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Introduction.

Let & be a finite field of ¢ elements, and %, the quadratic extension of Z.
Let o be the automorphism of the finite general linear group GL,(k,) defined by

(x:5)°=(x)™

for any element (X;;)1s4,j=n 0Of GL,(k,). The group U,(k,) of o-fixed elements
of GL,(k,) is called the finite unitary group over k,. So far, the irreducible
complex characters of U,(k,) have been determined only for small n (see
Ernola [4] and Nozawa [9), while those of GL,(k;,) have been determined
completely by J. A. Green [7]. The purpose of the present paper is to give a
method by which one can construct the irreducible complex characters of
U.(k,) using those of GL,(k,), at least if the characteristic of k is not 2. As
an application, we also obtain a parametrization of the irreducible characters
of U,(k,) which is dual to a known parametrization of the conjugacy classes.

Let X be an irreducible character of GL,(k,) which is fixed by o, i.e.
satisfies X(x)=X(x?) for all xGL,(k,). Then, by a well-known elementary
lemma, X can be extended to an irreducible character ¥ of the semi-direct
product AGL,(k,) of GL(k,) with the group A={1, ¢}. Our main theorem is:

Assume that char (k)+2. Let X be a o-fixed irreducible character of GL,(k,),
and X an extension of X to an irreducible character of AGL,(k,). Then, there
exists a unique irreducible character ¢y of U,(k,) which depends only on X and
satisfies

Wox)=e(DPu(n(x))  (x€GLa(ky)),

where e(X)==x1 and n(x) is an arbitrary element of U,(k,) conjugate to x°x in
GL,(ky). Moreover, the correspondence X—¢y is a bijection between the set of
g-fixed irreducible characters of GL,(k,) and the set of irreducible characters of
Un(kz)-

This paper consists of five sections. §1 is a recollection of some known
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results on linear representations of finite groups. §2 concerns finite groups
realized as groups of fixed points of surjective endomorphisms of connected
linear algebraic groups. As a special case of a fairly general lemma proved
there, we can see that there is a close relation between the conjugacy classes
of AGL,(k,) and those of U,(k,). §3 is devoted to prove an analogue of the
main theorem for the irreducible Brauer characters of finite Chevalley groups.
In §4, we prove the main theorem. The formulation given there is slightly
more general than the one stated above. In the last §5, combining the main
theorem with Green’s results [7], we obtain a parametrization of the irreducible
characters of U,(k,) (char (k)+2).

The author is glad to acknowledge the debt he owes to Dr. T. Shintani,
who has kindly let him know the results of before its publication.

A short summary of the results of this paper has appeared in [16].

Notation.

Let S be a set. If ¢ is a transformation of S, S, denotes the set of o-fixed
elements of S. Let f be a mapping from S into another set, and T is a subset
of S. Then f|T denotes the restriction of f to 7. If S is a finite set, |S|
means the number of its elements. For a group G and an element x of G,
Zg(x) and €4;(x) denote the centralizer group and the conjugacy class of x.
If K is a field, K* is the multiplicative group of K. We denote by C and Z
the field of complex numbers and the ring of rational integers respectively.

§ 1. Preliminaries on representations of finite groups.

Let G be a finite group, and A a finite cyclic group of order m with a
fixed generator ¢. Suppose that A acts on G. In such situations we shall
often assume that G and A are embedded in their semi-direct product AG;
the multiplication rule in AG is defined by

x0=06"1x0 (xeG, 6€ A).

Let K be an algebraically closed field of characteristic p. Assume that m is
not divisible by p. The following lemma is well-known.

LEMMA 1.1. (a) Let T be an irreducible representation of AG over K, and
T its restriction to G. If T is still wrreducible, then two representations T and
Too of G are equivalent to each other.

(b) Conversely, if an irreducible representation T of G is equivalent to Toao,
then there exist m mutually inequivalent irreducible representations of AG whose
restrictions to G are equivalent to T. If T is one of them, any other one is
equivalent to EQT for a suitable character & of AG/G.
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We may assume that there exists an injective homomorphism ¢ of A* into
C*. For a representation R of a finite group H over K, we denote by By R]
the C-valued function on H defined by

(L.1) BRI =26(ri(n))  (heH),

where r;(h) (1=1, 2, ---,dim R) are the characteristic roots of R(h).
LeEMMA 1.2. Let T be an irreducible representation of AG over K whose
restriction to G is reducible. Then,

BLT1ox)=0 (x€G).

PrOOF. By a theory of Clifford [2], the matrix representation of T(ex)
for a suitable base is written as

( B,(x), -+, Byu(x) )

By (%), -, Byu(x)

where [ is a divisor of m, B;;(x)(1=1, j<I[) are square matrices of the same
size, and B;;(x)=0 if j—i=1 (mod /). Hence the assertion follows from
LEMMA 1.3. Let [ be a positive integer which is not divisible by p, and

a square matrix of (N, N)-type over K, where B;;(1=1,1<l) are square matrices
of (N/I, N/I)-type, and B;;=0 if j—1i=1 (mod I).

(a) The characteristic polynomial det(zEy—B) (Ey is the unit matrix of
(N, N)-type) is a polynomial in z'. .

(b) Let ay, a,, -, ay be the characteristic roots of B. Then 3 ¢(a;)=0.

Proor. (a) It is sufficient to show that -

(1.2) det (zEy—B)=det (nzEy—B)
for an arbitrary [-th root » of unity in K. Let Bj;(1=i,j=<[) be the (i, j)-blocks
of the matrix zEy—B, i.e.
zEy if i=j,
Bj;=1 —By; if j—i=1 (mod ),
0 otherwise .

Multiply 7* to Bji, Bi, -+, Biy A1=i<10), and 9'™7 to By, By, -, By A=j=<0).
Then the resultant matrix is zEy—B. The equality follows from this fact.
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(b) Since p does not devide [, there are [ distinct [-th roots %, 75, =, 7
of unity in K. By the injectivity of @, &é(%,), ¢(.), ---, #(n,) are the [ distinct

roots of unity in C. Hence égﬁ(m):O. Now the assertion follows from
part (a). -

Let T be an irreducible representation of G over the complex number
field C, and % its character. If X is fixed by o, i.e. satisfies X(x)=X(x?) for
all x=G, then X can be extended to an irreducible character Z of AG by
Lemma 1.1(b).

