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§ 1. Introduction and preliminaries.

Let f=(f,, -**, fa) (n=1) be a transcendental system in |z|<oco. That is,
Jfo, -+, [n are entire functions without common zero and

. T(r,f) _
11_{2 logr =

where T(r, f) is the characteristic function of f defined by Cartan ([1]).
Let X={F;; F;= 3 a,;f,70}¥, (n<N=cc) where a;; are constants and
=0

matrices (a;,;)5=%:2 are regular for all n+1 integers {i,}}-, (0=i,=N) and A
be the maximum number of linearly independent linear relations among fo, -**, f»
over C. (C means the field of complex numbers.) We know that 0=A<n—1.
When 1>0, we say that the system f is degenerate.

In this paper, we discuss some relations between the number “4” and excep-
tional linear combinations in X.

For Fe X, we set

8(F) = 1—lim sup f—V%;O}f ),

0(F)=1—lim sup —j\fi",lgg; g;)F) (m=1)

and m(F)=the minimum of multiplicities of all zeros of F (m(F)=oco when
F(2)+0), where

N,(r,0, F)= > min (m,, m)log* T +min (m,y, m) log 7,
lzp I<r |2k|

{z,} =1{2#0; F(2)=0} and m, (=1) is the multiplicity of zero of F at z, (k=",
2,---) and m, (=0) is that of F at the origin.

Cartan ([IJ) proved
THEOREM A. If 2=0, then

D Ea(F)Ent],
2) for any n+2 combinations {F;}73! in X,
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Further, the second author (Theorem B’, [8]) proved the following
THEOREM B. If there exist n+2 combinations F, Fy, -+, F, in X such that
i) arbitrary n—1 combinations in {F;}}-, are linearly independent ;
i) O(F)+ B a(F)>nt,
then
1 i=1,
2) there exists an F;) (0=i,=n) such that F and F;, are proportional,
3) for any G in X—{F, Fy, -, F.}, 8(G)+ % d(F)=n-+1.
=0

This is a refinement of results of Niino and Ozawa ([4]), Ozawa ([6]),
Suzuki ([(7]), Noguchi ([(5]) and the first author ([2]).

In §3 we give some relations between the number “4” and the multiplicities
of zeros of combinations in X (Theorems 1, 3) and a generalization of Theorem
B (Theorem 2).

We use the symbols

T(r, 1), m(r, a), N(r, @), N(r, f), 8(a, 1), S(r, f) etc.

of the Nevanlinna theory of meromorphic functions (see [3]).

§ 2. Lemmas.

Here we give some lemmas.
LEMMA 1. For any Fy, -, F, 2=<k=n+1) in X,

m(r, |Fy, -, Fill /Fy-- F)=0(ogr T(r,f))  (r—oo; r&E)

where E is a set of finite linear measure and ||Fy, .-+, F}|| denotes the Wronskian
of F,, -, F, (Cartan [1]).
For any n+1 combinations Fy, -+, F, in X, there exist n+1—4 combina-

tions (say G, -, G,_» in {F;}7,, such that any element in X may be repre-
sented by G,, .-+, G,_, with constant coefficients. We say that G, ---, G,_; form
a basis of X.
LEMMA 2. Let {G;}i= be a basis of X, then G=(G,, -, G,_;) is a system
in |z|<co and
| T(r, )—T(r, G)| <0O().

This follows at once from the definitions of 7(r, f), T(r, G) and G.
LEMMA 3. Let {G;}*4 be a basis of X and H,, H, in X be represented by
Gy, »+, Go_;z as follows:
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H,=a,Gy+ -+ +a,_31G,-3,
H2:18060+ +18n—/iGn—2-

If i) there exists at least one i, (0=1,=n—2R) such that a;,-B;,#0, and
i)y for all i (0=i=n—2) |a;|+|B:|+#0, then

T(, )YS NG 0, H)+Nu(r, 0, )+ S N,(r, 0, G,)+S(r),

where S(r)=o0(T(r, f)) for r—oo except for a set of finite linear measure.

PrROOF. As H;=0, there are some non-zero elements in both {a;}7=} and
{B:}7=". If there exists only one non-zero element in {a;}l=} or {B;}7=f, this
lemma is easily proved by using Therefore we will prove this
lemma in the case that there exist at least two non-zero elements in both
{a;}25} and {B:}7=}. We may assume that the non-zero elements of {a;}}5} are
Ay, e, 0,5 (0=k=n—1—2) without loss of generality, so that

(1) H=0,G,+ - +a,_;G,_;.

