove (7), it suffices to show that

(9)
$$\lim_{t\to\infty} \int |T_t f| s \ dm = 0 \quad \text{implies} \quad \lim_{b\to\infty} \frac{1}{b} \int_0^\infty ||T_t f||_1 dt = 0.$$

To prove this, let $t_0>0$ be fixed arbitrarily. Then, by Fatou's lemma, we have

$$\lim \sup_{b \to \infty} \frac{1}{b} \int_0^b ||T_t f||_1 dt$$

$$= \lim \sup_{b \to \infty} \frac{1}{b} \int_{t_0}^b ||T_t f||_1 dt$$

$$\leq \limsup_{b \to \infty} \frac{1}{b} \int_{t_0}^b \langle |T_{t_0}f|, T_{t-t_0}^*1 \rangle dt$$

$$\leq \limsup_{b \to \infty} \left\langle |T_{t_0}f|, \frac{1}{b} \int_0^b T_t^*1 dt \right\rangle$$

$$\leq \int_{\mathbf{X}} |T_{t_0}f| \left(\limsup_{b \to \infty} \frac{1}{b} \int_0^b T_t^*1 dt \right) dm$$

$$= \int_{\mathbf{X}} |T_{t_0}f| u dm \leq \int_{\mathbf{X}} |T_{t_0}f| s dm ,$$

since $0 \le u \le s$. This establishes (9), because the right hand side of the last inequality can be arbitrarily small.

Next let us assume that (7) holds and that Γ satisfies $\sup_{t>0} \|T_t\|_1 < \infty$. Then, by (7), we have $\inf_{t>0} \|T_t f - g_\infty\|_1 = 0$. Therefore, given an $\varepsilon > 0$, we can find a $t_0 > 0$ such that $\|T_{t_0} f - g_\infty\|_1 < \varepsilon$. Then we have, for all $t > t_0$,

$$\|T_t f - g_{\infty}\|_1 = \|T_{t-t_0}(T_{t_0} f - g_{\infty})\|_1 < (\sup_{t>0} \|T_t\|_1) \varepsilon$$
.

Consequently we have $\lim_{t\to\infty}\|T_tf-g_\infty\|_1=0$, and this completes the proof.

Let us now assume that X=Y in Theorem B. It may be readily seen from Theorem B that this condition is equivalent to the following condition:

$$0 \le f \in L_1(X)$$
 and $||f||_1 > 0$ imply $\limsup_{h \to \infty} \left\| \frac{1}{h} \int_0^h T_t f \, dt \right\|_1 > 0$.

It is then known (cf. [7] and [15]) that the ratio ergodic theorem holds for $\Gamma = \{T_t; t>0\}$, i.e., for any f and g in $L_1(X)$, with $g \ge 0$, the ratio limit

(10)
$$\lim_{b\to\infty} \left(\int_0^b T_t f(x) \ dt\right) / \left(\int_0^b T_t g(x) \ dt\right)$$

exists and is finite a. e. on the set $\left\{x\mid \int_0^\infty T_tg(x)\ dt>0\right\}$. Thus Hopf's decomposition holds, i. e., X decomposes into two sets C and D, called, respectively, the conservative and dissipative parts of the semigroup Γ , such that if $0\leq g\in L_1(X)$, then $\int_0^\infty T_tg(x)\ dt=\infty$ or 0 a. e. on C, and $\int_0^\infty T_tg(x)\ dt<\infty$ a. e. on D. The semigroup Γ is called conservative, if C=X.

