The degeneracy of systems and the exceptional linear combinations of entire functions

By Masakimi KATŌ and Nobushige TODA

(Received March 11, 1976)

§ 1. Introduction and preliminaries.

Let $f=(f_0,\cdots,f_n)$ $(n\geq 1)$ be a transcendental system in $|z|<\infty$. That is, f_0,\cdots,f_n are entire functions without common zero and

$$\lim_{r\to\infty}\frac{T(r,f)}{\log r}=\infty,$$

where T(r, f) is the characteristic function of f defined by Cartan ([1]).

Let $X=\{F_i; F_i=\sum\limits_{j=0}^n a_{ij}f_j\not\equiv 0\}_{i=0}^N$ $(n\leq N\leq \infty)$ where a_{ij} are constants and matrices $(a_{i\nu j})_{j=0,\dots,n}^{\nu=0,\dots,n}$ are regular for all n+1 integers $\{i_\nu\}_{\nu=0}^n$ $(0\leq i_\nu\leq N)$ and λ be the maximum number of linearly independent linear relations among f_0,\dots,f_n over C. (C means the field of complex numbers.) We know that $0\leq \lambda\leq n-1$. When $\lambda>0$, we say that the system f is degenerate.

In this paper, we discuss some relations between the number " λ " and exceptional linear combinations in X.

For $F \in X$, we set

$$\begin{split} &\delta(F) = 1 - \limsup_{r \to \infty} \frac{N(r, 0, F)}{T(r, f)}, \\ &\delta_m(F) = 1 - \limsup_{r \to \infty} \frac{N_m(r, 0, F)}{T(r, f)} \qquad (m \ge 1) \end{split}$$

and m(F)=the minimum of multiplicities of all zeros of F ($m(F)=\infty$ when $F(z)\neq 0$), where

$$N_m(r, 0, F) = \sum_{|z_k| < r} \min(m_k, m) \log^+ \frac{r}{|z_k|} + \min(m_0, m) \log r$$

 $\{z_k\} = \{z \neq 0; F(z) = 0\}$ and $m_k (\geq 1)$ is the multiplicity of zero of F at $z_k (k=1, 2, \cdots)$ and $m_0 (\geq 0)$ is that of F at the origin.

Cartan ([1]) proved

THEOREM A. If $\lambda = 0$, then

- 1) $\sum_{F \in X} \delta_n(F) \leq n+1$,
- 2) for any n+2 combinations $\{F_i\}_{i=0}^{n+1}$ in X,

$$\sum_{i=0}^{n+1} \frac{1}{m(F_i)} \geqq \frac{1}{n}.$$

Further, the second author (Theorem B', [8]) proved the following

Theorem B. If there exist n+2 combinations F, F_0, \dots, F_n in X such that

- i) arbitrary n-1 combinations in $\{F_i\}_{i=0}^n$ are linearly independent;
- ii) $\delta(F) + \sum_{i=0}^{n} \delta(F_i) > n+1$,

then

- 1) $\lambda = 1$,
- 2) there exists an F_{i_0} $(0 \le i_0 \le n)$ such that F and F_{i_0} are proportional,
- 3) for any G in $X \{F, F_0, \dots, F_n\}, \ \delta(G) + \sum_{i=0}^n \delta(F_i) \leq n+1.$

This is a refinement of results of Niino and Ozawa ([4]), Ozawa ([6]), Suzuki ([7]), Noguchi ([5]) and the first author ([2]).

In § 3 we give some relations between the number " λ " and the multiplicities of zeros of combinations in X (Theorems 1, 3) and a generalization of Theorem B (Theorem 2).

We use the symbols

$$T(r, f), m(r, a), N(r, a), N(r, f), \delta(a, f), S(r, f)$$
 etc.

of the Nevanlinna theory of meromorphic functions (see [3]).

§ 2. Lemmas.

Here we give some lemmas.

Lemma 1. For any F_1, \dots, F_k $(2 \le k \le n+1)$ in X,

$$m(r, ||F_1, \dots, F_k||/F_1 \dots F_k) = O(\log r T(r, f))$$
 $(r \to \infty; r \in E)$

where E is a set of finite linear measure and $||F_1, \dots, F_k||$ denotes the Wronskian of F_1, \dots, F_k (Cartan [1]).

For any n+1 combinations F_0, \dots, F_n in X, there exist $n+1-\lambda$ combinations (say $G_0, \dots, G_{n-\lambda}$) in $\{F_i\}_{i=0}^n$ such that any element in X may be represented by $G_0, \dots, G_{n-\lambda}$ with constant coefficients. We say that $G_0, \dots, G_{n-\lambda}$ form a basis of X.

