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Introduction.

Let $k$ be a finite field of $q$ elements, and $k_{2}$ the quadratic extension of $k$ .
Let $\sigma$ be the automorphism of the finite general linear grouP $GL.(k_{2})$ defined by

$(x_{ij})^{\sigma}=(xj_{i})^{-1}$

for any element $(x_{ij})_{1\leqq i,j\leqq n}$ of $GL_{n}(k_{2})$ . The group $U_{n}(k_{2})$ of $\sigma- fixed$ elements
of $GL_{n}(k_{2})$ is called the finite unitary group over $k_{2}$ . So far, the irreducible
complex characters of $U_{n}(k_{2})$ have been determined only for small $n$ (see

Ernola [4] and Nozawa [8], [9]), while those of $GL_{n}(k_{2})$ have been determined
completely by J. A. Green [7]. The purpose of the present paper is to give a
method by which one can construct the irreducible complex characters of
$U_{n}(k_{2})$ using those of $GL_{n}(k_{2})$ , at least if the characteristic of $k$ is not 2. As
an application, we also obtain a parametrization of the irreducible characters
of $U_{n}(k_{2})$ which is dual to a known parametrization of the conjugacy classes.

Let $\chi$ be an irreducible character of $GL_{n}(k_{2})$ which is fixed by $\sigma,$
$i$ . $e$ .

satisfies $\chi(x)=x(x^{\sigma})$ for all $x\in GL_{n}(k_{2})$ . Then, by a well-known elementary
lemma, $\chi$ can be extended to an irreducible character $\tilde{\chi}$ of the semi-direct
product $AGL_{n}(k_{2})$ of $GL(k_{2})$ with the group $A=\{1, \sigma\}$ . Our main theorem is:

Assume that char $(k)\neq 2$ . Let $\chi$ be a $\sigma- fixed$ irreducible character of $GL_{n}(k_{2})$ ,
and $\tilde{\chi}$ an extension of $\chi$ to an irreducible character of $AGL_{n}(k_{2})$ . Then, there
exists a unique irreducible character $\psi_{\chi}$ of $U_{n}(k_{2})$ which dePends only on $\chi$ and
satisfies

$\tilde{\chi}(\sigma x)=\epsilon(\tilde{\chi})\psi_{\chi}(n(x))$ $(x\in GL_{n}(k_{2}))$ ,

where $\epsilon(\tilde{\chi})=\pm 1$ and $n(x)$ is an arbitrary element of $U_{n}(k_{2})$ conjugate to $x^{\sigma}x$ in
$GL_{n}(k_{2})$ . Moreover, the correspOndence $x\rightarrow\psi_{\chi}$ is a bijection between the set of
a-fixed irreducible characters of $GL_{n}(k_{2})$ and the set of irreducible characters of
$U_{n}(k_{2})$ .

This paper consists of five sections. \S 1 is a recollection of some known
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results on linear representations of finite groups. \S 2 concerns finite groups
realized as groups of fixed points of surjective endomorphisms of connected
linear algebraic groups. As a special case of a fairly general lemma proved
there, we can see that there is a close relation between the conjugacy classes
of $AGL_{n}(k_{2})$ and those of $U_{n}(k_{2})$ . \S 3 is devoted to prove an analogue of the
main theorem for the irreducible Brauer characters of finite Chevalley groups.
In \S 4, we prove the main theorem. The formulation given there is slightly
more general than the one stated above. In the last \S 5, combining the main
theorem with Green’s results [7], we obtain a parametrization of the irreducible
characters of $U_{n}(k_{2})$ (char $(k)\neq 2$).

The author is glad to acknowledge the debt he owes to Dr. T. Shintani,
who has kindly let him know the results of [10] before its publication.

A short summary of the results of this paper has appeared in [16].

Notation.

Let $S$ be a set. If $\sigma$ is a transformation of $S,$ $S_{\sigma}$ denotes the set of $\sigma- fixed$

elements of $S$ . Let $f$ be a mapping from $S$ into another set, and $T$ is a subset
of $S$. Then $f|T$ denotes the restriction of $f$ to $T$. If $S$ is a finite set, $|S|$

means the number of its elements. For a group $G$ and an element $x$ of $G$ ,
$Z_{G}(x)$ and $\mathfrak{E}_{G}(x)$ denote the centralizer group and the conjugacy class of $x$ .
If $K$ is a field, $K^{*}$ is the multiplicative group of $K$. We denote by $C$ and $Z$

the field of complex numbers and the ring of rational integers respectively.

\S 1. Preliminaries on representations of finite groups.

Let $G$ be a finite group, and $A$ a finite cyclic group of order $m$ with a
fixed generator $\sigma$ . Suppose that $A$ acts on $G$ . In such situations we shall
often assume that $G$ and $A$ are embedded in their semi-direct product $AG$ ;
the multiplication rule in $AG$ is defined by

$ x^{\delta}=\delta^{-1}x\delta$ $(x\in G, \delta\in A)$ .
Let $K$ be an algebraically closed Peld of characteristic $P$ . Assume that $m$ is
not divisible by $p$ . The following lemma is well-known.

LEMMA 1.1. (a) Let $\tilde{T}$ be an irreducible representati0n of $AG$ over $K$, and
$T$ its restriction to G. If $T$ is still irreducible, then two representati0ns $T$ and
To $\sigma$ of $G$ are equivalent to each other.

(b) Conversely, if an irreducible representati0n $T$ of $G$ is equivalent to To $\sigma$ ,

then there exist $m$ mutually inequivalent irreducible representati0ns of $AG$ whose
restrictions to $G$ are equivalent to T. If 7 is one of them, any other one is
equivalent to $\xi\otimes^{ffi}$ for a suitable character $\xi$ of $AG/G$ .
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We may assume that there exists an injective homomorphism $\phi$ of $K^{*}$ into
$C^{*}$ . For a representation $R$ of a finite group $H$ over $K$, we denote by $\beta_{\phi}[R]$

the C-valued function on $H$ defined by

(1.1) $\beta_{\phi}[R](h)=\Sigma\phi(r_{i}(h))$ $(h\in H)$ ,

where $r_{i}(h)$ ($i=1,2,$ $\cdots$ , dim $R$ ) are the characteristic roots of $R(h)$ .
LEMMA 1.2. Let $\tilde{T}$ be an irreducible $rePresentation$ of $AG$ over $K$ whose

restriction to $G$ is reducible. Then,

$\beta_{\phi}[T](\sigma x)=0$ $(x\in G)$ .

PROOF. By a theory of Clifford [2], the matrix representation of $T(\sigma x)$

for a suitable base is written as

$\left(\begin{array}{lll}B_{11}(x), & \cdots & B_{1l}(x)\\\cdots & \cdots & \cdots\\ B_{l1}(x) & \cdots & B_{ll}(x)\end{array}\right)$

where $l$ is a divisor of $m,$ $B_{ij}(x)(1\leqq i, j\leqq l)$ are square matrices of the same
size, and $B_{ij}(x)=0$ if $j-i\not\equiv 1(mod l)$ . Hence the assertion follows from

LEMMA 1.3. Let 1 be a Positive integer which is not divisible by $p$ , and

$B=\left(\begin{array}{lll}B_{11}, & \cdots & B_{1l}\\\cdots & \cdots & \cdots\\ B_{l1} & \cdots & B_{ll}\end{array}\right)$

a square matrix of $(N, N)- tyPe$ over $K$, where $B_{ij}(1\leqq i, i\leqq l)$ are square matrices
of $(N/l, N/l)- tyPe$ , and $B_{ij}=0$ if $j-i\not\equiv 1(mod l)$ .

(a) The characteristic Polynomial det $(zE_{N}-B)(E_{N}$ is the unit matrix of
$(N, N)- type)$ is a polynomial in $z^{l}$ .

(b) Let $\alpha_{1},$ $\alpha_{2},$
$\cdots$ , $\alpha_{N}$ be the charactenstic roots of B. Then $\sum_{t=1}^{N}\phi(\alpha_{i})=0$ .

PROOF. (a) It is sufficient to show that

(1.2) det $(zE_{N}-B)=\det(\eta zE_{N}-B)$

for an arbitrary l-th root $\eta$ of unity in $K$. Let $B_{ij}^{\prime}(1\leqq i, j\leqq l)$ be the $(i, j)$ -blocks
of the matrix $zE_{N}-B,$ $i$ . $e$ .

$B_{ij}^{\prime}=\left\{\begin{array}{ll}zE_{N/l} & if i=j,\\-B_{ij} & if j-i\equiv 1(mod 1),\\0 & otherwise.\end{array}\right.$

Multiply $\eta^{i}$ to $B_{i1}^{\prime},$ $B_{i2}^{\prime},$

$\cdots,$
$B_{il}^{\prime}(1\leqq i\leqq l)$ , and $\eta^{1-j}$ to $B_{1j}^{\prime},$ $B_{2f}^{\prime},$ $\cdots$ , $B_{lj}^{f}(1\leqq j\leqq l)$ .

Then the resultant matrix is $zE_{N}-B$ . The equality (1.2) follows from this fact.
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(b) Since $p$ does not devide 1, there are $l$ distinct l-th roots $\eta_{1},$ $\eta_{2},$
$\cdots$ , $\eta_{l}$

of unity in $K$. By the injectivity of $\phi,$ $\phi(\eta_{1}),$ $\phi(\eta_{2}),$ $\cdots$ , $\phi(\eta_{l})$ are the $l$ distinct

roots of unity in $C$. Hence $\sum_{\iota=1}^{l}\phi(\eta_{i})=0$ . Now the assertion follows from
part (a).

Let $T$ be an irreducible representation of $G$ over the complex number
field $C$, and $\chi$ its character. If $\chi$ is fixed by $\sigma,$

$i$ . $e$ . satisfies $\chi(x)=x(x^{\sigma})$ for
all $x\in G$ , then $\chi$ can be extended to an irreducible character $\tilde{\chi}$ of $AG$ by
Lemma l.l(b).

LEMMA 1.4. Let $\chi_{1}$ and $\chi_{2}$ be $\sigma- fixed$ irreducible complex characters of $G$ ,

and $\tilde{\chi}_{1}$ and $\tilde{\chi}_{2}$ irreducible characters of $AG$ such that $\overline{\chi}_{1}|G=x_{1}$ and $\tilde{\chi}_{2}|G=x_{2}$ .
Then, for $l=0,1,2,$ $\cdots$ , $m-1$ ,

$|G|^{-1}\sum_{x\in G}\tilde{\chi}_{1}(\sigma^{l}x)\tilde{\chi}_{2}(\sigma^{l}x)$

equals $\xi(\sigma^{l})$ if $x_{1}=x_{2}$ and $\tilde{\chi}_{1}=\xi\tilde{\chi}_{2}$ with an irreducible character $\xi$ of $AG/G$ , and
equals $0$ if $\chi_{1}\neq\chi_{2}$ .

PROOF. This is proved in Glauberman [6] and Shintani [10]. Here we
follow Glauberman’s proof. Let $\Phi_{i}(i=1,2)$ be the class functions on $AG$ de-
fined by

$\Phi_{i}=\sum_{\xi\in\Xi}\xi(\sigma^{-l})\xi\tilde{\chi}_{i}$

where $\Xi$ is the set of irreducible characters of $AG/G$ . Clearly, $\Phi_{i}(\sigma^{n}x)=0$

$(x\in G)$ if $n\neq l$, and $\Phi_{i}(\sigma^{l}x)=m\tilde{\chi}_{1}(\sigma^{l}x)$ . Therefore

$|G|^{-1}\sum_{x\in G}\chi_{1}(\sigma^{l}x\overline{)\chi_{2}(\sigma^{l}x)}=|G|^{-1}m^{-2}\sum_{x\in G}\sum_{\delta_{\subset}^{-}A}\Phi_{1}(\delta x)\overline{\Phi_{2}(\delta x})$

$=m^{-1}\sum_{\xi,\xi^{\prime}\in\Xi}\{\xi(\sigma^{-l})\overline{\xi^{\prime}(\sigma^{-l})}|AG|^{-1}\sum_{x\in G}\sum_{\delta\in A}(\xi\tilde{\chi}_{1})(\delta x)(\overline{\xi^{\prime}\tilde{\chi}_{2})(\delta x})\}$ .