PROPOSITION 5. Let $\Gamma = \{T_t; t>0\}$ be a strongly continuous semigroup of positive linear operators on $L_1(X)$ which satisfies condition (*). Assume that X=Y in Theorem B and that Γ is conservative. Let $w \in L_{\infty}(X)$ satisfy w>0 a.e. on X and $T_t*w=w$ for all t>0. Then, for any f and g in $L_1(X)$,

$$\lim_{t\to\infty}\int |T_tf-g|w\ dm=0$$

implies

(11)
$$\lim_{t\to\infty}\int |T_tf-g|s\ dm=0.$$

PROOF. As in the proof of Theorem 4, we get $T_tg=g$ for all t>0. Therefore if we write h=f-g, then it follows that

$$\lim_{t\to\infty}\int |T_t h| w d\mathbf{m} = 0.$$

Set $w_n(x) = \min \{s(x), nw(x)\}\ (n \ge 1)$. It then follows that $T_t * w_n \le w_n$ for all t > 0. Hence, for any $g' \in L_1^+(X)$ and any $t_0 > 0$, we have

$$0 \leq \lim_{b \to \infty} \left\langle \int_0^b T_t g' dt, \ w_n - T_{t_0} * w_n \right\rangle$$

$$= \lim_{b \to \infty} \left\langle g', \int_0^{t_0} T_t * w_n dt - \int_b^{b+t_0} T_t * w_n dt \right\rangle$$

$$\leq \left\langle g', \int_0^{t_0} T_t * w_n dt \right\rangle < \infty.$$

This shows that $T_{t_0} * w_n = w_n$, since Γ is conservative. Hence $T_t * (s - w_n) = s - w_n$ for all t > 0, and we have

$$\begin{split} & \limsup_{t \to \infty} \int |T_t h| s \ dm \\ & \leq \limsup_{t \to \infty} \int |T_t h| w_n \ dm + \limsup_{t \to \infty} \int |T_t h| (s - w_n) dm \\ & = \limsup_{t \to \infty} \int |h| T_t * (s - w_n) dm = \int |h| (s - w_n) dm \ , \end{split}$$

from which the proposition follows, because $\lim_{n\to\infty} \int |h|(s-w_n)dm=0$.

5. Individual ergodic theorem.

In this section we investigate the almost everywhere convergence of the average $\frac{1}{b} \int_0^b T_t f \, dt$ as $b \to \infty$. The main result of the section is the following theorem; we refer the reader to [4] and [10] for the discrete case.

THEOREM 6. Let $\Gamma = \{T_t; t>0\}$ be a strongly continuous semigroup of positive linear operators on $L_1(X)$ which satisfies condition (*). Assume that $T_t 1 \in L_{\infty}(X)$ for all t>0, and also that

(12)
$$\sup_{b>0} \left\| \frac{1}{b} \int_0^b T_t 1 \ dt \right\|_{\infty} = M < \infty.$$

Then, for any $f \in L_{\infty}(X)$, the limit

(13)
$$\lim_{b \to \infty} \frac{1}{b} \int_{0}^{b} T_{t} f(x) dt$$

exists and is finite a.e. on X.

PROOF. Let Y, Z, and s be the same as in Theorem B. For $f \in L_{\infty}(X)$ and t>0, define

$$S_t f = T_t * f$$
.

It follows that $||S_t f||_1 = \int |T_t^* f| dm \leq \int T_t^* |f| dm = \int |f| T_t 1 dm \leq ||f||_1 ||T_t 1||_{\infty}$. Since $||T_t 1||_{\infty} < \infty$ by hypothesis and since $L_{\infty}(X)$ is a dense subspace of $L_1(X)$, this shows that S_t can be extended to a positive linear operator on $L_1(X)$. By an approximation argument, we see that $S_t S_{t'} = S_{t+t'}$ on $L_1(X)$ for all t, t' > 0.

To prove that the semigroup $\Delta = \{S_t; t>0\}$ on $L_1(X)$ is strongly continuous on $(0, \infty)$, fix an $f \in L_{\infty}(X)$. Then, since the vector valued function $t \to S_t f$ is weakly continuous on $(0, \infty)$, it follows that this function is also strongly measurable on $(0, \infty)$. Now let $f \in L_1(X)$ be given arbitrarily. Choose (f_n) a sequence of functions in $L_{\infty}(X)$ satisfying $\lim_{n \to \infty} \|f - f_n\|_1 = 0$. Then, since

$$\lim_{n\to\infty} ||S_t f - S_t f_n||_1 = 0$$
 for all $t > 0$,

we observe that the vector valued function $t \rightarrow S_t f$ is also strongly measurable on $(0, \infty)$. Therefore $\Delta = \{S_t; t>0\}$ is strongly continuous on $(0, \infty)$, by Lemma VIII. 1.3 of [6].

