J. Math. Soc. Japan Vol. 28, No. 4, 1976

On finite multiplicative subgroups of simple algebras of degree 2

By Michitaka HIKARI

(Received Dec. 6, 1976)

Amitsur ([1]) determined all finite multiplicative subgroups of division algebras. We try to determine, more generally, all finite multiplicative subgroups of simple algebras of fixed degree. In [5] we characterized *p*-groups contained in the full matrix algebras $M_n(\varDelta)$ of fixed degree *n*, where \varDelta is a division algebra of characteristic 0. In this paper we will study multiplicative subgroups of $M_2(\varDelta)$.

In §2 we will determine all finite nilpotent subgroups of $M_2(\varDelta)$, and in §3 all finite subgroups of $M_2(\varDelta)$ with abelian Sylow 2-groups. Finally, in §4, we will give some additional remarks.

§1. Preliminaries.

All division algebras considered in this paper are of characteristic 0. As usual Q, R, C and H denote respectively the rational number field, the real number field, the complex number field, and the quaternion algebra over R.

Let Δ be a division algebra. We denote by $M_n(\Delta)$ the full matrix algebra of degree *n* over Δ . By a subgroup of $M_n(\Delta)$ we mean a finite multiplicative subgroup of $M_n(\Delta)$. Further let *K* be a field contained in the center of Δ and let *G* be a subgroup of $M_n(\Delta)$. We define $V_K(G) = \{\sum \alpha_i g_i \mid \alpha_i \in K, g_i \in G\}$. Then $V_K(G)$ is a *K*-subalgebra of $M_n(\Delta)$ and there is a natural epimorphism $KG \rightarrow V_K(G)$. Hence $V_K(G)$ is a semi-simple *K*-subalgebra of $M_n(\Delta)$.

Let *m*, *r* be relatively prime integers, and put s=(r-1, m), t=m/s; n=the minimal positive integer satisfying $r^n \equiv 1 \mod m$. Denote by $G_{m,r}$ the group generated by two elements *a*, *b* with the relations; $a^m=1$, $b^n=a^t$ and $bab^{-1}=a^r$. Let ζ_m be a fixed primitive *m*-th root of unity and let $\sigma=\sigma_r$ be the automorphism of $Q(\zeta_m)$ determined by the mapping $\zeta_m \to \zeta_m^r$. Let $\{\alpha_{\sigma i,\sigma j}\}$ be the factor set of $\langle \sigma \rangle$ in $Q(\zeta_m)$ defined by

$$\alpha_{\sigma^i,\sigma^j} = \begin{cases} 1 & \text{when } i+j < n \\ \zeta_s = \zeta_m^t & \text{when } i+j \ge n , \end{cases}$$

and denote by $\Lambda_{m,r}$ the crossed product of $Q(\zeta_m)$ and $\langle \sigma \rangle$ by $\{\alpha_{\sigma^i,\sigma^j}\}$.

Here we recall the results in Amitsur [1].

1.1 ([1]). Let G be a finite group and let Δ be a division algebra. If $G \subseteq \Delta$, then G is one of the following types:

(1) All Sylow subgroups of G are cyclic.

(2) The odd Sylow subgroups of G are cyclic and the even Sylow subgroup of G is a generalized quaternion group of order $2^{\alpha+1}$, $\alpha \ge 2$.

1.2 ([1]). A group G is of type (1) in (1, 1) if and only if $G \cong G_{m,r}$ for some relatively prime integers m, r with (n, t)=1. A group G of type (1) or (2) in (1, 1) is metacyclic if and only if $G \cong G_{m,r}$ for some relatively prime integers m, r.

1.3 ([1]). A group $G_{m,r}$ can be embedded in a division algebra if and only if $\Lambda_{m,r}$ is a division algebra; then we have $V_{\mathbf{Q}}(G_{m,r}) \cong \Lambda_{m,r}$ and the isomorphism is obtained by the correspondence $a \leftrightarrow \zeta_m$, $b \leftrightarrow \sigma_r$.

The group $G_{2m,-1}$ are called the binary dihedral groups. We define $T^* = \langle a, b, c \mid a^4 = 1, a^2 = b^2, aba^{-1} = b^{-1}, cac^{-1} = b, cbc^{-1} = ab, c^3 = 1 \rangle$, $O^* = \langle a, b, c \mid a^8 = 1, a^4 = b^2 = c^3, cba = 1 \rangle$ and $I^* = SL(2, 5)$.

1.4 ([1]). The finite subgroups of the quaternion algebra H are the cyclic group of any order, the binary dihedral group of order 4m, the groups T^* , O^* and I^* .

We remark that the group $G_{4,-1}$ means the ordinary quaternion group of order 8 and that the crossed product $\Lambda_{4,-1}$ means the ordinary quaternion algebra over Q. The splitting fields for $\Lambda_{4,-1}$ can be determined by the following:

1.5 ([3]). Let K be an algebraic number field. Then K is a splitting field for $\Lambda_{4,-1}$ if and only if K is totally imaginary and the local degrees of K at all primes of K extending the rational prime (2) are even. In particular, if 4|n, then $Q(\zeta_n)$ is a splitting field for $\Lambda_{4,-1}$, and, if n=2m, m odd, then $Q(\zeta_n)=Q(\zeta_m)$ is a splitting field for $\Lambda_{4,-1}$ if and only if the order of 2 (mod m) is even.

Next we recall the results in [5].

Let $P_0 = \langle g \rangle$ be a cyclic group of order p. Let G, G' be finite groups and let G'_1, G'_2, \dots, G'_p be the copies of G'. We call G a simple (1-fold) p-extension of G' if G is an extension of $G'_1 \times G'_2 \times \dots \times G'_p$ by P_0 such that $G'_1 = G'_2, \dots, G'_p = G'_p, G''_p = G'_1$ where σ_g denotes the automorphism of $G'_1 \times G'_2 \times \dots \times G'_p$ corresponding to g. More generally, a finite group G is called an n-fold p-extension of a finite group G' if there exist finite groups $G_0 = G', G_1, \dots, G_{n-1}, G_n = G$ such that, for each $0 \leq i \leq n-1$, G_{i+1} is a simple p-extension of G_i . Now we put

 $T_{p}^{(0)} = \begin{cases} \{ all cyclic p-groups \} & when p \neq 2 \\ \\ \{ all generalized quaternion 2-groups \} & when p = 2 \end{cases}$

and $\tilde{T}_{p}^{(0)} = \{ \text{all cyclic } p \text{-groups} \} \text{ for any prime } p$. An element of $T_{p}^{(0)}$ (resp. $\tilde{T}_{p}^{(0)}$)

is called a *p*-group of 0-type (resp. $\tilde{0}$ -type). A finite *p*-group *P* is said to be of *n*-type (resp. \tilde{n} -type) if *P* is an *n*-fold *p*-extension of a *p*-group of 0-type (resp. $\tilde{0}$ -type). We denote by $T_p^{(n)}$ (resp. $\tilde{T}_p^{(n)}$) the set of all *p*-groups of *n*-type (resp. \tilde{n} -type).