Lemma 2. Let $\{G_i\}_{i=0}^{n-\lambda}$ be a basis of X, then $G=(G_0,\cdots,G_{n-\lambda})$ is a system in $|z|<\infty$ and

$$|T(r, f) - T(r, G)| < O(1)$$
.

This follows at once from the definitions of T(r, f), T(r, G) and G.

LEMMA 3. Let $\{G_i\}_{i=0}^{n-\lambda}$ be a basis of X and H_1 , H_2 in X be represented by $G_0, \dots, G_{n-\lambda}$ as follows:

$$H_1 = \alpha_0 G_0 + \cdots + \alpha_{n-\lambda} G_{n-\lambda},$$

$$H_2 = \beta_0 G_0 + \cdots + \beta_{n-\lambda} G_{n-\lambda}.$$

If i) there exists at least one i_0 $(0 \le i_0 \le n - \lambda)$ such that $\alpha_{i_0} \cdot \beta_{i_0} \ne 0$, and

ii) for all
$$i$$
 $(0 \le i \le n - \lambda)$ $|\alpha_i| + |\beta_i| \ne 0$, then

$$T(r, f) \leq N(r, 0, H_1) + N_n(r, 0, H_2) + \sum_{i=0}^{n-\lambda} N_n(r, 0, G_i) + S(r)$$
,

where S(r)=o(T(r,f)) for $r\to\infty$ except for a set of finite linear measure.

PROOF. As $H_i\not\equiv 0$, there are some non-zero elements in both $\{\alpha_i\}_{i=0}^{n-\lambda}$ and $\{\beta_i\}_{i=0}^{n-\lambda}$. If there exists only one non-zero element in $\{\alpha_i\}_{i=0}^{n-\lambda}$ or $\{\beta_i\}_{i=0}^{n-\lambda}$, this lemma is easily proved by using Theorem A. Therefore we will prove this lemma in the case that there exist at least two non-zero elements in both $\{\alpha_i\}_{i=0}^{n-\lambda}$ and $\{\beta_i\}_{i=0}^{n-\lambda}$. We may assume that the non-zero elements of $\{\alpha_i\}_{i=0}^{n-\lambda}$ are $\alpha_k, \cdots, \alpha_{n-\lambda}$ $(0 \le k \le n-1-\lambda)$ without loss of generality, so that

$$(1) H_1 = \alpha_k G_k + \cdots + \alpha_{n-1} G_{n-1}.$$

Next by the hypothesis ii), we know that all coefficients $\{\beta_i\}_{i=0}^{k-1}$ are different from zero and moreover by hypothesis i) at least one of $\{\beta_i\}_{i=k}^{n-\lambda}$ is different from zero. Hence we may assume that the non-zero elements of $\{\beta_i\}_{i=0}^{n-\lambda}$ are $\beta_0, \dots, \beta_{k+l}, 0 \le l \le n-k-\lambda$, so that

(2)
$$H_2 = \beta_0 G_0 + \dots + \beta_k G_k + \dots + \beta_{k+l} G_{k+l}.$$

From (1), we have

$$\alpha_j G_j = H_1 \frac{\Delta'_j}{\Delta'}$$
 $(k \le j \le n - \lambda)$,

where

$$\Delta'_{j} = \|G_{k}, \dots, G_{j-1}, H_{1}, G_{j+1}, \dots, G_{n-\lambda}\|/G_{k} \dots G_{j-1}H_{1}G_{j+1} \dots G_{n-\lambda},$$

$$\Delta' = \|G_{k}, \dots, G_{n-\lambda}\|/G_{k} \dots G_{n-\lambda}.$$

Consequently we have

(3)
$$\max_{k \le j \le n-\lambda} \log |G_j| \le \log |H_1| + \sum_{j=k}^{n-\lambda} \log^+ |\mathcal{A}_j'| + \log^+ \left| \frac{1}{\mathcal{A}'} \right| + O(1).$$

On the other hand, from (2) we obtain

$$-H_2 + \beta_0 G_0 + \cdots + \beta_{k-1} G_{k-1} = -\beta_k G_k - \cdots - \beta_{k+l} G_{k+l}$$

and we have

$$\beta_m G_m = G \frac{\Delta_m^{\prime\prime}}{\Delta^{\prime\prime}} \qquad (0 \leq m \leq k-1)$$
,

where

$$G = -\beta_k G_k - \cdots - \beta_{k+l} G_{k+l} ,$$

$$\Delta''_m = \|H_2, G_0, \cdots, G_{m-1}, G, G_{m+1}, \cdots, G_{k-1}\|/H_2 \cdot G_0 \cdots G_{m-1}GG_{m+1} \cdots G_{k-1},$$

$$\Delta'' = \|H_2, G_0, \cdots, G_{k-1}\|/H_2 \cdot G_0 \cdots G_{k-1}.$$

Consequently we obtain

(4)
$$\max_{0 \le m \le k-1} \log |G_m| \le \log |G| + \sum_{m=0}^{k-1} \log^+ |\mathcal{A}_m''| + \log^+ \left| \frac{1}{\mathcal{A}_m''} \right| + O(1).$$