For $f \in L_{\infty}(X)$ and b > 0, we have

$$\begin{split} \left\| \frac{1}{b} \int_{0}^{b} S_{t} f \, dt \right\|_{1} & \leq \frac{1}{b} \int_{0}^{b} \|S_{t} f\|_{1} dt \leq \frac{1}{b} \int_{0}^{b} \langle |f|, T_{t} 1 \rangle dt \\ & = \left\langle |f|, \frac{1}{b} - \int_{0}^{b} T_{t} 1 \, dt \right\rangle \leq M \|f\|_{1}. \end{split}$$

Hence, by an approximation argument, we observe that $\Delta = \{S_t; t>0\}$ satisfies condition (*), replacing T_t by S_t .

To complete the proof of the theorem, we now fix an f in $L^+_{\infty}(X)$ and define two functions \bar{f} and f in $L^+_{\infty}(X)$ by the relations:

$$\bar{f}(x) = \limsup_{b \to \infty} \frac{1}{b} \int_0^b T_t f(x) dt$$
 a.e.,

and

$$\underline{f}(x) = \liminf_{b \to \infty} \frac{1}{b} \int_0^b T_t f(x) dt$$
 a.e.

Then, since $T_t \bar{f} \ge \bar{f} \ge f \ge T_t f$ for all t > 0, we can define

$$f^*(x) = \lim_{b \to \infty} \frac{1}{b} \int_0^b T_t \bar{f}(x) dt$$
 a.e.,

and

$$f_*(x) = \lim_{b \to \infty} \frac{1}{b} \int_0^b T_t \underline{f}(x) dt$$
 a.e.

Clearly f^* , $f_* \in L^+_{\infty}(X)$, $T_t f^* = f^*$ and $T_t f_* = f_*$ for all t > 0.

On the other hand, since $S_t*=T_t$ on $L_\infty(X)$ for all t>0 and $S_ts=T_t*s=s$ for all t>0, we may apply Corollary 2 of [15] to $\Delta=\{S_t; t>0\}$ to obtain that $\bar{f}=\underline{f}=f*=f*$ on $Y=\{x\,|\,s(x)>0\}$. It follows that $f^*-f_*\in L_\infty^+(Z)$ and $T_t(f^*-f_*)=f^*-f_*$ for all t>0. Therefore, by Theorem B,

$$||f^*-f_*||_1 = \lim_{b\to\infty} \left\| \frac{1}{b} \int_0^b T_t(f^*-f_*) dt \right\|_1 = 0$$
,

and thus $f^*-f_*=0$ on X.

Hence the theorem is established.

Let (a_n) be a sequence of functions on $(0, \infty)$ satisfying

(14)
$$\int_{0}^{\infty} |a_{n}(t)| dt < \infty \quad \text{for } n = 1, 2, \dots;$$

(15)
$$\lim_{n\to\infty}\int_0^\infty a_n(t)dt=1;$$

(16)
$$\lim_{n'\to\infty}\int_0^\infty a_{n'}(t)b(s+t)dt = b \quad \text{for every } s>0$$

whenever b(t) is a continuous bounded function on $(0, \infty)$ for which

$$\lim_{n'\to\infty}\int_0^\infty a_{n'}(t)b(t)dt=b$$

exists and is finite, where (n') is a subsequence of (n).

Under these conditions, we have the following theorem, which is a continuous extension of the individual ergodic theorem given in [13].

