On finite multiplicative subgroups of simple algebras of degree 2

By Michitaka Hikari

(Received Dec. 6, 1976)

Amitsur ([1]) determined all finite multiplicative subgroups of division algebras. We try to determine, more generally, all finite multiplicative subgroups of simple algebras of fixed degree. In [5] we characterized p-groups contained in the full matrix algebras $M_{n}(\Delta)$ of fixed degree n, where Δ is a division algebra of characteristic 0 . In this paper we will study multiplicative subgroups of $M_{2}(\Delta)$.

In $\S 2$ we will determine all finite nilpotent subgroups of $M_{2}(\Delta)$, and in $\S 3$ all finite subgroups of $M_{2}(\Delta)$ with abelian Sylow 2-groups. Finally, in §4, we will give some additional remarks.

§ 1. Preliminaries.

All division algebras considered in this paper are of characteristic 0 . As usual $\boldsymbol{Q}, \boldsymbol{R}, \boldsymbol{C}$ and \boldsymbol{H} denote respectively the rational number field, the real number field, the complex number field, and the quaternion algebra over \boldsymbol{R}.

Let Δ be a division algebra. We denote by $M_{n}(\Delta)$ the full matrix algebra of degree n over Δ. By a subgroup of $M_{n}(\Delta)$ we mean a finite multiplicative subgroup of $M_{n}(\Delta)$. Further let K be a field contained in the center of Δ and let G be a subgroup of $M_{n}(\boldsymbol{\Delta})$. We define $V_{K}(G)=\left\{\Sigma \alpha_{i} g_{i} \mid \alpha_{i} \in K, g_{i} \in G\right\}$. Then $V_{K}(G)$ is a K-subalgebra of $M_{n}(\Delta)$ and there is a natural epimorphism $K G \rightarrow V_{K}(G)$. Hence $V_{K}(G)$ is a semi-simple K-subalgebra of $M_{n}(\Delta)$.

Let m, r be relatively prime integers, and put $s=(r-1, m), t=m / s ; n=$ the minimal positive integer satisfying $r^{n} \equiv 1 \bmod m$. Denote by $G_{m, r}$ the group generated by two elements a, b with the relations; $a^{m}=1, b^{n}=a^{t}$ and $b a b^{-1}=a^{r}$. Let ζ_{m} be a fixed primitive m-th root of unity and let $\sigma=\sigma_{r}$ be the automorphism of $\boldsymbol{Q}\left(\zeta_{m}\right)$ determined by the mapping $\zeta_{m} \rightarrow \zeta_{m}{ }^{r}$. Let $\left\{\alpha_{\sigma i, \sigma j}\right\}$ be the factor set of $\langle\sigma\rangle$ in $\boldsymbol{Q}\left(\zeta_{m}\right)$ defined by

$$
\alpha_{\sigma i, \sigma j}= \begin{cases}1 & \text { when } \quad i+j<n \\ \zeta_{s}=\zeta_{m}^{t} & \text { when } \quad i+j \geqq n,\end{cases}
$$

and denote by $\Lambda_{m, r}$ the crossed product of $\boldsymbol{Q}\left(\zeta_{m}\right)$ and $\langle\sigma\rangle$ by $\left\{\alpha_{\sigma i, \sigma j}\right\}$.

Here we recall the results in Amitsur [1].
$1.1([\mathbf{1]})$. Let G be a finite group and let Δ be a division algebra. If $G \cong \Delta$, then G is one of the following types:
(1) All Sylow subgroups of G are cyclic.
(2) The odd Sylow subgroups of G are cyclic and the even Sylow subgroup of G is a generalized quaternion group of order $2^{\alpha+1}, \alpha \geqq 2$.
$1.2([1])$. A group G is of type (1) in $(1,1)$ if and only if $G \cong G_{m, r}$ for some relatively prime integers m, r with $(n, t)=1$. A group G of type (1) or (2) in $(1,1)$ is metacyclic if and only if $G \cong G_{m, r}$ for some relatively prime integers m, r.
1.3 ([1]). A group $G_{m, r}$ can be embedded in a division algebra if and only if $\Lambda_{m, r}$ is a division algebra; then we have $V_{\boldsymbol{Q}}\left(G_{m, r}\right) \cong \Lambda_{m, r}$ and the isomorphism is obtained by the correspondence $a \leftrightarrow \zeta_{m}, b \leftrightarrow \sigma_{r}$.

The group $G_{2 m,-1}$ are called the binary dihedral groups. We define $T^{*}=$ $\left\langle a, b, c \mid a^{4}=1, a^{2}=b^{2}, a b a^{-1}=b^{-1}, c a c^{-1}=b, c b c^{-1}=a b, c^{3}=1\right\rangle, O^{*}=\langle a, b, c| a^{8}=1$, $\left.a^{4}=b^{2}=c^{3}, c b a=1\right\rangle$ and $I^{*}=S L(2,5)$.
$1.4([\mathbf{1}])$. The finite subgroups of the quaternion algebra \boldsymbol{H} are the cyclic group of any order, the binary dihedral group of order $4 m$, the groups T^{*}, O^{*} and I^{*}.

We remark that the group $G_{4,-1}$ means the ordinary quaternion group of order 8 and that the crossed product $\Lambda_{4,-1}$ means the ordinary quaternion algebra over \boldsymbol{Q}. The splitting fields for $\Lambda_{4,-1}$ can be determined by the following:
1.5 ([3]). Let K be an algebraic number field. Then K is a splitting field for $\Lambda_{4,-1}$ if and only if K is totally imaginary and the local degrees of K at all primes of K extending the rational prime (2) are even. In particular, if $4 \mid n$, then $\boldsymbol{Q}\left(\zeta_{n}\right)$ is a splitting field for $\Lambda_{4,-1}$, and, if $n=2 m$, m odd, then $\boldsymbol{Q}\left(\zeta_{n}\right)=\boldsymbol{Q}\left(\zeta_{m}\right)$ is a splitting field for $\Lambda_{4,-1}$ if and only if the order of $2(\bmod m)$ is even.

Next we recall the results in [5].
Let $P_{0}=\langle g\rangle$ be a cyclic group of order p. Let G, G^{\prime} be finite groups and let $G_{1}^{\prime}, G_{2}^{\prime}, \cdots, G_{p}^{\prime}$ be the copies of G^{\prime}. We call G a simple (1-fold) p-extension of G^{\prime} if G is an extension of $G_{1}^{\prime} \times G_{2}^{\prime} \times \cdots \times G_{p}^{\prime}$ by P_{0} such that $G_{1}^{\prime \sigma_{g}}=G_{2}^{\prime}, \cdots$, $G_{p}^{\prime \prime} g_{1}=G_{p}^{\prime}, G_{p}^{\prime \sigma} g=G_{1}^{\prime}$ where σ_{g} denotes the automorphism of $G_{1}^{\prime} \times G_{2}^{\prime} \times \cdots \times G_{p}^{\prime}$ corresponding to g. More generally, a finite group G is called an n-fold p-extension of a finite group G^{\prime} if there exist finite groups $G_{0}=G^{\prime}, G_{1}, \cdots, G_{n-1}, G_{n}=G$ such that, for each $0 \leqq i \leqq n-1, G_{i+1}$ is a simple p-extension of G_{i}. Now we put