LEMMA 14. Let X, and X, be o-fixed irreducible complex characters of G,
and %, and %, irreducible characters of AG such that 1,|G=X, and ¥,|G=1,.
Then, for [=0,1,2,---,m—1,

G173, 10" (')

equals E(aY) if X,=X, and 1,=&X, with an irreducible character & of AG/G, and
equals 0 if X,xX,.

ProOOF. This is proved in Glauberman [6] and Shintani Here we
follow Glauberman’s proof. Let @,(i=1, 2) be the class functions on AG de-
fined by

where & is the set of irreducible characters of AG/G. Clearly, @,(c"x)=0
(x€G) if n#1, and @,(¢'x)=mi,(¢'x). Therefore

|GI7 B 1(o' L") =Gl m™ B 3 0,(5x)0,(3%)

=m™ 3 {&(aDE (0N AGI T X (E4,)(0x)(E'X2)(0x)} .
t,¢er TEG §EA
By Lemma 1.1(b), £X; are irreducible characters for all £€=%5. Hence, using
orthogonality relations of irreducible characters, we obtain the required result.
LEMMA 1.5. For a positive integer m, put {,=exp (2mi/m). Let ¢ be a
complex valued class function on G. Assume that ¢ satisfies the following two
conditions:

(1) The restriction ¢|E of ¢ to an arbitrary elementary subgroup E of G 1is
a Z[{n]-linear combination of irreducible characters of E.

@ 1617 3 1g@I*=1.

Then there exists an irreducible character X of G, an integer a, and a sign ¢
such that

Px)=elpX(x)  (x€0).
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Proor. By a version [5; §15] of Brauer’s characterization of characters,
the condition (1) implies that ¢ can be written as

¢:Zcixiy

where X; are the irreducible characters of G, and c¢; are elements of Z[{,].
Using the condition (2), we see that

2cic=1.

1

Denote by I’ the Galois group of Q({,) with respect to @. Since the complex
conjugation is an element of I” and since I is abelian, we have

D=1
for all y=I'. Setting d=|I"| we have

S ddd=d.

1 oyerlr

Since ¢; < Z[ L], if ¢;#0,

> clczd| I =d

7€L’ 7€’
and the equality holds if and only if |c!|=1 for all y=I'. Hence ¢;=0 except
for a single index 1,, and ¢;,==+{% for some integer a. This proves the lemma.

§ 2. Preliminaries on algebraic groups.

In this section we denote by & a connected linear algebraic group, and
by ¢ a surjective endomorphism of & such that &, is finite. In such situation
the following theorem is of fundamental importance.

THEOREM 2.1 (Steinberg [15; 10.17). The mapping f: x—x°x of & into
® is surjective.

Let m be a fixed positive integer such that G, is finite. Put G=E,n.
Let A be a finite cyclic group of order m with a generator ¢’. We suppose
that A acts on G by

x9 = x° (x=G).

In the following we write ¢ for ¢/, because there is no fear of confusion.
LeMMA 2.2. (a) Let € be an AG-conjugacy class of the set {6} XG, and ox
an arbitrary element of €. Take an element a, of f~'(x) (see Theorem 2.1), and
put N(x)=x"""x"""%. x?x. Then a,N(x)a;' is an element of G,; its Go-conjugacy
class is determined by 6.
(b) For all x=G,

|€46(00)| |G| 7' = |G (@ N(x)az)| [ Go| 7.
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(¢) The correspondence T from the set of AG-conjugacy classes of {6} xXG
into the set of conjugacy classes of G, defined by

TUE 46(0x)) =Cg,(a.N(x)az)  (x£G6)
s bijective.
Proor. (a) Since xN(x)x '=N(x)°, we have a N(x)az'=(a,N(x)a;')’, i.e.
a;N(x)az;'eG,. Let 8 be another element of f~'(x). Then a;«a,=/"?S. Hence
Bazt=G,. Next, let y be an element of G such that oy is AG-conjugate to ox.

Then there is an element z of G such that y=2z°z"'. Hence «a,z ! is an ele-

ment of f*(y). Moreover, since z°"=z, we have N(y)=zN(x)z"'. Therefore
(axz_l)]\“y)(azz_l)_l - axN(X)a;l .

This proves part (a).
(b) An element g of G is contained in Zg(ox)={geG|glox)=(ox)g}, if
and only if it satisfies

(2.1) xgx1=g°.

From (2.1) and the fact that g°"=g, we have g< Z;(N(x)). Hence

(2.2) a gazt € Zgla,N(x)azh).

On the other hand, (2.1) also implies that

(2.3) a ga;' € G, .

Therefore, from [2.2), and part (a) we see that (2.1) is equivalent to
a,go;t € Zg,(a;N(x)azh).

Hence

(2.4) | Ze(ox)| = Zg,(a,N(x)az")| .

It is easy to see that

(2.5) ZAG(M:Q (0x)'Zg(ox)  (disjoint union).

From and we have

| Z4e(0x)| =m| Zg,(a . N(x)az")] .
Hence we get

|€a6(0x)| = | AG|| Z46(02)| 7' = | G| | Zg (@ N(x)azh) | ™
=|€g (a; Nz |Gl Ge| 7,

as required.
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(¢) First we show that the correspondence 77 is surjective. Take any
yeG, Then by and the assumption that [®,,| <o, there exists
an element y of & such that

(26) 77“’7"’:3) .
Since y=)°, we have 7y *"=7°y""""'. Hence y°y=G. Put x=y°7. Then
N =y

by (2.6). This proves the surjectivity of the correspondence JI. Let {c;, ¢,
-+, ¢;} be the set of conjugacy classes of G,, and {C,, C,, -+, C;} AG-conjugacy
classes of {¢} XG such that 9(C;)=c;. Then, from part (b), we have

GG =1alIG)  (A=i=).
Hence
3 1CI= % 1l 16| IGI=IGI.

=1

This implies that {C,, C,, ---, C,} is the set of AG-conjugacy classes of {0} XG,
and that 37 is certainly bijective.

COROLLARY 2.3. The number of o-fixed irreducible complex characters of G
is equal to the number of 1rreducible complex characters of G,.

PrROOF. The dimension of the linear space spanned by restrictions of ir-
reducible characters of AG to {0} XG equals to the number of AG-conjugacy
classes of {o} XG. The former is equal to the number of o-fixed irreducible
characters by Lemma 1.1, 1.2 and 1.4; the latter is, by (¢c), equal
to the number of conjugacy classes of G,, which is equal to the number of
irreducible characters of G,. This proves the corollary.

The following result is not used in the sequel.

COROLLARY 24. The number of o-fixed conjugacy classes of G 1s equal to
the number of conjugacy classes of G,.