By Lemma l.l(b), $\xi\tilde{\chi}_{i}$ are irreducible characters for all $\xi\in\Xi$ . Hence, using
orthogonality relations of irreducible characters, we obtain the required result.

LEMMA 1.5. For a positive integer $m$ , put $\zeta_{m}=\exp(2\pi i/m)$ . Let $\psi$ be a
comPlex valued class function on G. Assume that $\psi$ satisfies the following two
conditions:

(1) The restriction $\psi|E$ of $\psi$ to an arbitrary elementary subgroup $E$ of $G$ is
a $Z[\zeta_{m}]$-linear combination of irreducible characters of $E$.

(2) $|G|^{-1}\sum_{x\in G}|\psi(x)|^{2}=1$ .

Then there exists an irreducible character $\chi$ of $G$ , an integer $a$ , and a sign $\epsilon$

such that
$\psi(x)=\epsilon\zeta_{m}^{a}\chi(x)$ $(x\in G)$ .
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PROOF. By a version [5; \S 15] of Brauer’s characterization of characters,
the condition (1) implies that $\psi$ can be written as

$\psi=\sum_{l}c_{i}x_{i}$ ,

where $\chi_{i}$ are the irreducible characters of $G$ , and $c_{i}$ are elements of $Z[\zeta_{m}]$ .
Using the condition (2), we see that

$\sum_{l}c_{i}\overline{c_{i}}=1$ .

Denote by $\Gamma$ the Galois group of $Q(\zeta_{m})$ with respect to $Q$ . Since the complex
conjugation is an element of $\Gamma$ and since $\Gamma$ is abelian, we have

$\sum_{i}c_{i}^{\gamma}\overline{c_{i}^{\gamma}}=1$

for all $\gamma\in\Gamma$ . Setting $d=|\Gamma|$ wc have

$\sum_{1}\sum_{\gamma\in\Gamma}ct\overline{c_{i}^{\gamma}}=d$

Since $c_{i}\in Z[\zeta_{m}]$ , if $c_{i}\neq 0$ ,

$\sum_{\gamma\in 1^{}}c_{i}^{\gamma}\overline{c_{i}^{\gamma}}\geqq d|$
$\prod_{\urcorner,\gamma\in A}c_{i}^{\gamma}|^{2/d}\geqq d$

and the equality holds if and only if $|c_{i}^{\gamma}|=1$ for all $\gamma\in\Gamma$ . Hence $c_{i}=0$ except
for a single index $i_{0}$ , and $c_{i0}=\pm\zeta_{m}^{a}$ for some integer $a$ . This proves the lemma.

\S 2. Preliminaries on algebraic groups.

In this section we denote by $\mathfrak{G}$ a connected linear algebraic group, and
by $\sigma$ a surjective endomorphism of $\mathfrak{G}$ such that $\mathfrak{G}_{\sigma}$ is finite. In such situation
the following theorem is of fundamental importance.

THEOREM 2.1 (Steinberg [15; 10.1]). The maPping $f:x\rightarrow x^{-\sigma}x$ of $\mathfrak{G}$ into
$\mathfrak{G}$ is surjective.

Let $m$ be a fixed positive integer such that $\mathfrak{G}_{\sigma^{m}}$ is finite. Put $G=\mathfrak{G}_{\sigma^{m}}$ .
Let $A$ be a Pnite cyclic group of order $m$ with a generator $\sigma^{\prime}$ . We suppose
that $A$ acts on $G$ by

$x^{\sigma\prime}=x^{\sigma}$ $(x\in G)$ .
In the following we write $\sigma$ for $\sigma^{\prime}$ , because there is no fear of confusion.

LEMMA 2.2. (a) Let $\mathfrak{C}$ be an AG-conjugacy class of the set $\{\sigma\}\times G$, and $\sigma x$

an arbitrary $ele$ment of $\mathfrak{C}$ . Take an element $\alpha_{x}$ of $f^{-1}(x)$ (see Theorem 2.1), and
put $N(x)=x^{\sigma^{m- 1}}x^{\sigma^{m- 2}}\cdots x^{\sigma}x$ . Then $\alpha_{x}N(x)\alpha_{x}^{-1}$ is an element of $G_{\sigma}$ ; its G-conjugacy
class is determined by $\mathfrak{C}$ .

(b) For all $x\in G$ ,

$|\mathfrak{C}_{AG}(\sigma x)||G|^{-1}=|\mathfrak{E}_{G_{\sigma}}(\alpha_{x}N(x)\alpha_{x}^{-1})||G_{\sigma}|^{-1}$ .
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(c) The corresPondence $\mathfrak{N}$ from the set of $AG$-conjugacy classes of $\{\sigma\}\times G$

into the set of conjugacy classes of $G_{\sigma}$ defined by

$\mathfrak{N}(\mathfrak{C}_{AG}(\sigma x))=\mathfrak{E}_{G_{\sigma}}(\alpha_{x}N(x)a_{x}^{-1})$ $(x\in G)$

is bijective.
PROOF. (a) Since $xN(x)x^{-1}=N(x)^{\sigma}$ , we have $\alpha_{x}N(x)\alpha_{x}^{-1}=(a_{x}N(x)\alpha_{x}^{-1})^{\sigma},$ $i$ . $e$ .

$a_{x}N(x)a_{x}^{-1}\in G_{\sigma}$ . Let $\beta$ be another element of $f^{-1}(x)$ . Then $\alpha_{x}^{-\sigma}\alpha_{x}=\beta^{-\sigma}\beta$ . Hence
$\beta\alpha_{x}^{-1}\in G_{\sigma}$ . Next, let $y$ be an element of $G$ such that $\sigma y$ is AG-conjugate to $\sigma x$.
Then there is an element $z$ of $G$ such that $y=z^{\sigma}xz^{-1}$ . Hence $a_{x}z^{-1}$ is an ele-
ment of $f^{-1}(y)$ . Moreover, since $z^{\sigma^{m}}=z$ , we have $N(y)=zN(x)z^{-1}$ . Therefore

$(\alpha_{x}z^{-1})N(y)(a_{x}z^{-1})^{-1}=a_{x}N(x)a_{x}^{-1}$ .

This proves part (a).

(b) An element $g$ of $G$ is contained in $Z_{G}(\sigma x)=\{g\in G|g(\sigma x)=(\sigma x)g\}$ , if
and only if it satisPes

(2.1) xgx $=g^{\sigma}$ .
From (2.1) and the fact that $g^{\sigma^{m}}=g$, we have $g\in Z_{G}(N(x))$ . Hence

(2.2) $a_{x}ga_{x}^{-1}\in Z_{\mathfrak{G}}(a_{x}N(x)a_{x}^{-1})$ .

On the other hand, (2.1) also implies that

(2.3) $\alpha_{x}ga_{x}^{-1}\in G_{\sigma}$ .

Therefore, from (2.2), (2.3) and part (a) we see that (2.1) is equivalent to

$\alpha_{x}ga_{x}^{-1}\in Z_{G_{\sigma}}(\alpha_{x}N(x)\alpha_{x}^{-1})$ .
Hence

(2.4) $|Z_{G}(\sigma x)|=|Z_{G\sigma}(\alpha_{x}N(x)a_{x}^{-1})|$ .
It is easy to see that

(2.5) $Z_{AG}(\sigma x)=\bigcup_{i=0}^{m-1}(\sigma x)^{i}Z_{G}(\sigma x)$ (disjoint union).

From (2.4) and (2.5) we have

$|Z_{AG}(\sigma x)|=m|Z_{G\sigma}(a_{x}N(x)\alpha_{x}^{-1})|$ .
Hence we get

$|\mathfrak{C}_{AG}(\sigma x)|=|AG||Z_{AG}(\sigma x)|^{-1}=|G||Z_{G_{\sigma}}(a_{x}N(x)a_{x}^{-1})|^{-1}$

$=|\mathfrak{E}_{c_{\sigma}}(a_{x}N(x)a_{x}^{-1})||G||G_{\sigma}|^{-1}$

as required.
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(c) First we show that the correspondence $\mathfrak{N}$ is surjective. Take any
$y\in G_{\sigma}$ . Then by Theorem 2.1 and the assumption that $|\mathfrak{G}_{\sigma m}|<\infty$ , there exists
an element $\gamma$ of $\mathfrak{G}$ such that

(2.6) $\gamma\gamma^{-\sigma^{m}}=y$ .

Since $y=y^{\sigma}$ , we have $\gamma\gamma^{-\sigma^{m}}=\gamma^{\sigma}\gamma^{-\sigma^{m+1}}$ . Hence $\gamma^{-\sigma}\gamma\in G$ . Put $ x=\gamma^{-\sigma}\gamma$ . Then

$\gamma N(x)\gamma^{-1}=y$

by (2.6). This proves the surjectivity of the correspondence $\mathfrak{N}$ . Let $\{c_{1},$
$c_{2}$ ,

$c_{l}\}$ be the set of conjugacy classes of $G_{\sigma}$ , and $\{C_{1}, C_{2}, \cdots, C_{l}\}$ AG-conjugacy
classes of $\{\sigma\}\times G$ such that $\mathfrak{N}(C_{i})=c_{i}$ . Then, from part (b), we have

$|C_{i}||G|^{-1}=|c_{i}||G_{\sigma}|^{-1}$ $(1\leqq i\leqq l)$ .
Hence

$\sum_{i=1}^{\iota}|C_{i}|=\sum_{i=1}^{l}|c_{i}|G_{\sigma}|^{-1}|G|=|G|$ .

This implies that $\{C_{1}, C_{2}, \cdots , C_{l}\}$ is the set of AG-conjugacy classes of $\{\sigma\}\times G$ ,
and that $\mathfrak{N}$ is certainly bijective.

COROLLARY 2.3. The number of $\sigma- fixed$ irreducible $comPlex$ characters of $G$

is equal to the number of irreducible comPlex characters of $G_{\sigma}$ .
PROOF. The dimension of the linear space spanned by restrictions of ir-

reducible characters of $AG$ to $\{\sigma\}\times G$ equals to the number of AG-conjugacy
classes of $\{\sigma\}\times G$ . The former is equal to the number of $\sigma- fixed$ irreducible
characters by Lemma 1.1, 1.2 and 1.4; the latter is, by Lemma 2.2 (c), equal
to the number of conjugacy classes of $G_{\sigma}$ , which is equal to the number of
irreducible characters of $G_{\sigma}$ . This proves the corollary.

The following result is not used in the sequel.
COROLLARY 2.4. The number of $\sigma- fixed$ conjugacy classes of $G$ is equal to

the number of conjugacy classes of $G_{\sigma}$ .
PROOF. Applying a theorem of Brauer ([5; 12.1]) to the character table

of $G$ , we see that the number of $\sigma$-invariant irreducible characters of $G$ is
equal to the number of $\sigma- fixed$ conjugacy classes of $G$ . Combining this fact
with Corollary 2.3 we obtain the required result.

LEMMA 2.5. Assume that $\mathfrak{G}$ is abelian. Let $\tilde{\chi}$ be an irreducible comPlex
character of $AG$ , and $\chi$ its restriction to G. Then, for $x\in G$ , we have

$\tilde{\chi}(\sigma x)=\{$

$0$ if $\chi$ is reducible,

$\zeta_{m}^{a}\psi_{\chi}(N(x))$ if $\chi$ is irreducible,

where $\zeta_{m}=\exp(2\pi i/m)$ , $a$ is an integer, and $\psi_{\chi}$ is an irreducible character of $G_{\sigma}$

determined by $\chi$ .
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PROOF. By Lemma 1.2, $\tilde{x}(\sigma x)=0$ if $\chi$ is reducible. Assume that $\chi$ is irre-
ducible, $i$ . $e$ . one dimensional representation of $G$ . Since $\chi(x)=x(x^{\sigma})$ for all
$x\in G$ , we have

(2.7) $\chi(x^{-\sigma}x)=1$ $(x\in G)$ .
On the other hand, from Theorem 2.1, it is easy to see that

(2.8) $\{x\in G|N(x)=1\}=\{x^{-\sigma}x|x\in G\}$ .
By (2.7), (2.8) and the surjectivity of the mapping $N$ from $G$ into $G_{\sigma}$ , we have

(2.9) $x=\psi_{\chi^{\circ}}N$

for a unique irreducible character $\psi_{\chi}$ of $G_{\sigma}$. By Lemma 1.1 (b), $\tilde{\chi}$ can be
written as

(2.10) $\tilde{\chi}(\sigma^{n}x)=\zeta^{n}\chi(x)$ $(x\in G, 0\leqq n\leqq m-1)$

The assertion follows from (2.9) and (2.10).