Moreover, by the inequality

$$|G| \le \sum_{j=k}^{k+l} |\beta_j| |G_j| \le K \max_{k \le j \le k+l} |G_j|, \quad K = \sum_{j=k}^{k+l} |\beta_i|,$$

we have

(5)
$$\log |G| \leq \max_{k \leq j \leq k+l} \log |G_j| + \log K.$$

By (3), (4) and (5), we have

$$\begin{split} \max_{0 \leq j \leq n-\lambda} \log |G_j| &\leq \log |H_1| + \sum_{j=k}^{n-\lambda} \log^+ |\mathcal{L}_j'| + \sum_{m=0}^{k-1} \log^+ |\mathcal{L}_m''| \\ &+ \log^+ \left| \frac{1}{\mathcal{L}'} \right| + \log^+ \left| \frac{1}{\mathcal{L}''} \right| + O(1) \,, \end{split}$$

so that we obtain, using Lemma 2,

$$T(r,f) \leq N(r,0,H_1) + \sum_{j=k}^{n-\lambda} m(r,\Delta'_j) + \sum_{m=0}^{k-1} m(r,\Delta''_m) + m\left(r,\frac{1}{\Delta''}\right) + m\left(r,\frac{1}{\Delta''}\right) + O(1)$$

$$\leq N(r,0,H_1) + N_n(r,0,H_2) + \sum_{j=0}^{n-\lambda} N_n(r,0,G_j) + S(r),$$

where S(r) = o(T(r, f)) for $r \to \infty$ except for a set of finite linear measure, because

$$\begin{split} m\Big(r,\frac{1}{\varDelta'}\Big) &= N(r,\varDelta') + m(r,\varDelta') - N\Big(r,\frac{1}{\varDelta'}\Big) + O(1)\,, \\ m\Big(r,\frac{1}{\varDelta''}\Big) &= N(r,\varDelta'') + m(r,\varDelta'') - N\Big(r,\frac{1}{\varDelta''}\Big) + O(1)\,, \\ N(r,\varDelta') &\leq \sum_{j=k}^{n-\lambda} N_n(r,0,G_j)\,, \quad N(r,\varDelta'') \leq \sum_{m=0}^{k-1} N_n(r,0,G_m) + N_n(r,0,H_2)\,. \end{split}$$

Thus we have the desired result.

§ 3. Results.

Let f, X and λ be as in §1.

THEOREM 1. If there exist n+2 combinations F, F_0, \dots, F_n in X such that i) arbitrary n-1 combinations in $\{F_i\}_{i=0}^n$ are linearly independent;

ii)
$$\sum_{i=0}^{n} \frac{1}{m(F_i)} < \frac{1}{n}$$
 and $\delta(F) = 1$,

then $\lambda=1$ and there exists an F_{i_0} in $\{F_i\}_{i=0}^n$ such that F and F_{i_0} are proportional. PROOF. By Theorem A and the hypotheses i), ii), we see easily $\lambda=1$ or 2. Suppose $\lambda=2$, then we may assume that F_0, \dots, F_{n-2} form a basis of X without loss of generality and so F_{n-1} is represented by $\{F_i\}_{i=0}^{n-2}$ as follows:

$$F_{n-1} = \alpha_0 F_0 + \cdots + \alpha_{n-2} F_{n-2}$$
,

where all coefficients α_i $(i=0, \dots, n-2)$ are different from zero because of the hypothesis i). From this equation, we have, by Lemma 2 and the method used in the proof of the second fundamental theorem by Cartan (see [1]),

$$T(r, f) \leq \sum_{i=0}^{n-1} N_{n-2}(r, 0, F_i) + S(r)$$
,

where $S(r)=O(\log rT(r,f))$ for $r\to\infty$ except for a set of finite linear measure. Using the inequality $N_{n-2}(r,0,F_i) \leq \frac{n-2}{m(F_i)} N(r,0,F_i)$ $(i=0,\cdots,n-1)$, we have

$$\frac{1}{n-2} \leq \sum_{i=0}^{n-1} \frac{1}{m(F_i)}$$

which is contradictory to the hypothesis ii). Therefore we have $\lambda=1$. As $\lambda=1$, there exists a linear relation among F_0, \dots, F_n over C:

$$\beta_0 F_0 + \cdots + \beta_n F_n = 0$$
.