PrROOF. Applying a theorem of Brauer ([5; 12.1]) to the character table
of G, we see that the number of g-invariant irreducible characters of G is
equal to the number of o-fixed conjugacy classes of G. Combining this fact
with we obtain the required result.

LEMMA 25. Assume that ®& is abelian. Let ¥ be an irreducible complex
character of AG, and X its restriction to G. Then, for x€G, we have

_ 0 if X is reducible,
X(ox)= {
2dy(N(x))  if X is irreducible,

where {,=exp (2ri/m), a is an integer, and ¢y is an irreducible character of G,
determined by X.
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PrROOF. By %(ox)=0 if X is reducible. Assume that X is irre-
ducible, i.e. one dimensional representation of G. Since X(x)=X(x?) for all
x=G, we have

(2.7) Lxx)=1 (x=G).

On the other hand, from [Theorem 2.1, it is easy to see that

(2.8 {xeG|Nx)=1}={x"’x|x=G}.

By [2.7), and the surjectivity of the mapping N from G into G,, we have
(2.9) X=¢soN

for a unique irreducible character ¢y of G,. By (b), £ can be
written as

(2.10) (o™x)=E"X(x) (xeG, 0=n<m—1)

The assertion follows from and [2.10).

THEOREM 2.6 (Springer and Steinberg [12; 1,3.4]). Let € be a conjugacy
class of & which is fixed by o. Assume that the centralizer Zy(x) of x<€ is
connected. Then €S, forms a single conjugacy class of &,.

COROLLARY 2.7. Let € be a conjugacy class of G(=8,,,) which is fixed by
o. Assume that Zg(x) is connected for x@. Then €N\G, forms a single con-
jugacy class of G,.

PROOF. Let x be an element of €. Since €=E’ x? is also contained in
&. Hence Gg(x) is fixed by o. Therefore, by Theorem 2.0, €z(x) NG is a
single conjugacy class of G. This implies that €=€g(x)N\G. Using again
we see that

ENG,=Cx(x)NG)NG=C(x) NG,

is a single conjugacy class of G,.

COROLLARY 2.8. Let 8=GLy, XGLy,X =+ XGLy, for some positive integers
Ny, Ny, =+, . Then, for any o-fixed conjugacy class € of G, ENG, forms a single
conjugacy class of G.

PrRoOOF. This follows from and the fact that Zg(x) is con-
nected for all x€@ (see [12; III, 3.22]).

COROLLARY 2.9. (a) Let ®& be semisimple and simply connected. If x1is an
element of G such that N(x) is semisimple, then we have

T(€g 4(ax)) = Ca(N()) NG, .

(b) Let 8&=GL,,XGL,, X -+ XGLy, for some positive integers ny, My, -+, M.
Then we have
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T(Cg 4(0x)) =Ca(N(x))NGs
for all x=G.
PROOF. (a) By [15; 817, Zg(N(x)) is connected. Hence, by
we see that Cg(a,N(x)az;)N\G is a single conjugacy class of G. Hence €;(N(x))
=Gg(a,N(x)a;)NG. Using again we also have

Cy(a,N(x)az') N Ge= g (a . N(x)az") .
Hence
TUE 45(0x)) = ECg,(a . N(x)az;") = Ge(a, N(x)az") N\ G, =Ea(N(x) N G, .
(b) By [12; III, 3.22], Zg(N(x)) is connected. Hence (b) follows by the
same argument as in the proof of (a).

§ 3. Modular representations of finite Chevalley groups.

In this section we denote by & a simply connected semisimple linear alge-
braic group. We consider & as a subgroup of some GL,(K) for a fixed alge-
braically closed field K. Assume that & has a surjective endomorphism o
such that &, is finite. Then the characteristic p of K must be positive ([15;
10.5]). The main result of this section is Before stating this,
we summarize some known facts on & and o. These are mostly due to
C. Chevalley and R. Steinberg (1], [13], [14], [15)).

Let B be a Borel subgroup of &, and  a maximal torus of & contained
in B. One can choose B and H to be fixed by o. Then the unipotent radical
U of B is also fixed by 6. Let X($) be the character module of §, and 2 C
X(9) the root system of & with respect to . For each a= 2 there is an
isomorphism x, of the additive group of K onto a closed subgroup U, of G
such that

hx (Hh = x (a(h)t) (he9, teK).
Take an order on 2 so that U= }Ioua. Let II be the set of simple roots with
respect to this order. From the construction of ® given in [14] we have the
following

LEMMA 3.1. One can choose x,(c=2) so that the following statements hold.

(@) Put hy(t)=w (Y w(—1) (t€ K*) for ac X, where w (t)=x,(t)x_ (—t ) x ().
Then hu(t) are multiplicative as functions of t= K*.

(b)  Put D,={h()|teK*} for acX. These are subgroups of . Moreover,
$ is a direct product of the subgroups 9, for acll.

(c) For asll, define the element w, of X(9) by

oo 11 hs(ts)) =1,.
pll

Then w, (asIl) are the fundamental dominant weights ([1; 16-07)).
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Henceforth, we assume that x, (e¢=2) have been chosen as in

LEMMA 3.2. There exists a permutation p of X and for each a2 a power
gla) of p such that the following statements hold.

(@) II is stable under p.

()  x(D=xpulcat™®)  (tEK)

for some c, = K*.
(c) One can normalize x, (ac ) so that

X(1)° = 2,0(17)  (teK)
for all acIl. Then
X)) =%x_,,(t1) (e K)
for all ac1l.
PRrROOF. Part (a) and part (b) are proved in [15; 11.2]. Part (c) follows
from part (b) and [14; p. 160, (2)].
For each 1€ X(9) there exists an irreducible rational representation R; of
@ whose highest weight ([14; p. 209]) is A; the equivalence class of R, is
uniquely determined by A. Since {w,|acIT}(see (d)) is a basis of
X(9), any element 2 of X(9) can be written as Zzaeznl(a)wa for some A(a)e Z.

THEOREM 3.3 (Steinberg [15; 13.1, 13.3]). Let Rg denote the set of irre-
ducible rational representations of & for which the highest weight 2=3) A(a)w,
satisfies 0<A(a)<q(a)—1 (as1).

(a) The elements of Rg remain distinct and irreducible on restriction to &,.

(b) A complete set of irreducible representations of &, over K is obtained
n this way.

(¢) The collection {2y R;00" | R,& R, most R; trivial} is a complete set
of wrreducible rational representations of G, each counted exactly once.