THEOREM 2.6 (Springer and Steinberg [12; 1, 3.4]). Let $\mathfrak{E}$ be a conjugacy
class of $\mathfrak{G}$ which is fixed by $\sigma$. Assume that the centralizer $Z_{G}(x)$ of $x\in \mathfrak{E}$ is
connected. Then $\mathfrak{E}\cap \mathfrak{G}_{\sigma}$ forms a single conjugacy class of $\mathfrak{G}_{a^{s}}$

COROLLARY 2.7. Let $\mathfrak{C}$ be a conjugacy class of $G(=\mathfrak{G}_{\sigma^{m}})$ which is fixed by
$a$. Assume that $Z_{G}(x)$ is connected for $x\in \mathfrak{E}$ . Then $\mathfrak{E}\cap G_{\sigma}$ forms a single con-
jugacy class of $G_{\sigma}$ .

PROOF. Let $x$ be an element of $\mathfrak{E}$ . Since $\mathfrak{C}=\mathfrak{C}^{\sigma},$ $x^{\sigma}$ is also contained in
$\mathfrak{E}$ . Hence $\mathfrak{E}_{\mathfrak{G}}(x)$ is fixed by $\sigma$ . Therefore, by Theorem 2.6, $\mathfrak{E}_{\mathfrak{G}}(x)\cap G$ is a
single conjugacy class of $G$ . This implies that $\mathfrak{E}=\mathfrak{E}_{\mathfrak{G}}(x)\cap G$ . Using again
Theorem 2.6 we see that

$\mathfrak{E}\cap G_{\sigma}=(\mathfrak{E}_{\mathfrak{G}}(x)\cap G)\cap G_{\sigma}=\mathfrak{C}_{\mathfrak{G}}(x)\cap G_{\sigma}$

is a single conjugacy class of $G_{\sigma}$ .
COROLLARY 2.8. Let $\mathfrak{G}=GL_{n_{1}}\times GL_{n_{2}}\times\cdots\times GL_{n_{l}}$ for some Positive integers

$n_{1},$ $n_{2z}\cdots,$ $n_{l}$ . Then, for any $\sigma- fixed$ conjugacy class $\mathfrak{E}$ of $G,$ $\mathfrak{E}\cap G_{\sigma}$ forms a single
conjugacy class of $G_{\sigma}$.

PROOF. This follows from Corollary 2.7 and the fact that $Z_{\mathfrak{G}}(x)$ is con-
nected for all $x\in \mathfrak{G}$ (see [12; III, 3.22]).

COROLLARY 2.9. (a) Let $\mathfrak{G}$ be semisimple and simply connected. If $x$ is an
element of $G$ such that $N(x)$ is semisimPle, then we have

$\mathfrak{N}(\mathfrak{E}_{GA}(ax))=\mathfrak{E}_{G}(N(x))\cap G_{\sigma}$ .
(b) Let $\mathfrak{G}=GL_{n_{1}}\times GL_{n_{2}}\times\cdots\times GL_{n_{l}}$ for some Positive integers $n_{1},$ $n_{2},$

$\cdots$ , $n_{l}$ .
Then we have
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$\mathfrak{N}(\mathfrak{E}_{GA}(\sigma x))=\mathfrak{E}_{G}(N(x))\cap G_{\sigma}$

for all $x\in G$ .
PROOF. (a) By [15; 8.1], $Z_{\mathfrak{G}}(N(x))$ is connected. Hence, by Theorem 2.6,

we see that $\mathfrak{E}_{\mathfrak{G}}(\alpha_{x}N(x)\alpha_{x}^{-1})\cap G$ is a single conjugacy class of $G$ . Hence $\mathfrak{E}_{G}(N(x)\rangle$

$=\mathfrak{E}_{\mathfrak{G}}(a_{x}N(x)\alpha_{x}^{-1})\cap G$ . Using again Theorem 2.6 we also have

$\mathfrak{C}_{\mathfrak{G}}(\alpha_{x}N(x)a_{x}^{-1})\cap G_{\sigma}=\mathfrak{C}_{G\sigma}(\alpha_{x}N(x)a_{x}^{-1})$ .
Hence

$\mathfrak{N}(\mathfrak{E}_{AG}(\sigma x))=\mathfrak{E}_{c_{\sigma}}(\alpha_{x}N(x)\alpha_{x}^{-1})=G_{\mathfrak{G}}(a_{x}N(x)\alpha_{x}^{-1})\cap G_{\sigma}=\mathfrak{E}_{G}(N(x))\cap G_{\sigma}$ .
(b) By [12; III, 3.22], $Z_{\mathfrak{G}}(N(x))$ is connected. Hence (b) follows by the

same argument as in the proof of (a).

\S 3. Modular representations of finite Chevalley groups.

In this section we denote by $\mathfrak{G}$ a simply connected semisimple linear alge-
braic group. We consider $\mathfrak{G}$ as a subgroup of some $GL_{l}(K)$ for a fixed alge-
braically closed field $K$. Assume that $\mathfrak{G}$ has a surjective endomorphism a
such that $\mathfrak{G}_{\sigma}$ is finite. Then the characteristic $p$ of $K$ must be positive ([15 ;
10.5]). The main result of this section is Theorem 3.6. Before stating this,
we summarize some known facts on $\mathfrak{G}$ and $\sigma$ . These are mostly due to
C. Chevalley and R. Steinberg ([1], [13], [14], [15]).

Let $\mathfrak{B}$ be a Borel subgroup of $\mathfrak{G}$ , and $\mathfrak{H}$ a maximal torus of $\mathfrak{G}$ contained
in B. One can choose $\mathfrak{B}$ and $\mathfrak{H}$ to be fixed by $\sigma$ . Then the unipotent radical
$\mathfrak{U}$ of $\mathfrak{B}$ is also fixed by $\sigma$ . Let $X(\mathfrak{H})$ be the character module of $\mathfrak{H}$ , and $\Sigma\subset$

$X(\mathfrak{H})$ the root system of $\mathfrak{G}$ with respect to $\mathfrak{H}$. For each $\alpha\in\Sigma$ there is an
isomorphism $x_{\alpha}$ of the additive group of $K$ onto a closed subgroup $\mathfrak{U}_{\alpha}$ of $G$

such that
$hx_{\alpha}(t)h^{-1}=x_{\alpha}(\alpha(h)t)$ $(h\in \mathfrak{H}, t\in K)$ .

Take an order on $\Sigma$ so that $\mathfrak{U}=\prod_{\alpha,0}\mathfrak{U}_{a}$ . Let $\Pi$ be the set of simple roots with

respect to this order. From the construction of $\mathfrak{G}$ given in [14] we have the
following

LEMMA 3.1. One can choose $x_{\alpha}(\sigma\in\Sigma)$ so that the following statements hold.
(a) Put $h_{\alpha}(t)=w_{\alpha}(t)w_{\alpha}(-1)(t\in K^{*})$ for $ a\in\Sigma$ , where $w_{\alpha}(t)=x_{\alpha}(t)x_{-\alpha}(-t^{-1})x_{\alpha}(i)$ .

Then $h_{\alpha}(t)$ are multiPlicative as functions of $t\in K*$ .
(b) Put $\mathfrak{H}_{\alpha}=\{h_{\alpha}(t)|t\in K^{*}\}$ for $\alpha\in\Sigma$ . These are subgroups of $\mathfrak{H}$. Moreover,

$\mathfrak{H}$ is a direct Product of the subgroups $\mathfrak{H}_{\alpha}$ for $ a\in\Pi$ .
(c) For $ a\in\Pi$ , define the element $\omega_{\alpha}$ of $X(\mathfrak{H})$ by

$\omega_{\alpha}(\prod_{\beta\in\Pi}h_{\beta}(t_{\beta}))=t_{\alpha}$ .

Then $\omega_{\alpha}(\alpha\in\Pi)$ are the fundamental dominant weights ([1; 16-07]).



434 N. KAWANAKA

Henceforth, we assume that $x_{\alpha}(a\in\Sigma)$ have been chosen as in Lemma 3.1.
LEMMA 3.2. There exists a permutatjOn $\rho$ of $\Sigma$ and for each $ a\in\Sigma$ a power

$q(\alpha)$ of $p$ such that the following statements hold.
(a) $\Pi$ is stable under $\rho$ .
(b) $x_{\alpha}(t)^{\sigma}=x_{\rho\alpha}(c_{\alpha}t^{q(\alpha)})$ $(t\in K)$

for some $c_{\alpha}\in K^{*}$ .
(c) One can normalize $x_{\alpha}(\alpha\in\Sigma)$ so that

$x_{\alpha}(t)^{\sigma}=x_{\rho\alpha}(t^{q(a)})$ $(t\in K)$

for all $ a\in\Pi$ . Then
$x_{-1}(t)=x_{-\rho\alpha}(t^{q(a)})$ $(t\in K)$

for all $\alpha\in\Pi$ .
PROOF. Part (a) and part (b) are proved in [15; 11.2]. Part (c) follows

from part (b) and [14; p. 160, (2)].

For each $\lambda\in X(\mathfrak{H})$ there exists an irreducible rational representation $R_{\lambda}$ of
$\mathfrak{G}$ wbose highest weight ([14; p. 209]) is $\lambda$ ; the equivalence class of $R_{\lambda}$ is
uniquely determined by $\lambda$ . Since $\{\omega_{\alpha}|\alpha\in\Pi\}$ (see Lemma 3.1 $(d)$ ) is a basis of
$X(\mathfrak{H})$ , any element $\lambda$ of $X(\mathfrak{H})$ can be written as $\lambda=\sum_{\alpha\in\Pi}\lambda(\alpha)\omega_{\alpha}$ for some $\lambda(\alpha)\in Z$.

THEOREM 3.3 (Steinberg [15; 13.1, 13.3]). Let $\mathcal{R}_{\mathfrak{G}}$ denote the set of irre-
ducible rational representations of $\mathfrak{G}$ for which the highest weight $\lambda=\sum\lambda(\alpha)\omega_{\alpha}$

satisfies $0\leqq\lambda(a)\leqq q(a)-1(a\in\Pi)$ .
(a) The elements of $\mathcal{R}_{\mathfrak{G}}$ remain distinct and irreducible on restriction to $\mathfrak{G}_{\sigma}$ .
(b) A complete set of irreducible representations of $\mathfrak{G}_{\sigma}$ over $K$ is obtained

in this way.
(c) The collection { $\otimes_{i=0}^{\infty}R_{i}\circ\sigma^{i}|R_{i}\in \mathcal{R}_{\mathfrak{G}}$ , most $R_{i}$ trivial} is a complete set

of irreducible rational $representations$ of $G$ , each counted exactly once.
LEMMA 3.4. (a) Let $R$ be an irreducible rational representatiOn of $\mathfrak{G}$ whose

highest weight is $\sum\lambda(a)\omega_{x}$ Then the highest weight of the irreducible repre-
sentatiion $ R\circ\sigma$ is $\sum q(\alpha)\lambda(\rho\alpha)\omega_{\alpha}$.

(b) Let $R_{i}(i=0,1,2, \cdots)$ be irreducible rational representations of $\mathfrak{G}$ whose
highest weights are $\sum_{\alpha}\lambda_{i}(a)\omega_{\alpha}$ respectively. Then the highest weight of the

irreducible representation $\otimes_{i=0}^{m-1}R_{i}\circ\sigma^{i}is\sum_{\alpha\in\Pi}\{\sum_{i=0}^{m-1}q(\alpha)q(\rho\alpha)\cdots q(\rho^{i- 1}\alpha)\lambda_{i}(\rho^{i}\alpha)\}\omega_{\alpha}$ .
PROOF. (a) Let $V$ be a left G-module which affords $R$ , and $v\in V$ a high-

est weight vector, $i$ . $e$ .

(1) $xv=v$ for all $x\in \mathfrak{U}$ ,

and
(2) $hv=(\sum\lambda(\alpha)\omega_{a})(h)v$ for all $h\in \mathfrak{H}$ .