1.6 ([5]). Let n be a fixed positive integer and let P be a finite p-group. Then the following conditions are equivalent:

(1) P is a subgroup of $M_n(\mathbf{H})$ (resp. $M_n(\mathbf{C})$).

(2) P is a subgroup of $M_n(\Delta)$ (resp. $M_n(K)$) for a division algebra Δ (resp. commutative field K).

(3) There exist non-negative integers t, m_0, \dots, m_t with $\sum_{i=0}^t p^i m_i \leq n$ and $P_i^{(1)}, P_i^{(2)}, \dots, P_i^{(m_i)} \in T_p^{(i)}$ (resp. $\tilde{T}_p^{(i)}$), $0 \leq i \leq t$, such that $P \subseteq \prod_{i=0}^t \prod_{j=1}^{m_i} P_i^{(j)}$.

1.7 ([5]). Let P be a finite non-abelian p-group, Δ a division algebra and K a field contained in the center of Δ . Assume that $P \subseteq M_n(\Delta)$ and $V_K(P) = M_n(\Delta)$.

(1) If P is a 2-group which is not of type 0 and Δ is non-commutative, then there exists a subgroup P_0 of P of index 2 such that $V_K(P_0) \cong M_{n/2}(\Delta)$ $\bigoplus M_{n/2}(\Delta)$.

(2) If Δ is commutative, then we have $V_{\overline{\mathbf{K}}}(P) = M_n(\overline{K})$ and there exists a subgroup P_0 of P of index p such that

$$V_{\overline{K}}(P_{0}) \cong \widetilde{M_{n/p}(\overline{K}) \bigoplus \cdots \bigoplus M_{n/p}(\overline{K})},$$

where \overline{K} is the algebraic closure of K.

(In [5], we proved (1.7) for K=Q. But that proof holds good for any field K contained in the center of Δ .)

§2. Nilpotent groups.

We begin with

LEMMA 2.1. Let Δ be a division algebra (of characteristic 0) and let K be a field contained in the center of Δ . Let G be a finite subgroup of $M_2(\Delta)$. Then we have $V_K(G) \cong \Delta_1$, $M_2(\Delta_2)$ or $\Delta_3 \oplus \Delta_4$ where Δ_i , $1 \le i \le 4$, are division algebras.

PROOF. This is evident, because $V_{K}(G)$ is semi-simple.

Here we give the following basic lemmas.

LEMMA 2.2. Let Δ be a division algebra and K be a subfield of the center of Δ . Let H, J be finite groups and G_{σ} , $\sigma \in H$, be normal subgroup of J. Let G be an extension of J by H. Assume the following conditions;

(1) $\bigcap_{\sigma \in H} G_{\sigma} = 1$ and $G_{\sigma} \neq G_{\tau}$ for any $\sigma \neq \tau$ in H.

(2) Let $\{u_{\tau}\}_{\tau \in H}$ be a set of representatives of H in G. Then $G_{\sigma}^{u_{\tau}} = G_{\sigma\tau}$ for

any σ , $\tau \in H$.

(3) $J/G_1 \subseteq M_n(\varDelta)$ and $V_K(J/G_1) = M_n(\varDelta)$.

Then we have $G \subseteq M_{nh}(\varDelta)$ and $V_K(G) = M_{nh}(\varDelta)$, where h is the order of H. PROOF. Let V be an irreducible $M_n(\varDelta)$ -module. Then V can be regarded as a $K[J/G_1]$ -module because $V_K(J/G_1) = M_n(\varDelta)$. Let $\phi; J \rightarrow J/G_1$ be the natural homomorphism. Then we may further regard V as a KJ-module through ϕ . Now we have $V^G = KG \bigotimes_{KJ} V = \sum_{\sigma \in H} \bigoplus u_{\sigma}^{-1} V$. Since Ker $u_{\sigma}^{-1} V = \{g \in J \mid gu_{\sigma}^{-1} v = u_{\sigma}^{-1} v$ for all $v \in V\} = \{g \in J \mid gv = v \text{ for all } v \in V\}^{u_{\sigma}} = \text{Ker } V^{u_{\sigma}} = G_1^{u_{\sigma}} = G_{\sigma} \text{ by our assump$ $tions (2), (3), we have <math>u_{\sigma}^{-1} V \cong u_{\tau}^{-1} V$ as KJ-module for any $\sigma \neq \tau$. Therefore $\text{Hom}_{KG}(V^G, V^G) \cong \text{Hom}_{KJ}(u_{\sigma}^{-1} V, V^G) \cong \text{Hom}_{KJ}(u_{\sigma}^{-1} V, u_{\sigma}^{-1} V) \cong \varDelta^{op}$. Because $\dim_K V^G$ $= h \dim_K V$, the simple component of KG corresponding to V^G is $M_{nh}(\varDelta)$. As is easily seen, V^G is G-faithful. Hence $G \subseteq M_{nh}(\varDelta)$ and $V_K(G) = M_{nh}(\varDelta)$.

LEMMA 2.3. Let G be a finite group and let N be a normal subgroup of G. Let Δ be a division algebra and let K be a field contained in the center of Δ . Assume that $G \subseteq M_2(\Delta)$ and $V_K(G) = M_2(\Delta)$. Let V be an irreducible $M_2(\Delta)$. (so, KG-) module. Further let W be an irreducible KN-submodule of V and let U be the sum of all KN-submodules of V which are isomorphic to W. Define $H = \{g \in G \mid gU = U\}$. Then the number m of all isomorphism classes of irreducible KN-submodules of V is 1 or 2. In the case where m=2, we have [G:H]=2 and $V_K(H) \cong \Delta \oplus \Delta$. Moreover H has normal subgroups H_1 , H_2 satisfying $H_1 \cap H_2 = \{1\}, H_1^g = H_2$ and $H/H_1 \cong \rho(H)$, where $\{1, g\}$ is a set of representative of G/H in G and ρ is the projection of $V_K(H)$ on the first component of $\Delta \oplus \Delta$. In the case where m=1, we have $V_K(N) \cong M_2(\Delta')$ or Δ' for a division algebra Δ' , and, especially, if |N| is odd, then $V_K(N)$ is a division algebra.