LEMMA 34. (a) Let R be an irreducible rational representation of & whose
highest weight is X A(@)w,. Then the highest weight of the irreducible repre-
sentation Roog is ) qg(a)A(pa)w,.

(b) Let R,(i=0,1,2,---) be irreducible rational representations of & whose
highest weights are 3 A (a)w, respectively. Then the highest weight of the

wrreducible representation @' Ry 06" is }‘_I,I {mg‘_,: g(a)q(pa) -+ q(p* ‘e di(p* )} w, .

PrOOF. (a) Let V be a left G-module which affords R, and v=V a high-
est weight vector, i. e.

1) XV=v for all xeU,
and
2) hv= (3 A a)w)(h)v for all he 9.

For a proof of part (a) it suffices to show that
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an xv=v for all x<U,

and
(29 hv= (2 q(a)A(pa)wy)(h)v for all he9.

(17) follows from (1) and the fact that I is fixed by 6. For h=9 we can write
h= T ha(ts) by (c). Then, by Lemma 3. (a) and ©), we

get
e ®
h ﬁglh 05t} ).

Hence, by (d),
wa(ha) - t%gya) - (q(na)wﬂa)(h) ’

where p=p~'. Therefore, we see from (2) that
hov = (2 q(na) (@) wy)(M)v = (X g(a)A(pa)w)(W)v,

which is (2’). The proof of part (a) is over. Next, we prove part (b). Let
v:(1=0, 1, 2, ---, m—1) be highest weight vectors of R;o ¢’ respectively. Using
part (a) repeatedly we see that Q7' v; is a highest weight vector of &7Z!
R, o o' with the required weight.

Let m be a positive integer. Then &, is also finite by [15; 10.6].

LEMMA 3.5. Let Rg be as in Theorem 3.3. For a positive integer m, let
Reg,m be the set{QRr5! R0 0'|R,€ Rg} of irreducible rational representations of ©.

(a) The elements of Rg,n, remain distinct and irreducible on restriction to @, .

(b) A complete set of irreducible representations of ®,, is obtained in this
way.

PROOF. By theorem 3.3 and the definition (Lemma 3.2 (b)) of g¢(a), it
suffices to show that Rg,, is the set of irreducible representations of & for
which the highest weight =3 A(@)w,, satisfies 0=<A(a)<Q(a)—1, where Q(a)
=g(a)q(pa)q(p’a) --- (o™ '@). This, in turn, follows easily from Lemma 3.4 (b).

Put G=@,,. As in §2, we denote by A the cyclic group of order m gen-
erated by ¢|G. In the following we write ¢ for ¢|G. Assume that m is not
divisible by p. Then it is easy to see that an element oX of the semi-direct
product AG is p-regular if and only if N(x) is a p-regular (i.e. semi-simple)
element of G. The main result of this section is:

THEOREM 3.6. Assume that m is not divisible by p and that K is the algebraic
closure of the finite field with p elements. Let T be an irreducible representation
of the semi-direct product AG over K, and T its restriction to G. Let ¢ be an
injective homomorphism from K* into C*.

(a) If the representation T of G is reducible, we have

BLTIox)=0 (xre0),
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where By[T7 is defined by (L.1).
(b) If T is still irreducible, then there exists an irreducible representation
Sr of G, over K which depends only on T and satisfies

Bl TXox) = 2. 84L SrU(n(x))

for all x&G such that N(x)=x°""'x"""%... x°x is semisimple, where n(x) is an
arbitrary element of Co(N(xX)N\G,, = exp (2ri/m), and a is an integer.

(¢) The correspondence T—Syr induces a bijection between the set of o-fixed
equivalence classes of irreducible representations of G and the set of equivalence
classes of irreducible vepresentations of G,.

Proor. (a) This is a special case of
(b) For each Re Ry, we put

Tr={(Rod" HQRo o™ Q- Q(Rco)QR}G.

By these representations of G are irreducible and pairwise inequiv-
alent. Since the action of ¢™ is trivial on G, Ty is equivalent to Tgoo.
Conversely, by Lemma 3.5, irreducible representation 7 of G over K is equiv-
alent to T oo if and only if it is equivalent to some T Let R be an element

of Rg and V its representation space. Define a linear transformation I, of
VRV --- @V (m times) by

T (V- 1@ V-2 @ =+ 11Q00) = Vs QU s -+ Q1 QU D Vi (v;e V).
Put

B.1) Tr(o'x)= It o Ta(x)

for x&G and (=0, 1, -, m—1. Then T is an irreducible representation of AG
and Ty is its restriction to G. Let x be an element of G such that N(x) is
semisimple, and n(x) an element of Ey(N(x)NG,. By [12;1II, 1.17, n(x) is
contained in a maximal torus $ of @ fixed by o. To calculate ,8¢[’T’R](ax) we:
may assume that x is contained in ® and N(x)=n(x), by (c) and
(a). Then x° (1=0,1,2,---, m—1) are semisimple and commute
with each other. So we can choose a basis {e,, e,, -*-, ¢} (d=dim R) of V for
which there exist 1,;€K (1=0,1,2,--,m—1; j=1,2,---, d) such that

(3.2) R(xai)ej:ﬂijej .

Put 8={e; _ Re;n,_,&Q - Ke;Re;,|1=j,=d}; this is a basis of VRV - QV
(m times). The operator I, on VRV - RV permutes the set B. Let o be
an I,-orbit in 8, and W, a linear subspace of VRV --- ®V spanned by ele-
ments of B contained in 0. Then Tr(ex)W,cW, by [31) and [32) Clearly,
the cardinality [ of o is a divisor of m. First, assume that [>1. Let b be a
fixed element of o, and (a,;) (1<s, t<[) the matrix representation of Trlax)| W,




Irreducible characters of the finite unitary groups 437

with respect to the basis {I5b, I 2, --+, I,b, b} of W,. Then, from and
(3.2), we see that a,=0 if t—s#1(mod!). Hence, if r,(ox) (1=<71<) are the
characteristic roots of Tx(cx)| W,, we have

(3.3) ; ¢(ri(ox))=0

from Next, consider the case that /=1, i.e. 0={¢;Qe,Q --- Qe;}
for some j. From [3.1) and we get
(34) TR(Ux>ej®ej® ®ej:2m-1,j’2m—2,j lezojej®ej® ®ej
. (].:1)2)'";(1)-
Combining with we get

~ d
(3.5) ﬁgﬁ[TR](Ux) :J§ ¢(lmv»1,j’2m—2,]‘ Z1;"20]') .
On the other hand, from [3.2), we have

R(N(x>>ej:2m—1,jxm—z,j lezojej (Jj=1,2,--,d).