For a proof of part (a) it suffices to show that
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(1) $x^{\sigma}v=v$ for all $x\in \mathfrak{U}$ ,

and

(2’) $h^{\sigma}v=(\sum q(a)\lambda(\rho\alpha)\omega_{\alpha})(h)v$ for all $h\in \mathfrak{H}$ .

(1) follows from (1) and the fact that $\mathfrak{U}$ is fixed by $\sigma$ . For $h\in \mathfrak{H}$ we can write
$h=\prod_{\beta\in\Pi}h_{\beta}(t_{\beta})$ by Lemma 3.1 (c). Then, by Lemma 3.1 (a) and Lemma 3.2 (c), we

get
$h^{\sigma}=\prod_{\beta\in\Pi}h_{\rho_{l}9}(\mathfrak{P}(\beta))$ .

Hence, by Lemma 3.1 (d),

$\omega_{\alpha}(h^{\sigma})=t_{\eta a}^{q(\eta\alpha)}=(q(\eta a)\omega_{\eta_{\alpha}})(h)$ ,

where $\eta=\rho^{-1}$ . Therefore, we see from (2) that

$h^{\sigma}v=(\Sigma q(\eta\alpha)\lambda(a)\omega_{\eta_{a}})(h)v=(\Sigma q(\alpha)\lambda(\rho\alpha)\omega_{\alpha})(h)v$ ,

which is (2). The proof of part (a) is over. Next, we prove part (b). Let
$v_{i}(i=0,1,2, \cdots, m-1)$ be highest weight vectors of $R_{i}\circ\sigma^{i}$ respectively. Using
part (a) repeatedly we see that $\otimes_{i=0}^{m-1}v_{i}$ is a highest weight vector of $\otimes_{i=0}^{m-1}$

$R_{i}\circ\sigma^{i}$ with the required weight.
Let $m$ be a positive integer. Then $\mathfrak{G}_{\sigma^{m}}$ is also finite by [15; 10.6].

LEMMA 3.5. Let $\mathcal{R}_{\mathfrak{G}}$ be as in Theorem 3.3. For a Positive integer $m$ , let
$\mathcal{R}_{\mathfrak{G},m}$ be the $set\{\otimes_{i=0}^{m-1}R_{i}\circ\sigma^{i}|R_{t}\in \mathcal{R}_{\mathfrak{G}}\}$ of irreducible rational representaiiOns of G.

(a) The elements of $\mathcal{R}_{\mathfrak{G},m}$ remain distinct and irreducible on restriction to $\mathfrak{G}_{\sigma^{m}}$ .
(b) A comPlete set of irreducible $rePresentations$ of $\mathfrak{G}_{\sigma^{m}}$ is obtained in this

way.
PROOF. By theorem 3.3 and the definition (Lemma 3.2 $(b)$ ) of $q(\alpha)$ , it

suffices to show that $\mathcal{R}_{\mathfrak{G},m}$ is the set of irreducible representations of $\mathfrak{G}$ for
which the highest weight $\lambda=\Sigma\lambda(a)\omega_{\alpha}$ satisfies $0\leqq\lambda(\alpha)\leqq Q(a)-1$ , where $Q(\alpha)$

$=q(\alpha)q(\rho a)q(\rho^{2}\alpha)\cdots q(\rho^{m-1}\alpha)$ . This, in turn, follows easily from Lemma 3.4 (b).

Put $G=\mathfrak{G}_{\sigma^{m}}$ . As in \S 2, we denote by $A$ the cyclic group of order $m$ gen-
erated by $\sigma|G$ . In the following we write $\sigma$ for $\sigma|G$ . Assume that $m$ is not
divisible by $p$ . Then it is easy to see that an element $\sigma\chi$ of the semi-direct
product $AG$ is $p$-regular if and only if $N(x)$ is a $p$-regular ( $i$ . $e$ . semi-simple)

element of $G$ . The main result of this section is:
THEOREM 3.6. Assume that $m$ is not divisible by $p$ and that $K$ is the algebraic

closure of the finite field with $p$ elements. Let $7^{\backslash }$ be an irreducible representatiion

of the semi-direct product $AG$ over $K$, and $T$ its restrictio $7l$ to G. Let $\phi$ be an
injective homomorphism from $K^{*}$ into $C^{*}$ .

(a) If the representation $T$ of $G$ is reducible, we have

$\beta_{\phi}[T](\sigma x)=0$ $(x\in G)$ ,
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where $\beta_{\phi}[ff]$ is defined by (1.1).
(b) If $T$ is still irreducible, then there exists an irreducible representati0n

$S_{T}$ of $G_{\sigma}$ over $K$ which depends only on $T$ and satisfies
$\beta_{\phi}[T](\sigma x)=\zeta_{m}^{a}\beta_{\phi}[S_{T}](n(x))$

for all $x\in G$ such that $N(x)=x^{\sigma^{m-1}}x^{o^{m- 2}}\cdots x^{\sigma}x$ is semisimple, where $n(x)$ is an
arbitrary element of $\mathfrak{E}_{G}(N(x))\cap G_{\sigma},$ $\zeta_{m}=\exp(2\pi i/m)$ , and $a$ is an integer.

(c) The corresp0ndence $T\rightarrow S_{T}$ induces a bijection between the set of $\sigma- fixed$

equivalence classes of irreducible representati0ns of $G$ and the set of equivalence
classes of irreducible representati0ns of $G_{\sigma}$ .

PROOF. (a) This is a special case of Lemma 1.2.
(b) For each $R\in \mathcal{R}_{\mathfrak{G}}$ , we put

$T_{R}=\{(R\circ\sigma^{m- 1})\otimes(R\circ\sigma^{m-2})\otimes\cdots\otimes(R\circ\sigma)\otimes R\}|G$ .
By Lemma 3.5, these representations of $G$ are irreducible and pairwise inequiv-
alent. Since the action of $\sigma^{m}$ is trivial on $G$ , $T_{R}$ is equivalent to $ T_{R}\circ\sigma$.
Conversely, by Lemma 3.5, irreducible representation $T$ of $G$ over $K$ is equiv-
alent to $ T\circ\sigma$ if and only if it is equivalent to some $T_{R}$ . Let $R$ be an element
of $\mathcal{R}_{\mathfrak{G}}$ and $V$ its representation space. Define a linear transformation $I_{\sigma}$ of
$V\otimes V\otimes\cdots\otimes V$ ( $m$ times) by

$I_{\sigma}(v_{m- 1}\otimes v_{m- 2}\otimes\cdots v_{1}\otimes v_{0})=v_{m- 2}\otimes v_{m- 3}\otimes\cdots\otimes v_{1}\otimes v_{0}\otimes v_{m- 1}$ $(v_{i}\in V)$ .
Put

(3.1) $T_{R}(\sigma^{l}x)=I_{\sigma}^{l}\circ T_{R}(x)$

for $x\in G$ and $l=0,1,$ $\cdots$ , $m-1$ . Then $\tilde{T}_{R}$ is an irreducible representation of $AG$

and $T_{R}$ is its restriction to $G$ . Let $x$ be an element of $G$ such that $N(x)$ is
semisimple, and $n(x)$ an element of $\mathfrak{E}_{G}(N(x))\cap G_{\sigma}$ . By [12; II, 1.1], $n(x)$ is
contained in a maximal torus $\mathfrak{H}$ of $\mathfrak{G}$ fixed by $\sigma$ . To calculate $\beta_{\phi}[T_{R}](\sigma x)$ we
may assume that $x$ is contained in $\mathfrak{G}$ and $N(x)=n(x)$ , by Lemma 2.2 (c) and
Corollary 2.9 (a). Then $x^{\sigma^{i}}(i=0,1,2, \cdots , m-1)$ are semisimple and commute
with each other. So we can choose a basis $\{e_{1}, e_{2}, \cdots e_{(f}\}(d=\dim R)$ of $V$ for
which there exist $\lambda_{ij}\in K$ ($i=0,1,2,$ $\cdots,$ $m-1;j=1,2,$ $\cdots$ , d) such that

(3.2) $R(x^{\sigma^{i}})e_{j}=\lambda_{ij}e_{j}$ .
Put $\mathcal{B}=\{e_{J_{m}-1}\otimes e_{jm- 2}\otimes\cdots\otimes e_{j_{1}}\otimes e_{Jo}|1\leqq j_{i}\leqq d\}$ ; this is a basis of $V\otimes V\otimes\cdots\otimes V$

( $m$ times). The operator $I_{\sigma}$ on $V\otimes V\otimes\cdots\otimes V$ permutes the set $\mathcal{B}$ . Let $0$ be
an $I_{\sigma}$-orbit in $\mathcal{B}$ , and $W_{o}$ a linear subspace of $V\otimes V\otimes\cdots\otimes V$ spanned by ele-
ments of $\mathcal{B}$ contained in $0$ . Then $T_{R}(\sigma x)W_{o}\subset W_{o}$ by (3.1) and (3.2). Clearly,
the cardinality $l$ of $0$ is a divisor of $m$ . First, assume that $l>1$ . Let $b$ be a
fixed element of $0$ , and $(a_{st})(1\leqq s, t\leqq l)$ the matrix representation of $X_{R}(\sigma x)|W_{o}$
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with respect to the basis $\{I_{\sigma}^{l-1}b, I_{\sigma}^{l-2}b, \cdots , I_{\sigma}b, b\}$ of $W_{o}$ . Then, from (3.1) and
(3.2), we see that $a_{sl}=0$ if $t-s\not\equiv 1(mod l)$ . Hence, if $r_{i}(\sigma x)(1\leqq i\leqq l)$ are the
characteristic roots of $T_{R}(\sigma x)|W_{o}$ , we have

(3.3) $\sum_{i}\phi(r_{i}(\sigma x))=0$

from Lemma 1.3. Next, consider the case that $l=1,$ $i$ . $e$ . $0=\{e_{j}\otimes e_{j}\otimes\cdots\otimes e_{j}\}$

for some $j$ . From (3.1) and (3.2) we get

(3.4) $ff_{R}(\sigma x)e_{j}\otimes e_{j}\otimes\cdots\otimes e_{j}=\lambda_{m- 1,j}\lambda_{m-2,j}\cdots\lambda_{1j}\lambda_{0j}e_{f}\otimes e_{j}\otimes\cdots\otimes e_{j}$

$(j=1,2, \cdots, d)$ .
Combining (3.3) with (3.4) we get

(3.5) $\beta_{\phi}[F_{R}](\sigma x)=\sum_{f=1}^{a}\phi(\lambda_{m- 1,j}\lambda_{m- 2,j}\cdots\lambda_{1j}\lambda_{0f})$ .

On the other hand, from (3.2), we have

$R(N(x))e_{j}=\lambda_{m-1,j}\lambda_{m- 2,j}\cdots\lambda_{1j}\lambda_{0j}e_{j}$ $(j=1,2, \cdots, d)$ .
Hence

(3.6) $\beta_{\phi}[R](N(x))=\sum_{j=1}^{a}\phi(\lambda_{m- 1,j}\lambda_{m- 2,j}\cdots\lambda_{1j}\lambda_{0j})$ .
Put $S_{i\Gamma_{R}}=R|G_{\sigma}$ . This is an irreducible representation of $G_{\sigma}$ by Theorem 3.3,
and depends only on $T_{R}=\otimes_{i=0}^{m-1}R\circ\sigma^{i}|G$ by Lemma 3.5 (a). From (3.5) and
(3.6) we have

$\beta_{\phi}[\tilde{T}_{R}](\sigma x)=\beta_{\phi}[S_{T_{R}}](N(x))$ .

This, combined with Lemma 1.1, implies part (b) of the Theorem.
(c) The defining domain of the correspondence is the set of $\sigma- fixed$ equiv-

alence classes of irreducible representations of $G$ by Lemma 1.1 (a). The
remaining assertions follow from the proof of (b) and Theorem 3.3.

\S 4. Main theorem.