$$
T_{p}^{(0)}= \begin{cases}\{\text { all cyclic } p \text {-groups }\} & \text { when } p \neq 2 \\ \text { \{all generalized quaternion 2-groups }\} & \text { when } p=2\end{cases}
$$

and $\tilde{T}_{p}^{(0)}=\{$ all cyclic p-groups $\}$ for any prime p. An element of $T_{p}^{(0)}\left(\right.$ resp. $\left.\tilde{T}_{p}^{(0)}\right)$
is called a p-group of 0 -type (resp. $\tilde{0}$-type). A finite p-group P is said to be of n-type (resp. \tilde{n}-type) if P is an n-fold p-extension of a p-group of 0 -type (resp. $\tilde{0}$-type). We denote by $T_{p}^{(n)}$ (resp. $\tilde{T}_{p}^{(n)}$) the set of all p-groups of n-type (resp. \tilde{n}-type).
1.6 ([5]). Let n be a fixed positive integer and let P be a finite p-group. Then the following conditions are equivalent:
(1) P is a subgroup of $M_{n}(\boldsymbol{H})\left(\right.$ resp. $\left.M_{n}(\boldsymbol{C})\right)$.
(2) P is a subgroup of $M_{n}(\Delta)$ (resp. $\left.M_{n}(K)\right)$ for a division algebra Δ (resp. commutative field K).
(3) There exist non-negative integers t, m_{0}, \cdots, m_{t} with $\sum_{i=0}^{t} p^{i} m_{i} \leqq n$ and $P_{i}^{(1)}$, $P_{i}^{(2)}, \cdots, P_{i}^{\left(m_{i}\right)} \in T_{p}^{(i)}\left(\right.$ resp. $\left.\tilde{T}_{p}^{(i)}\right), 0 \leqq i \leqq t$, such that $P \subseteq \prod_{i=0}^{t} \prod_{j=1}^{m_{i}} P_{i=0}^{(j)}$.
1.7 ([5]). Let P be a finite non-abelian p-group, Δ a division algebra and K a field contained in the center of Δ. Assume that $P \cong M_{n}(\Delta)$ and $V_{K}(P)=M_{n}(\Delta)$.
(1) If P is a 2-group which is not of type 0 and Δ is non-commutative, then there exists a subgroup P_{0} of P of index 2 such that $V_{K}\left(P_{0}\right) \cong M_{n / 2}(\Delta)$ $\oplus M_{n / 2}(\Delta)$.
(2) If Δ is commutative, then we have $V_{\bar{K}}(P)=M_{n}(\bar{K})$ and there exists a subgroup P_{0} of P of index p such that

$$
V_{\bar{K}}\left(P_{0}\right) \cong \overbrace{M_{n / p}(\bar{K}) \oplus \cdots \oplus M_{n / p}(\bar{K})}^{p},
$$

where \bar{K} is the algebraic closure of K.
(In [5], we proved (1.7) for $K=\boldsymbol{Q}$. But that proof holds good for any field K contained in the center of Δ.)

§ 2. Nilpotent groups.

We begin with
Lemma 2.1. Let Δ be a division algebra (of characteristic 0) and let K be a field contained in the center of Δ. Let G be a finite subgroup of $M_{2}(\Delta)$. Then we have $V_{K}(G) \cong \Delta_{1}, M_{2}\left(\Delta_{2}\right)$ or $\Delta_{3} \oplus \Delta_{4}$ where $\Delta_{i}, 1 \leqq i \leqq 4$, are division algebras.

Proof. This is evident, because $V_{K}(G)$ is semi-simple.
Here we give the following basic lemmas.
Lemma 2.2. Let Δ be a division algebra and K be a subfield of the center of Δ. Let H, J be finite groups and $G_{\sigma}, \sigma \in H$, be normal subgroup of J. Let G be an extension of J by H. Assume the following conditions;
(1) $\bigcap_{\sigma \in H} G_{\sigma}=1$ and $G_{\sigma} \neq G_{\tau}$ for any $\sigma \neq \tau$ in H.
(2) Let $\left\{u_{\tau}\right\}_{\tau \in H}$ be a set of representatives of H in G. Then $G_{\sigma}{ }^{u_{\tau}}=G_{\sigma \tau}$ for
any $\sigma, \tau \in H$.
(3) $J / G_{1} \subseteq M_{n}(\Delta)$ and $V_{K}\left(J / G_{1}\right)=M_{n}(\Delta)$.

Then we have $G \subseteq M_{n h}(\boldsymbol{\Delta})$ and $V_{K}(G)=M_{n h}(\boldsymbol{\Delta})$, where h is the order of H.
Proof. Let V be an irreducible $M_{n}(\Delta)$-module. Then V can be regarded as a $K\left[J / G_{1}\right]$-module because $V_{K}\left(J / G_{1}\right)=M_{n}(\Delta)$. Let $\phi ; J \rightarrow J / G_{1}$ be the natural homomorphism. Then we may further regard V as a $K J$-module through ϕ. Now we have $V^{G}=K G \bigotimes_{K J} V=\sum_{\sigma \in H} \oplus u_{\sigma}^{-1} V$. Since Ker $u_{\sigma}^{-1} V=\left\{g \in J \mid g u_{\sigma}^{-1} v=u_{\sigma}^{-1} v\right.$ for all $v \in V\}=\{g \in J \mid g v=v \text { for all } v \in V\}^{u_{\sigma}}=\operatorname{Ker} V^{u_{\sigma}}=G_{1}{ }^{u_{\sigma}}=G_{\sigma}$ by our assump. tions (2), (3), we have $u_{\sigma}^{-1} V \cong u_{\tau}^{-1} V$ as $K J$-module for any $\sigma \neq \tau$. Therefore $\operatorname{Hom}_{K G}\left(V^{G}, V^{G}\right) \cong \operatorname{Hom}_{K J}\left(u_{\sigma}^{-1} V, V^{G}\right) \cong \operatorname{Hom}_{K J}\left(u_{\sigma}^{-1} V, u_{\sigma}^{-1} V\right) \cong \Delta^{o p}$. Because $\operatorname{dim}_{K} V^{G}$ $=h \operatorname{dim}_{K} V$, the simple component of $K G$ corresponding to V^{G} is $M_{n h}(\Delta)$. As is easily seen, V^{G} is G-faithful. Hence $G \cong M_{n h}(\Delta)$ and $V_{K}(G)=M_{n h}(\Delta)$.

Lemma 2.3. Let G be a finite group and let N be a normal subgroup of G. Let Δ be a division algebra and let K be a field contained in the center of D. Assume that $G \subseteq M_{2}(\Delta)$ and $V_{K}(G)=M_{2}(\Delta)$. Let V be an irreducible $M_{2}(\Delta)$. (so, KG-) module. Further let W be an irreducible $K N$-submodule of V and let U be the sum of all $K N$-submodules of V which are isomorphic to W. Define $H=\{g \in G \mid g U=U\}$. Then the number m of all isomorphism classes of irreducible KN-submodules of V is 1 or 2 . In the case where $m=2$, we have $[G: H]$ $=2$ and $V_{K}(H) \cong \Delta \oplus \Delta$. Moreover H has normal subgroups H_{1}, H_{2} satisfying $H_{1} \cap H_{2}=\{1\}, H_{1}{ }^{g}=H_{2}$ and $H / H_{1} \cong \rho(H)$, where $\{1, g\}$ is a set of representative of G / H in G and ρ is the projection of $V_{K}(H)$ on the first component of $\Delta \oplus \Delta$. In the case where $m=1$, we have $V_{K}(N) \cong M_{2}\left(\Delta^{\prime}\right)$ or Δ^{\prime} for a division algebra Δ^{\prime}, and, especially, if $|N|$ is odd, then $V_{K}(N)$ is a division algebra.