If all eta_i are different from zero, similarly to the above we have

$$T(r, f) \leq \sum_{i=0}^{n} N_{n-1}(r, 0, F_i) + S(r)$$
,

where $S(r) = O(\log rT(r, f))$ for $r \to \infty$ except for a set of finite linear measure. Hence we have

$$\frac{1}{n-1} \leq \sum_{i=0}^{n} \frac{1}{m(F_i)}$$

as

$$N_{n-1}(r, 0, F_i) \leq \frac{n-1}{m(F_i)} N(r, 0, F_i)$$
 $(i=0, \dots, n)$,

which is contradictory to the hypothesis ii). Therefore at least one of $\{\beta_i\}_{i=0}^n$ is equal to zero. We may assume $\beta_n=0$ without loss of generality:

(6)
$$\beta_0 F_0 + \dots + \beta_{n-1} F_{n-1} = 0,$$

where all coefficients β_i $(i=0,\dots,n-1)$ are different from zero because of the hypothesis i). By the definition of X, we may represent F by F_0,\dots,F_n as follows:

$$F = p_0 F_0 + \cdots + p_n F_n$$
 $(p_i \neq 0, i=0, \cdots, n)$.

Eliminating F_0 from this relation and (6), we obtain

(7)
$$F = p_1' F_1 + \dots + p_{n-1}' F_{n-1} + p_n F_n$$

where $p_i' = p_i - p_0 - \frac{\beta_i}{\beta_0}$ (i=1, ..., n-1).

If there are some coefficients in $\{p_i'\}_{i=0}^{n-1}$ which are not equal to zero, applying Lemma 3 to (6) and (7), we have

$$T(r, f) \leq N(r, 0, F) + \sum_{i=0}^{n} N_n(r, 0, F_i) + S(r)$$
,

where S(r)=o(T(r,f)) for $r\to\infty$ except for a set of finite linear measure, as arbitrary n-1 combinations in $\{F_i\}_{i=0}^{n-1}$ and F_n form a basis. Hence we have, as $\delta(F)=1$ or $\lim_{r\to\infty}\frac{N(r,0,F)}{T(r,f)}=0$,

$$\frac{1}{n} \leq \sum_{i=0}^{n} \frac{1}{m(F_i)}$$

which is contradictory to the hypothesis ii). Consequently we have

$$F = p_n F_n \qquad (p_n \neq 0)$$
.

The proof is complete.

Theorem 2. If there exist n+3 combinations F, G, F_0, \dots, F_n $(n \ge 4)$ in X such that

- i) arbitrary n-2 combinations in $\{F_i\}_{i=0}^n$ are linearly independent;

....

- 2) there exists a combination F_{i_0} $(0 \le i_0 \le n)$ such that F, G and F_{i_0} are proportional;
 - 3) for any H in $X-\{F,G,F_0,\cdots,F_n\}$,

$$\delta(H) + \delta_n(G) + \sum_{i=0}^n \delta_n(F_i) \leq n+2$$
.

PROOF. 1). We will prove that $\lambda=2$. By Theorem A and the hypotheses i), ii), we see easily $1 \le \lambda \le 3$.

(I). Suppose $\lambda=1$. Then there exists a linear relation among F_0, \dots, F_n over C:

$$\gamma_0 F_0 + \cdots + \gamma_n F_n = 0$$
.

If all γ_i are different from zero, applying Theorem A and Lemma 2, we have

$$\sum_{i=0}^{n} \delta_n(F_i) \leq n,$$

which is contradictory to the hypothesis ii). Therefore at least one of $\{\gamma_i\}_{i=1}^n$

is equal to zero. We may assume $\gamma_n=0$ without loss of generality, so that

(8)
$$\gamma_0 F_0 + \cdots + \gamma_{n-1} F_{n-1} = 0.$$

In (8), there exists at most one coefficient which is equal to zero because of the hypothesis i).