In this section we denote by $\mathfrak{G}$ the general linear group $GL_{n}$ considered
as an algebraic group defined over an algebraically closed field $K$ of char-
acteristic $p>0$ . Let $k$ be a fixed finite subfield of $K$. For a positive integer 1,
we denote by $k_{i}(\subset K)$ the extension of $k$ of degree $l$ . Let $\tau$ and $\sigma$ be the
surjective endomorphisms of $\mathfrak{G}$ defined by

(4.1) $x^{\tau}=(xf_{j})_{1\leqq i,j\leqq n}$ for $x=(x_{ij})\in \mathfrak{G}$

and
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(4.2) $x^{\sigma}=(({}^{t}x)^{\tau})^{-1}$ for $x\in \mathfrak{G}$ ,

where $q=|k|$ and ${}^{t}x$ is the transposed matrix of $x\in \mathfrak{G}$ . If $m$ is a positive
integer,,

(4.3) $\mathfrak{G}_{\tau m}=GL_{n}(k_{m})$

and

(4.4) $\mathfrak{G}_{\sigma m}=\{$

$GL_{n}(k_{m})$ if $m$ is even,

$U_{n}(k_{2m})$ if $m$ is odd

where $U_{n}(k_{2m})$ is the group of unitary matrices over $k_{2m}$ . Put $G=\mathfrak{G}_{\sigma m}$ for a
fixed $m$ . Then $\sigma|G$ is an automorphism of the finite group $G$ , and will be
denoted simply by $\sigma$ . Let $A$ be the cyclic group of order $m$ generated by the
automorphism $\sigma$ of $G$ , and $AG$ the semi-direct product of $G$ with $A$ . Now we
can state the main result of the paper.

THEOREM 4.1. Assume that $m$ is not divisible by $p$ . Let $\tilde{\chi}$ be an irreducible
character of $AG$ , and $\chi$ its restriction to $G$ .

(a) If the character $\chi$ of $G$ is reducible, then

$\tilde{\chi}(\sigma x)=0$ $(x\in G)$ .
(b) If $\chi$ is still irreducible, then there exists an irreducible character $\psi$ of

$G_{\sigma}(=U_{n}(k_{2}))$ which depends only on $\chi$ and satisfies
$\tilde{\chi}(\sigma x)=\epsilon\zeta_{m}^{a}\psi_{\chi}(n(x))$ $(x\in G, n(x)\in \mathfrak{E}_{G}(N(x))\cap G_{\sigma})$ ,

where $N(x)=x^{o^{m-1}}x^{\sigma^{m-2}}\cdots x^{\sigma}x,$ $\zeta_{m}=\exp(2\pi i/m),$ $\epsilon=\pm 1$ , and $a$ is an integer.
(c) The correspondence $x\rightarrow\psi_{\chi}$ is a bijection between the set of $\sigma- fixed$ irre-

ducible characters of $G$ and the set of irreducible characters of $G_{\sigma}$ .
REMARK 4.2. Theorem 4.1, and its proof, are valid even if one replaces

$a$ with $\tau$ defined by (4.1). Using Green’s construction [7] of irreducible char-
acters of finite general linear groups, Shintani [10] proved the $\tau$-case without
assuming that $m$ is not divisible by $p$ . Our proof is independent of the Green’s
construction.

REMARK 4.3. It may be possible to extend Theorem 4.1 to a more general
case. See Lemma 2.2 and Corollary 2.3.

For the proof of Theorem 4.1 we need some preliminary results. Let
$\alpha=(\alpha_{1}, a_{2}, \cdots , \alpha_{s})$ be a partition of $n,$

$i$ . $e$ . an integer sequence such that

$n=\sum_{t=1}^{s}a_{i}$ and $\alpha_{1}\geqq a_{2}\geqq\ldots\geqq\alpha_{s}>0$ . Put

$\mathfrak{G}_{\alpha}=\{(B_{ij})_{1\leqq i,j\leqq s}\in \mathfrak{G}|B_{ii}\in GL_{cr_{i}}(1\leqq i\leqq s) , B_{ij}=0(i\neq j)\}$ .

This is a $\sigma- fixed$ connected algebraic subgroup of G. A subgroup of $\mathfrak{G}$ is
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called of type $\alpha$ if it is conjugate to $\mathfrak{G}_{\alpha}$ .
LEMMA 4.4. (a) Let $u$ be a unipotent element of G. Then

(4.5) $Z_{\mathfrak{G}}(u)=\mathfrak{X}\cdot \mathfrak{U}$ (semi-direct product),

where 1I is the unip0tent radical of $Z_{\mathfrak{G}}(u)$ and X is a subgroup of $\mathfrak{G}$ which is of
type $\alpha$ for some partiti0n $\alpha$ of $n$ . Moreover, if $u$ is fixed by $\sigma,$

$\mathfrak{U}$ is fixed by a
and X can be chosen to be fixed by $\sigma$ .

(b) Let $s$ be a $(\sigma- fixed)$ semisimple element of G. Then $Z_{\mathfrak{G}}(s)$ is a (resp.
a-fixed) subgroup of $\mathfrak{G}$ of type $\alpha$ for some partiti0n $\alpha$ of $n$ .

PROOF. (a) The decomposition (4.5) is proved, for example, in [12; IV,
1.7]. If $u$ is fixed by $\sigma$ , we have

$Z_{\mathfrak{G}}(u)=\mathfrak{X}\cdot \mathfrak{U}=\mathfrak{X}^{\sigma}\cdot \mathfrak{U}^{\sigma}$ .

Since $\mathfrak{U}$ and $\mathfrak{U}^{a}$ are both unipotent radicals of $Z_{\mathfrak{G}}(u)$ , we have $\mathfrak{U}=\mathfrak{U}^{\sigma}$ . Let $\mathfrak{S}$

be the center of $\mathfrak{X}$ . Then $\mathfrak{S}^{\sigma}$ is the center of $\mathfrak{X}^{\sigma}$ . Since $\mathfrak{S}\mathfrak{U}$ and $\mathfrak{S}^{\sigma}\mathfrak{U}$ are both
radicals of $Z_{\mathfrak{G}}(u)$ , we have $\mathfrak{S}\mathfrak{U}=\mathfrak{S}^{\sigma}\mathfrak{U}$ . Moreover, $\mathfrak{S}$ and $\mathfrak{S}^{\sigma}$ are maximal tori
of the connected algebraic group $\mathfrak{S}\mathfrak{U}=\mathfrak{S}^{\sigma}\mathfrak{U}$ . Hence $\mathfrak{S}^{\sigma}=x\mathfrak{S}x^{-1}$ for some element
$x$ of $\mathfrak{S}\mathfrak{U}$ . By Theorem 2.1, there exists $y\in \mathfrak{S}\mathfrak{U}$ such that $x=y^{-1}y$ . Put $\mathfrak{S}^{\prime}=y\mathfrak{S}y^{-1}$ .
Then $\mathfrak{S}^{\prime}$ is $\sigma$-stable. Therefore, X’ $=Z_{\mathfrak{G}}(\mathfrak{S}^{\prime})$ is fixed by $\sigma$ . We also have $Z_{\mathfrak{G}}(u)$

$=\mathfrak{X}^{\prime}\mathfrak{U}$ , because $\mathfrak{X}^{\prime}=yZ_{\mathfrak{G}}(\mathfrak{S})y^{-1}=y\mathfrak{X}y^{-1}$ . This proves part (a).
(b) This is well-known.
LEMMA 4.5. Let $\mathfrak{X}=y\mathfrak{G}_{\alpha}y^{-1}(y\in \mathfrak{G})$ be a $\sigma- fixed$ algebraic subgroup of $\mathfrak{G}$

which is of type $\alpha$ for some partiti0n $\alpha=(\alpha_{1}, a_{2}, \cdots , \alpha_{s})$ of $n$ . Let $\mathfrak{Y}$ be an
algebraic subgroup of $\mathfrak{X}$ defined by

$\mathfrak{Y}=\{y(B_{ij})y^{-1}\in \mathfrak{X}|B_{ii}\in SL_{\alpha i}(1\leqq i\leqq s) , B_{i_{J}}=0(i\neq j)\}$ .
Then

(a) $\mathfrak{Y}$ is fixed by $\sigma$ .
(b) For any positive intger 1, there exist sequences $\{a_{1}, a_{2}, \cdots , a_{h}\}\{b_{1},$ $b_{2},$ $\cdots$ ,

$b_{k}\}$ of Positive integers and sequences $\{D_{1}, D_{2}, \cdots , D_{h}\}\{F_{1}, F_{2}, F_{k}\}$ of finite
fields such that

(4.6) $\mathfrak{X}_{\sigma^{l}}\cong GL_{a_{1}}(D_{1})\times GL_{a_{2}}(D_{2})\times$

... $\times GL_{a_{h}}(D_{h})\times U_{b_{1}}(F_{1})\times U_{\Phi_{2}}(F_{2})\times\cdots\times U_{b_{k}}(F_{k})$

and

(4.7) $\mathfrak{Y}_{\sigma^{l}}\cong SL_{a_{1}}(D_{1})\times SL_{a_{2}}(D_{2})\times$

$\times SL_{a_{h}}(D_{h})\times SU_{b_{1}}(F_{1})\times SU_{b_{2}}(F_{2})\times\cdots\times SU_{b_{k}}(F_{k})$ ,

where $SU_{b_{i}}(F_{i})=U_{b_{i}}(F_{i})\cap SL_{b_{i}}(F_{i})$ .
PROOF. (a) This follows from the fact that $\mathfrak{Y}$ is the commutator sub-
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group of $\mathfrak{X}$.
(b) Put $\rho=a^{l}$ . Since $\mathfrak{X}=\mathfrak{X}^{\sigma},$ $n=y^{-\rho}y$ normalizes $\mathfrak{G}_{\alpha}$ . For any element $x=ygy^{-1}$

$(g\in \mathfrak{G}_{\alpha})$ of X, we have
$x^{\rho}=y^{\rho}g^{\rho}y^{-\rho}=y(n^{-1}g^{\rho}n)y^{-1}$

Hence

(4.8) $\mathfrak{X}_{\rho}\cong\{g\in \mathfrak{G}_{\alpha}|n^{-1}g^{p}n=g\}$ .
For each index $1\leqq i\leqq s$ satisfying $\alpha_{i}=\alpha_{i+1}$ , let $w_{i}\in \mathfrak{G}$ be the permutation matrix
such that

$w_{i}gw_{i}^{-1}=(g_{i}, g_{2}, \cdots, g_{i- 1}, g_{i+1}, g_{i}, g_{i+2}, \cdots, g_{s})$

for any element $g=(g_{1}, g_{2}, g_{s})(g\in GL_{\alpha i})$ of $\mathfrak{G}_{\alpha}$ ; we denote by $\mathfrak{W}_{x}$ the sub-
group of $\mathfrak{G}$ generated by $w_{i}^{\prime}s$ . The normalizer group of $\mathfrak{G}_{\alpha}$ in $\mathfrak{G}$ is generated

by $\mathfrak{W}_{K}$ and $\mathfrak{G}_{\alpha}$. Hence $n=aw$ for some $w\in \mathfrak{W}_{\chi}$ and $a\in \mathfrak{X}$. By Theorem 2.1,
there exists $b\in \mathfrak{G}_{\alpha}$ such that $a=b^{-\rho}b$ . Therefore, by (4.9),

$\mathfrak{X}_{\rho}\cong\{g\in \mathfrak{G}_{\alpha}|w^{-1}b^{-1}b^{\rho}g^{p}b^{-\rho}bw=g\}$

$\cong\{g\in \mathfrak{G}_{\alpha}|(bgb^{-1})^{\rho}=b(wgw^{-1})b^{-1}\}$ .
Using this and (4.4) we can easily prove (4.6); (4.7) can be proved in a similar
way.

LEMMA 4.6. Let X be as in Lemma 4.5. For a fixed Positive integer $m$

which is not divisible by $p$ , we Put $X=\mathfrak{X}_{\sigma m}$ . Assume that $K$ is the algebraic
closure of the finite field with $p$ elements. Let $\phi$ be an injective homomorPhism
from $K^{*}$ into $c*$ . Let $T$ be an irreducible representation of the semi-direct
product $AX$ over $K$, and $T$ its restriction to $X$.