Proof. By Clifford's theorem (e. g. [2]) U is irreducible as a $K H$-module, $V=U^{G}$ and $m=[G: H]$. Let $M_{r}\left(\Delta^{\prime}\right)$ be the simple component of $K H$ corresponding to U. Let $V=U^{G}=U \oplus U_{1} \oplus \cdots \oplus U_{k}$ be a decomposition of V into irreducible $K H$-modules. By the assumption on $U, U \nsubseteq U_{i}$ as $K N$-module for all $1 \leqq i \leqq k$. Therefore $U \cong U_{i}$ as $K H$-module, so we have $\Delta^{o p} \cong \operatorname{Hom}_{K G}(V, V) \cong$ $\operatorname{Hom}_{K H}(U, U) \cong \Delta^{\prime o p}$. Since $2 \operatorname{dim}_{K} \Delta=\operatorname{dim}_{K} V=m \operatorname{dim}_{K} U=m r \operatorname{dim}_{K} \Delta^{\prime}=m r \operatorname{dim}_{K} \Delta$, we have $m r=2$ and so $m \leqq 2$.

We now assume that $m=2$. Then $r=1$ and so $V_{K}(H) \cong \Delta \oplus \Delta$. Since [$\left.G: H\right]$ $=2, H$ is a normal subgroup of G. Let $G=H \cup g H$ be the decomposition of G into cosets of H. Then $V=U \bigoplus g^{-1} U$ and $U \nexists g^{-1} U$ as $K H$-modules. And we may assume that U (resp. $g U$) is the irreducible $V_{K}(H)$-module corresponding to the first (resp. second) component of $\Delta \oplus \Delta$. Put $H_{1}=\operatorname{Ker} \rho$ and $H_{2}=H_{1}{ }^{g}=$ (Ker $\rho)^{g}$. Because $V=U \oplus g^{-1} U$ is H-faithful, $1=\operatorname{Ker}\left(U \oplus g^{-1} U\right)=\left\{h \in H \mid h u+h g^{-1} u\right.$ $=u+g^{-1} u$ for all $\left.u \in U\right\}=\{h \in H \mid h u=u$ for all $u \in U\} \cap\left\{h \in H \mid h g^{-1} u=g^{-1} u\right.$ for all $u \in U\}=\operatorname{Ker} \rho \cap(\operatorname{Ker} \rho)^{g}=H_{1} \cap H_{2}$. Furthermore since $V_{K}(H)=\Delta \oplus \Delta$, we have $H_{i} \neq\{1\}$ and so $H_{1} \neq H_{2}$.

Assume $m=1$. Then it is easily shown that $V_{K}(N) \cong M_{2}\left(\Delta^{\prime}\right)$ or Δ^{\prime} for a division algebra Δ^{\prime}. Let \bar{K} be the algebraic closure of K. Then we have $\bar{K} \otimes_{K} M_{2}\left(\Delta^{\prime}\right) \cong M_{2}\left(\bar{K} \otimes_{K} \Delta^{\prime}\right) \cong \overbrace{M_{2 t}(\bar{K}) \oplus \cdots \oplus M_{2 t}(\bar{K}})$ for some integers s and t. Therefore, if $V_{K}(N) \cong M_{2}\left(\Delta^{\prime}\right)$, then we have $2 t||N|$.

Now we will determine all finite nilpotent subgroups of simple algebras $M_{2}(\Delta)$ where Δ are division algebras.

Lemma 2.4. Let Δ be a division algebra and let K be a field contained in the center of Δ. Let G be a finite nilpotent subgroup of $M_{2}(\Delta)$. For each prime $p\left||G|\right.$ let S_{p} be the Sylow p-subgroup of G, and let $| S_{2} \mid=2^{2}$ and $\left|\prod_{p \neq 2} S_{p}\right|=m$. Assume that $V_{K}(G)$ is simple. Then $\prod_{p \neq 2} S_{p}$ is cyclic, $V_{K}\left(\prod_{p \neq 2} S_{p}\right) \cong K\left(\zeta_{m}\right), V_{K}\left(S_{2}\right)$ is simple and $V_{L\left(\varsigma_{m}\right)}\left(S_{2}\right)=V_{K}(G)$, where L is the center of $V_{K}\left(S_{2}\right)$. Further assume that $V_{K}\left(S_{2}\right)$ is a division algebra. Then one of the following conditions is satisfied:
(1) S_{2} is a cyclic group and $V_{K}(G) \cong K\left(\zeta_{2 l_{m}}\right)$.
(2) S_{2} is a generalized quaternion group and $V_{K}(G) \cong K\left(\zeta_{2 l-1}+\zeta_{2} l_{1-1}^{1}, \zeta_{m}\right)$ $\otimes_{\boldsymbol{Q}} \Lambda_{4,-1}$.

Proof. By (1.6) $\prod_{p \neq 2} S_{p}$ is abelian. Then $V_{K}\left(\prod_{p \neq 2} S_{p}\right)$ is contained in the center of $V_{K}(G)$, and therefore $V_{K}\left(\prod_{p \neq 2} S_{p}\right)$ is a field. Hence $\prod_{p \neq 2} S_{p}$ is cyclic and $V_{K}\left(\prod_{p \neq 2} S_{p}\right) \cong K\left(\zeta_{m}\right)$. Further we easily see that the center of $V_{K}\left(S_{2}\right)$ is contained in the center of $V_{K}(G)$. Therefore $V_{K}\left(S_{2}\right)$ is simple and $V_{L\left(\varsigma_{m}\right)}\left(S_{2}\right) \cong V_{K}(G)$. On the other hand it clearly holds that $V_{K}(G) \cong V_{L\left(\varsigma_{m}\right)}\left(S_{2}\right)$. Hence $V_{L\left(\varsigma_{m}\right)}\left(S_{2}\right)=$ $V_{K}(G)$. Now assume that $V_{K}\left(S_{2}\right)$ is a division algebra. Then by (1.1) S_{2} is a cyclic group or a generalized quaternion group. If S_{2} is cyclic, then we have $V_{K}\left(S_{2}\right) \cong K\left(\zeta_{2} l\right)$, and so $V_{K}(G) \cong K\left(\zeta_{2} l_{m}\right)$. On the other hand, if S_{2} is a generalized quaternion group, i. e., if $S_{2}=G_{2^{l-1,-1}}$, then we have by (1.3) $V_{Q}\left(S_{2}\right)=\Lambda_{2 l-1,-1}$. The center of $\Lambda_{2 l-1,-1}$ is $\boldsymbol{Q}\left(\zeta_{2 l-1}+\zeta_{2 l-1}{ }^{-1}\right)$, so $V_{K}\left(S_{2}\right) \cong K \otimes_{\boldsymbol{Q}\left(\zeta_{2 l-1}+\zeta_{2} l-1\right)} V_{Q}\left(S_{2}\right) \cong$ $K\left(\zeta_{2 l-1}+\zeta_{2} l_{-1}^{1}\right) \otimes_{Q} \Lambda_{4,-1}$. Therefore we get $V_{K}(G) \cong K\left(\zeta_{2 l-1}+\zeta_{2} l^{1}, \zeta_{m}\right) \otimes_{\mathbb{Q}} \Lambda_{4,-1}$. This completes the proof of the lemma.

