
J. Math. Soc. Japan
Vol. 28, No. 3, 1976

Note on the positive definite integral quadratic lattice

By Michio OZEKI

(Received July 4, 1973)
(Revised Jan. 23, 1976)

\S 0. Introduction.

By a quadratic lattice $L$ we understand a finitely generated module over
$Z$, the ring of rational integers in which a metric is given in the sense of
M. Eichler [2]. The bilinear form associated to the metric is denoted by
$(x, y)$ where $x$ and $y$ are elements of $L$ . If for any $x\neq 0$ in $L$ we have $(x, x)$

$>0$ , we shall say $L$ is positive definite, and if it holds that $(x, y)\in Z$ for any
pair $x$ and $y$ in $L$ , we shall say $L$ is integral. Since we shall confine ourselves
to the positive definite integral quadratic lattice only, we shall call such a
lattice merely a lattice. Since for any element $x$ of a lattice $L(x, x)$ is a
positive rational integer, we shall say $x$ is m-vector when $(x, x)$ is equal to a
positive rational integer $m$ . It is known that the sublattice generated by 2-
vectors in a lattice plays an important role in the classification theory of posi-
tive definite integral quadratic lattices (E. Witt [8], M. Kneser [4], H.-V.
Niemeier [5]).

The first purpose of this paper is to show that when $n$ is an integer not
smaller than 17 among all lattices of fixed rank $n$ a lattice has the largest
number of 2-vectors if and only if $L$ contains $D_{n}$ or $L$ is equal to $B_{n}(D_{n}$ and
$B_{n}$ are defined in \S 1). Roughly speaking, the set of 2-vectors and l-vectors
in a lattice exibits the order of the subgroup generated by reflections in the
group of units of that lattice.

Our second purpose in this paper is to prove Theorem 2 which says that
if the determinant of a lattice $L$ exceeds $2^{n}$ , where $n$ equals to the rank of $L$ ,

then the rank of the sublattice of $L$ generated by 2-vectors is smaller than $n$ .
Though a fair part of the results in \S 2 is not new, we think it is not

worthless to expose it with abbreviated proofs because some of the standpoints
is not found in previous literatures as far as we know.

\S 1. Some basic notations and definitions.

We shall use $e_{1},$ $e_{2},$ $\cdots$ , $e_{m},$ $f_{1},$ $f_{2},$ $f_{k}$ or $g_{1},$ $\cdots$ , $g_{p}$ as orthonormal vectors
in an Euclidean space $R^{n}$ of sufficiently large dimension $n(n=1,2, 3, )$ . We



422 M. OZEKI

shall order $R^{n}’ s$ in a canonical manner;

$ R^{1}\subset R^{2}\subset R^{3}\subset\ldots$

Let $L_{1}$ and $L_{2}$ be two lattices, we understand by an isomorphism a bijec-
tive Z-linear map $\sigma$ from $L_{1}$ to $L_{2}$ satisfying the following condition;

$(\sigma x, \sigma y)=(x, y)$

holds for any pair $x,$ $y$ in $L_{1}$ . Since $Z$ is a principal ideal ring, any finitely
generated torsion free Z-module is a free module of finite rank, then a lattice
has Z-basis. Let $L$ be a lattice of rank $n$ and let $v_{1},$

$\cdots$ , $v_{n}$ be its basis, then
any element $x$ in $L$ can be written in the form;

$x=\sum_{i=1}^{n}\xi_{i}v_{i}$ $\xi_{i}\in Z$ .

If we think $\xi_{i}’ s$ as scalar variables, the form

$(x, x)=,\sum_{t_{J}=1}^{n}(v_{i}, v_{j})\xi_{i}\xi_{j}$

becomes a quadratic form. We shall denote this quadratic form by $Q(L)$ , and
this is uniquely determined from $L$ up to integral equivalence. The deter-
minant of the matrix $\Vert(v_{i}, v_{j})\Vert,$ $i,$ $j=1,$ $\cdots$ , $n$ is called the determinant of $Q(L)$

or of $L$ . We denote it by $d(L)$ . We should remark that $Q(L)$ is always a
positive definite integral quadratic form, because $L$ is integral and has a posi-
tive metric. Conversely any positive definite integral quadratic form is ex-
pressed as $Q(L)$ for some lattice in $R^{n}$ , and to two integrally equivalent quad-
ratic forms correspond isomorphic lattices. (As to the precise exposition see
[2].) An isomorphism from $L$ onto itself is called an automorphism or a unit
of $L$ . All the automorphisms of $L$ form a group and we denote it by Aut $(L)$ .
Let $L$ be a lattice, then the dual $L$ “ of $L$ is defined by;

$L^{\#}=\{y\in L\otimes_{Z}Q|(x, y)\in Z, \forall x\in L\}$ ,

where $L\otimes_{Z}Q$ is the tensor product of $L$ and $Q$ , the field of rational numbers,
over $Z$. This lattice contains $L$ and is not necessarily integral but this is
useful for our later consideration.