THEOREM 7. Let $\Delta = \{S_t; t>0\}$ be a strongly continuous semigroup of positive linear contractions on $L_1(X)$. Suppose there exists a strictly positive function h in $L_1(X)$ such that the set

$$\left\{ \int_{0}^{\infty} a_{n}(t) T_{t} h \ dt \mid n \geq 1 \right\}$$

604 R. SATO

is weakly sequentially compact in $L_1(X)$. Then there exists a function $f_0 \in L_1^+(X)$, with $S_t f_0 = f_0$ for all t > 0 and $C = \{x | f_0(x) > 0\}$, where C denotes the conservative part of Δ ; consequently, for any $f \in L_1(X)$, the limit

(17)
$$\lim_{b \to \infty} \frac{1}{b} \int_0^b S_t f(x) \ dt$$

exists and is finite a.e. on X.

PROOF. Choose a subsequence (n') of (n) and an $f_0 \in L_1(X)$ such that $f_0 = \text{weak-lim} \int_0^\infty a_{n'}(t) S_t h \ dt$. Then, for any $w \in L_\infty(X)$ and any s > 0, we have

$$\int f_0 w \ dm = \lim_{n' \to \infty} \left\langle \int_0^\infty a_{n'}(t) S_t h \ dt, \ w \right\rangle$$

$$= \lim_{n' \to \infty} \int_0^\infty a_{n'}(t) \langle S_t h, w \rangle dt$$

$$= \lim_{n' \to \infty} \int_0^\infty a_{n'}(t) \langle S_{s+t} h, w \rangle dt$$

$$= \lim_{n' \to \infty} \int_0^\infty a_{n'}(t) \langle S_t h, S_s * w \rangle dt$$

$$= \lim_{n' \to \infty} \left\langle \int_0^\infty a_{n'}(t) S_t h \ dt, S_s * w \right\rangle$$

$$= \langle f_0, S_s * w \rangle = \langle S_s f_0, w \rangle = \int (S_s f_0) w \ dm.$$

This implies that $S_s f_0 = f_0$ for any s > 0. Next let $w \in L_\infty(X)$ satisfy $\int f w \ dm = \int (S_t f) w \ dm$ for all $f \in L_1(X)$ and all t > 0. Then we have

$$\int f_0 w \ dm = \lim_{n' \to \infty} \int_0^\infty a_{n'}(t) \langle S_t h, w \rangle dt$$

$$= \lim_{n' \to \infty} \int_0^\infty a_{n'}(t) \langle h, w \rangle dt$$

$$= \langle h, w \rangle = \int h w \ dm.$$

This implies that f_0-h belongs to the closed subspace generated by the set $\{f-S_tf \mid f \in L_1(X), t>0\}$. Hence we have

$$\lim_{b\to\infty} \left\| \frac{1}{b} \int_{0}^{b} S_{t} h \ dt - f_{0} \right\|_{1} = 0,$$

and so f_0 is nonnegative. Write $A = \{x | f_0(x) = 0\}$. Since $S_t f_0 = f_0$ and $||S_t||_1 \le 1$

for all t>0, it follows that $X-C\subset A$ and $S_t*1_A\leq 1_A$ for all t>0. It also follows from an argument used in the proof of Proposition 5 that $S_t*1_A=1_A$ on $C\cap A$ for all t>0. Therefore

$$\int_{C \cap A} h \ dm = \langle h, 1_{C \cap A} \rangle \leq \lim_{b \to \infty} \frac{1}{b} \int_{0}^{b} \langle h, S_{t} * 1_{A} \rangle dt$$

$$= \lim_{b \to \infty} \frac{1}{b} \int_{0}^{b} \langle S_{t} h, 1_{A} \rangle dt = \langle f_{0}, 1_{A} \rangle = 0.$$

Since h is strictly positive, we have $m(C \cap A) = 0$ and hence $A \subset X - C$. Consequently, we have $C = \{x \mid f_0(x) > 0\}$.

Since the ratio ergodic theorem holds for the semigroup $\mathcal{\Delta} = \{S_t; t>0\}$ and since

$$\frac{1}{b} \int_0^b S_t f(x) dt = f_0(x) \frac{\int_0^b S_t f(x) dt}{\int_0^b S_t f_0(x) dt} \quad \text{a. e. on } C$$

for any $f \in L_1(X)$, the remainder of the theorem is immediate.