We now give
Theorem 2.5. Let G be a finite nilpotent group and for each prime $p||G|$ let S_{p} be the Sylow p-subgroup of G. Let $\left|S_{2}\right|=2^{s}$ and $\left|\prod_{p \neq 2} S_{p}\right|=m$. Let Δ be a division algebra and K a field contained in the center of Δ. Assume that G can be embedded in $M_{2}(\Delta)$ in the form that $V_{K}(G)=M_{2}(\Delta)$. Then G satisfies the following conditions (a) and (b).
(a) S_{2} has a subgroup S of index 2 and S has two normal subgroups T_{1}, $T_{2}(\neq\{1\})$ of S such that $T_{1} \cap T_{2}=\{1\}$ and $T_{1}{ }^{g}=T_{2}$, where $\{1, g\}$ is a set of representatives of S_{2} / S in S_{2}.
(b) S / T_{1} and $\prod_{p \neq 2} S_{p}$ satisfy one of the following conditions:
(1) S / T_{1} and $\prod_{p \neq 2} S_{p}$ are cyclic groups.
(2) S / T_{1} is a quaternion group of order $2^{l}, \prod_{p \neq 2} S_{p}$ is a cyclic group and $K\left(\zeta_{2 l-1}+\zeta_{2} l^{-1}, \zeta_{m}\right) \otimes_{\mathbf{Q}} \Lambda_{4,-1}$ is a division algebra.

Conversely, assume that G satisfies the condition (a). Let $\left|S / T_{1}\right|=2^{2}$. Furthermore if G satisfies the condition (1) in (b), then $G \cong M_{2}\left(K\left(\zeta_{2} l_{m}\right)\right.$) and $V_{K}(G)=$ $M_{2}\left(K\left(\zeta_{2} l_{m}\right)\right)$. If G satisfies the condition (2) in (b), then $G \subseteq M_{2}\left(K\left(\zeta_{2} l-1+\zeta_{2} l^{-1}, \zeta_{m}\right)\right.$ $\left.\otimes_{Q} \Lambda_{4,-1}\right)$ and $V_{K}(G)=M_{2}\left(K\left(\zeta_{2 l-1}+\zeta_{2} l_{-1}^{1}, \zeta_{m}\right) \otimes_{Q} \Lambda_{4,-1}\right)$.

Proof. By (2.4) $\prod_{p \neq 2} S_{p}$ is cyclic. First assume that $V_{K}\left(S_{2}\right)$ is a division algebra. Because $V_{K}(G)=M_{2}(\Delta)$, again by (2.4) S_{2} is a generalized quaternion group and $V_{K}\left(S_{2}\right)=K\left(\zeta_{2^{s-1}}+\zeta_{22^{-1}-1}\right) \otimes_{\mathbb{Q}} \Lambda_{4,-1}$. Therefore $S_{2} \cong K\left(\zeta_{2^{s-1}}+\zeta_{2^{s-1}}^{-1}\right) \otimes_{Q} \Lambda_{4,-1}$ $\subseteq \bar{K} \otimes_{\mathbb{Q}} \Lambda_{4,-1}=M_{2}(\bar{K})$ and $V_{\bar{K}}\left(S_{2}\right)=M_{2}(\bar{K})$, where \bar{K} is the algebraic closure of K. By (1.7) there exists a subgroup S of S_{2} of index 2 such that $V_{\bar{K}}(S)=\bar{K} \oplus \bar{K}$. Hence by (2.3) S has normal subgroups T_{1}, T_{2} satisfying the condition (a) such that S / T_{1} is the subgroup of \bar{K}. So G satisfies the conditions (a) and (1) in (b). Next assume that $V_{K}\left(S_{2}\right) \cong M_{2}\left(\Delta^{\prime}\right)$ for a division algebra Δ^{\prime}. If Δ^{\prime} is commutative, then, by the same reason as above, G satisfies the conditions (a) and (1) in (b). On the other hand, if Δ^{\prime} is non-commutative, then S_{2} is not of type 0 . Therefore by (1.7) there exists a subgroup S of S_{2} of index 2 such that $V_{K}(S)=\Delta^{\prime} \oplus \Delta^{\prime}$. Then by virtue of (2.3) S has normal subgroups T_{1}, T_{2} satisfying (a), S / T_{1} is a subgroup of Δ^{\prime} and $V_{K}\left(S / T_{1}\right)=\Delta^{\prime}$. It follows from (2.4) that S / T_{1} is a generalized quaternion group and $\Delta^{\prime}=V_{K}\left(S / T_{1}\right) \cong K\left(\zeta_{2 l-1}+\zeta_{2} I^{-1}\right)$ $\otimes_{\mathbb{Q}} \Lambda_{4,-1}$. Therefore again by (2.4), $M_{2}(\Delta)=V_{K}(G)=K\left(\zeta_{2 l-1}+\zeta_{2} l^{-1}, \zeta_{m}\right) \otimes_{\mathbf{Q}} M_{2}\left(\Lambda_{4,-1}\right)$. Hence G satisfies the conditions (2) in (b).

Finally we prove the converse. If G satisfies the condition (a), then G is an extension of $S \times \prod_{p \neq 2} S_{p}$ by S_{2} / S and G satisfies the conditions (1), (2) in (2.2). So, if $S / T_{1} \times \prod_{p \neq 2} S_{p}$ is a subgroup of a division algebra Δ and $V_{K}\left(S / T_{1} \times \prod_{p \neq 2} S_{p}\right)$ $=\Delta$, then we have by $(2.2) G \cong M_{2}(\Delta)$ and $V_{K}(G)=M_{2}(\Delta)$. Therefore it remains only to prove that $S / T_{1} \times \prod_{p \neq 2} S_{p}$ satisfies the above condition. First assume that G satisfies the condition (1) in (b). Since $S / T_{1} \times \prod_{p \neq 2} S_{p}$ is a cyclic group of order $2^{l} m, S / T_{1} \times \prod_{p \neq 2} S_{p}$ can be embedded in $K\left(\zeta_{2} l_{m}\right)$ in the form that $V_{K}\left(S / T_{1} \times \prod_{p \neq 2} S_{p}\right)=K\left(\zeta_{2} l_{m}\right)$. If G satisfies the condition (2) in (b), we have by (1.3) S / T_{1} is a subgroup of $\Lambda_{2 l-1,-1}=\boldsymbol{Q}\left(\zeta_{2 l-1}+\zeta_{2} l^{-1-1}\right) \otimes_{\boldsymbol{Q}} \Lambda_{4,-1}$ such that $V_{\boldsymbol{Q}}\left(S / T_{1}\right)$ $=\Lambda_{2 l-1,-1}$. Then $S / T_{1} \times \prod_{p \neq 2} S_{p}$ can be embedded in $K\left(\zeta_{2} l-1+\zeta_{2} l^{-1}, \zeta_{m}\right) \otimes_{\mathbb{Q}} \Lambda_{4,-1}$ and $V_{K}\left(S / T_{1} \times \prod_{p \neq 2} S_{p}\right)=K\left(\zeta_{2 l-1}+\zeta_{2 l-1}^{-1}, \zeta_{m}\right) \otimes_{Q} \Lambda_{4,-1}$. Thus the proof of the theorem is completed.