PROOF. By Clifford's theorem (e.g. [2]) U is irreducible as a KH-module, $V=U^{g}$ and m=[G:H]. Let $M_{r}(\Delta')$ be the simple component of KH corresponding to U. Let $V=U^{g}=U\oplus U_{1}\oplus\cdots\oplus U_{k}$ be a decomposition of V into irreducible KH-modules. By the assumption on U, $U\cong U_{i}$ as KN-module for all $1\leq i\leq k$. Therefore $U\cong U_{i}$ as KH-module, so we have $\Delta^{op}\cong \operatorname{Hom}_{KG}(V, V)\cong$ $\operatorname{Hom}_{KH}(U, U)\cong \Delta'^{op}$. Since $2\dim_{K}\Delta = \dim_{K}V = m\dim_{K}U = mr\dim_{K}\Delta' = mr\dim_{K}\Delta$, we have mr=2 and so $m\leq 2$.

We now assume that m=2. Then r=1 and so $V_{K}(H)\cong \varDelta \oplus \varDelta$. Since [G:H]=2, H is a normal subgroup of G. Let $G=H\cup gH$ be the decomposition of Ginto cosets of H. Then $V=U\oplus g^{-1}U$ and $U\cong g^{-1}U$ as KH-modules. And we may assume that U (resp. gU) is the irreducible $V_{K}(H)$ -module corresponding to the first (resp. second) component of $\varDelta \oplus \varDelta$. Put $H_{1}=\text{Ker }\rho$ and $H_{2}=H_{1}^{g}=$ $(\text{Ker }\rho)^{g}$. Because $V=U\oplus g^{-1}U$ is H-faithful, $1=\text{Ker}(U\oplus g^{-1}U)=\{h\in H \mid hu+hg^{-1}u$ $=u+g^{-1}u$ for all $u\in U\}=\{h\in H \mid hu=u$ for all $u\in U\}\cap\{h\in H \mid hg^{-1}u=g^{-1}u$ for all $u\in U\}=\text{Ker }\rho\cap(\text{Ker }\rho)^{g}=H_{1}\cap H_{2}$. Furthermore since $V_{K}(H)=\varDelta\oplus \varDelta$, we have $H_{i}\neq\{1\}$ and so $H_{1}\neq H_{2}$.

Assume m=1. Then it is easily shown that $V_K(N) \cong M_2(\Delta')$ or Δ' for a division algebra Δ' . Let \bar{K} be the algebraic closure of K. Then we have $\bar{K} \otimes M(\Delta') \approx M(\bar{K} \otimes \Delta') \approx M(\bar{K}) \oplus M(\bar{K})$ for some integers c and t

 $\overline{K} \otimes_K M_2(\Delta') \cong M_2(\overline{K} \otimes_K \Delta') \cong \widetilde{M_{2t}(\overline{K}) \oplus \cdots \oplus M_{2t}(\overline{K})}$ for some integers *s* and *t*. Therefore, if $V_K(N) \cong M_2(\Delta')$, then we have 2t ||N|.

Now we will determine all finite nilpotent subgroups of simple algebras $M_2(\varDelta)$ where \varDelta are division algebras.

LEMMA 2.4. Let Δ be a division algebra and let K be a field contained in the center of Δ . Let G be a finite nilpotent subgroup of $M_2(\Delta)$. For each prime p||G| let S_p be the Sylow p-subgroup of G, and let $|S_2|=2^l$ and $|\prod_{p\neq 2}S_p|=m$. Assume that $V_K(G)$ is simple. Then $\prod_{p\neq 2}S_p$ is cyclic, $V_K(\prod_{p\neq 2}S_p)\cong K(\zeta_m)$, $V_K(S_2)$ is simple and $V_{L(\zeta_m)}(S_2)=V_K(G)$, where L is the center of $V_K(S_2)$. Further assume that $V_K(S_2)$ is a division algebra. Then one of the following conditions is satisfied:

(1) S_2 is a cyclic group and $V_K(G) \cong K(\zeta_{2^l m})$.

(2) S_2 is a generalized quaternion group and $V_K(G) \cong K(\zeta_{2^{l-1}} + \zeta_{2^{l-1}}^{-1}, \zeta_m)$ $\otimes_{\mathbf{Q}} \Lambda_{4,-1}$.

PROOF. By (1.6) $\prod_{p \neq 2} S_p$ is abelian. Then $V_K(\prod_{p \neq 2} S_p)$ is contained in the center of $V_K(G)$, and therefore $V_K(\prod_{p \neq 2} S_p)$ is a field. Hence $\prod_{p \neq 2} S_p$ is cyclic and $V_K(\prod_{p \neq 2} S_p) \cong K(\zeta_m)$. Further we easily see that the center of $V_K(S_2)$ is contained in the center of $V_K(G)$. Therefore $V_K(S_2)$ is simple and $V_{L(\zeta_m)}(S_2) \subseteq V_K(G)$. On the other hand it clearly holds that $V_K(G) \subseteq V_{L(\zeta_m)}(S_2)$. Hence $V_{L(\zeta_m)}(S_2) = V_K(G)$. So the other hand it clearly holds that $V_K(G) \subseteq V_{L(\zeta_m)}(S_2)$. Hence $V_{L(\zeta_m)}(S_2) = V_K(G)$. Now assume that $V_K(S_2)$ is a division algebra. Then by (1.1) S_2 is a cyclic group or a generalized quaternion group. If S_2 is cyclic, then we have $V_K(S_2) \cong K(\zeta_{2l})$, and so $V_K(G) \cong K(\zeta_{2lm})$. On the other hand, if S_2 is a generalized quaternion group, i. e., if $S_2 = G_{2^{l-1,-1}}$, then we have by (1.3) $V_Q(S_2) = \Lambda_{2^{l-1,-1}}$. The center of $\Lambda_{2^{l-1,-1}}$ is $Q(\zeta_{2^{l-1}} + \zeta_{2^{l-1}})$, so $V_K(S_2) \cong K \otimes_{Q(\zeta_{2^{l-1}} + \zeta_{2^{l-1}})} \otimes_Q \Lambda_{4,-1}$. This completes the proof of the lemma.