By the definition of X, we may represent F and G by F_0, \dots, F_n as follows:

(9)
$$F = p_0 F_0 + \dots + p_n F_n \quad (p_i \neq 0, i = 0, \dots, n)$$

(10)
$$G = q_0 F_0 + \cdots + q_n F_n \quad (q_i \neq 0, i = 0, \cdots, n).$$

(I)-1. The case that $\gamma_0 \neq 0, \dots, \gamma_{n-1} \neq 0$. We have

(8)'
$$F_0 = -\frac{\gamma_1}{\gamma_0} F_1 - \cdots - \frac{\gamma_{n-1}}{\gamma_0} F_{n-1}.$$

Eliminating F_0 from (8)' and (9), we obtain

(11)
$$F = p_1' F_1 + \dots + p_{n-1}' F_{n-1} + p_n F_n$$

where $p_i'=p_i-p_0-\frac{\gamma_i}{\gamma_0}$ ($i=1,\dots,n-1$). If there are some coefficients in $\{p_i'\}_{i=1}^{n-1}$ which are not equal to zero, applying Lemma 3 to (8)' and (11), we have

$$\delta(F) + \sum_{i=0}^{n} \delta_n(F_i) \leq n+1$$

as arbitrary n-1 combinations in $\{F_i\}_{i=0}^{n-1}$ and F_n form a basis. This is a contradiction. Hence we have

$$(12) F = p_n F_n (p_n \neq 0).$$

Next, from (8)', (10) and (12) we obtain

(13)
$$F = q_1' F_1 + \dots + q_{n-1}' F_{n-1} + \frac{p_n}{q_n} G \qquad (p_n \cdot q_n \neq 0).$$

Remarking that F_1, \dots, F_{n-1}, G form a basis of X, we have as in the above

$$(14) G = q_n F_n (q_n \neq 0).$$

The two relations (12) and (14) mean $\lambda \ge 2$, which is absurd.

(I)-2. The case that one of $\gamma_0, \dots, \gamma_{n-1}$ is equal to zero. Without loss of generality, we may assume $\gamma_{n-1}=0$. Then $\gamma_0\neq 0, \dots, \gamma_{n-2}\neq 0$ and we have

(8)"
$$F_0 = -\frac{\gamma_1}{\gamma_0} F_1 - \dots - \frac{\gamma_{n-2}}{\gamma_0} F_{n-2}.$$

In this case, arbitrary n-2 combinations in $\{F_i\}_{i=0}^{n-2}$ and F_{n-1} , F_n form a basis

of X and as in (I)-1 we have from (8)" and (9)

$$(15) F = p_{n-1}F_{n-1} + p_nF_n$$

Next, from (8)", (10) and (15) we obtain

(16)
$$F = q_1' F_1 + \dots + q_{n-2}' F_{n-2} + q_{n-1}' F_{n-1} + \frac{p_n}{q_n} G,$$

where $q'_{n-1}=p_{n-1}-p_n\frac{q_{n-1}}{q_n}$ is not equal to zero because if $q'_{n-1}=0$, (8)" and (16) imply $\lambda \ge 2$, which is absurd. Remarking that F_1, \dots, F_{n-1}, G form a basis of X, we have similarly

$$G = q_{n-1}F_{n-1} + q_nF_n.$$

The two relations (15) and (17) imply $\lambda \ge 2$, which is absurd. Therefore, we have $\lambda \ne 1$.

(II) Suppose $\lambda=3$. Then there exist n-2 combinations in $\{F_i\}_{i=0}^n$ which form a basis of X. We may assume that F_0, \dots, F_{n-3} form a basis and the combination F_{n-2} is represented by this basis as follows:

$$F_{n-2} = \alpha_0 F_0 + \cdots + \alpha_{n-3} F_{n-3}$$
,

where all coefficients α_i ($i=0,\dots,n-3$) are different from zero because of the hypothesis i). From this equation we have, by Theorem A and Lemma 2,

$$\sum_{i=0}^{n-2} \delta_n(F_i) \leq n-2$$
,

which is contradictory to the hypothesis ii).

From (I) and (II), it must be $\lambda=2$.

2). We will prove the conclusion 2) of this theorem. As $\lambda=2$, we may assume that F_0, \dots, F_{n-2} form a basis of X and so F_{n-1}, F_n are represented by $\{F_i\}_{i=0}^{n-2}$ as follows:

$$(18) F_{n-1} = \alpha_0 F_0 + \cdots + \alpha_{n-2} F_{n-2},$$

(19)
$$F_n = \beta_0 F_0 + \dots + \beta_{n-2} F_{n-2}.$$

By the hypotheses i) and ii), applying Theorem A to (18) and (19), only one of $\{\alpha_i\}_{i=0}^{n-2}$ and only one of $\{\beta_i\}_{i=0}^{n-2}$ are equal to zero. We may consider the following two cases A) and B).