Hence
(36) BALRING) = 35 (s A5+ Do j20r) -

Put Srp=R|G,. This is an irreducible representation of G, by
and depends only on Tr=®m3! Rodt|G by (a). From and
3.6) we have

Bl Tr1(0x) = Byl SraJ(N(x)) .

This, combined with Lemma 1.1, implies part (b) of the Theorem.

(c) The defining domain of the correspondence is the set of o-fixed equiv-
alence classes of irreducible representations of G by (a). The
remaining assertions follow from the proof of (b) and

§4. Main theorem.

In this section we denote by & the general linear group GL, considered
as an algebraic group defined over an algebraically closed field K of char-
acteristic p>0. Let k& be a fixed finite subfield of K. For a positive integer /,
we denote by k(CK) the extension of £ of degree [. Let 7 and o be the
surjective endomorphisms of & defined by

(4.1) = (x¥)151,j5n for x=(x;;)e®

and
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(4.2) x=("*x)")* for x€@,

where ¢=|k| and ’x is the transposed matrix of x=®. If m is a positive
integer,

4.3) G =GCL,(kn)

and

GL,(k,) if m is even,
(4.4) Gy = {

Un(k2m> if m is odd

where U,(k,,) is the group of unitary matrices over k,,. Put G=@,, for a
fixed m. Then ¢|G is an automorphism of the finite group G, and will be
denoted simply by o. Let A be the cyclic group of order m generated by the
automorphism ¢ of G, and AG the semi-direct product of G with A. Now we
can state the main result of the paper.

THEOREM 4.1. Assume that m is not divisible by p. Let ¥ be an irreducible
character of AG, and X its restriction to G.

(a) If the character X of G is reducible, then

Wox)=0 (x€0G).

(b) If X is still irreducible, then there exists an irreducible character ¢ of
G, (=U,(ky)) which depends only on X and satisfies

Wox)=elhdr(n(x)) (€ G, n(x) € Cx(N() NG,

om-2

where N(x)=x""'x - x°x, Ln=exp (2ni/m), e=+1, and a is an integer.

(c) The correspondence X—¢y 1is a bijection between the set of o-fixed irre-
ducible characters of G and the set of irreducible characters of G,.

REMARK 4.2. [Theorem 4.1, and its proof, are valid even if one replaces
¢ with © defined by [4.1). Using Green’s construction of irreducible char-
acters of finite general linear groups, Shintani proved the r-case without
assuming that m is not divisible by p. Our proof is independent of the Green’s
construction.

REMARK 4.3. It may be possible to extend [Theorem 4.1 to a more general
case. See Lemma 2.2 and [Corollary 2.3,

For the proof of we need some preliminary results. Let
a=(a;, a,, -+, a;) be a partition of n, i. e. an integer sequence such that

n= sEai and a,=Za,= - Za;>0. Put
i=1
8= {(Bijizs,jss € 8|B; = GLai(1§i§5) , Bi;=00+#))} .

This is a o-fixed connected algebraic subgroup of & A subgroup of & is
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called of type a if it is conjugate to ®,.
LEMMA 4.4. (a) Let u be a unipotent element of &. Then

(4.5) Zg(u)=%-U (semi-direct product),

where W is the unipotent radical of Zg(u) and X is a subgroup of & which is of
type a for some partition o of n. Moreover, if u is fixed by o, W is fixed by o
and X can be chosen to be fixed by o.

(b) Let s be a (o-fixed) semisimple element of &. Then Zg(s) is a (resp.
o-fixed) subgroup of & of type a for some partition a of n.

PrROOF. (a) The decomposition (4.5) is proved, for example, in [12; IV,
1.7]. If u is fixed by o, we have

Zg(u)=%-U=x%x7-07.

Since U and W’ are both unipotent radicals of Zg(u), we have U=U’, Let &
be the center of X. Then &Y is the center of X°. Since ®&Ul and &°U are both
radicals of Zg(u), we have GU=&°ll. Moreover, © and ©° are maximal tori
of the connected algebraic group @U1=&°ll. Hence &’ =x&x"' for some element
x of @Ul. By [Theorem 2.1, there exists ye &l such that x=y"'y. Put & =y&y~.
Then &’ is o-stable. Therefore, ¥'=Zy4(&’) is fixed by 0. We also have Zg(u)
=X'UU, because ¥'=yZ4(&S)y '=yXy~!. This proves part (a).

(b) This is well-known.

LEMMA 4.5. Let ¥=y8,y ' (y=®) be a o-fixed algebraic subgroup of &
which is of type a for some partition a=(«a,, a,, -, as) of n. Let %) be an
algebraic subgroup of X defined by

D={yB:;)y'€X|B,;eSL,(1=i=s), B;,=00+#))}.
Then
(a) 9 is fixed by o.
(b) For any positive intger I, there exist sequences {a,, a,, ---, a,} {by, b, ---,
by} of positive integers and sequences {D,, D,, -+, Dy}{F,, F,, -+, F,} of finite
fields such that

16) %,12 GLoy(D) X GLay (D) X

o XGLop(Dp) XUy (F) X Upy(F) X+ XUy (Fr)
and
4.7 D1 = SLq (D) X SLo,(D3) X

e XSLgp(Dy) X SU, (F1) X SUy(Fy) X -+ XSU,,(F}),

w}lere ‘SUbi(Fi) - Uz”(Fz) m SLbl(Fl) .
PrROOF. (a) This follows from the fact that 9 is the commutator sub-
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group of X.
(b) Put p=d’. Since X=X°, n=y"°y normalizes &, For any element x=ygy™*
(g=@,) of X, we have
x?=y°gty e =y(n"'g’n)y ",
Hence
(4.8) X,={g=6,|ngn=g}.

For each index 1<i<s satisfying a;=a,,;, let w;=® be the permutation matrix

such that
wigw;1: (gl) g2’ Ty &i-15 8i+15 &is it2s " gs)

for any element g=(gy, &, -+, &s) (8€GL,;) of &,; we denote by 28 the sub-
group of & generated by wis. The normalizer group of &, in @ is generated
by ; and G, Hence n=aw for some weW; and a=X. By [Theorem 2.1,
there exists be@®, such that a=b"°b. Therefore, by [4.9),

X,={g=@,lw b b g b bw=g}
= {ge@,|(bgb ) =bwgw )b} .