We now give

THEOREM 2.5. Let G be a finite nilpotent group and for each prime p||G|let S_p be the Sylow p-subgroup of G. Let $|S_2|=2^s$ and $|\prod_{p\neq 2} S_p|=m$. Let Δ be a division algebra and K a field contained in the center of Δ . Assume that G can be embedded in $M_2(\Delta)$ in the form that $V_K(G)=M_2(\Delta)$. Then G satisfies the following conditions (a) and (b).

(a) S_2 has a subgroup S of index 2 and S has two normal subgroups T_1 , $T_2 \ (\neq \{1\})$ of S such that $T_1 \cap T_2 = \{1\}$ and $T_1^g = T_2$, where $\{1, g\}$ is a set of representatives of S_2/S in S_2 .

M. HIKARI

- (b) S/T_1 and $\prod_{p\neq 2} S_p$ satisfy one of the following conditions:
- (1) S/T_1 and $\prod_{p\neq 2}^{n} S_p$ are cyclic groups.

(2) S/T_1 is a quaternion group of order 2^l , $\prod_{p\neq 2} S_p$ is a cyclic group and $K(\zeta_{pl-1}+\zeta_{pl-1}^{-1}, \zeta_m)\otimes_{\mathbf{Q}} \Lambda_{4,-1}$ is a division algebra.

Conversely, assume that G satisfies the condition (a). Let $|S/T_1| = 2^l$. Furthermore if G satisfies the condition (1) in (b), then $G \subseteq M_2(K(\zeta_{2^{l_m}}))$ and $V_K(G) = M_2(K(\zeta_{2^{l_m}}))$. If G satisfies the condition (2) in (b), then $G \subseteq M_2(K(\zeta_{2^{l-1}} + \zeta_{2^{l-1}}^{-1}, \zeta_m)) \otimes_{\mathbf{Q}} A_{4,-1}$ and $V_K(G) = M_2(K(\zeta_{2^{l-1}} + \zeta_{2^{l-1}}^{-1}, \zeta_m)) \otimes_{\mathbf{Q}} A_{4,-1})$.

PROOF. By (2.4) $\prod_{p\neq 2} S_p$ is cyclic. First assume that $V_K(S_2)$ is a division algebra. Because $V_K(G) = M_2(\mathcal{A})$, again by (2.4) S_2 is a generalized quaternion group and $V_K(S_2) = K(\zeta_{2^{\delta-1}} + \zeta_{2^{\delta-1}}^{-1}) \otimes_{\mathbf{Q}} \Lambda_{4,-1}$. Therefore $S_2 \subseteq K(\zeta_{2^{\delta-1}} + \zeta_{2^{\delta-1}}^{-1}) \otimes_{\mathbf{Q}} \Lambda_{4,-1}$. $\subseteq \overline{K} \otimes_{\boldsymbol{q}} \Lambda_{4,-1} = M_2(\overline{K})$ and $V_{\overline{K}}(S_2) = M_2(\overline{K})$, where \overline{K} is the algebraic closure of K. By (1.7) there exists a subgroup S of S_2 of index 2 such that $V_{\overline{K}}(S) = \overline{K} \oplus \overline{K}$. Hence by (2.3) S has normal subgroups T_1 , T_2 satisfying the condition (a) such that S/T_1 is the subgroup of \overline{K} . So G satisfies the conditions (a) and (1) in (b). Next assume that $V_K(S_2) \cong M_2(\mathcal{A}')$ for a division algebra \mathcal{A}' . If \mathcal{A}' is commutative, then, by the same reason as above, G satisfies the conditions (a) and (1) in (b). On the other hand, if Δ' is non-commutative, then S_2 is not of type 0. Therefore by (1.7) there exists a subgroup S of S_2 of index 2 such that $V_{K}(S) = \Delta' \oplus \Delta'$. Then by virtue of (2.3) S has normal subgroups T_{1} , T_{2} satisfying (a), S/T_1 is a subgroup of Δ' and $V_K(S/T_1) = \Delta'$. It follows from (2.4) that S/T_1 is a generalized quaternion group and $\Delta' = V_K(S/T_1) \cong K(\zeta_{2l-1} + \zeta_{2l-1})$ $\otimes_{\mathbf{Q}} \Lambda_{4,-1}$. Therefore again by (2.4), $M_2(\varDelta) = V_K(G) = K(\zeta_{2^{l-1}} + \zeta_{2^{l-1}}, \zeta_m) \otimes_{\mathbf{Q}} M_2(\Lambda_{4,-1})$. Hence G satisfies the conditions (2) in (b).

Finally we prove the converse. If G satisfies the condition (a), then G is an extension of $S \times \prod_{p \neq 2} S_p$ by S_2/S and G satisfies the conditions (1), (2) in (2.2). So, if $S/T_1 \times \prod_{p \neq 2} S_p$ is a subgroup of a division algebra \varDelta and $V_K(S/T_1 \times \prod_{p \neq 2} S_p) = \varDelta$, then we have by (2.2) $G \subseteq M_2(\varDelta)$ and $V_K(G) = M_2(\varDelta)$. Therefore it remains only to prove that $S/T_1 \times \prod_{p \neq 2} S_p$ satisfies the above condition. First assume that G satisfies the condition (1) in (b). Since $S/T_1 \times \prod_{p \neq 2} S_p$ is a cyclic group of order $2^l m$, $S/T_1 \times \prod_{p \neq 2} S_p$ can be embedded in $K(\zeta_{2lm})$ in the form that $V_K(S/T_1 \times \prod_{p \neq 2} S_p) = K(\zeta_{2lm})$. If G satisfies the condition (2) in (b), we have by (1.3) S/T_1 is a subgroup of $\Lambda_{2^{l-1,-1}} = Q(\zeta_{2^{l-1}} + \zeta_{2^{l-1}}) \otimes_Q \Lambda_{4,-1}$ such that $V_Q(S/T_1)$ $= \Lambda_{2^{l-1,-1}}$. Then $S/T_1 \times \prod_{p \neq 2} S_p$ can be embedded in $K(\zeta_{2^{l-1}} + \zeta_{2^{l-1}}, \zeta_m) \otimes_Q \Lambda_{4,-1}$ and $V_K(S/T_1 \times \prod_{p \neq 2} S_p) = K(\zeta_{2^{l-1}} + \zeta_{2^{l-1}}, \zeta_m) \otimes_Q \Lambda_{4,-1}$. Thus the proof of the theorem is completed.