Next by the hypothesis ii), we know that all coefficients {8} are differ-
ent from zero and moreover by hypothesis i) at least one of {B3;}x¢ is differ-
ent from zero. Hence we may assume that the non-zero elements of {j;}75)
are By, -+, Bret, 0=I=n—k—24, so that

(2) sz ﬁoGo‘l‘ +[8ka+ +‘8k+LGk+l .

From (1), we have
4;

where
A.,]: HGk’ Tt Gj—l; Hl: Gj+1; R Gn—Z”/Gk i Gj—lHIGj+1 Gn~1 ’

4'= HGk: e, Gn—ZH/Gk Gn—l-

Consequently we have

n—2
3 _max log|G, | = log|H, |+ X log* |4 | +1og*| | +0(1) .
sjsn— =
On the other hand, from (2) we obtain
- 2+‘BOG0+ +‘Bk—IGk—1: _;Bka_‘ “‘Bk+le+'
and we have
‘Bme:G ﬁé_ (Oémék——l),

where
G': —‘Bka"‘ _ﬁkHGkH ’
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A;Z: “H?,: GO) ) Gm—l: G’ Gm+1: Tty Gk—l”/Hz'GO T Gm—IGGm+1 Gk-—l y
47 = “Hz’ GO: Tty Gk—l“/Hz'GO o Gk—l .

Consequently we obtain

+0Q1).

E—
@) max log|Gnl=<log|G|+ 3 log*| 4% |+log"| -

osmsk—1

Moreover, by the inequality

b+ k41
lGléjZJklﬁjllGjléhhggggthj!, K=j§klﬁ,-l,
we have

(5) log| G| ékggi; LloglGj] +log K.
By (3), (4) and (5), we have

n—2 k—
max log|G;|=log|H,|+ Ezlog*IA;- |+ Z):log“ldgbl
j= m=

0= jEn—2

4 |row,

—}—log*"fj,*l—I—log+

so that we obtain, using

T, £YS NG, 0, H)+ Somr, 4)+ 3 mir, 42)+m(r, —k-)+m(r, —5-)+0
] = » YV, 411 e s A et y =m ’ A/ i ’ A// )"" (1)

n—2
é N(T'; O) Hl)_i_Nn(r} O) HZ) y'— %NnO’; 0: G])+S(r) ’
J=
where S(r)=o(T(r, f)) for r—co except for a set of finite linear measure, because

m(r, _le’_> = N(r, 4")+m(r, A’)—N(r, %)—{—O(l) ,
m(r, )= NG, 47+ m(r, 4)—N(r, ~d-)+0Q),

n—2 k—
N, 4)S TN, 0,6, N, 47 S 3 N(r, 0, Go)+Nor, 0, Hy).
Jj= m=0

Thus we have the desired result.

§ 3. Results.

Let f, X and 4 be as in §1.

THEOREM 1. If there exist n+2 combinations F, F,, -+, F, in X such that
i) arbitrary n—1 combinations in {F;}%, are linearly independent ;

. o1 1 _

i) ZW<T and o(F)=1,

i=0
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then A=1 and there exists an F,, in {F;}} such that F and FW are proportional.
PrOOF. By Theorem A and the hypotheses i), ii), we see easily 4=1 or 2.
Suppose A=2, then we may assume that Fy, -+, F,_, form a basis of X

without loss of generality and so F,_; is represented by {F;}7=¢ as follows:

Fn—1:a0F0+ +an—2Fn~2 ’

where all coefficients a; (=0, ---, n—2) are different from zero because of the
hypothesis i). From this equation, we have, by Lemma 2 and the method used
in the proof of the second fundamental theorem by Cartan (see [L)),

T, S5 Nualr, 0, F)+S),

where S(r)=0(log rT(r, f)) for r—co except for a set of finite linear measure.