Corollary 2.6. Let G be a finite nilpotent group and for each prime
$p\left||G|\right.$, let S_{p} be the Sylow subgroup of G. Assume that G can be embedded in $M_{2}(\boldsymbol{\Delta})$ for a division algebra $\boldsymbol{\Delta}$ in the form that $V_{\boldsymbol{Q}}(G)=M_{2}(\boldsymbol{\Delta})$. Then G satisfies the following condition (a) and one of the following conditions (b-1)~(b-3).
(a) S_{2} has a subgroup S of index 2 with normal subgroups $T_{1}, T_{2}(\neq\{1\})$ such that $T_{1} \cap T_{2}=\{1\}$ and $T_{1}{ }^{g}=T_{2}$, where $\{1, g\}$ is a set of representatives of S_{2} / S in S_{2}.
(b-1) S / T_{1} and $\prod_{p \neq 2} S_{p}$ are cyclic groups.
(b-2) S / T_{1} is a quaternion group of order $8, \prod_{p \neq 2} S_{p}$ is a cyclic group and the order of $2(\bmod m)$ is odd.
(b-3) S / T_{1} is a generalized quaternion group of order >8 and $\prod_{p \neq 2} S_{p}=\{1\}$.
Conversely, assume that G satisfies the condition (a). Let $\left|\prod_{p \neq 2} S_{p}\right|=m,\left|S / T_{1}\right|$ $=2^{l}$. Furthermore if G satisfies the condition ($\left.\mathrm{b}-1\right)$, then $G \cong M_{2}\left(\boldsymbol{Q}\left(\zeta_{2} l_{m}\right)\right)$ and $V_{\boldsymbol{Q}}(G)=M_{2}\left(\boldsymbol{Q}\left(\zeta_{2} l_{m}\right)\right)$. If G satisfies the condition (b-2), then $G \cong M_{2}\left(\boldsymbol{Q}\left(\zeta_{m}\right) \otimes_{\boldsymbol{Q}} \Lambda_{4,-1}\right)$ and $V_{\mathbf{Q}}(G)=M_{2}\left(\boldsymbol{Q}\left(\zeta_{m}\right) \otimes_{\mathbf{Q}} \Lambda_{4,-1}\right)$. And if G satisfies (b-3), then $G \cong M_{2}\left(\Lambda_{2^{l-1,-1}}\right)$ and $V_{\boldsymbol{Q}}(G)=M_{2}\left(\Lambda_{2^{l-1,-1}}\right)$.

Proof. We may only check this when $\boldsymbol{Q}\left(\zeta_{2} l-1+\zeta_{2}{ }^{-1}, \zeta_{m}\right) \otimes_{\boldsymbol{Q}} \Lambda_{4,-1}$ is a division algebra. Let $\left|S / T_{1}\right|=2^{l}$. According to (1.5), if $l=3$, then the order of 2 $(\bmod m)$ is odd, if $l>3$, then $m=1$.

We conclude this section with the following
Corollary 2.7. Let G be a finite nilpotent group. Then the following conditions are equivalent;
(1) G can be embedded in $M_{2}(\boldsymbol{H})$ in the form that $V_{\boldsymbol{R}}(G)=M_{2}(\boldsymbol{H})$.
(2) G is a 2-group. And G has a subgroup S of index 2 with normal subgroups $T_{1}, T_{2}(\neq\{1\})$ such that $T_{1} \cap T_{2}=\{1\}$ and $T_{1}{ }^{g}=T_{2}$, where $\{1, g\}$ is a set of representatives of G / S in G, and S / T_{1} is a generalized quaternion group.

Proof. Assume that G satisfies the condition (1). For each prime $p||G|$ let S_{p} be the Sylow p-subgroup of G. Then by (2.5) $\prod_{p \neq 2} S_{p}$ is cyclic, so $V_{R}\left(\prod_{p \neq 2} S_{p}\right)$ is a field contained in the center of $V_{\boldsymbol{R}}(G)=M_{2}(\boldsymbol{H})$. Therefore $V_{\boldsymbol{R}}\left(\prod_{p \neq 2} S_{p}\right)=\boldsymbol{R}$ and $\prod_{p \neq 2} S_{p}=\{1\}$ i. e., $G=S_{2}$. It follows from (1.8) and (2.2) that G satisfies the condition (2).

§ 3. Groups with abelian Sylow 2-subgroups.

In this section we will study subgroups of $M_{2}(\Delta)$ with abelian Sylow 2 subgroups.

Let G be a group and let H be a subgroup of G. As usual $N_{G}(H), C_{G}(H)$, $Z(G)$ denote respectively the normalizer of H in G, the centralizer of H in G, and the center of G.

Lemma 3.1. Let G be a finite group which can be embedded in $M_{2}(\Delta)$ for
a division algebra Δ. Let p be the minimal prime divisor of $|G|$.
(1) If p is odd, then G has a normal p-complement.
(2) If $p=2$ and the Sylow 2-subgroup of G is abelian, then G has a normal 2 -complement.

Proof. If p is odd, then by (1.6) the Sylow p-subgroup of G is abelian. Therefore in both cases the Sylow p-subgroup of G is abelian. Let P be a Sylow p-subgroup of G and put $N=N_{G}(P)$. Now it suffices by Burnside's theorem ([4], (20.13)) to prove that $P \subseteq Z(N)$. By (2.1) we have $V_{Q}(N) \cong \Delta_{1}$, $M_{2}\left(\Delta_{2}\right)$ or $\Delta_{3} \oplus \Delta_{4}$ for some division algebras Δ_{i}. If $V_{Q}(N) \cong \Delta_{1}$, then P is cyclic, and therefore, by ([4], (20.14)), we have $P \cong Z(N)$. If $V_{Q}(N) \cong M_{2}\left(\Delta_{2}\right)$, then, by the proof of (2.3), $2||N|$ and so $p=2$. Because $2 \chi[N: P]$, it follows from (2.3) that $V_{\boldsymbol{Q}}(P)$ is a division algebra. Then P is cyclic. Therefore again by ([4], (20.14)) we have $P \cong Z(N)$. Assume that $V_{Q}(N) \cong \Delta_{3} \oplus \Delta_{4}$ and let ρ_{i} be the projection of $V_{\boldsymbol{Q}}(N)$ on $\Delta_{i}, i=3,4$. Since $\rho_{i}(P) \cong \Delta_{i}, \rho_{i}(P)$ is cyclic, and so $\rho_{i}(P)$ $\cong Z\left(\rho_{i}(N)\right)$. Hence $\rho_{3}(P) \times \rho_{4}(P) \cong Z\left(\rho_{3}(N) \times \rho_{4}(N)\right)$. Thus we get $P \cong Z(N)$, and this completes the proof of the lemma.

As a direct consequence of (3.1) we get
Proposition 3.2. Let G be a finite group with abelian Sylow 2-subgroups. Assume that $G \subseteq M_{2}(\Delta)$ for a division algebra Δ. Then G is solvable.