COROLLARY 2.6. Let G be a finite nilpotent group and for each prime

p||G|, let S_p be the Sylow subgroup of G. Assume that G can be embedded in $M_2(\varDelta)$ for a division algebra \varDelta in the form that $V_q(G) = M_2(\varDelta)$. Then G satisfies the following condition (a) and one of the following conditions (b-1)~(b-3).

(a) S_2 has a subgroup S of index 2 with normal subgroups T_1 , T_2 (\neq {1}) such that $T_1 \cap T_2 =$ {1} and $T_1^g = T_2$, where {1, g} is a set of representatives of S_2/S in S_2 .

(b-1) S/T_1 and $\prod_{p\neq 2} S_p$ are cyclic groups.

(b-2) S/T_1 is a quaternion group of order 8, $\prod_{p \neq 2} S_p$ is a cyclic group and the order of 2 (mod m) is odd.

(b-3) S/T_1 is a generalized quaternion group of order >8 and $\prod_{p\neq 2} S_p = \{1\}$. Conversely, assume that G satisfies the condition (a). Let $|\prod_{p\neq 2} S_p| = m$, $|S/T_1| = 2^l$. Furthermore if G satisfies the condition (b-1), then $G \subseteq M_2(Q(\zeta_{2l_m}))$ and $V_Q(G) = M_2(Q(\zeta_{2l_m}))$. If G satisfies the condition (b-2), then $G \subseteq M_2(Q(\zeta_m) \otimes_Q \Lambda_{4,-1})$ and $V_Q(G) = M_2(Q(\zeta_m) \otimes_Q \Lambda_{4,-1})$. And if G satisfies (b-3), then $G \subseteq M_2(\Lambda_{2l-1,-1})$ and $V_Q(G) = M_2(\Lambda_{2l-1,-1})$.

PROOF. We may only check this when $Q(\zeta_{2^{l-1}}+\zeta_{2^{l-1}},\zeta_m)\otimes_Q \Lambda_{4,-1}$ is a division algebra. Let $|S/T_1|=2^l$. According to (1.5), if l=3, then the order of 2 (mod m) is odd, if l>3, then m=1.

We conclude this section with the following

COROLLARY 2.7. Let G be a finite nilpotent group. Then the following conditions are equivalent;

(1) G can be embedded in $M_2(\mathbf{H})$ in the form that $V_{\mathbf{R}}(G) = M_2(\mathbf{H})$.

(2) G is a 2-group. And G has a subgroup S of index 2 with normal subgroups T_1 , T_2 (\neq {1}) such that $T_1 \cap T_2 =$ {1} and $T_1^{g} = T_2$, where {1, g} is a set of representatives of G/S in G, and S/T₁ is a generalized quaternion group.

PROOF. Assume that G satisfies the condition (1). For each prime p||G| let S_p be the Sylow *p*-subgroup of G. Then by (2.5) $\prod_{p\neq 2} S_p$ is cyclic, so $V_{\mathbf{R}}(\prod_{p\neq 2} S_p)$ is a field contained in the center of $V_{\mathbf{R}}(G)=M_2(\mathbf{H})$. Therefore $V_{\mathbf{R}}(\prod_{p\neq 2} S_p)=\mathbf{R}$ and $\prod_{p\neq 2} S_p=\{1\}$ i. e., $G=S_2$. It follows from (1.8) and (2.2) that G satisfies the condition (2).

§ 3. Groups with abelian Sylow 2-subgroups.

In this section we will study subgroups of $M_2(\Delta)$ with abelian Sylow 2-subgroups.

Let G be a group and let H be a subgroup of G. As usual $N_G(H)$, $C_G(H)$, Z(G) denote respectively the normalizer of H in G, the centralizer of H in G, and the center of G.

LEMMA 3.1. Let G be a finite group which can be embedded in $M_2(\varDelta)$ for

a division algebra Δ . Let p be the minimal prime divisor of |G|.

(1) If p is odd, then G has a normal p-complement.

(2) If p=2 and the Sylow 2-subgroup of G is abelian, then G has a normal 2-complement.

PROOF. If p is odd, then by (1.6) the Sylow p-subgroup of G is abelian. Let P be a Sylow p-subgroup of G and put $N=N_G(P)$. Now it suffices by Burnside's theorem ([4], (20.13)) to prove that $P \subseteq Z(N)$. By (2.1) we have $V_{\mathbf{q}}(N) \cong \mathcal{A}_1$, $M_2(\mathcal{A}_2)$ or $\mathcal{A}_3 \oplus \mathcal{A}_4$ for some division algebras \mathcal{A}_i . If $V_{\mathbf{q}}(N) \cong \mathcal{A}_1$, then P is cyclic, and therefore, by ([4], (20.14)), we have $P \subseteq Z(N)$. If $V_{\mathbf{q}}(N) \cong \mathcal{M}_2(\mathcal{A}_2)$, then, by the proof of (2.3), 2||N| and so p=2. Because $2 \nmid [N:P]$, it follows from (2.3) that $V_{\mathbf{q}}(P)$ is a division algebra. Then P is cyclic. Therefore again by ([4], (20.14)) we have $P \subseteq Z(N)$. Assume that $V_{\mathbf{q}}(N) \cong \mathcal{A}_3 \oplus \mathcal{A}_4$ and let ρ_i be the projection of $V_{\mathbf{q}}(N)$ on \mathcal{A}_i , i=3, 4. Since $\rho_i(P) \subseteq \mathcal{A}_i$, $\rho_i(P)$ is cyclic, and so $\rho_i(P) \subseteq Z(\rho_i(N))$. Hence $\rho_3(P) \times \rho_4(P) \subseteq Z(\rho_3(N) \times \rho_4(N))$. Thus we get $P \subseteq Z(N)$, and this completes the proof of the lemma.

As a direct consequence of (3.1) we get

PROPOSITION 3.2. Let G be a finite group with abelian Sylow 2-subgroups. Assume that $G \subseteq M_2(\varDelta)$ for a division algebra \varDelta . Then G is solvable.