Using the inequality N,_,(r, 0, F,) < (F) N(@, 0, F,) (i=0,---,n—1), we have

1 1
n—2 = i:ZO m(Fy)

which is contradictory to the hypothesis ii). Therefore we have A=1.
As A=1, there exists a linear relation among F,, -, F, over C:

BOF0+ +ﬁnFn:
If all B; are different from zero, similarly to the above we have‘
T(V, f) é 1;)1 n—l(r; Ol F1)+S(r) ’

where S(»)=0(og rT(r, f)) for r—oco except for a set of finite linear measure.
Hence we have

n 1
1= ATy

A

as

Naoslr, 0, F) < (F)N(VOFJ (=0, ,m),

which is contradictory to the hypothesis ii). Therefore at least one of {f;}7%
is equal to zero. We may assume j3,=0 without loss of generality:

(6) ‘BoFo”:" +‘8n—1Fn—1:0y

where all coefficients 3; (i=0, ---, n—1) are different from zero because of the
hypothesis i). By the definition of X, we may represent F by F, -, F, as
follows :

F:p0F0+ e +pnFn (ptioy 1:(); tty n) .
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Eliminating F, from this relation and (6), we obtain

(7) F:p{Fl"{_ o +p7/1—1Fn—1+pnFn

where p;=p,—p, ‘gi (i=1, - ,n—1).
1]
If there are some coefficients in {p;}72¢ which are not equal to zero, apply-

ing to (6) and (7), we have
T, ) S NG, 0, F)+ 3 No(r, 0, F)+S(r),

where S(r)=o(T(r, f)) for r—oco except for a set of finite linear measure, as
arbitrary n—1 combinations in {F;}?5 and F, form a basis. Hence we have,

as o(F)=1 or tim R 020 —g,

r—0o0

2 1
i§) m(Fy)

1A
[I7AN

A
n
which is contradictory to the hypothesis ii). Consequently we have

F=p,Fn  (p.#0).

The proof is complete.

THEOREM 2. If there exist n+3 combinations F, G, Fy, -+, F, (n=4) in X
such that

i) arbitrary n—2 combinations in {F}j-, are linearly independent;

i) 3(F)+3,(G)+ 3 3u(F) > n-+2,
then

1) 1=2;

2) there exists a combination F;, (0=i,=n) such that F, G and F;, are pro-

portional ;
3) for any H in X—{F, G, F,, -, F,},

S(H)+0,(C)+  3u(F) S n+2.

PrOOF. 1). We will prove that A=2. By Theorem A and the hypotheses
i), ii), we see easily 1=A=3.
(I). Suppose A=1. Then there exists a linear relation among F,, -:*, I,

over C:
7oFot - F7.Fn=0.

If all 7, are different from zero, applying Theorem A and we have
E 571(F1.) § n ’
=0

which is contradictory to the hypothesis ii). Therefore at least one of {r,}7~
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is equal to zero. We may assume 7,=0 without loss of generality, so that
® 7'0F0+ +Tn—1Fn—1:0-

In (8), there exists at most one coefficient which is equal to zero because of
the hypothesis i).
By the definition of X, we may represent F and G by F,, -+, F, as follows:

(9 F=pyFot - +puFn  (pi#0, 1=0,-+,n)
(10) G=q,Fy+ -+, Fn  (q:#0, i=0,--,n).

(D-1. The case that y,#0, -+, 7,-; 0. We have

! —— T p_ . _Tnap
(8 F, - F, P

Eliminating F, from (8)’ and (9), we obtain

(11) F=piF i+ - +pn1FnyHDuFn

where p§:pi—pof% (i=1,---,n—1). If there are some coefficients in {p;}7=

which are not equal to zero, applying to (8)’ and [11), we have
A(F)+ 3 8,(F) <n+1

as arbitrary n—1 combinations in {F;}?%{ and F, form a basis. This is a con-
tradiction. Hence we have

Next, from (8), and we obtain

(13) F=¢R+~~WLJ;H—%

Remarking that F,, -, F,_;, G form a basis of X, we have as in the above

The two relations and mean 122, which is absurd.
(D-2. The case that one of 7o, -, 7,.; iS equal to zero. Without loss of
generality, we may assume 7,.,=0. Then 7,#0, -+, 7,-,#0 and we have

" =N p_ ... Tna
®) Fo=—1.F, 2=t Fs.