A). There exists an i_0 such that $\alpha_{i_0}=0$, $\beta_{i_0}=0$ $(0 \le i_0 \le n-2)$. Eliminating F_{n-1} , F_n from (9) using (18) and (19), we have

(20)
$$F = p_0'' F_0 + \dots + p_{i_0-1}'' F_{i_0-1} + p_{i_0} F_{i_0} + p_{i_0+1}'' F_{i_0+1} + \dots + p_{n-2}'' F_{n-2}.$$

If there are some coefficients in $\{p_i''\}_{i=0}^{n-2} - \{p_{i0}''\}$ which are not equal to zero, applying Lemma 3 to (18) and (20), we have

$$\sum_{i=0}^{n-1} \delta_n(F_i) + \delta(F) \leq n$$
 ,

which is contradictory to the hypothesis ii). This means

(21)
$$F = p_{i_0} F_{i_0}$$
.

Next, from (10), (18), (19) and (21) we have

(22)
$$F = q_0' F_0 + \dots + q_{i_{0-1}}' F_{i_{0-1}} + \frac{p_{i_0}}{q_{i_0}} G + q_{i_{0+1}}' F_{i_{0+1}} + \dots + q_{i_{n-2}}' F_{i_{n-2}}.$$

Remarking that $F_0, \dots, F_{i_{0-1}}, G, F_{i_{0+1}}, \dots, F_{n-2}$ form a basis of X, we have similarly

$$(23) G = q_{i0} F_{i0}.$$

B). There exist i_1 and i_2 ($i_1 \neq i_2$) such that $\alpha_{i_1} = 0$, $\beta_{i_2} = 0$. We will prove that this case does not happen. We have

$$(24) F = a_0 F_0 + \dots + a_{n-2} F_{n-2},$$

where at least one of $\{a_i\}_{i=0}^{n-2}$ is not equal to zero. In (24), coefficients a_{i_1} and a_{i_2} are equal to zero. Indeed if one of a_{i_1} , a_{i_2} (say a_{i_1}) is not equal to zero, applying Lemma 3 to (18) and (24), we have

(25)
$$F = a_{i_1} F_{i_1} \qquad (a_{i_1} \neq 0).$$

Applying Lemma 3 to (18) and the relation obtained by eliminating F_{i_1} from (19) and (25), we have

$$\delta(F) + \sum_{\substack{i=0\\i\neq i,\\j\neq i,}}^{n-1} \delta_n(F_i) + \delta_n(F_n) \leq n,$$

which is contradictory to the hypothesis ii). Consequently F may be represented as follows:

(26)
$$F = a_0 F_0 + \dots + a_{i_{1}-1} F_{i_{1}-1} + a_{i_{1}+1} F_{i_{1}+1} + \dots + a_{i_{2}-1} F_{i_{2}-1} + a_{i_{2}+1} F_{i_{2}+1} + \dots + a_{n-2} F_{n-2},$$

where there exists at least one non-zero element in $\{a_i\}_{i=0}^{n-2} - \{a_{i_1}, a_{i_2}\}$. Next we have

(27)
$$G = b_0 F_0 + \dots + b_{i_0} F_{i_0} + \dots + b_{i_0} F_{i_0} + \dots + b_{i_{n-2}} F_{i_{n-2}},$$

where at least one of $\{b_i\}_{i=0}^{n-2}$ is not equal to zero. Here $b_{i_1} \cdot b_{i_2} \neq 0$. Indeed, if $b_{i_1}=0$ or $b_{i_2}=0$, then from (18) or (19), (26) and (27) $\lambda \ge 3$, which is absurd.

Now we consider the case that in (26) there exists only one non-zero element in $\{a_i\}_{i=0}^{n-2} - \{a_i, a_{i_2}\}$. In this case we have $F = a_i F_i, a_i \neq 0, i \neq i_1, i_2$. Eliminating F_l from this equation and (19), we have

(28)
$$F = \beta_0'' F_0 + \dots + \beta_l'' F_n + \dots + \beta_{i_1}'' F_{i_1} + \dots + \beta_{i_{2-1}}'' F_{i_{2-1}} + \beta_{i_{2+1}}'' F_{i_{2+1}} + \dots + \beta_{n-2}'' F_{n-2},$$

where all coefficients are not equal to zero. Applying Lemma 3 to (27) and (28), we have

$$\delta(F) + \delta_n(G) + \sum_{\substack{i=0\\i\neq j}}^{n-2} \delta_n(F_i) + \delta_n(F_n) \leq n,$$

which is contradictory to the hypothesis ii).

Therefore we may assume that there exist at least two non-zero coefficients in (26).

Now we will show that this case ends in a contradiction applying the methods in the proof of Lemma 3 to (19), (26) and (27).