(a) If the representation $T$ of $X$ is reducible we have

$\beta_{\phi}[ff^{i}](ax)=0$ $(x\in X)$ ,

where $\beta_{\phi}[T]$ is defined by (1.1).
(b) If $T$ is still irreducible, then there exists an irreducible representation

$S_{T}$ of $X_{\sigma}$ whose equivalence class depends only on the equivalence class of $T$ and
satisfies

$\beta_{\phi}[T](\sigma x)=\zeta_{m}^{a}\beta_{\phi}[S_{T}](n(x))$

for any $x\in X$ such that $N(x)=x^{\sigma^{m- 1}}x^{\sigma^{m- 2}}\cdots x^{\sigma}x$ is semisimple, where $n(x)$ is an
arbitrary element of $\mathfrak{E}_{X}(N(x))\cap X_{\sigma},$ $\zeta_{m}=\exp(2\pi i/m)$ , and $a$ is an integer.

(c) The correspOndence $T\rightarrow S_{T}$ induces a bijection between the set of $\sigma- fixed$

equivalence classes of irreducible representations of $X$ and the set of equivalence
classes of irreducible representations of $X_{\sigma}$ .

PROOF. (a) is a special case of Lemma 1.2. The proof of (b) and (c)
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depends on the following two results.
(1) The number of $\sigma$-fixed equivalence classes of irreducible representa-

tions of $X$ over $K$ is equal to the number of equivalence classes of irreducible
representations of $X_{\sigma}$ over $K$ .

(2) Let $\mathfrak{Y}$ be as in Lemma 4.5. For an irreducible rational representation
$R$ of $\mathfrak{Y}$ , there exists an irreducible rational representation $R^{\prime}$ of X such that
$R^{\prime}|\mathfrak{Y}$ is equivalent to $R$ .

Let us deduce (b) and (c) from (1) and (2). Let $\mathcal{R}_{\mathfrak{Y}}$ be the set of irredu-
cible rational representations of $\mathfrak{Y}$ defined in Theorem 3.3. For each $R\in \mathcal{R}_{\mathfrak{Y}}$ ,
let $R^{\prime}$ be an irreducible rational representation of $\mathfrak{X}$ such that $R^{\prime}|\mathfrak{Y}$ is equiv-
alent to $R$ . Then $R^{\prime}X_{\sigma}$ is an irreducible representation of $X_{\sigma}$ , since its
restriction to $Y_{\sigma}$ (where $Y=\mathfrak{Y}_{\sigma^{m}}$ ) is already irreducible by Theorem 3.3. Hence,
by a theorem of Clifford (see [2] or [3; Theorem (51.7)]) and Theorem 3.3,

$\{(R^{\prime}|X_{\sigma})\otimes\xi|R\in \mathcal{R}_{\mathfrak{Y}}, \xi\in\Xi\}$

is a complete set of irreducible representations of $X_{\sigma}$ over $K$ , each counted
exactly once, where $\Xi$ is the set of irreducible representations of $X_{\sigma}/Y_{\sigma}$ . By
Lemma 4.5, each $\xi\in\Xi$ can be extended to a rational l-dimensional representa-
tion $\xi^{\prime}$ of X. Then, by Corollary 2.9 (b),

(4.9) $(\otimes_{i=0}^{m-1}(\xi^{\prime}\circ\sigma^{i}))(x)=\xi(n(x))$ $(x\in X)$ ,

where $n(x)$ is an arbitrary element of $\mathfrak{E}_{x}(N(x))\cap X_{\sigma}$ . For $R\in \mathcal{R}_{\mathfrak{Y}}$ and $\xi\in\Xi$ ,
we put

$T_{R,\xi}=\{\otimes_{t=0}^{m-1}(R^{\prime}\otimes\xi^{\prime})\circ\sigma^{i}\}|X$

$=\{(\otimes_{i=0}^{m-1}R^{\prime}\circ a^{i})\otimes(\otimes_{i=0}^{m-1}\xi^{\prime}\circ\sigma^{i})\}|X$ .

Then $’\Gamma_{R,\hat{\sigma}}$ is an irreducible representation of $X$, since its restriction to $Y$ is
already irreducible by Lemma 3.5. Two representations $T_{R,\xi}$ and $T_{S,\eta}(R,$ $S$

$\in \mathcal{R}_{\mathfrak{Y}}$ ; $\xi,$ $\eta\in\Xi$ ) are equivalent to each other if and only if $R=S$ and $\xi=\eta$ .
This follows from Lemma 3.5 and (4.9). Clearly, $T_{R,\xi}$ is equivalent to $T_{R,\xi^{\circ}}a$ .
Conversely, by (1), an irreducible representation $T$ of $X$ over $K$ is equivalent
to To $\sigma$ if and only if it is equivalent to some $T_{R,\xi}$ . The rest of the proof is
similar to the proof of Theorem 3.6, and is omitted. We now prove (1). The
table of irreducible Brauer characters of $X$ is a non-singular matrix by ortho-
gonality relations ([3; (84.11)]). Hence we may apply a theorem of Brauer
([5; \S 12.1]). By this theorem the number of a-fixed irreducible Brauer char-
acters of $X$ equals the number of a-fixed $p$-regular conjugacy classes of $X$.
By Corollary 2.8, the latter number equals the number of $p$-regular conjugacy
classes of $X_{\sigma}$ , which, in turn, equals the number of irreducible Brauer char-
acters of $X_{\sigma}$ . This proves(1). Next, we prove (2). For this purpose we
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need some results on rational representations of $\mathfrak{X}$ . Let $\mathfrak{B}_{\chi}$ be a Borel sub-
group of $\mathfrak{X},$ $\mathfrak{U}_{K}$ the unipotent radical of $\mathfrak{B}_{x}$ , and $\mathfrak{H}_{k}$ a maximal torus of ce con-
tained in $\mathfrak{B}_{x}$ . Then, $\mathfrak{B}_{\mathfrak{Y}}=\mathfrak{B}_{x}\cap \mathfrak{Y}$ is a Borel subgroup of $\mathfrak{Y},$ $\mathfrak{U}_{\mathfrak{Y}}=\mathfrak{U}_{K}$ is the uni-
potent radical of $\mathfrak{B}_{\mathfrak{Y}}$ , and $\mathfrak{H}_{\mathfrak{Y}}=\mathfrak{H}_{X}\cap \mathfrak{Y}$ is a maximal torus of $\mathfrak{Y}$ contained in $\mathfrak{B}_{\mathfrak{Y}}$ .
Let $\mathfrak{W}$ be the Weyl group of X with respect to $\mathfrak{H}_{K}$ . This can be identified
with the Weyl group of $\mathfrak{Y}$ with respect to $\mathfrak{H}_{\mathfrak{Y}}$ . We denote by $w_{0}$ the element
of $\mathfrak{W}$ such that $(w_{0}\mathfrak{B}_{x}w_{0}^{-1})\cap \mathfrak{B}_{x}=\mathfrak{H}_{t}$ . Let $\lambda$ be a rational character of $\mathfrak{H}_{\mathfrak{Y}}$ . Put
$\mathfrak{W}_{\lambda}=$ { $w\in \mathfrak{W}|\lambda(w_{0}hw_{0}^{-1})=\lambda(w_{0}whw^{-1}w_{0}^{-1})$ for all $h\in \mathfrak{H}_{\mathfrak{Y}}$ }. We define the K-valued
function $a_{\lambda}$ on $\mathfrak{Y}$ by

(4.10) $a_{\lambda}(y)=\lambda(h^{-1})$

if $y\in \mathfrak{Y}$ is in $\mathfrak{B}_{\mathfrak{Y}}w_{0}w\mathfrak{B}_{\mathfrak{Y}}$ and is written $y=uhw_{0}wu_{1}$ with $u,$ $u_{1}\in \mathfrak{U}_{\mathfrak{Y}},$ $h\in \mathfrak{H}_{\mathfrak{Y}},$ $w\in \mathfrak{W}_{\lambda}$ ,
and

(4.11) $a_{\lambda}(y)=0$

otherwise. For $z\in \mathfrak{Y}$ , we also define the function $za_{\lambda}$ on $\mathfrak{Y}$ by

$(za_{\lambda})(y)=a_{\lambda}(z^{-1}y)$ .

Let $V_{\lambda}$ be the K-linear space spanned by $\{za_{\lambda}|z\in \mathfrak{Y}\}$ , considered as a $\mathfrak{Y}$-module.
Then, by [14; pp. 213-217], the function $a_{\lambda}$ is rational on $\mathfrak{Y}$ , and the $\mathfrak{Y}$-module
$V_{\lambda}$ affords an irreducible rational representation with the highest weight $\lambda$ .
To prove (2), it is sufficient to show that the action of $\mathfrak{Y}$ on $V_{\lambda}$ can be ex-
tended to a rational action of $\mathfrak{X}$ on $V_{\lambda}$ . Using explicit descriptions of $\mathfrak{H}_{X},$ $\mathfrak{H}_{\mathfrak{Y}}$ ,
$\lambda$ and $\mathfrak{W}$ , we can see that there exists a rational character $\lambda^{\prime}$ of $\mathfrak{H}_{K}$ which
satisfies

$\lambda^{\prime}|\mathfrak{H}_{\mathfrak{Y}}=\lambda$

and

(4.12) $\mathfrak{W}_{\lambda}=$ { $w\in \mathfrak{W}|\lambda^{\prime}(w_{0}h^{\prime}w_{0}^{-1})=\lambda^{\prime}(w_{0}wh^{\prime}w^{-1}w_{0}^{-1})$ for all $ h^{\prime}\in\&$ }.

We choose one such $\lambda^{\prime}$ and fix it. Since any $f\in V_{\lambda}$ satisfies

$f(yh)=f(y)\lambda(w_{0}h^{-1}w_{0}^{-1})$ $(y\in \mathfrak{Y}, h\in \mathfrak{H}_{\mathfrak{Y}})$ ,

and since X can be written as a semi-direct product of $\mathfrak{Y}$ with a torus $\mathfrak{T}\subset \mathfrak{H}_{K}$ ,

. any $f\in V_{\lambda}$ can be uniquely extended to a rational function on $\mathfrak{X}$ satisfying

(4.13) $f(xh^{\prime})=f(x)\lambda^{\prime}(w_{0}h^{\prime-1}w_{0}^{-1})$ $(x\in \mathfrak{X}, h^{\prime}\in \mathfrak{H}_{K})$ .
For $v\in X$ and $f\in V_{\lambda}$ , define the function $vf$ on X by

$(vf)(x)=f(v^{-1}x)$ $(x\in \mathfrak{X})$ .
Our purpose is to show that $vf\in V_{\lambda}$ . It is sufficient to prove this in the case
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$v=t\in \mathfrak{T}$ and $f=a_{\lambda}$ . If $x\in \mathfrak{X}$ is written $x=uhw_{0}wu_{1}t_{1}$ with $u,$ $u_{1}\in \mathfrak{U}_{\mathfrak{Y}},$ $h\in \mathfrak{H}_{\mathfrak{Y}},$ $w\in \mathfrak{W}_{\lambda}$ ,
$t_{1}\in \mathfrak{T}$ , then

$(ta_{\lambda})(x)=a_{\lambda}(t^{-1}x)=a_{\lambda}(t^{-1}xw^{-1}w_{0}^{-1}tw_{0}w)\lambda^{\prime}(w_{0}w^{-1}w_{0}^{-1}tw_{0}u^{1}w_{0}^{-1})$

$=a_{\lambda}(x)\lambda^{\prime}(t)$

by (4.10), (4.12) and (4.13). If $x\in \mathfrak{X}$ is not in $\mathfrak{B}_{x}w_{0}\mathfrak{W}_{\lambda}\mathfrak{B}_{X}$ ,

$(ta_{\lambda})(x)=a_{\lambda}(t^{-1}x)=0$

by (4.11) and the fact that $t^{-1}x\not\in B_{X}w_{0}WB_{X}$ . Hence we have

$ta_{\lambda}=\lambda^{\prime}(t)a_{\lambda}\in V_{\lambda}$ ,

as required. This completes the proof of Lemma 4.6.
LEMMA 4.7. Let $\mathfrak{X},$ $m$ and $X$ be as in Lemma 4.6. Let $\tilde{\chi}$ be an irreducible

character of the semi-direct product $AX$. Define the class function $\psi$ on $X_{\sigma}$ by

$\tilde{\chi}(\sigma x)=\psi(n(x))$ $(x\in X, n(x)\in \mathfrak{E}_{X}(N(x))\cap X_{\sigma})$ .
(This is pOssible by Lemma 2.2 (c) and Corollary 2.10 $(b).$ ) Let $X_{\sigma}^{0}$ be the set of
semisimple elements of $X_{\sigma}$ . Then there exists a $Z[\zeta_{m}]$-linear combination $\psi^{\prime}$ of
irreducible characters of $X_{\sigma}$ such that

$\psi|X_{\sigma}^{0}=\psi^{\prime}|X_{\sigma}^{0}$ .
PROOF. Let $\{\tilde{\beta}_{1},\tilde{\beta}_{2}, \cdots , \tilde{\beta}_{l}\}$ be the set of irreducible Brauer characters of

$AX$. Then

(4.14) $\tilde{\chi}(\sigma x)=\sum_{-1}^{\iota}d_{i}\beta_{i}(ax)i-$

for all $x$ in { $x\in X|ax$ is $P- regular$ } $=$ { $x\in X|N(x)$ is semisimple}, where $d_{i}$ are
non-negative integers called decomposition numbers (see, for example, $[3j$

\S 83]). From Lemma 4.5 we have

(4.15) $\beta_{i}(\sigma x)=\zeta_{m^{i}}^{a}\beta_{i}(n(x))$ or $0$

for all $x\in X$ such that $N(x)$ is semisimple, where $a_{i}$ are integers and $\beta_{i}$ are
irreducible Brauer characters of $X_{\sigma}$ . By a theorem [7; Theorem 1] of Green,
we can write $\beta_{i}$ as
(4.16) $\beta_{i}=\lambda^{\urcorner}c_{i\{\chi_{j}}j|X_{\sigma}^{0}$ ,

where $c_{ij}$ are integers and $\chi_{j}$ are irreducible complex characters of $X_{\sigma}$ . Com-
bining (4.14), (4.15) with (4.16), we obtain the required result.