In this case, arbitrary n—2 combinations in {F;}?3 and F,_;, F, form a basis
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of X and as in (I)-1 we have from (8)” and (9)

(15) F=p, 1\ Fo1+D.F
Next, from (8)”, and we obtain

(16) F:q{Fl_'_ +q;_2Fn_2+q;_1Fn_1_{_ gn G,
where q;z-x—fﬁn-l“,bni?]l is not equal to zero because if ¢,.,=0, (8)” and

imply 4=2, which is absurd. Remarking that F,, -+, F,_,, G form a basis of
X, we have similarly

a7 GC=q, Fp 1+, F,.

The two relations and imply A=2, which is absurd. Therefore, we
have 4+1.

(II) Suppose A=3. Then there exist n—2 combinations in {F;}}~, which
form a basis of X. We may assume that F,---, F,_, form a basis and the
combination F,_, is represented by this basis as follows:

Foy=a,Fy+ - a3 F, s,

where all coefficients a; (1=0, ---, n—3) are different from zero because of the
hypothesis i). From this equation we have, by Theorem A and

S (F)<n—2,
1=0

which is contradictory to the:hypothesis ii).

From (I) and (II), it must be 1=2.

2). We will prove the conclusion 2) of this theorem. As A1=2, we may
assume that F,, -, F,,_, form a basis of X and so F,_,, F, are represented
by {F;}?=¢ as follows:

(18) Frooi=aFot - +ay o Fpy,
(19) Fn:ﬁOF0+ +ﬁn—2Fn—2-

By the hypotheses i) and ii), applying Theorem A to and [(19), only one
of {a;}%=¢ and only one of {8;}7} are equal to zero. We may consider the
following two cases A) and B).

A). There exists an i, such that «;,=0, 8,,=0 (0={,=<n—2). Eliminating

F,.., F, from (9) using and [(19), we have
(20) F:p(,),Fo‘l_ —I_p%—lFio-l+pioFio+pz/‘6+1Fio+1+ _’_p;z/—an—Z .
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If there are some coefficients in {p/}7-¢—{p/} which are not equal to zero,

applying Lemma 3 to [18) and [20), we have

PERGEROETS

which is contradictory to the hypothesis ii). This means
(21) F:pioFio-
Next, from [10), (18}, and we have

(22)  F=qFut - +iorFuprt LGt gloiFrgert - +5aFue.

0

Remarking that F, -+, Fy;, 1, G, Fiy41, -+, Fn_, form a basis’of X, we have simi-
larly

(23) G:qioFio'

B). There exist ¢, and 7, (i,#1%,) such that a;=0, $;,=0. We will prove
that this case does not happen. We have

(24) F=aFy+ - +a, oF,_,,

where at least one of {a;}7=¢ is not equal to zero. In[24), coefficients a;, and
a;, are equal to zero. Indeed if one of a;, a;, (say a;,) is not equal to zero,

applying to and [24), we have
(25) F:ailFil (ail?l:()).

Applying to and the relation obtained by eliminating F;, from
and [25), we have

SF)+ 3 0a(F)+3u(F) <,

iy

which is contradictory to the hypothesis ii). Consequently F may be repre-
sented as follows:

(26) F=a/F,+ - +ai1—1Fi1—1+ai1+1Fi1+1+ et ag,  Fyy oy
+ai2+1Fi2+1+ +an—2Fn—27

where there exists at least one non-zero element in {a;}}=¢—{a;,, a;,}.
Next we have

(27) G:boFo+ +bi1F‘i1+ +bi2Fz'2+ ‘|‘bn—an-2 ’
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where at least one of {b;}?%¢ is not équal to zero. Here b; -b;,#0. Indeed, if
b;,=0 or b;,=0, then from [(18) or [19), [26) and [27) 2=3, which is absurd.

Now we consider the case that in there exists only one non-zero ele-
ment in {a;}}=¢—{a;,, a;,}. In this case we have F=aF,, a,#0, [#1;,1,. Elimi-
nating F, from this equation and [19), we have

(28) F:,B(,)’Fo‘]‘ +‘82,Fn+ e+ z{;Fn‘l‘ +;81/‘/2—1Fi2—1
+‘8§,2+1F1'2+1+ +ﬁ7lz/—2 n-2»

where all coefficients are not equal to zero. Applying to and
(28), we have

F)+0,(G)+ % u(F)+0,(F)=n,
i#L
which is contradictory to the hypothesis ii).
Therefore we may assume that there exist at least two non-zero coefficients
in [(26),.
Now we will show that this case ends in a contradiction applying the
methods in the proof of Lemma 3 to [19), and