Let $\{a_{i_{h(\nu)}}\}_{\nu=1}^k$ $(2 \le k \le n-3)$ be not equal to zero. Then we obtain

(29)
$$a_{i_{h(\nu)}} F_{i_{h(\nu)}} = F \frac{\Delta_1^{\nu}}{\Delta_1} \qquad (a_{i_{h(\nu)}} \neq 0)$$

where $\Delta_1 = ||F_{i_{h(1)}}, \dots, F_{i_{h(k)}}||/F_{i_{h(1)}} \dots F_{i_{h(k)}}$ and Δ_1^{ν} is what $F_{i_{h(\nu)}}$ is changed by F in Δ_1 . From (29), we have

(30)
$$\max_{a_i \neq 0} \log |F_i| \leq \log |F| + \log^+ \left| \frac{1}{|\mathcal{A}_1|} \right| + \sum_{\nu=1}^k \log^+ |\mathcal{A}_1^{\nu}| + O(1).$$

From (19) we set

(31)
$$H_1 \equiv -\sum_{\substack{a_i \neq 0 \\ \beta_i \neq 0}} \beta_i F_i = -F_n + \sum_{\substack{a_i = 0 \\ \beta_i \neq 0}} \beta_i F_i.$$

Let $\{\beta_{i_{j(\nu)}}\}_{\nu=1}^l$ be the non-zero coefficients which appear in the right side of (31). Then we have

$$\beta_{i_{j(\nu)}} F_{i_{j(\nu)}} = H_1 \frac{\underline{\mathcal{A}}_2^{\nu}}{\underline{\mathcal{A}}_2} \qquad (\beta_{i_{j(\nu)}} \neq 0)$$

and hence

(32)
$$\max_{\substack{a_i = 0 \\ \beta_i \neq 0}} \log |F_i| \leq \log |H_1| + \log^+ \left| \frac{1}{A_2} \right| + \sum_{\nu=1}^l \log^+ |A_2^{\nu}| + O(1) ,$$

where

$$\Delta_2 = \|F_n, F_{i_{j(1)}}, \cdots, F_{i_{j(l)}}\|/F_n F_{i_{j(1)}} \cdots F_{i_{j(l)}}$$

and Δ_2^{ν} is what $F_{i_j(\nu)}$ is changed by H_1 in Δ_2 . By (31) we obtain

(33)
$$\log |H_1| \le \max_{a, \neq 0} \log |F_i| + O(1).$$

From (27) we set

(34)
$$H_2 \equiv -\sum_{\substack{b_i \neq 0 \\ a_i \neq 0 \text{ or } \beta_i \neq 0}} b_i F_i = -G + \sum_{\substack{a_i = 0 \\ \beta_i = 0, b_i \neq 0}} b_i F_i .$$

Let $\{b_{i_{\delta(\nu)}}\}_{\nu=1}^{m}$ be the non-zero coefficients which appear in the right side of (34). Then we have

$$b_{i_{s(\nu)}}F_{i_{s(\nu)}}=H_2\frac{\mathcal{A}_3^{\nu}}{\mathcal{A}_3}\qquad (b_{i_{s(\nu)}}\neq 0)$$

and hence

(35)
$$\max_{\substack{a_i = 0 \\ \beta_i = 0, b_i \neq 0}} \log |F_i| \leq \log |H_2| + \log^+ \left| \frac{1}{\mathcal{A}_3} \right| + \sum_{\nu=1}^m \log^+ |\mathcal{A}_3^{\nu}| + O(1),$$

where $\Delta_3 = \|G, F_{i_{s(1)}}, \dots, F_{i_{s(m)}}\|/GF_{i_{s(1)}} \dots F_{i_{s(m)}}$ and Δ_3^{ν} is what $F_{i_{s(\nu)}}$ is changed by H_2 in Δ_3 . By (34) we have

(36)
$$\log|H_2| \leq \max_{a, \neq 0 \text{ or } \beta_i \neq 0} \log|F_i| + O(1).$$