Using this and we can easily prove [4.6); can be proved in a similar
way.

LEMMA 4.6. Let X be as in Lemma 4.5. For a fixed positive integer m
which 1s not divisible by p, we put X=X,,. Assume that K is the algebraic
closure of the finite field with p elements. Let ¢ be an injective homomorphism
from K* into C*. Let T be an irreducible representation of the semi-direct
product AX over K, and T its restriction to X.

(a) If the representation T of X is reducible we have

Bl TAo)=0  (xeX),

where B[ T7] is defined by (1.1).

(b) If T is still wrreducible, then there exists an irrveducible representation
Sy of X, whose equivalence class depends only on the equivalence class of T and
satisfies

Bl TAox) = L2B8,LSr1(n(x))

for any x& X such that N(x)=x°""'x°""%... x°x is semisimple, where n(x) is an
arbitrary element of €x(N(xX)NX,, {n= exp (2xi/m), and a is an integer.

(¢) The correspondence T—Sr induces a bijection between the set of o-fixed
equivalence classes of irreducible representations of X and the set of equivalence
classes of irreducible representations of X,.

PROOF. (a) is a special case of The proof of (b) and (c)
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depends on the following two results. _

(1) The number of o-fixed equivalence classes of irreducible representa-
tions of X over K is equal to the number of equivalence classes of irreducible
representations of X, over K.

(2) Let ® be asin For an irreducible rational representation
R of 9), there exists an irreducible rational representation R’ of X such that
R’|9) is equivalent to R.

Let us deduce (b) and (c) from (1) and (2). Let Ry be the set of irredu-
cible rational representations of {) defined in [Theorem 3.9 For each R<& Ry,
let R’ be an irreducible rational representation of X such that R’|% is equiv-
alent to R. Then R’| X, is an irreducible representation of X,, since its
restriction to Y, (where Y=%)_,) is already irreducible by Hence,
by a theorem of Clifford (see or [3; Theorem (51.7)]) and

{(R'1X)RE | Re Ry, £€ 5}

is a complete set of irreducible representations of X, over K, each counted
exactly once, where 5 is the set of irreducible representations of X,/Y,. By
each £ & can be extended to a rational 1-dimensional representa-
tion & of X. Then, by (b),

(4.9) (@5t (€ oo N =EM(x)  (xeX),

where n(x) is an arbitrary element of Cy(N(x)) "\ X,., For R€ Ry and £ &,
we put

Tre={QEMR'RE)oa'} X
= {(QI'R" 2 6) QR E 0 0N} | X

Then Tge is an irreducible representation of X, since its restriction to Y is
already irreducible by Two representations Tge and Tsy (R, S
ERy; &, n=&) are equivalent to each other if and only if R=S and &=.
This follows from and [49). Clearly, Tg,: is equivalent to Ty ;o0.
Conversely, by (1), an irreducible representation T of X over K is equivalent
to Too if and only if it is equivalent to some Tg:. The rest of the proof is
similar to the proof of and is omitted. We now prove (1). The
table of irreducible Brauer characters of X is a non-singular matrix by ortho-
gonality relations ([3; (84.11)]). Hence we may apply a theorem of Brauer
([5; §12.17). By this theorem the number of o-fixed irreducible Brauer char-
acters of X equals the number of o-fixed p-regular conjugacy classes of X.
By the latter number equals the number of p-regular conjugacy
classes of X,, which, in turn, equals the number of irreducible Brauer char-
acters of X,. This proves (1). Next, we prove (2). For this purpose we
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need some results on rational representations of X. Let By be a Borel sub-
group of X, Uy the unipotent radical of By, and H; a maximal torus of X con-
tained in Bx. Then, By=B;\Y is a Borel subgroup of Y, Uy=U¢ is the uni-
potent radical of By, and Hy=9H:Y is a maximal torus of ¥ contained in By.
Let 28 be the Weyl group of X with respect to £x. This can be identified
with the Weyl group of 9) with respect to 9. We denote by w, the element
of W such that (w,Bywi')N\By=%9H:. Let 1 be a rational character of $y. Put
W= {weW| A whwi)=A(wwhw 'wi!) for all hePy}. We define the K-valued
function a; on 9 by

(4.10) a;(y)=A(h™")

if y=? is in Byw,wBy and is written y=uhw,wu, with u, u,=ly, heHy, Wy,
and

(4.11) a;(y)=0
otherwise. For z€Y), we also define the function za; on ¥ by
(za)(¥) =axz"'y).

Let V; be the K-linear space spanned by {za;|z= %}, considered as a ¥)-module.
Then, by [14; pp. 213-217], the function a, is rational on %), and the ¥-module
V, affords an irreducible rational representation with the highest weight A.
To prove (2), it is sufficient to show that the action of ¥ on V,; can be ex-
tended to a rational action of ¥ on V,. Using explicit descriptions of ©:, Dy,
A and 2B, we can see that there exists a rational character 4’ of £ which
satisfies

V(Hy=12
and

(4.12) W, = {weW| V' (wh'wit) = A (wwh'wwst) for all Dy} .
We choose one such A’ and fix it. Since any fe V; satisfies
JOR=FfMAwhwi")  (yeD, heDy),

and since ¥ can be written as a semi-direct product of 9 with a torus TC 9y,
‘any f<V; can be uniquely extended to a rational function on ¥ satisfying

(4.13) JOh) =X (weh'wt)  (x€X, K€ Dy).
For ve X and feV,, define the function vf on X by

HX)=fv"x)  (x€X).

Qur purpose is to show that v/ V,. It is sufficient to prove this in the case
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v=t€% and f=a; If xX is written x=uhw,wu,t, with u, u,€ly, hey, wey,,
t,=%, then

(tay)(x) = a;(t'x) = a; (¢t xw ™ wittw,w) A (wow ™ wy twwwg?)

=ay(x)A(t)

by (@10, [412) and [413). If x=X is not in Byw,28,B;,

(tap(x)=a;(t"'x)=0
by and the fact that t™x&Byw,WBx. Hence we have
ta,= )./(t)(l,ze Vl ,

as required. This completes the proof of
LEMMA 4.7. Let X, m and X be as in Lemma 4.6. Let ¥ be an irreducible
character of the semi-direct product AX. Define the class function ¢ on X, by

1(ox) = ¢(n(x)) (xe X, n(x) e Cx(NxX) N X,).

(This 1s possible by Lemma 2.2 (c) and Corollary 2.10 (b).) Let X be the set of
semisimple elements of X,. Then there exists a Z[{,1-linear combination ¢’ of
irreducible characters of X, such that

Pl Xs=¢'| X5.