We shall make a list of basic lattices namely;

$A_{n}=[e_{1}-e_{2}, e_{2}-e_{3}, \cdots , e_{n}-e_{n+1}]_{Z}$ .
This is a lattice in $R^{n+1}$ of rank $n$ with its generater $e_{1}-e_{2},$ $\cdots$ , $e_{n}-e_{n+1}$ over
$Z$. In the following by $[$ $]_{Z}$ we shall express similar meaning as above.

$B_{n}=[e_{1}, , e_{n}]_{Z}$ .
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In the usual expression in the theory of Lie algebra, $B_{n}$ may be differently
expressed, but both expressions are equivalent in the sense of quadratic lattice.

$D_{n}=[e_{1}-e_{2}, \cdots , e_{n- 1}-e_{n}, e_{n-1}+e_{n}]_{Z}$ , $n\geqq 4$ .
15

$E_{6}=[e_{1}-e_{2}, \cdots , e_{4}-e_{5}, e_{4}+e_{5’\overline{2}}(\sum_{i=1}e_{i}+\sqrt{3}e_{6})]_{Z}$ .

$E_{7}=[e_{1}-e_{2}, \cdots e_{5}-e_{6}, e_{5}+e_{6}, \frac{1}{2}(\sum_{i=1}^{6}e_{i}+\sqrt{2}e_{7})]_{Z}$ .

18
$E_{8}=[e_{1}-e_{2}, \cdots , e_{6}-e_{7}, e_{6}+e_{7’\overline{2}}\sum_{l=1}e_{i}]_{Z}$ .

We shall call these lattices basic lattices, these are all integral lattices but
have different determinants. In the basic lattices the generators used in the
above are also the basis of those lattices and we shall call them canonical
basis. For each one of these basic lattices the structure of its automorphism
group is known and [1] is a standard reference. A lattice $L$ is an orthogonal
sum of sublattices $L_{1}$ and $L_{2}$ of $L$ and we write as $L=L_{1}\oplus L_{2}$ if any $x$ in $L$ is
expressed as $x=x_{1}+x_{2}$ with $x_{1}\in L_{1}$ and $x_{2}\in L_{2}$ such that the equation $(x_{1}, x_{2})$

$=0$ holds for any $x_{1}\in L_{1}$ and for any $x_{2}\in L_{2}$ . A lattice $L$ is called irreducible
if there is no non-trivial orthogonal decomposition. Otherwise $L$ is called
reducible.

\S 2. Some preliminary results.

LEMMA 2-1. If a lattice $L$ has a l-vector $x$ , then $L$ is reducible and is ex-
Pressed as $L=Zx\oplus L_{1}$ , where $Zx$ is a rank one sublattice of $L$ generated by $x$

over $Z$.
PROOF. Let $\alpha_{1},$

$\cdots$ , $\alpha_{n}$ be the basis of $L$ . Then $L$ is also generated by
$\alpha_{1}-(\alpha_{1}, x)x,$ $\cdots$ , $\alpha_{n}-(\alpha_{n}, x)x$ and $x$ . Now we see that;

$(\alpha_{i}-(\alpha_{i}, x)x,$ $x$) $=(\alpha_{i}, x)-(\alpha_{i}, x)(x, x)=0$ , $i=1,$ $\cdots$ $n$ .
Set $L^{\prime}=[\alpha_{1}-(\alpha_{1}, x)x, \cdots , \alpha_{n}-(\alpha_{n}, x)x]_{Z}$ . Then we have $L=L^{\prime}\oplus Zx$ . Q. E. D.

For the given lattice $L$ by repeating use of Lemma 2-1 we get the follow-
ing decomposition;

$L=Zx_{1}\oplus\cdots\oplus Zx_{r}\oplus L^{\prime}$ ,

where $x_{i}’ s$ are mutally orthogonal l-vectors and $Zx_{i}$ is a rank one sublattice
of $L$ generated by $x_{i}$ over $Z$ and $L^{\prime}$ does not contain any l-vector. Appar-
ently $Zx_{1}\oplus\cdots\oplus Zx_{r}$ is isomorphic to $B_{r}$ , so we can write without loss of gener-
ality as follows;

$L=B_{r}\oplus L^{\prime}$ . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
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where $L^{\prime}$ is l-vector free. As to 2-vectors, we must take precise care. After
the chain of lemmas we shall establish the following;

PROPOSITION 2-2. If a lattice $L$ is generated by 2-vectors over $Z$, then $L$

has basis consisting of 2-vectors.
To establish the above proposition we pose the following problem;
(P) When $L$ is a basic lattice or an orthogonal sum of basic lattices and

$x$ is a 2-vector with the condition that $(x, y)\in Z$ holds for any $y\in L$ (henceforth

we shall write this condition symbolically as $(x, L)\subseteqq Z)$ , how becomes the
lattice $L+Zx$, generated by $L$ and $x$ over $Z$ ?