We now give, as a main result in this section,

THEOREM 3.3. Let G be a finite group with abelian Sylow 2-subgroups. Let Δ be a division algebra and K a field contained in the center of Δ . Assume that G can be embedded in $M_2(\Delta)$ in the form that $V_K(G) = M_2(\Delta)$. Then G satisfies one of the following conditions (a), (b);

(a) G has a subgroup G_0 of index 2. Put $G/G_0 = \{G_0, gG_0\}$. Then there exist normal subgroups T_1 , T_2 ($\neq \{1\}$) of G_0 and two integers m, r such that $T_1 \cap T_2 = \{1\}$, $T_1^g = T_2$, $G_0/T_1 \cong G_{m,r}$ and $K \otimes_Z \Lambda_{m,r} \cong \mathcal{A}$, where Z is the center of $\Lambda_{m,r}$.

(b) There exist a positive integer s, an odd number m and a group homomorphism σ from G to Gal $(K(\zeta_{2^{s_m}})/K(\zeta_{2^s}))$, which satisfy the following conditions;

(1) Ker σ can be embedded in $K(\zeta_{2^{s_m}})$ in the form $V_K(\text{Ker }\sigma) = K(\zeta_{2^{s_m}})$.

(2) Put $G/\operatorname{Ker} \sigma = \{g_1 \operatorname{Ker} \sigma, \dots, g_k \operatorname{Ker} \sigma\}$ and $\alpha_{\sigma(g_r),\sigma(g_s)} = g_t^{-1}g_rg_s$ for $g_rg_s \operatorname{Ker} \sigma = g_t \operatorname{Ker} \sigma$. Then the crossed product $(K(\zeta_{2^sm}), G/\operatorname{Ker} \sigma, \{\alpha_{\sigma(g_r),\sigma(g_s)}\}) \cong M_2(\varDelta)$.

Conversely, if G satisfies the condition (a) or (b), then G can be embedded in $M_2(\Delta)$ in the form that $V_K(G) = M_2(\Delta)$.

PROOF. Let V be an irreducible $M_2(\mathcal{A})$ -module. Then we may regard V as a KG-module. Denote by G_1 the normal 2-complement of G. So, it follows from (2.3) that the number m of all isomorphism classes of irreducible KG_1 -

submodules of V is 1 or 2. In the case where m=2, again by (2.3) there exists a subgroup G_0 of G of index 2 with normal subgroups $T_1, T_2 \ (\neq \{1\})$ such that $T_1 \cap T_2 = \{1\}, \ T_1^g = T_2, \ G_0/T_1 \subseteq \mathcal{A}$ and $V_K(G_0/T_1) = \mathcal{A}$, where $\{1, g\}$ is a set of representatives of G/G_0 in G. Since any Sylow subgroup of G_0/T_1 is abelian, it follows from (1.1), (1.2) and (1.3) that $G_0/T_1 \cong G_{m,r}$ for some integers m, rand $\mathcal{A} \cong K \otimes_Z \mathcal{A}_{m,r}$. Conversely if G satisfies the condition (a), then by (2.2) $G \subseteq M_2(K \otimes_Z \mathcal{A}_{m,r})$ and $V_K(G) = M_2(K \otimes_Z \mathcal{A}_{m,r})$.

In the case where m=1, because $|G_1|$ is odd, it follows from (2.3) that $V_{K}(G_{1})$ is a division algebra. Therefore by (1.2) we have that $G_{1} \cong G_{m,r}$ for some relatively prime integers m, r and that $V_{K}(G_{1}) \cong K \otimes_{Z} \Lambda_{m,r}$, where Z is the center of $A_{m,r}$. We recall the notation of $G_{m,r}$. $G_{m,r} = \langle a, b \mid a^m = 1, b^n = a^t$ and $bab^{-1}=a^r$, where s=(r-1, m), t=m/s; n= the minimal positive integer satisfying $r^n \equiv 1 \mod m$. Let S_2 be a Sylow 2-subgroup of G. And put $S'_2 = S_2 \cap C_G(\langle a \rangle)$. Since $G = S_2 G_{m,r}$ and $(|S_2|, |G_{m,r}|) = 1$, we have $C_G(\langle a \rangle) = \langle a \rangle \times S'_2$. So, the fact that $\langle a \rangle \triangleleft G$ implies $S'_2 \triangleleft G$. Therefore $C_G(S'_2)$ contains S_2 and $G_{m,r}$ and we have $Z(G) \supseteq S'_2$. Hence $V_K(S'_2)$ is contained in the center of $M_2(\mathcal{A}) = V_K(G)$. So, if we put $|S'_2| = 2^s$ and $S'_2 = \langle c \rangle$, then we have $V_K(S'_2) \cong K(\zeta_2 s), V_K(C_G(\langle a \rangle)) \cong K(\zeta_2 s_m)$ and the isomorphism is obtained by the correspondence $a \leftrightarrow \zeta_m$, $c \leftrightarrow \zeta_2 s$. Denote by ϕ the above isomorphism from $V_K(C_G(\langle a \rangle))$ to $K(\zeta_2 s_m)$. For $g \in G$, we construct an automorphism $\sigma(g)$ of $K(\zeta_2 s_m)$, by mapping $\zeta_2 s \rightarrow \zeta_2 s$ and $\zeta_m \rightarrow \zeta_m r$, where $a^g = a^r$. Since $K(\zeta_2 s) = V_K(S'_2)$ is contained in the center of $V_K(G)$, $\sigma(g)$ is an element of Gal $(K(\zeta_2 s_m)/K(\zeta_2 s))$, so σ is a group homomorphism from G to $\operatorname{Gal}(K(\zeta_2 s_m)/K(\zeta_2 s))$ and $\operatorname{Ker} \sigma = C_G(\langle a \rangle) = \langle a \rangle \times \langle c \rangle$. We recall that $\Lambda =$ $(K(\zeta_2 s_m), G/\operatorname{Ker} \sigma, \{\alpha_{\sigma(g_r), \sigma(g_s)}\})$ is a simple algebra with the following structure;