We now give, as a main result in this section,
Theorem 3.3. Let G be a finite group with abelian Sylow 2-subgroups. Let Δ be a division algebra and K a field contained in the center of Δ. Assume that G can be embedded in $M_{2}(\Delta)$ in the form that $V_{K}(G)=M_{2}(\Delta)$. Then G satisfies one of the following conditions (a), (b);
(a) G has a subgroup G_{0} of index 2. Put $G / G_{0}=\left\{G_{0}, g G_{0}\right\}$. Then there exist normal subgroups $T_{1}, T_{2}(\neq\{1\})$ of G_{0} and two integers m, r such that $T_{1} \cap T_{2}=\{1\}, T_{1}{ }^{g}=T_{2}, G_{0} / T_{1} \cong G_{m, r}$ and $K \otimes_{z} \Lambda_{m, r} \cong \Delta$, where Z is the center of $\Lambda_{m, r}$.
(b) There exist a positive integer s, an odd number m and a group homomorphism σ from G to $\operatorname{Gal}\left(K\left(\zeta_{2} s_{m}\right) / K\left(\zeta_{2 s}\right)\right)$, which satisfy the following conditions;
(1) $\operatorname{Ker} \sigma$ can be embedded in $K\left(\zeta_{2 s_{m}}\right)$ in the form $V_{K}(\operatorname{Ker} \sigma)=K\left(\zeta_{2} s_{m}\right)$.
(2) Put $G / \operatorname{Ker} \sigma=\left\{g_{1} \operatorname{Ker} \sigma, \cdots, g_{k} \operatorname{Ker} \sigma\right\} \quad$ and $\quad \alpha_{\sigma\left(g_{r}\right), \sigma\left(g_{s}\right)}=g_{t}^{-1} g_{r} g_{s} \quad$ for $g_{r} g_{s} \operatorname{Ker} \sigma=g_{t} \operatorname{Ker} \sigma$. Then the crossed product $\left(K\left(\zeta_{2} s_{m}\right), G / \operatorname{Ker} \sigma,\left\{\alpha_{\sigma\left(g_{r}\right), \sigma\left(g_{s}\right)}\right\}\right)$ $\cong M_{2}(\Delta)$.

Conversely, if G satisfies the condition (a) or (b), then G can be embedded in $M_{2}(\Delta)$ in the form that $V_{K}(G)=M_{2}(\Delta)$.

Proof. Let V be an irreducible $M_{2}(\Delta)$-module. Then we may regard V as a $K G$-module. Denote by G_{1} the normal 2-complement of G. So, it follows from (2.3) that the number m of all isomorphism classes of irreducible $K G_{1}$ -
submodules of V is 1 or 2 . In the case where $m=2$, again by (2.3) there exists. a subgroup G_{0} of G of index 2 with normal subgroups $T_{1}, T_{2}(\neq\{1\})$ such that $T_{1} \cap T_{2}=\{1\}, \quad T_{1}{ }^{g}=T_{2}, \quad G_{0} / T_{1} \subseteq \Delta$ and $V_{K}\left(G_{0} / T_{1}\right)=\Delta$, where $\{1, g\}$ is a set of representatives of G / G_{0} in G. Since any Sylow subgroup of G_{0} / T_{1} is abelian, it follows from (1.1), (1.2) and (1.3) that $G_{0} / T_{1} \cong G_{m, r}$ for some integers m, r and $\Delta \cong K \otimes_{z} \Lambda_{m, r}$. Conversely if G satisfies the condition (a), then by (2.2) $G \sqsubseteq M_{2}\left(K \otimes_{Z} \Lambda_{m, r}\right)$ and $V_{K}(G)=M_{2}\left(K \otimes_{Z} \Lambda_{m, r}\right)$.

In the case where $m=1$, because $\left|G_{1}\right|$ is odd, it follows from (2.3) that $V_{K}\left(G_{1}\right)$ is a division algebra. Therefore by (1.2) we have that $G_{1} \cong G_{m, r}$ for some relatively prime integers m, r and that $V_{K}\left(G_{1}\right) \cong K \otimes_{z} \Lambda_{m, r}$, where Z is the center of $\Lambda_{m, r}$. We recall the notation of $G_{m, r} . \quad G_{m, r}=\langle a, b| a^{m}=1, b^{n}=a^{t}$ and $\left.b a b^{-1}=a^{r}\right\rangle$, where $s=(r-1, m), t=m / s ; n=$ the minimal positive integer satisfying $r^{n} \equiv 1 \bmod m$. Let S_{2} be a Sylow 2 -subgroup of G. And put $S_{2}^{\prime}=S_{2} \cap C_{G}(\langle a\rangle)$. Since $G=S_{2} G_{m, r}$ and $\left(\left|S_{2}\right|,\left|G_{m, r}\right|\right)=1$, we have $C_{G}(\langle a\rangle)=\langle a\rangle \times S_{2}^{\prime}$. So, the fact that $\langle a\rangle \triangleleft G$ implies $S_{2}^{\prime} \triangleleft G$. Therefore $C_{G}\left(S_{2}^{\prime}\right)$ contains S_{2} and $G_{m, r}$ and we have $Z(G) \supseteq S_{2}^{\prime}$. Hence $V_{K}\left(S_{2}^{\prime}\right)$ is contained in the center of $M_{2}(\Delta)=V_{K}(G)$. So, if we put $\left|S_{2}^{\prime}\right|=2^{s}$ and $S_{2}^{\prime}=\langle c\rangle$, then we have $V_{K}\left(S_{2}^{\prime}\right) \cong K\left(\zeta_{2} s\right), V_{K}\left(C_{G}(\langle a\rangle)\right) \cong K\left(\zeta_{2} s_{m}\right)$ and the isomorphism is obtained by the correspondence $a \leftrightarrow \zeta_{m}, c \leftrightarrow \zeta_{2} s$. Denote by ϕ the above isomorphism from $V_{K}\left(C_{G}(\langle a\rangle)\right)$ to $K\left(\zeta_{2} s_{m}\right)$. For $g \in G$, we construct an automorphism $\sigma(g)$ of $K\left(\zeta_{2} s_{m}\right)$, by mapping $\zeta_{2} s \rightarrow \zeta_{2} s$ and $\zeta_{m} \rightarrow \zeta_{m}{ }^{r}$, where $a^{g}=a^{r}$. Since $K\left(\zeta_{2} s\right)=V_{K}\left(S_{2}^{\prime}\right)$ is contained in the center of $V_{K}(G), \sigma(g)$ is an element of $\operatorname{Gal}\left(K\left(\zeta_{2} s_{m}\right) / K\left(\zeta_{2} s\right)\right)$, so σ is a group homomorphism from G to $\operatorname{Gal}\left(K\left(\zeta_{2} s_{m}\right) / K\left(\zeta_{2} s\right)\right)$ and $\operatorname{Ker} \sigma=C_{G}(\langle a\rangle)=\langle a\rangle \times\langle c\rangle$. We recall that $\Lambda=$ ($\left.K\left(\zeta_{2} s_{m}\right), G / \operatorname{Ker} \sigma,\left\{\alpha_{\sigma\left(g_{r}\right), \sigma\left(g_{s}\right)}\right\}\right)$ is a simple algebra with the following structure;
$\Lambda=u_{\sigma\left(g_{1}\right)} K\left(\zeta_{2} s_{m}\right) \oplus \cdots \oplus u_{\sigma\left(g_{g}\right)} K\left(\zeta_{2} s_{m}\right)$ as $K\left(\zeta_{2} s_{m}\right)$-space ; $\alpha u_{\sigma\left(g_{i}\right)}=u_{\sigma\left(g_{i}\right)} \alpha^{\sigma\left(g_{i}\right)}$ for α in $K\left(\zeta_{2} s_{m}\right)$ and $u_{\sigma(g r)} u_{\sigma\left(g_{s}\right)}=u_{\sigma\left(g_{r}\right) \sigma\left(g_{s}\right)} \alpha_{\sigma(g r), \sigma\left(g_{s}\right)}$. In the above notations the mapping $\Sigma f_{i} u_{\sigma\left(g_{i}\right)} \rightarrow \Sigma \phi^{-1}\left(f_{i}\right) g_{i}$ determines a homomorphism from Λ onto $V_{K}(G)$, where $f_{i} \in K\left(\zeta_{2} s_{m}\right)$. Since Λ is simple and $V_{K}(G) \neq 0$, this is an isomorphism. Therefore $\Lambda=M_{2}(\Delta)$. Conversely, if G satisfies the condition (b), then the factor set $\left\{\alpha_{\sigma(g r), \sigma\left(g_{s}\right)}\right\}$ defines an extension of $\operatorname{Ker} \sigma$ by $G / \operatorname{Ker} \sigma$, which is isomorphic to G. Hence G can be embedded in $M_{2}(\Delta)$ in the form $V_{K}(G)=M_{2}(\Delta)$.