PROOF OF THEOREM 4.1.
(a) This is a special case of Lemma 1.2.
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(b) By Lemma 2.2 (c) and Corollary 2.9 (b), we can dePne the class func-
tion $\psi$ on $G_{\sigma}$ by

$\tilde{x}(\sigma x)=\psi(n(x))$ $(x\in G)$ ,

where $n(x)$ is an arbitrary element of $\mathfrak{E}_{G}(N(x))\cap G_{\sigma}$ . From Lemma 1.4, Lemma
2.2 (b) and Corollary 2.9 (b) we have

$|G_{\sigma}|^{-1}\sum_{g\in 0_{\sigma}^{f}}|\psi(g)|^{2}=1$ .

Hence, by Lemma 1.5, for a proof of (b) it suffices to show that: $(^{*})$ the re-
striction $\psi|E$ of $\psi$ to an arbitrary elementary subgroup $E$ of $G_{\sigma}$ is a $Z[\zeta_{m}]-$

linear combination of irreducible characters of $E$.
Recall that an elementary subgroup $E$ can be written as a direct product
$ H\times t_{\backslash }^{\prime}g\rangle$ , where $\langle g\rangle$ is a cyclic group generated by $g\in G_{\sigma}$ , and $H$ is an r-sub-
group of $Z_{G_{\sigma}}(g)$ for some prime number $r$ which does not divide the order of
$g$. We consider the following three cases separately.

(1) $g$ is semisimple and $r=p$ .
(2) $g$ is semisimple and $r\neq p$ .
(3) $g$ is not semisimple.
First, we prove $(^{*})$ for the case (1). Let $\mathfrak{S}$ be the center of $Z_{\mathfrak{G}}(g)$ . By

Lemma 4.4 (b), $\mathfrak{S}$ is a connected abelian algebraic subgroup of G. Since $g=g^{\sigma}$ ,
$\mathfrak{S}$ is a-stable. Put $S=\mathfrak{S}_{\sigma m}$ . Then $S_{\sigma}\times H$ contains $E$. Consider the subgroup
$Q=S\times H$ of $G$ . Since $AQ=AS\times H$, we can write

(4.17) $\tilde{\chi}|AQ=\sum_{l}e_{i}(\theta_{i}\times\omega_{i})$ ,

where $\theta_{i}$ and $\omega_{i}$ are irreducible characters of $AS$ and $H$ respectively, and $e_{i}$

are positive integers. From Lemma 2.5 and the assumption that $m$ is not
divisible by $p$ , we see that the functions $\theta_{i}^{\prime}$ on $S_{\sigma}$ and the functions $\omega_{i}^{\prime}$ on $H$

defined by
$\theta_{i}^{\prime}(N(s))=\theta_{i}(\sigma s)$ $(s\in S)$

and
$\omega_{i}^{\prime}(N(h))(=\omega_{i}^{\prime}(h^{m}))=\omega_{i}(h)$ $(h\in H)$

are $Z[\zeta_{m}]$-linear combinations of irreducible characters of $S_{\sigma}$ and $H$ respec-
tively. This facts combined with (4.17) implies $(^{*})$ for the present case. Next,

let us consider the case (2). In this case every element of $E$ is semisimple.

Hence $(*)$ follows from Lemma 4.7. There remains to prove $(*)$ for the case
(3). Let $s$ and $u$ be semisimple and unipotent elements of $G_{\sigma}$ such that $g=su$

$=us$ . Since $u\neq 1$ , the order of $g$ is divisible by $p$ . Hence $r\neq P$ . This means
that every element of $H$ is semisimple.

Put $\mathfrak{L}=Z_{\mathfrak{G}}(s)$ and $\mathfrak{M}=Z_{\mathfrak{L}}(u)$ . Then $\mathfrak{M}$ is $\sigma$-stable and contains $E$. From
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Lemma 4.4, we have a semi-direct product decomposition

$\mathfrak{M}=\mathfrak{X}\cdot \mathfrak{U}$ ,

where $\mathfrak{U}$ is the unipotent radical of $\mathfrak{M}$ and X is a $\sigma$-Pxed algebraic subgroup
of tyPe $\alpha$ for some partition $a$ of $n$ . Put $X=\mathfrak{X}_{\sigma^{m}}$ and $ D=X\times\langle u\rangle$ . The order
of $\mathfrak{U}_{\sigma}$ is a power of $p$ . Hence, by Sylow’s theorem, we may assume that $X_{\sigma}$

contains $ H\times\langle s\rangle$ . Then $D_{\sigma}$ contains $E$ . Since $ AD=AX\times\langle u\rangle$ , we can write

(4.18) $\tilde{\chi}|AD=\sum_{i}f_{t}(\mu_{i}\times\nu_{i})$ ,

where $f_{i}$ are positive integers, and $\mu_{i}$ and $\nu_{i}$ are irreducible characters of $AX$

and $\langle u\rangle$ respectively. From Lemma 4.7 and the assumption that $m$ is not
divisible by $p$ , we see that the functions $\mu_{i}^{\prime}$ on $ H\times\langle s\rangle$ and the functions $\nu_{i}^{\prime}$ on
$\langle u\rangle$ defined by

$\mu_{i}^{\prime}(n(x))=\mu_{i}(\sigma x)$ $(x\in X, n(x)\in \mathfrak{E}_{X}(N(x))\cap(H\times\langle s\rangle))$

and
$\nu_{i}^{\prime}(N(v))(=\nu_{i}^{\prime}(v^{m}))=\nu_{i}(v)$ $(v\in\langle u\rangle)$

are $Z[\zeta_{m}]$ -linear combinations of irreducible characters of $ H\times\langle s\rangle$ and $\langle u\rangle$

respectively. This fact combined with (4.18) implies $(^{*})$ for the case (3).
(c) The defining domain of the correspondence is the set of $\sigma- fixed$ irredu-

cible characters of $G$ by Lemma 1.1. Let $\chi_{1}$ and $\chi_{2}$ be two distinct $\sigma- fixed$

irreducible characters of $G$ . Then we have

$|G_{\sigma}|^{-1}\sum_{g\in G}\psi_{x_{1}}(g)\overline{\psi_{\chi_{2}}(g)}=0$

from Lemma 1.4, Lemma 2.2 (b) and Corollary 2.9 (b). This proves the injec-
tivity of the correspondence. By Corollary 2.3, the number of $\sigma- fixed$ irredu-
cible characters of $G$ is equal to the number of irreducible characters of $G_{\sigma}$ .
Hence the correspondence must be bijective. The proof of Theorem 4.1 is
now complete.

\S 5. Parametrizations.

For a positive integer 1, we denote by $G_{l}$ the general linear group $GL_{l}(k_{2})$

over the quadratic extension $k_{2}$ of a finite field $k$ . Let $\sigma$ be the automorphism
of $G_{l}$ defined by (4.2). Put $F=k_{2n!}$ . We consider that $\sigma$ also acts on $F^{*}=$

$GL_{1}(k_{2n!})$ and $F*=Hom(F^{*}, C^{*})$ by

$t^{\sigma}=t^{-q},$ $u^{\sigma}(t)=u(t^{-q})$ $(t\in F^{*}, u\in F*, q=|k|)$ .

We denote by $\mathcal{F}_{i}$ and $\mathcal{G}_{i}$ respectively, the set of $\sigma^{i}$ -orbits in $F^{*}$ and $F*(i=1,2)$ .
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For an element $f$ of $\mathcal{F}_{i}$ (or $\mathcal{G}_{i}$ ), $d(f)$ denotes the cardinality of the orbit $f$.
Let $\mathcal{P}$ be the set of partitions, $i$ . $e$ . integer sequences $\nu=(\nu_{1}, \nu_{2}, \cdots, \nu_{\tau})$ satisfy-
ing $\nu_{1}\geqq\nu_{2}\geqq\ldots\geqq\nu_{r}>0$ . We write $|\nu|=\nu_{1}+\nu_{2}+\cdots+\nu_{r}$ . For convention, we sup-
pose that $\mathcal{P}$ contains the empty partition $\emptyset$ , and that $|\emptyset|=0$ . For a positive
integer $l\leqq n$ , let $\Lambda_{i}^{(l)}(i=1,2)$ be the set of $\mathcal{P}$-valued functions $f\rightarrow\lambda(f)$ on $\mathcal{F}_{i}$ ,

which respectively satisfy

(5.1) $\sum_{f\in\Xi}|\lambda(f)|d(f)=l$ ,

and let $\Theta_{i}^{(l)}(i=1,2)$ be the set of $\mathcal{P}$-valued functions $g\rightarrow\theta(g)$ on $\mathcal{G}_{i}$ , which re-
spectively satisfy

(5.2)
$\sum_{q\in \mathcal{G}_{i}}|\theta(g)|d(g)=l$ .

The following two lemmas are easy to verify.
LEMMA 5.1. (a) Let $f=\{f_{1}, f_{2}, \cdots , f_{d}\}(f_{i}\in F^{*})$ be an element of $\mathcal{F}_{2}$ . Then

$f=\{f_{1}^{\sigma}, f_{2}^{\sigma}, \cdots, f_{a}^{\sigma}\}$ is also an element of $\mathcal{F}_{2}$ , and the union $f\cup f^{\sigma}$ is an element of $\mathcal{F}_{1}$ .
(b) Let $\lambda$ be an element of $\Lambda_{1}^{(l)}$ . Define a $\mathcal{P}$-valued function $\lambda^{\prime}$ on $\mathcal{F}_{2}$ by

(5.3) $\lambda^{\prime}(f)=\lambda(f\cup f^{\sigma})$ $(f\in \mathcal{F}_{2})$ .

Then $\lambda^{\prime}$ is an element of $\Lambda_{2}^{(l)}$ .
(c) The maPping $\lambda\rightarrow\lambda^{\prime}$ is a bijection between $\Lambda_{1}^{(l)}$ and

$\Lambda_{2,\sigma}^{(l)}=$ { $\lambda\in\Lambda_{2}^{(l)}|\lambda(f)=\lambda(f^{\sigma})$ for all $f\in \mathcal{F}_{2}$ }.

LEMMA 5.2. (a) Let $g=\{g_{1}, g_{2}, \cdots , g_{d}\}(g_{i}\in F*)b$ ean element of $\mathcal{G}_{2}$ . Then
$g=\{g_{1}^{\sigma}, g_{3}^{\sigma}, \cdots , g_{a}^{\sigma}\}$ is also an element of $\mathcal{G}_{2}$ , and the union $g\cup g^{\sigma}$ is an element
of $\mathcal{G}_{1}$ .