The answer to this problem is that $L+Zx$ is also isomorphic to a basic
lattice or an orthogonal sum of basic lattices as the following consideration
shows. First we can set $x=u+v$ with $(u, L)\subseteqq Z,$ $(u, v)=0$ and $v$ is orthogonal
to $L$ (we shall write this condition as $(v,$ $L)=0$). For the basic lattice we have
the following;

LEMMA 2-3. (i) Let $L$ be a basic lattice other than $A_{n}$ type and $u$ be an
element of $R^{m}(\supseteqq L)$ such that $(u, L)\subseteqq Z$, then $u$ can be taken from $L^{\#}$ , (ii) in
the case of $A_{n}(n\supseteqq 1)$ an element $u$ of $R^{m}(\supseteqq A_{n})$ such that $(u, A_{n})\subseteqq Z$ can be
taken from $R^{n+1}$ satisfying certain condition specified in the prOOf.

PROOF. If $L$ be a basic lattice other than $A_{n}$ type, then we can say that;

$L\otimes_{Z}R=R^{k}$ ,

where $k$ is the rank of $L$ . In this case $u$ can be taken from $R^{k}$ and we write
$u=\sum_{l=1}^{k}a_{i}w_{i}$ , where $a_{i}\in R(1\leqq i\leqq k)$ and $w_{i}(1\leqq i\leqq k)$ are the canonical basis of
$L$ . The condition $(u, L)\subseteqq Z$ implies that;

$(u, w_{i})\in Z$ for $i=1,$ $\cdots$ , $k$ . $\cdot$ . . . . . . . . . . . . . . . (2)

In each case of basic lattice $L$ other than $A_{n}$ type we can easily verify that
(2) implies $a_{i}\in Q(1\leqq i\leqq k)$ and then $u=\sum_{l=1}^{k}a_{i}w_{i}$ belongs to $L^{\#}$ . The part (i)

of the lemma is thus proved. In case of $A_{n},$ $A_{n}$ can be embedded into $B_{n+1}$

and without loss of generality we can take $u$ from $B_{n+1}\otimes_{Z}R=R^{n+1}$ and we put

$u=\sum_{i=1}^{n+1}a_{i}e_{i}$ with $a_{i}\in R(1\leqq i\leqq n+1)$ , where $e_{1},$ $e_{2},$
$\cdots$ , $e_{n+1}$ are the canonical basis

of $B_{n+1}$ . The given condition $(u, A_{n})\subseteqq Z$ is equivalent to the condition;

$(u, e_{i}-e_{i+1})=a_{i}-a_{i+1}\in Z$ for $i=1,$ $\cdots$ , $n$ .

We rewrite this condition as;

$a_{1}\equiv a_{2}\equiv\cdots\equiv a_{n+1}$ $(mod 1)$ . $\cdot$ . . . . . . . . . . . . . . . . . (3)

The part (ii) of the lemma is proved. Q. E. D.
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Let $L=L_{1}\oplus\cdots\oplus L_{t}$ be an orthogonal sum of basic lattices and $x=u+v$ be
a 2-vector in the problem (P) such that $(u, L)\subseteqq Z,$ $(u, v)=0$ and $(v, L)=0$ , then
we can write $u$ as $u=u_{1}+\cdots+u_{t}$ with the following conditions;

$(u_{i}, u_{j})=0$ $(i\neq j)$ ,

$(u_{i}, L_{j})=0$ $(i\neq j)$ and . . . . . . . . . . . . . . . . . . (4)

$(u_{i}, L_{i})\subseteqq Z$ $i=1,$ $\cdots$ , $t$ .