Corollary 3.4. Let G be a finite group with abelian Sylow 2-groups.. Then the following conditions are equivalent;
(1) G can be embedded in $M_{2}(\boldsymbol{H})$ in the form $V_{\boldsymbol{R}}(G)=M_{2}(\boldsymbol{H})$.
(2) G has a subgroup G_{0} of index 2 with normal subgroups $T_{1}, T_{2}(\neq\{1\})$. such that $T_{1} \cap T_{2}=\{1\}, T_{1}{ }^{g}=T_{2}$ and $G_{0} / T_{1} \cong G_{2 m,-1}$ for some integer m, where$\{1, g\}$ is a set of representatives of G / G_{0} in G.

Proof. Since by (1.3) $G_{2 m,-1}$ can be embedded in $\Lambda_{2 m,-1}$ in the form $V_{\boldsymbol{Q}}\left(G_{2 m,-1}\right)=\Lambda_{2 m,-1}, G_{2 m,-1}$ can be embedded in $\Lambda_{2 m,-1} \otimes_{\boldsymbol{Q}\left(c_{2 m+5} \sum_{2 m}^{-1}\right)} \boldsymbol{R}=\boldsymbol{H}$ in the form $V_{\boldsymbol{R}}\left(G_{2 m,-1}\right)=\boldsymbol{H}$. Therefore if G satisfies the condition (2), then it follows
from (2.2) that G can be embedded in $M_{2}(\boldsymbol{H})$ in the form $V_{\boldsymbol{R}}(G)=M_{2}(\boldsymbol{H})$.
Assume that G satisfies the conditions (1). So, G satisfies one of the conditions (a) and (b) for $K=\boldsymbol{R}$ in (3.3). Since $\left|\operatorname{Gal}\left(\boldsymbol{R}\left(\zeta_{2} s_{m}\right) / \boldsymbol{R}\left(\zeta_{2} s\right)\right)\right| \leqq 2$, we have $\operatorname{dim}_{\boldsymbol{R}}\left(\boldsymbol{R}\left(\zeta_{2} s_{m}\right), G / \operatorname{Ker} \sigma,\left\{\alpha_{\sigma(g r), \sigma\left(g_{s}\right)}\right\}\right) \leqq 4$. On the other hand $\operatorname{dim}_{\boldsymbol{R}} M_{2}(\boldsymbol{H})=16$, and it implies that G satisfies the conditions (a). Because $\boldsymbol{R} \otimes_{z} \Lambda_{m, r}=\boldsymbol{H}, G_{m, r}$ is a subgroup of \boldsymbol{H}. Hence it follows from (1.4) that $G_{m, r}$ is the binary dihedral group of order $4 l$. This completes the proof of the corollary.

§ 4. Additional results.

Lemma 4.1. Let Δ be a division algebra. Let P be a 2-subgroup of $M_{2}(\boldsymbol{\Delta})$ and N a normal subgroup of P. Then any elementary abelian subgroup of P / N has order $\leqq 2^{4}$.

Proof. By (1.6) P is a subgroup of $P_{1} \times P_{2}$ for some $P_{1}, P_{2} \in T_{2}^{(0)}$, or a subgroup of \widetilde{P} for some $\widetilde{P} \in T_{2}^{(1)}$. Since P_{i} is a cyclic group or a generalized quaternion group, there exists a generalized quaternion group P_{3} which contains $P_{i}, i=1,2$. It follows from the definition of the 2 -group of 1-type that for some $\tilde{P} \in T_{2}^{(1)}, P \subseteq P_{1} \times P_{2} \subseteq P_{3} \times P_{3} \subseteq \tilde{P}$. Therefore P is a subgroup of a 2 group of 1-type \tilde{P}. So, there exist generalized quaternion groups of order $2^{n+1}, P^{\prime}=\left\langle x, y \mid x^{2 n}=1, y^{2}=x^{2 n-1}, y^{-1} x y=x^{-1}\right\rangle$, and $P^{\prime \prime}=\langle s, t| s^{2 n}=1, t^{2}=s^{2 n-1}, t^{-1} s t$ $\left.=s^{-1}\right\rangle$ such that $P^{\prime} \times P^{\prime \prime}$ is a subgroup of \tilde{P} of index 2 and for some $g \in \tilde{P}-\left(P^{\prime}\right.$ $\left.\times P^{\prime \prime}\right) x^{g}=s, y^{g}=t$.

Let Q / N be an elementary abelian subgroup of P / N. Since $N \supseteqq[Q, Q]$, we only need to prove $\operatorname{rank}(Q /[Q, Q]) \leqq 4$. Let $Q_{0}=\left(P^{\prime} \times P^{\prime \prime}\right) \cap Q$. Then $Q / Q_{0} \subseteq$ $\tilde{P} / P^{\prime} \times P^{\prime \prime}$, so we have $\left|Q / Q_{0}\right| \leqq 2$. Also $Q_{0} / Q_{0} \cap\langle x, s\rangle \cong P^{\prime} \times P^{\prime \prime} /\langle x, s\rangle$ implies $\left|Q_{0} / Q_{0} \cap\langle x, s\rangle\right|=1,2$ or 4 . In the case where $\left|Q_{0} / Q_{0} \cap\langle x, s\rangle\right| \leqq 2$ or $Q=Q_{0}, Q$ is generated by at most 4 elements, for $Q_{0} \cap\langle x, s\rangle$ is generated by at most 2 elements. It means $\operatorname{rank}(Q /[Q, Q]) \leqq 4$.

Assume that $\left|Q_{0} / Q_{0} \cap\langle x, s\rangle\right|=4$ and $Q \neq Q_{0}$. Since $P^{\prime h}=P^{\prime \prime}$ for any $h \in$ $Q-Q_{0}$, by changing s, t, g into x^{h}, y^{h}, h respectively, if it is necessary, we may assume that $g \in Q-Q_{0}$. Because $\left|P^{\prime} \times P^{\prime \prime}\right|\langle x, s\rangle \mid=4, Q_{0} / Q_{0} \cap\langle x, s\rangle \cong P^{\prime} \times$ $P^{\prime \prime} /\langle x, s\rangle$, and this means $Q_{0} \ni y x^{i} s^{j}$ for some integers i, j. Using the fact that $s^{g}=x^{g^{2}} \in\langle x\rangle$, we have $g^{-1}\left(y x^{i} s^{j}\right) g\left(y x^{i} s^{j}\right)^{-1}=t y x^{m} s^{n}$ for some integers m, n. Let ρ be the natural homomorphism from Q onto $Q /[Q, Q]$. Then $Q /[Q, Q]$ is generated by $\rho(g), \rho\left(y x^{i} s^{j}\right)$ and $\rho\left(Q_{0} \cap\langle x, s\rangle\right)$. Therefore $\operatorname{rank}(Q /[Q, Q]) \leqq 4$.