COROLLARY 8. Let $\Delta = \{S_t; t>0\}$ be a strongly continuous semigroup of positive linear contractions on $L_1(X)$. Suppose there exists a strictly increasing sequence (b_n) of positive reals, with $\lim_{n\to\infty} b_n = \infty$, such that

(18)
$$\sup_{n\geq 1} \left\| \frac{1}{b_n} \int_0^{b_n} S_t 1 \ dt \right\|_{\infty} < \infty.$$

Then, for any $f \in L_1(X)$, the limit (17) exists and is finite a.e. on X.

PROOF. For each integer $n \ge 1$, define $a_n(t) = 1/b_n$ if $t \in (0, b_n]$ and $a_n(t) = 0$ if $t \in (b_n, \infty)$. Then it is direct to see that (a_n) satisfies conditions (14), (15) and (16). Moreover, since (X, \mathcal{M}, m) is a probability space and since

$$\sup_{n\geq 1} \left\| \int_0^\infty a_n(t) S_t 1 \ dt \right\|_{\infty} < \infty$$

by (18), the set $\left\{\int_0^\infty a_n(t)S_t1\ dt\ |\ n\ge 1\right\}$ is weakly sequentially compact in $L_1(X)$. Hence Theorem 7 completes the proof of the corollary.

References

- [1] M.A. Akcoglu and J. Cunsolo, An ergodic theorem for semigroups, Proc. Amer. Math. Soc., 24 (1970), 161-170.
- [2] K.N. Berk, Ergodic theory with recurrent weights, Ann. of Math. Statist., 39 (1968), 1107-1114.
- [3] R.V. Chacon and D.S. Ornstein, A general ergodic theorem, Illinois J. Math., 4 (1960), 153-160.

- [4] Y. Derriennic and M. Lin, On invariant measures and ergodic theorems for positive operators, J. Functional Analysis, 13 (1973), 252-267.
- [5] N. Dunford and J.T. Schwartz, Convergence almost everywhere of operator averages, J. Rational Mech. Anal., 5 (1956), 129-178.
- [6] N. Dunford and J. T. Schwartz, Linear operators, Part I, Interscience Publishers, New York, 1958.
- [7] H. Fong and L. Sucheston, On the ratio ergodic theorem for semi-groups, Pacific J. Math., 39 (1971), 659-667.
- [8] H. Fong and L. Sucheston, On unaveraged convergence of positive operators in Lebesgue space, Trans. Amer. Math. Soc., 179 (1973), 383-397.
- [9] S. Hasegawa and R. Sato, A general ratio ergodic theorem for semigroups, Pacific J. Math., 62 (1976), 435-437.
- [10] G. Helmberg, On the converse of Hopf's ergodic theorem, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 21 (1972), 77-80.
- [11] Y. Kubokawa, Ergodic theorems for contraction semi-groups, J. Math. Soc. Japan, 27 (1975), 184-193.
- [12] M. Lin, Semi-groups of Markov operators, Boll. Un. Mat. Ital., (4) 6 (1972), 20-
- [13] R. Sato, On the individual ergodic theorem for positive operators, Proc. Amer. Math. Soc., 36 (1972), 456-458.
- [14] R. Sato, Ergodic properties of bounded L_1 -operators, Proc. Amer. Math. Soc., 39 (1973), 540-546.
- [15] R. Sato, Invariant measures for semigroups, Studia Math., 53 (1975), 129-134.
- [16] R. Sato, A mean ergodic theorem, Amer. Math. Monthly, 82 (1975), 487-488.
- [17] S. Tsurumi, An ergodic theorem for a semigroup of linear contractions, Proc. Japan Acad., 49 (1973), 306-309.
- [18] K. Yosida, Functional analysis, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1965.
- [19] K. Yosida and S. Kakutani, Operator-theoretical treatment of Markoff's process and mean ergodic theorem, Ann. of Math., (2) 42 (1941), 188-228.

Ryotaro SATO
Department of Mathematics
Josai University
Sakado, Saitama
Japan