$$\begin{split} &\Lambda = u_{\sigma(g_1)} K(\zeta_2 s_m) \oplus \cdots \oplus u_{\sigma(g_k)} K(\zeta_2 s_m) \text{ as } K(\zeta_2 s_m) \text{-space ; } \alpha u_{\sigma(g_i)} = u_{\sigma(g_i)} \alpha^{\sigma(g_i)} \text{ for } \\ &\alpha \text{ in } K(\zeta_2 s_m) \text{ and } u_{\sigma(g_r)} u_{\sigma(g_s)} = u_{\sigma(g_r)\sigma(g_s)} \alpha_{\sigma(g_r),\sigma(g_s)}. \text{ In the above notations the } \\ &\text{mapping } \sum f_i u_{\sigma(g_i)} \to \sum \phi^{-1}(f_i) g_i \text{ determines a homomorphism from } \Lambda \text{ onto } V_K(G), \\ &\text{where } f_i \in K(\zeta_2 s_m). \text{ Since } \Lambda \text{ is simple and } V_K(G) \neq 0, \text{ this is an isomorphism.} \\ &\text{Therefore } \Lambda = M_2(\varDelta). \text{ Conversely, if } G \text{ satisfies the condition (b), then the } \\ &\text{factor set } \{\alpha_{\sigma(g_r),\sigma(g_s)}\} \text{ defines an extension of } Ker \sigma \text{ by } G/Ker \sigma, \text{ which is isomorphic to } G. \text{ Hence } G \text{ can be embedded in } M_2(\varDelta) \text{ in the form } V_K(G) = M_2(\varDelta). \end{split}$$

COROLLARY 3.4. Let G be a finite group with abelian Sylow 2-groups. Then the following conditions are equivalent;

(1) G can be embedded in $M_2(\mathbf{H})$ in the form $V_{\mathbf{R}}(G) = M_2(\mathbf{H})$.

(2) G has a subgroup G_0 of index 2 with normal subgroups T_1 , $T_2 (\neq \{1\})^\circ$ such that $T_1 \cap T_2 = \{1\}$, $T_1^g = T_2$ and $G_0/T_1 \cong G_{2m,-1}$ for some integer m, where $\{1, g\}$ is a set of representatives of G/G_0 in G.

PROOF. Since by (1.3) $G_{2m,-1}$ can be embedded in $\Lambda_{2m,-1}$ in the form $V_{\mathbf{Q}}(G_{2m,-1})=\Lambda_{2m,-1}, G_{2m,-1}$ can be embedded in $\Lambda_{2m,-1}\otimes_{\mathbf{Q}(\zeta_{2m}+\zeta_{2m})}\mathbf{R}=\mathbf{H}$ in the form $V_{\mathbf{R}}(G_{2m,-1})=\mathbf{H}$. Therefore if G satisfies the condition (2), then it follows

M. HIKARI

from (2.2) that G can be embedded in $M_2(\mathbf{H})$ in the form $V_{\mathbf{R}}(G) = M_2(\mathbf{H})$.

Assume that G satisfies the conditions (1). So, G satisfies one of the conditions (a) and (b) for $K=\mathbf{R}$ in (3.3). Since $|\operatorname{Gal}(\mathbf{R}(\zeta_2 s_m)/\mathbf{R}(\zeta_2 s))| \leq 2$, we have $\dim_{\mathbf{R}}(\mathbf{R}(\zeta_2 s_m), G/\operatorname{Ker} \sigma, \{\alpha_{\sigma(g_r),\sigma(g_s)}\}) \leq 4$. On the other hand $\dim_{\mathbf{R}} M_2(\mathbf{H})=16$, and it implies that G satisfies the conditions (a). Because $\mathbf{R} \otimes_{\mathbb{Z}} \Lambda_{m,r} = \mathbf{H}, G_{m,r}$ is a subgroup of \mathbf{H} . Hence it follows from (1.4) that $G_{m,r}$ is the binary dihedral group of order 4l. This completes the proof of the corollary.

§4. Additional results.

LEMMA 4.1. Let \varDelta be a division algebra. Let P be a 2-subgroup of $M_2(\varDelta)$ and N a normal subgroup of P. Then any elementary abelian subgroup of P/N has order $\leq 2^4$.

PROOF. By (1.6) P is a subgroup of $P_1 \times P_2$ for some P_1 , $P_2 \in T_2^{(0)}$, or a subgroup of \tilde{P} for some $\tilde{P} \in T_2^{(1)}$. Since P_i is a cyclic group or a generalized quaternion group, there exists a generalized quaternion group P_3 which contains P_i , i=1, 2. It follows from the definition of the 2-group of 1-type that for some $\tilde{P} \in T_2^{(1)}$, $P \subseteq P_1 \times P_2 \subseteq P_3 \times P_3 \subseteq \tilde{P}$. Therefore P is a subgroup of a 2-group of 1-type \tilde{P} . So, there exist generalized quaternion groups of order 2^{n+1} , $P' = \langle x, y | x^{2^n} = 1, y^2 = x^{2^{n-1}}, y^{-1}xy = x^{-1} \rangle$, and $P'' = \langle s, t | s^{2^n} = 1, t^2 = s^{2^{n-1}}, t^{-1}st = s^{-1} \rangle$ such that $P' \times P''$ is a subgroup of \tilde{P} of index 2 and for some $g \in \tilde{P} - (P' \times P'') x^g = s, y^g = t$.

Let Q/N be an elementary abelian subgroup of P/N. Since $N \supseteq [Q, Q]$, we only need to prove rank $(Q/[Q, Q]) \le 4$. Let $Q_0 = (P' \times P'') \cap Q$. Then $Q/Q_0 \subseteq \tilde{P}/P' \times P''$, so we have $|Q/Q_0| \le 2$. Also $Q_0/Q_0 \cap \langle x, s \rangle \subseteq P' \times P''/\langle x, s \rangle$ implies $|Q_0/Q_0 \cap \langle x, s \rangle| = 1, 2$ or 4. In the case where $|Q_0/Q_0 \cap \langle x, s \rangle| \le 2$ or $Q = Q_0, Q$ is generated by at most 4 elements, for $Q_0 \cap \langle x, s \rangle$ is generated by at most 2 elements. It means rank $(Q/[Q, Q]) \le 4$.