Let {@ipo} o1 (2<kE=<n—3) be not equal to zero. Then we obtain

Au
(29) UinerFine, = FA—i (@iner#0)

where A1:”F’3h(1)’ ey, Fih(k)”/Fih(l) e Fih(k) and All’ is what Fih(v) is Changed by
F in 4,. From [29), we have :

k
(30) max log| Fy| log| F| +log” -j—\+ > log* 4 | +0(1).
ay 1 v=
From [(19) we set
(31) 1= _a§0 BiFi= _Fn+agoﬁiFi .
s e

Let {ﬁij@)}i:l be the non-zero coefficients which appear in the right side of
[(31). Then we have

Au
ABij(V)Fij(u): I'ZZ—' (lBij(lJ)#: 0)
and hence
14
(32 max log| Fi| <log| H,| +log*| -} |+ Slog*| 4 +0(1),
B0
where

4,=|F,, Fij(l): Tty Fij(p“/FnFij(l)"' Fij(l)
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and 4% is what F,,,, is changed by H, in 4,. By we obtain

(33) log}Hllémigc log| F;|+0(1).
From we set
(34) Hy=— 3% bF,=—G+ X bF;.
1,70 a;=0
;70 or B,7%#0 Bi=0,b%0

Let {biy,,}ik: be the non-zero coefficients which appear in the right side of
(34). Then we have
&

bis(v)Fis(v): Z_A;_ <bis(y) + 0)
and hence
(35) max log|Fi| Slog|H,[ +log*| |+ E log| 45 1+001),
‘3i=1f),bf/:0 .

where 4;=|G, Fiqy -5 Fisomll/GF i+ Figmy and 4% is what Fy,,, is changed
by H, in 4,. By we have

(36) log| H,| = ma>§ iolog]Fil-{—O(l) .

a; %0 or Bj

By [30), [32), [(33), [35) and [(36), we have

3 k
(37) max _log|Fi| <log| F|+ X log*| |+ X log*]4¢
a; 0(1 c;x"qfoi#:() Jj=1 j v=1

L m
+ glogﬂdg |+ §110g+|43 I+0),
so that we obtain, as in the proof of Lemma 3,

k l m
T(r, YSNG, 0, F)+ 3 mlr, &)+ L mlr, 4+ S mlr, 4)+ 3 m(r, —4=)+0W)
y= y= v= p ;

S NG, 0, F)+N,(r, 0, O+ S Nulr, 0, F)+Na(r, 0, F,)+S(r),

where S(r)=0o(T(r, f)) for r—oo except for a set of finite linear measure. Hence
we have

OF)+0,(G)+ 5 0,(F)+3,(F) S n+1,

which is contradictory to the hypothesis ii).
Thus we have the conclusion 2) of this theorem.
3). If there exists a combination H in X—{F, G, F,, ---, F,} such that

H)+3,(G)+ 32 8,(F) > n+2,
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then by 2), F, G, H and F,, are proportional. This implies 4=3, which is
absurd.

Hence we have the conclusion 3).

In the same way as we obtained by generalizing Theorem B,
we generalize as follows.

THEOREM 3. If there exist n+3 combinations F, G, Fy, -+, F, (n=4) in X
such that

i) arbitrary n—2 combinations in {F;}%, are linearly independent ;

if) m(lG) +5 m(}%) <L ana ap)=1,
then A=2 and there exists an F;, in {F;}}, such that F, G and F;, are propor-
tional.

Applying the method of the proof of to that of
we obtain this result easily.

COROLLARY. In Theorem 2 or 3, if F=1, then G and af least one combi-
nation in {F;}%, are lacunary.

REMARK 1. When n=3, Theorems 2 and 3 change into the following:

“If there exist 6 combinations F, G, Fy, ---, F; in X such that

OF)+8,(G)+ 35 0(F)>5

or

Lol and am)=1
m(G) 'S m(F,) 3 n e

=0

then

1) 1=2;

2) {F,G,F, -, F,} are divided into two classes each of which consists
of three elements being proportional”.

REMARK 2. Can one replace 6(F) by 0,(F) in Theorem 2 ?
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