By (30), (32), (33), (35) and (36), we have

$$\begin{aligned} \max_{\substack{a_{i} \neq 0 \text{ or } \beta_{i} \neq 0 \\ \text{ or } b_{i} \neq 0}} \log |F_{i}| & \leq \log |F| + \sum_{j=1}^{3} \log^{+} \left| \frac{1}{|\mathcal{A}_{j}|} \right| + \sum_{\nu=1}^{k} \log^{+} |\mathcal{A}_{1}^{\nu}| \\ & + \sum_{\nu=1}^{l} \log^{+} |\mathcal{A}_{2}^{\nu}| + \sum_{\nu=1}^{m} \log^{+} |\mathcal{A}_{3}^{\nu}| + O(1) \,, \end{aligned}$$

so that we obtain, as in the proof of Lemma 3,

$$T(r,f) \leq N(r,0,F) + \sum_{\nu=1}^{k} m(r,\Delta_{1}^{\nu}) + \sum_{\nu=1}^{l} m(r,\Delta_{2}^{\nu}) + \sum_{\nu=1}^{m} m(r,\Delta_{3}^{\nu}) + \sum_{j=1}^{3} m\left(r,\frac{1}{\Delta_{j}}\right) + O(1)$$

$$\leq N(r,0,F) + N_{n}(r,0,G) + \sum_{i=0}^{n-2} N_{n}(r,0,F_{i}) + N_{n}(r,0,F_{n}) + S(r),$$

where S(r) = o(T(r, f)) for $r \to \infty$ except for a set of finite linear measure. Hence we have

$$\delta(F) + \delta_n(G) + \sum\limits_{i=0}^{n-2} \delta_n(F_i) + \delta_n(F_n) \leq n+1$$
 ,

which is contradictory to the hypothesis ii).

Thus we have the conclusion 2) of this theorem.

3). If there exists a combination H in $X - \{F, G, F_0, \dots, F_n\}$ such that

$$\delta(H) + \delta_n(G) + \sum_{i=0}^n \delta_n(F_i) > n+2$$
,

then by 2), F, G, H and F_{i_0} are proportional. This implies $\lambda=3$, which is absurd.

Hence we have the conclusion 3).

In the same way as we obtained Theorem 2 by generalizing Theorem B, we generalize Theorem 1 as follows.

Theorem 3. If there exist n+3 combinations F, G, F_0, \dots, F_n $(n \ge 4)$ in X such that

i) arbitrary n-2 combinations in $\{F_i\}_{i=0}^n$ are linearly independent;

ii)
$$\frac{1}{m(G)} + \sum_{i=0}^{n} \frac{1}{m(F_i)} < \frac{1}{n}$$
 and $\delta(F) = 1$,

then $\lambda=2$ and there exists an F_{i_0} in $\{F_i\}_{i=0}^n$ such that F, G and F_{i_0} are proportional.

Applying the method of the proof of Theorem 1 to that of Theorem 2, we obtain this result easily.

COROLLARY. In Theorem 2 or 3, if $F \equiv 1$, then G and at least one combination in $\{F_i\}_{i=0}^n$ are lacunary.

REMARK 1. When n=3, Theorems 2 and 3 change into the following: "If there exist 6 combinations F, G, F_0, \dots, F_3 in X such that

$$\delta(F) + \delta_3(G) + \sum_{i=0}^{3} \delta_3(F_i) > 5$$

or

$$\frac{1}{m(G)} + \sum_{i=0}^{3} \frac{1}{m(F_i)} < \frac{1}{3}$$
 and $\delta(F) = 1$,

then

- 1) $\lambda=2$;
- 2) $\{F, G, F_0, \dots, F_3\}$ are divided into two classes each of which consists of three elements being proportional".

Remark 2. Can one replace $\delta(F)$ by $\delta_n(F)$ in Theorem 2?

References

- [1] H. Cartan, Sur les zéros des combinaisons linéaires de p fonctions holomorphes données, Mathematica, 7 (1933), 5-31.
- [2] M. Katō, On exceptional linear combinations of entire functions, Proc. Japan Acad., 49 (1973), 700-704.
- [3] R. Nevanlinna, Le théorème de Picard-Borel et la théorie des fonctions méromorphes, Gauthier-Villars, Paris, 1929.
- [4] K. Niino and M. Ozawa, Deficiencies of an entire algebroid function, Kōdai Math. Sem. Rep., 22 (1970), 98-113.
- [5] J. Noguchi, On the deficiencies and the existence of Picard's exceptional values of entire algebroid functions, Kōdai Math. Sem. Rep., 26 (1975), 294-303.
- [6] M. Ozawa, Deficiencies of an entire algebroid function, III, Kōdai Math. Sem. Rep., 23 (1971), 486-492.

- [7] T. Suzuki, On deficiencies of an entire algebroid function, Kōdai Math. Sem. Rep., 24 (1972), 62-74.
- [8] N. Toda, Sur quelques combinaisons linéaires exceptionnells au sense de Nevanlinna, IV, Nagoya Math. J., 59 (1975), 77-86.

Masakimi KATŌ Department for Liberal Arts Shizuoka University Ōya, Shizuoka Japan Nobushige TODA Mathematical Institute Nagoya University Furo-cho, Chikusa-ku Nagoya, Japan