Proposition 4.2. Let G be a solvable subgroup of $M_{2}(\Delta)$. Let $\pi=\{2,3,5,7\}$. Then G has a normal Hall π^{\prime}-subgroup.

PRoof. Let $G=H_{0} \supseteqq H_{1} \supseteq \cdots \supseteq H_{r}=\{1\}$ be a chain of normal subgroups of G such that H_{i} / H_{i+1} is a non-trivial elementary abelian group for each $0 \leqq i \leqq$ $r-1$. We shall prove this proposition by induction on $|G|$. Since $G=H_{0} \neq H_{1}$,
H_{1} has a normal Hall π^{\prime}-subgroup N. If H_{0} / H_{1} is an elementary p-group for some $p \in \pi$, then our proof is done. Therefore we may assume that $p \notin \pi$. Let D be a 2^{\prime}-group of G. By (3.1) D has a normal Hall π^{\prime}-subgroup D^{\prime}. Let P be a Sylow p-subgroup of D^{\prime}. Then P is a Sylow p-subgroup of G. We shall prove that $D^{\prime} N=P N$. Let Q be a Sylow q-group of D^{\prime} for any $q \neq p$ and Q^{\prime} a Sylow q-group of N. Since Q and Q^{\prime} are Sylow q-groups of G, there exists an element g of G such that $Q=Q^{\prime g}$. So $N \triangleleft G$ means $Q=Q^{\prime g} \subseteq N$ and $D^{\prime} N \subseteq P N$. Moreover, it is easily seen that $D^{\prime} N \supseteqq P N$. Hence $D^{\prime} N=P N$.

Since H_{1} contains a normal Hall π^{\prime}-subgroup, we may assume that H_{1} / H_{2} is a q-group for some $q \in \pi$. If we can prove that $P H_{2} \triangleleft G$ and $G / P H_{2}$ is a non-trivial q-group, then by the induction hypothesis PH_{2} has a normal Hall π^{\prime}-subgroup N^{\prime}, implying G has a normal Hall π^{\prime}-subgroup N^{\prime}. Therefore we only need to prove that $P H_{2} \triangleleft G$ and $G / P H_{2}$ is a non-trivial q-group. In the case where $q=2, H_{1} / H_{2}$ is an elementary abelian 2 -group of order $\leqq 2^{4}$ by (4.1). It implies $\operatorname{Aut}\left(H_{1} / H_{2}\right) \cong G L(4,2)$, and so $\left|\operatorname{Aut}\left(H_{1} / H_{2}\right)\right| \mid 2^{6} \cdot 3^{2} \cdot 5 \cdot 7$. Since $p \nmid\left|\operatorname{Aut}\left(H_{1} / H_{2}\right)\right|$ and $P H_{2} / H_{2} / C_{P H_{2} / H_{2}}\left(H_{1} / H_{2}\right) \subseteq \operatorname{Aut}\left(H_{1} / H_{2}\right)$, we have $P H_{2} / H_{2}=$ $C_{P H_{2} / H_{2}}\left(H_{1} / H_{2}\right)$. On the other hand $P H_{1} / H_{2}=G / H_{2}$, which implies that $G / H_{2} \triangleright$ $P H_{2} / H_{2}$ and $G / P H_{2}$ is a non-trivial 2-group. In the case where $q \in\{3,5,7\}$, $H_{0} / H_{2}=D H_{2} / H_{2} \triangleright D^{\prime} H_{2} / H_{2}=P H_{2} / H_{2}$ means $H_{0} \triangleright P H_{2}$ and $H_{0} / P H_{2}$ is a non-trivial q-group. This completes the proof of the proposition.

Finally we give a remark on nilpotent subgroups of $M_{n}(K)$ over an algebraically closed field K of characteristic 0 .

In case $n=1$, a group N is a subgroup of K if and only if N is cyclic. We assume $n>1$. Suppose that we can determine the nilpotent subgroups of $M_{r}(K)$ for $r<n$. Let N be a nilpotent subgroup of $M_{n}(K)$. If $V_{K}(N) \neq M_{n}(K)$, then $V_{K}(N)=M_{r_{1}}(K) \oplus \cdots \oplus M_{r t}(K)$ for some integers r_{1}, \cdots, r_{t} such that $\sum_{i=1}^{t} r_{i}$ $\leqq n$ and $r_{i}<n$. By our assumption, we can determine the subgroup of $M_{r_{i}}(K)$, $i=1, \cdots, t$ and we can determine N as a subgroup of a direct product of such groups. Conversely if N_{i} is a nilpotent subgroup of $M_{r_{i}}(K)$, then $N_{1} \times \cdots \times N_{t}$ is a subgroup of $M_{n}(K)$. Assume that $V_{K}(N)=M_{n}(K)$. In this case N is not abelian, and let S_{p} be a non-abelian Sylow p-subgroup of N. Since $V_{K}\left(S_{p}\right)$ is a semi-simple subalgebra of $V_{K}(N)=M_{n}(K)$, by the Schur's commutation theorem $V_{K}\left(S_{p}\right) \cong \prod_{i=1}^{r} M_{n_{i}}^{m_{i}}(K)$ and the commutant of $V_{K}\left(S_{p}\right)$ is isomorphic to $\prod_{i=1}^{r} M_{m_{i}}^{n_{i}}(K)$, where $\sum_{i=1}^{r} n_{i} m_{i}=n$ and

$$
M_{n_{i}}^{m_{i}}(K)=\left\{\left.\left(\begin{array}{ccc}
A & & \\
\cdot & \cdot & \\
0 & & \cdot
\end{array}\right) \in M_{n i m i}(K) \right\rvert\, A \in M_{n_{i}}(K)\right\} .
$$

Since S_{p} is not abelian, we have $n_{i}>1$ for at least one $1 \leqq i \leqq r$. Hence
$V_{K}\left(O_{p^{\prime}}(N)\right) \neq M_{n}(K)$, so such groups can be determined by the assumption. On the other hand by (1.6) we can determine S_{p}. Hence the nilpotent subgroups of $M_{n}(K)$ can be determined inductively.

References

[1] S. Amitsur, Finite subgroups of division rings, Trans. Amer. Math. Soc., 80 (1955), 361-386.
[2] L. Dornhoff, Group representation theory (Part A), Dekker, 1971.
[3] B. Fein, B. Gordon and J. H. Smith, On the representation of -1 as a sum of two squares in an algebraic number field, J. Number Theory, 3 (1971), 310-315.
[4] W. Feit, Characters of finite groups, Benjamin, 1967.
[5] M. Hikari, Multiplicative p-subgroups of simple algebras, Osaka J. Math., 10 (1973), 369-374.

Michitaka Hikari
Department of Mathematics
Tokai University
Hiratsuka, Kanagawa
Japan