Proor. Let {8, 5. -+, Bi} be the set of irreducible Brauer characters of
AX. Then

(4.14) F(ox)= izl d:5(0%)

for all x in {x= X|ox is p-regular} ={xe X|N(x) is semisimple}, where d; are
non-negative integers called decomposition numbers (see, for example, [3;

§83]). From Lemma 4.5 we have
(4.15) fox)=C2B(n(x)) or O

for all x€ X such that N(x) is semisimple, where a; are integers and f3; are
irreducible Brauer characters of X,. By a theorem [7; Theorem 1] of Green,
we can write j3; as

(4.16) ;81‘ = };: Ciixj‘ X7,

where ¢;; are integers and X; are irreducible complex characters of X,. Com-
bining [(4.14), (4.15) with [4.16), we obtain the required result.

PROOF OF THEOREM 4.1.

(a) This is a special case of Lemma 1.2
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(b) By (¢) and [Corollary 2.9 (b), we can define the class func-
tion ¢ on G, by

Wox)=¢(n(x)) (x€G),

where n(x) is an arbitrary element of €;(N(x))"\G,. From Lemma 1.4, Lemmal
2.2 (b) and (b) we have

Gl ™ 5 19(8)*=1.

Hence, by for a proof of (b) it suffices to show that: (*) the re-
striction ¢|E of ¢ to an arbitrary elementary subgroup E of G, is a Z[{,]-
linear combination of irreducible characters of E.

Recall that an elementary subgroup £ can be written as a direct product
Hx{g>, where (g) is a cyclic group generated by g=G,, and H is an r-sub-
group of Z;,(g) for some prime number » which does not divide the order of
g. We consider the following three cases separately.

(1) g is semisimple and r=p.

(2) g is semisimple and r#p.

(3) g is not semisimple.

First, we prove (*) for the case (1). Let & be the center of Zg(g). By
Lemma 4.4 (b), © is a connected abelian algebraic subgroup of ®. Since g=g°,
© is o-stable. Put S=&_,. Then S,xH contains E. Consider the subgroup
Q=SxH of G. Since AQ=ASXH, we can write

(4.17) 1 AQ= le e(0: X w;),

where 0, and w; are irreducible characters of AS and H respectively, and e;
are positive integers. From and the assumption that m is not
divisible by p, we see that the functions 6#; on S, and the functions w; on H
defined by
Oi(N(s)=0.(as)  (s€S)
and
GNP (= w(h™) =w (k) (he H)

are Z[{, -linear combinations of irreducible characters of S, and H respec-
tively. This facts combined with implies (*) for the present case. Next,
let us consider the case (2). In this case every element of E is semisimple.
Hence (*) follows from Lemma 4.7 There remains to prove (*) for the case
(3). Let s and u be semisimple and unipotent elements of G, such that g=su
=us. Since u#1, the order of g is divisible by p. Hence r#p. This means
that every element of H is semisimple.

Put 8=Z4(s) and M=2Zy(u). Then M is o-stable and contains E. From
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Lemma 4.4, we have a semi-direct product decomposition
Mm=%-U,

where W is the unipotent radical of M and X is a o-fixed algebraic subgroup
of type a for some partition a of n. Put X=X%_, and D=Xx<u). The order
of U, is a power of . Hence, by Sylow’s theorem, we may assume that X,
contains Hx<{s). Then D, contains E. Since AD=AXx<{u)>, we can write

(4.18) 1 AD = 2 filpaxv),

where f; are positive integers, and g; and v; are irreducible characters of AX
and {u) respectively. From and the assumption that m is not
divisible by p, we see that the functions g4 on HX<{s) and the functions v; on
{u) defined by

tin(x0)=wi(ox)  (x€ X, n(x) € Ex(N(x) N (HXs)))
and

ViN@)(=vi0™)=vi(v)  (velw)

are Z[{,]-linear combinations of irreducible characters of H X <{s) and {u)
respectively. This fact combined with implies (*) for the case (3).

(¢) The defining domain of the correspondence is the set of o-fixed irredu-
cible characters of G by [Lemma 1.I. Let X, and X, be two distinct o-fixed
irreducible characters of G. Then we have

1Gol ™ 3 ¢1(8)Pr(@) =0

from Lemma 1.4, Lemma 2.2 (b) and (b). This proves the injec-
tivity of the correspondence. By the number of o-fixed irredu-
cible characters of G is equal to the number of irreducible characters of G,.

Hence the correspondence must be bijective. The proof of is
now complete.

§5. Parametrizations.

For a positive integer [/, we denote by G, the general linear group GL,(k,)
over the quadratic extension %, of a finite field k.. Let ¢ be the automorphism

of G, defined by [4.2). Put F=k,,. We consider that ¢ also acts on F*=
GL,(k;y) and F*=Hom (F*, C*) by

=t W) =u(t?) (teF* usF* qg=|k|).

We denote by F; and &; respectively, the set of ¢’-orbits in F* and F* (i=1, 2).
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For an element f of &, (or &), d(f) denotes the cardinality of the orbit f.
Let @ be the set of partitions, i.e. integer sequences v=(v,, v,, ---, v,) satisfy-
ing v,=2v,= --- 2v,>0. We write |v|=v,+v,+ -« +v,. For convention, we sup-
pose that & contains the empty partition 0, and that |@#]|=0. For a positive
integer [<n, let A® (i=1,2) be the set of ®-valued functions f—A(f) on &,
which respectively satisfy

(5.1) 2 1ANdNH=L,
JEF;

and let OP (=1, 2) be the set of ®P-valued functions g—6(g) on &;, which re-
spectively satisfy

(5.2) 2 10(g)ld(g)=1.

The following two lemmas are easy to verify.

LEMMA 5.1. (a) Let f={f,, fs, -, fa([3;EF*) be an element of F,. Then
I={2,13, -, 13} is also an element of F,, and the union f\Jf°1is an element of F,.
(b) Let 2 be an element of AP. Define a P-valued function 2’ on F, by

(5.3) A(H=21V50) (Fed,).

Then 2’ is an element of AP.
(¢) The mapping 2—2’ is a bijection between AP and

AL, ={2= AP | A(/)=A(f°) for all f F,}.

LEMMA 52. (a) Let g={g, &, -, &4 (g;€F*) b ean element of @,. Then
g=1{g{, g4, -, g3} is also an element of G,, and the union g\Jg°® is an element

of &,.
(b) Let 6 be an element of OF. Define a P-valued function 6’ on G, by

(5.4) 0'(g)=0(g\Vg? (g=4,).