(b) Let $\theta$ be an element of $\Theta_{1}^{(l)}$ . Define a $\mathcal{P}$-valued function $\theta^{\prime}$ on $\mathcal{G}_{2}$ by

(5.4) $\theta^{\prime}(g)=\theta(g\cup g^{\sigma})$ $(g\in \mathcal{G}_{2})$ .

Then $\theta^{\prime}$ is an element of $\Theta_{2}^{(l)}$ .
(c) The mappjng $\theta\rightarrow\theta^{\prime}$ is a bijection betwee 7? $\Theta_{1}^{(i)}$ and

$\Theta_{2,\sigma}^{(l)}=$ { $\theta\in\Theta_{2}^{(l)}|\theta(g)=\theta(g^{\sigma})$ for all $g\in \mathcal{G}_{2}$ }.

The theory of Jordan normal forms gives a bijection $\lambda\rightarrow \mathfrak{C}[\lambda]$ between
$\Lambda_{2}^{(.)}$ and the set of conjugacy classes of $G_{l}$ . In particular, for each $f=\{f_{1},$ $f_{2}$ ,

, $f_{d}$ } $\in \mathcal{F}_{2},$ $|\lambda(f)|$ is the multiplicity of $f_{i}(1\leqq i\leqq d)$ as characteristic roots of
$x\in \mathfrak{E}[\lambda]$ . See [7; \S 1] or [11; \S 2] for more details. On the other hand, a
theory ([7], [11]) of J. A. Green gives a bijection $\theta\rightarrow\chi[\theta]$ between $\Theta_{2}^{(l)}$ and the
set of irreducible complex characters of $G_{l}$ . Here, we describe an outline of

Green’s theory, because we need them later. Let $\alpha$ be an element of $\hat{k}_{2l}^{*}(l\leqq n)$ .
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We define the (not necessarily irreducible) character $\chi_{l}[a]$ of $G_{l}$ , whose value
at $x\in \mathfrak{E}[\lambda](\lambda\in\Lambda_{2}^{(l)})$ is given by

(5.5) $\chi_{l}[\alpha](x)=0$

if $|\lambda(f)|\neq 0$ for at least two elements $f$ of $\mathcal{F}_{2}$ , and

(5.6) $\chi_{l}[\alpha](x)=p_{\lambda(f)}(q^{2})\sum_{i=0}^{d(f)-1}\alpha(t^{q^{2i}})$

if there exists only one $f\in \mathcal{F}_{2}$ such that $|\lambda(f)|\neq 0$ , where $p_{\nu}$ is a polynomial
depending on a partition $\nu,$ $q=|k|$ and $t$ is an element in the $\sigma^{2}$-orbit $f$ in $F*$ .
(Note that $t$ is an element of $k_{2l}^{*}$ because of the condition (5.1).) For an element
$\alpha$ of $k_{2l}^{*}$ and a partition $\nu=(\nu_{1}, \nu_{2}, \cdots , \nu_{r})$ such that $l|\nu|\leqq n$ , we can define the
character $\chi_{l|\nu|}[\nu;\alpha]$ of $G_{l|\nu|}$ which can be written as

(5.7) $x_{l|\nu|}[\nu;\alpha]=\sum_{\mu}c_{\mu k_{2l}}\nu\prod_{i=1}^{r}\chi_{lv_{i}}[\alpha\circ N_{k2lv_{i}}/]$ ,

where the sum is over the set of partitions $\mu$ such that $|\mu|=|\nu|,$ $c_{\mu v}$ are
rational numbers independent of $\alpha$ , $N_{k_{2l\nu_{i}}}/k_{2l}$ ($i=1,2,$ $\cdots$ , r) are usual norm
mappings from $k_{2lv_{i}}$ to $k_{2l}$ , and $\Pi$ is a o-product ([7]; see the proof of Lemma
5.3 below). We can now describe the irreducible character $\chi[\theta]$ of $G_{n}$ cor-
responding to $\theta\in\Theta_{2}^{(n)}$ . Let $g$ be an element of $\mathcal{G}_{2}$ , and $u$ an element of $F*$

contained in $g$. Since $u=u^{q2d}(d=d(g))$ , there exists a unique element $\alpha_{u}$ of
$\hat{k}_{2a}^{*}$ such that $u=\alpha_{u}\circ N_{F1k_{2d}}$ . For a partition $\nu$ , the character $\chi_{a|\nu|}[\nu;a_{u}]$ does
not depend on the choice of $u$ in $g$. Hence we can define the character $\chi[\theta]$

of $G_{n}$ by

(5.8)
$\chi[\theta]=\prod_{q\in \mathcal{G}_{2}}\chi_{d(g)|\theta(g)|}[\theta(g);\alpha_{u(g)}]$ ,

where $u(g)$ is an element of $F^{*}$ contained in $g\in \mathcal{G}_{2}$ , and $\Pi$ is a o-product. In
[7], it is shown that $\chi[\theta](\theta\in\Theta_{2}^{(n)})$ are irreducible and distinct, and any irredu-
cible characters of $G_{n}$ can be obtained in this way.

LEMMA 5.3. Let $\nu=(\nu_{1}, \nu_{2}, \cdots, \nu_{r})$ be a partition such that $|\nu|=l$ . Let $\psi_{l}$

be a complex valued class function on $G_{v_{i}}$ $(i=1,2, \cdots , r)$ . Then

$(\prod_{i=1}^{r}\psi_{i})(x^{\sigma})=(\prod_{i=1}^{r}\psi_{i}^{\sigma})(x)$ $(x\in G_{l})$ ,

where $\prod$ is $a$ o-product and $\psi_{i}^{\sigma}$ is the class function on $G_{\nu_{i}}$ defined by

$\psi_{i}^{\sigma}(y)=\psi_{i}(y^{\sigma})$ $(y\in G_{\nu_{i}})$ .
PROOF. Let P. be the standard parabolic subgroup of $G_{l}$ corresponding to

$\nu,$
$i$ . $e$ . the group of matrices
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$ b=[0\ldots 00B_{22}.\cdot\cdot B_{2r}B_{11}B_{12}\cdots$

.
$B_{1r}|\in G_{l}$

for which $B_{ii}\in G_{v_{i}}$ ($i=1,2,$ $\cdots$ , r). Let $\psi$ be the class function on $P_{\nu}$ defined by

(5.9) $\psi(b)=\prod_{i=1}^{r}\{\psi_{i}(B_{ii})\}$ $(b=(B_{ij})\in P_{\nu})$ .

Then, by the definition of o-product,

(5.10) $\prod_{i=1}^{r}\psi_{i}=ind[\psi| P$. $\rightarrow G_{l}]$

where the right hand side is the class function on $G_{l}$ induced from $\psi$ :

(5.11) ind $[\psi| P$. $\rightarrow G_{l}](x)=|P.|^{-1}|Z_{G_{l}}(x)|\sum_{y\in \mathfrak{C}G_{l}}(x)\cap P_{\nu}\psi(y)$ .

From (5.11) we have

(5.12) ind $[\psi| P$. $\rightarrow G_{l}](x^{\sigma})=ind[\psi^{\sigma}|P_{\nu}\rightarrow G_{l}](x)$ ,

where $\psi^{\sigma}$ is defined by
$\psi^{\sigma}(y)=\psi(y^{\sigma})$ $(y\in P_{\nu})$ .

By (5.9), (5.10), (5.12) and the commutativity ([7; Lemma 2.5]) of o-product,
we obtain the required result.

LEMMA 5.4. Let $\alpha$ be an element of $\hat{k}_{2l}^{*}$ , and $\nu$ a partition.

(a) $\chi_{l}[\alpha](x^{\sigma})=x_{l}[\alpha^{-Q}](x)$ $(x\in G_{l})$ .
(b) $\chi_{l|\nu|}[\nu;\alpha](x^{\sigma})=x_{l1v\rceil}[\nu;\alpha^{-q}](x)$ $(x\in G_{l|v|})$ .
PROOF. (a) Let $t_{1},$ $t_{2},$

$\cdots,$
$t_{l}$ be the characteristic roots of $x\in G_{l}$ . Then,

clearly, $t_{1}^{\sigma},$ $t_{2}^{\sigma},$ $\cdots$ , $i_{l}^{\sigma}$ are the characteristic roots of $x^{\sigma}$ . Part (a) follows from
this fact and the formulas (5.5) and (5.6).

(b) This follows from (5.7), Lemma 5.3 and part (a).
For each $\lambda\in\Lambda_{2}^{(n)}$ , define the element $\lambda^{\sigma}$ of $\Lambda_{2}^{(n)}$ bv

$\lambda^{\sigma}(f)=\lambda(f^{\sigma})$ $(f\in \mathcal{F}_{2})$ .
Similarly we also define the element $\theta^{\sigma}$ of $\Theta_{2}^{(n)}$ for each $\theta\in\Theta_{2}^{(n)}$ .

LEMMA 5.5. (a) For each $\lambda\in\Lambda_{2}^{(n)}$ , we have $\mathfrak{C}[\lambda]^{\sigma}=\mathfrak{E}[\lambda^{\sigma}]$ .
(b) For each $\theta\in\Theta_{2}^{(n)}$ , we have $\chi[\theta](x^{\sigma})=\chi[\theta^{\sigma}](x)$ $(x\in G_{n})$ .
PROOF. (a) This can be easily verified.
(b) This follows from (5.8), Lemma 5.3 and Lemma 5.4 (b).
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COROLLARY 5.6. (a) A conjugacy class $\mathfrak{E}[\lambda](\lambda\in\Lambda_{2}^{(n)})$ of $G_{n}$ is fixed by $\sigma$

if and only if $\lambda$ is contained in $\Lambda_{2,\sigma}^{(n)}$ (see Lemma 5.1 $(c)$ ).
(b) An irreducible character $\chi[\theta](\theta\in\Theta_{2}^{(n)})$ of $G_{n}$ is fixed by $\sigma$ if and only

if $\theta$ is contained in $\Theta_{2,\sigma}^{(n)}$ (see Lemma 5.2 $(c)$ ).

Let $\lambda$ be an element of $\Lambda_{1}^{(n)}$ , and $\lambda^{\prime}$ an element of $\Lambda_{2,\sigma}^{(n)}$ defined by (5.3).
By Corollary 5.6 (a), the conjugacy class $\mathfrak{E}[\lambda^{\prime}]$ of $G_{n}$ is fixed by $a$ . Hence,
by Corollary 2.8, $\mathfrak{D}[\lambda]=\mathfrak{C}[\lambda^{\prime}]\cap U_{n}(k_{2})$ is a conjugacy class of $U_{n}(k_{2})$ . It is
easy to see that every conjugacy class of $U_{n}(k_{2})$ can be obtained in this way.
Next, let $\theta$ be an element of $\Theta_{1}^{(n)}$ , and $\theta^{\prime}$ an element of $\Theta_{2.\sigma}^{(n)}$ defined by (5.4).
By Corollary 5.6 (b), the irreducible character $\chi[\theta^{\prime}]$ of $G_{n}$ is Pxed by $a$ . Hence
using Theorem 4.1 with $m=2$ , one can define an irreducible character $\psi[\theta]$

$=\psi_{\chi[\theta^{\prime}]}$ of $U_{n}(k_{2})$ , if char$(k)\neq 2$ . Thus we have proved the following
THEOREM 5.7. Let the notations be as above.
(a) The correspondence $\lambda\rightarrow \mathfrak{D}[\lambda]$ is a bijection between $\Theta_{1}^{(n)}$ and the set of

conjugacy classes of $U_{n}(k_{2})$ .
(b) The correspondence $\theta\rightarrow\psi[\theta]$ is a bijection between $\Theta_{1}^{(\eta)}$ and the set of

irreducible characters of $U_{n}(k_{2})(char(k)\neq 2)$ .
REMARK 5.8. (a) The above parametrization of the conjugacy classes of

$U_{n}(k_{2})$ is essentially the same as the one given in Ennola [4].

(b) Ennola constructed a set of class functions $\psi^{\prime}[\theta](\theta\in\Theta_{1}^{(n)})$ , and con-
jectured that these are the irreducible characters of $U_{n}(k_{2})$ . It is very probable
that our irreducible character $\psi[\theta]$ coincides with Ennola’s class function $\psi^{\prime}[\theta]$

for each $\theta\in\Theta_{1}^{(n)}$ .
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