Assume that $|Q_0/Q_0 \cap \langle x, s \rangle| = 4$ and $Q \neq Q_0$. Since $P'^h = P''$ for any $h \in Q-Q_0$, by changing s, t, g into x^h , y^h , h respectively, if it is necessary, we may assume that $g \in Q-Q_0$. Because $|P' \times P''/\langle x, s \rangle| = 4$, $Q_0/Q_0 \cap \langle x, s \rangle \cong P' \times P''/\langle x, s \rangle$, and this means $Q_0 \equiv yx^is^j$ for some integers i, j. Using the fact that $s^g = x^{g^2} \in \langle x \rangle$, we have $g^{-1}(yx^is^j)g(yx^is^j)^{-1} = tyx^ms^n$ for some integers m, n. Let ρ be the natural homomorphism from Q onto Q/[Q, Q]. Then Q/[Q, Q] is generated by $\rho(g)$, $\rho(yx^is^j)$ and $\rho(Q_0 \cap \langle x, s \rangle)$. Therefore rank $(Q/[Q, Q]) \leq 4$.

PROPOSITION 4.2. Let G be a solvable subgroup of $M_2(\Delta)$. Let $\pi = \{2, 3, 5, 7\}$. Then G has a normal Hall π' -subgroup.

PROOF. Let $G=H_0\supseteq H_1\supseteq \cdots \supseteq H_r=\{1\}$ be a chain of normal subgroups of G such that H_i/H_{i+1} is a non-trivial elementary abelian group for each $0\leq i\leq r-1$. We shall prove this proposition by induction on |G|. Since $G=H_0\neq H_1$,

 H_1 has a normal Hall π' -subgroup N. If H_0/H_1 is an elementary p-group for some $p \in \pi$, then our proof is done. Therefore we may assume that $p \notin \pi$. Let D be a 2'-group of G. By (3.1) D has a normal Hall π' -subgroup D'. Let Pbe a Sylow p-subgroup of D'. Then P is a Sylow p-subgroup of G. We shall prove that D'N=PN. Let Q be a Sylow q-group of D' for any $q \neq p$ and Q' a Sylow q-group of N. Since Q and Q' are Sylow q-groups of G, there exists an element g of G such that $Q=Q'^g$. So $N \triangleleft G$ means $Q=Q'^g \subseteq N$ and $D'N \subseteq PN$. Moreover, it is easily seen that $D'N \supseteq PN$. Hence D'N=PN.

Since H_1 contains a normal Hall π' -subgroup, we may assume that H_1/H_2 is a q-group for some $q \in \pi$. If we can prove that $PH_2 \triangleleft G$ and G/PH_2 is a non-trivial q-group, then by the induction hypothesis PH_2 has a normal Hall π' -subgroup N', implying G has a normal Hall π' -subgroup N'. Therefore we only need to prove that $PH_2 \triangleleft G$ and G/PH_2 is a non-trivial q-group. In the case where q=2, H_1/H_2 is an elementary abelian 2-group of order $\leq 2^4$ by (4.1). It implies $\operatorname{Aut}(H_1/H_2) \subseteq GL(4, 2)$, and so $|\operatorname{Aut}(H_1/H_2)| | 2^6 \cdot 3^2 \cdot 5 \cdot 7$. Since $p \nmid |\operatorname{Aut}(H_1/H_2)|$ and $PH_2/H_2/C_{PH_2/H_2}(H_1/H_2) \subseteq \operatorname{Aut}(H_1/H_2)$, we have $PH_2/H_2 =$ $C_{PH_2/H_2}(H_1/H_2)$. On the other hand $PH_1/H_2 = G/H_2$, which implies that $G/H_2 \triangleright$ PH_2/H_2 and G/PH_2 is a non-trivial 2-group. In the case where $q \in \{3, 5, 7\}$, $H_0/H_2 = DH_2/H_2 \triangleright D'H_2/H_2 = PH_2/H_2$ means $H_0 \triangleright PH_2$ and H_0/PH_2 is a non-trivial q-group. This completes the proof of the proposition.

Finally we give a remark on nilpotent subgroups of $M_n(K)$ over an algebraically closed field K of characteristic 0.

In case n=1, a group N is a subgroup of K if and only if N is cyclic. We assume n>1. Suppose that we can determine the nilpotent subgroups of $M_r(K)$ for r < n. Let N be a nilpotent subgroup of $M_n(K)$. If $V_K(N) \neq M_n(K)$, then $V_K(N) = M_{r_1}(K) \oplus \cdots \oplus M_{r_t}(K)$ for some integers r_1, \cdots, r_t such that $\sum_{i=1}^t r_i \leq n$ and $r_i < n$. By our assumption, we can determine the subgroup of $M_{r_i}(K)$, $i=1, \cdots, t$ and we can determine N as a subgroup of a direct product of such groups. Conversely if N_i is a nilpotent subgroup of $M_{r_i}(K)$, then $N_1 \times \cdots \times N_t$ is a subgroup of $M_n(K)$. Assume that $V_K(N) = M_n(K)$. In this case N is not abelian, and let S_p be a non-abelian Sylow p-subgroup of N. Since $V_K(S_p)$ is a semi-simple subalgebra of $V_K(N) = M_n(K)$, by the Schur's commutation theorem $V_K(S_p) \cong \prod_{i=1}^r M_{n_i}^{m_i}(K)$ and the commutant of $V_K(S_p)$ is isomorphic to $\prod_{i=1}^r M_{m_i}^{n_i}(K)$, where $\sum_{i=1}^r n_i m_i = n$ and

$$M_{n_i}^{m_i}(K) = \left\{ \begin{pmatrix} A & & 0 \\ & \cdot & \\ 0 & & A \end{pmatrix} \in M_{n_i m_i}(K) \mid A \in M_{n_i}(K) \right\}.$$

Since S_p is not abelian, we have $n_i > 1$ for at least one $1 \le i \le r$. Hence

M. HIKARI

 $V_{K}(O_{p'}(N)) \neq M_{n}(K)$, so such groups can be determined by the assumption. On the other hand by (1.6) we can determine S_{p} . Hence the nilpotent subgroups of $M_{n}(K)$ can be determined inductively.

References

- [1] S. Amitsur, Finite subgroups of division rings, Trans. Amer. Math. Soc., 80 (1955), 361-386.
- [2] L. Dornhoff, Group representation theory (Part A), Dekker, 1971.
- [3] B. Fein, B. Gordon and J.H. Smith, On the representation of -1 as a sum of two squares in an algebraic number field, J. Number Theory, 3 (1971), 310-315.
- [4] W. Feit, Characters of finite groups, Benjamin, 1967.
- [5] M. Hikari, Multiplicative p-subgroups of simple algebras, Osaka J. Math., 10 (1973), 369-374.

Michitaka HIKARI

Department of Mathematics Tokai University Hiratsuka, Kanagawa Japan