Then @' is an element of OP.
(¢c) The mapping §—0’ is a bijection between O and

O, ={0=0P|0(g)=0(g°) for all g &,} .

The theory of Jordan normal forms gives a bijection A—E[1] between
AP and the set of conjugacy classes of G,. In particular, for each f={f., />,
oL fatEF,, |A(f)] is the multiplicity of f; (1=<i<d) as characteristic roots of
x=@[A]. See [7; §1] or [11; §27 for more details. On the other hand, a
theory (7], [1I]) of J. A. Green gives a bijection §—X[6] between @ and the
set of irreducible complex characters of G,. Here, we describe an outline of
Green’s theory, because we need them later. Let a be an element of kX (I<n).
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We define the (not necessarily irreducible) character X, a] of G, whose value
at xe€[1] (A= 4P) is given by

(5.5 XlLal(x)=0

if [A(f)|+0 for at least two elements f of &,, and
SR
(5.6) XiLal(x) = par(qg®) Eo a(t™)

if there exists only one f€ &, such that |A(f)|+#0, where p, is a polynomial
depending on a partition v, ¢g=|%| and ¢ is an element in the o*-orbit f in F*
(Note that ¢ is an element of k% because of the condition [5.1)}) For an element
a of k¥ and a partition v=(v,, v,, ---, v,) such that [|v|<n, we can define the
character X,;,,[v; a] of G,,, which can be written as

(57) xllvi[l); C(]: % C,av 1:1_[1 Xlui[a ° NkZlui/kg[] ’

where the sum is over the set of partitions z# such that |g|=]|v|, ¢, are
rational numbers independent of «, Nkz,ui/kzl (i=1,2,---,7) are usual norm
mappings from £, to ky, and IT is a o-product ([7]; see the proof of [Lemmal
5.3 below). We can now describe the irreducible character X[f#]1 of G, cor-
responding to 6=O{. Let g be an element of &,, and u an element of F*
contained in g. Since u=u? (d=d(g)), there exists a unique element «, of
15;‘:, such that u=a,0Ng/,,. For a partition v, the character X,,[v; «,] does

not depend on the choice of # in g Hence we can define the character X[ 8]
of G, by

(5.8) Xo1=11 Lacp lr?<g>![0(g>; Ay,
geG,

where u(g) is an element of F* contained in g€ &,, and IT is a o-product. In
it is shown that X[ 6] (6= 6) are irreducible and distinct, and any irredu-
cible characters of G, can be obtained in this way.

LEMMA 53. Let v=(v,, v,, -+, v,) be a partition such that |v|=I[ Let ¢,
be a complex valued class function on G,;, (i=1,2,---,7). Then

(ILJa)(x)= (g0 (x€G),
where I is a o-product and ¢f is the class function on G,; defined by

PIN=¢0°) (¥EG,).

PrROOF. Let P, be the standard parabolic subgroup of G, corresponding to
vy, i.e. the group of matrices
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BuBlz" Bl?‘
0 Bzz' BZT

b= 0 0 e G,
0 0--0 B,,

for which B;;€G,; (i=1,2,---,7). Let ¢ be the class function on P, defined by

(5.9 ¢O)=T{¢«Bw)}  (b=(B,)EP).
Then, by the definition of c-product,
(5.10) 1_11 ¢:=ind[¢| P, —> G,]

where the right hand side is the class function on G, induced from ¢ :

(5.11) ind[¢| P, —> GI(x)= | P,| [ Zg ()] %G (ONPPH(Y) .
ve 1
From (5.11) we have

(5.12) ind [¢| P, — G, J(x°)=ind [¢°| P, —> G, 1(x),

where ¢ is defined by
¢’N=¢0°) (yeP,).
By [5.9), [5.10), [(5.12) and the commutativity ([7; Lemma 2.5]) of o-product,
we obtain the required result.
LEMMA 54. Let a be an element of 7@5‘2, and vy a partition.

(@)  Xfalx)=X[aD(x) (x€G).
(b) Xowly; ad(x%) =%, [v; e ¥](x) (xeGy).

Proor. (a) Let t,,1,,---,t, be the characteristic roots of x=G,. Then,
clearly, t¢,1g,---,tf are the characteristic roots of x°. Part (a) follows from

this fact and the formulas and [(5.6).
(b) This follows from [(5.7), Lemma 5.3 and part (a).

For each 1€ A, define the element 2° of A by

2(H=af") (feF,).
Similarly we also define the element 8° of @ for each <O,
LEMMA 55. (a) For each A= AP, we have G[A°=E[27].
(b) For each 0 OP, we have X[6(x?)=X[6°](x) (xeG,).
PrOOF. (a) This can be easily verified. .
(b) This follows from [(5.8), Lemma 5.3 and Lemma 5.4 (b).
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COROLLARY 5.6. (a) A conjugacy class €[] (A€ AP) of G, is fixed by o
if and only if 2 is contained in A& (see Lemma 5.1 (c)).

(b) An irreducible character X[0] (=OP) of G, is fixed by o if and only
if @ is contained in OF) (see Lemma 5.2 (c)).

Let 2 be an element of 4™, and 2’ an element of A{") defined by [5.3).
By (a), the conjugacy class €[2'] of G, is fixed by ¢. Hence,
by [Corollary 2.8, D[ A]=E[2’INU,(k,) is a conjugacy class of U,(k,). It is
easy to see that every conjugacy class of U,(k,) can be obtained in this way.
Next, let 6 be an element of O, and 6’ an element of Of) defined by [5.4).
By (b), the irreducible character X[6’] of G, is fixed by 6. Hence
using with m=2, one can define an irreducible character ¢[6]
=¢uey of Uy(k,), if char(k)#2. Thus we have proved the following

THEOREM 5.7. Let the notations be as above.

(a) The correspondence A—D[A] is a bijection between O and the set of
conjugacy classes of U,(k,).

(b) The correspondence —¢[07] is a bijection between O and the set of
irreducible characters of U,(k,) (char(k)+2).

REMARK 5.8. (a) The above parametrization of the conjugacy classes of
U.(k,) is essentially the same as the one given in Ennola [4].

(b) Ennola constructed a set of class functions ¢’[#] (#=O), and con-
jectured that these are the irreducible characters of U,(k,). It is very probable
that our irreducible character ¢[f#] coincides with Ennola’s class function ¢'[6]
for each = O,
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