We shall justify the above settings. If $L_{i}$ is a basic other than $A_{n}$ type, then
we know $L_{i}\otimes_{Z}R=R^{n_{i}}$ , where $n_{i}$ is the rank of $L_{i}$ . If $L_{i}$ is $A_{n}$ type, then we
can not say that $A_{n}\otimes_{Z}R=R^{n}$ as far as we adopt $[e_{1}-e_{2}, \cdots , e_{n}-e_{n+1}]_{Z}$ as the
model of $A_{n}$ . But there is another model of $A_{n}$ , namely;

$\tilde{A}_{n}=[\sqrt{2}e_{i},$ $-\sqrt{\frac{1}{2}}e_{1},$ $+\sqrt{\frac{3}{2}}e_{2},$ $\cdots$ $-\sqrt{\frac{r-1}{r}}e_{r- 1}+\sqrt{\frac{r+1}{r}}e_{r},$ $\cdots$

... , $-\sqrt{\frac{7l-1}{n}}e_{n- 1}+\sqrt{\frac{n+1}{n}}e_{n}]_{Z}$ .

It is easily seen that;
$[e_{1}-e_{2}, ’ e_{n}-e_{n+1}]_{Z}\cong\tilde{A}_{n}$ .

This time we can say that;

$\tilde{A}_{n}\otimes_{Z}R=R^{n}$ and rank $A_{n}=n$ .

If we can use $\tilde{A}_{n}$ as the model of $A_{n}$ type, then the settings (4) can be easily
justified because $L_{i}$ and $L_{j}(i\neq j)$ are separated by the ambient spaces $R^{n_{i}}$ and
$R^{n_{j}}$ , where $n_{i}$ (resp. $n_{j}$ ) is the rank of $L_{i}$ (resp. $L_{j}$). Though $A_{n}$ is theoretically
simpler model than $A_{n}=[e_{1}-e_{2}, \cdots , e_{n}-e_{n+1}]_{Z}$ , the calculations attached to $\tilde{A}_{n}$

are more complicated than those of $A_{n}$ and we shall not use $A_{n}$ . Let $L$ be a
basic lattice other than $A_{n}$ type, then it is known that each element $\sigma$ of
Aut $(L)$ is naturally extended to an orthogonal transformation of $L\otimes_{Z}R=R^{k}$ ,
where $k$ is the rank of $L$ . In $A_{n}$ case Aut $(A_{n})$ is generated by the reflections
with respect to 2-vectors in $A_{n}$ and $(-1)$ xidentity, and each element of
Aut $(A_{n})$ is extended to an orthogonal transformation of $B_{n+1}\otimes_{Z}R=R^{n+1}$ . This
remark will be used later.

Let $L$ be a lattice and $x=u+v$ be a 2-vector in the problem (P) (the de-
composition of $x$ is like as above). Since our metric is positive, $(x, x)=2$ im-
plies;

$(u, u)\leqq 2$ . $\cdot$ . . . . . . . . . . . . . . . . . . . . . . . . . (5)

Besides $A_{n}$ type the vector $u$ can be taken from $L$ by Lemma 2-3. As to
$A_{n}$ type we must take precise care and we shall discuss the case of $A_{n}$ later.
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We shall call an element $u$ of $L^{\#}$ ( $L$ is a lattice) is a minimal representative
(we shall abbreviate as $m$ . $r.$) of $L^{\#}$ modulo $L$ if $u$ satisfies the following con-
dition;

$(u, u)\leqq(u+y, u+y)$ $\forall y\in L$ .
When $L$ is a basic lattice, the structure of $L^{\#}/L$ is known and Niemeier [5]

remarked at pages 148-150 the following (the notations are a little different
from his);

LEMMA 2-4. (i) $A_{n}^{\#}/A_{n}\cong Z/(n+1)Z$ and complete $m$ . $r$. of $A_{n}^{\#}$ modulo $A_{n}$

are given by $0$ and $u_{r}=\frac{r}{n+1}\sum_{l-1}^{n-r+1}e_{i}-\frac{n-r+1}{n+1}\sum_{i=n-r+2}^{n+1}e_{i}$ for $r=1,$ $\cdots$ , $n$ and by

calculation we have;

$(u_{r}, u_{r})=\frac{r(n+1-r)}{n+1}$ for $1\leqq r\leqq n$ ,

(ii) $D_{2n+1}^{\#}/D_{2n+1}\cong Z/4Z(n\geqq 2)$ and complete $m$ . $r$. of $D_{2n+1}^{\#}$ modulo $D_{2n+1}$

are $u_{0},$
$u_{1}=_{2}^{1^{2n}}--z_{-,-1}^{+1}e_{i},$ $u_{2}=e_{2n+1}$ and $u_{3}=\frac{1}{2}\sum_{i=1}^{2n+1}e_{i}-e_{2n+1}$ and we have;

$(u_{1}, u_{1})=(u_{3}, u_{3})=\frac{2n+1}{4}$ and $(u_{2}, u_{2})=1$ ,

(iii) $D_{2n}^{\#}/D_{2n}\cong Z/2Z\times Z/2Z(n\geqq 2)$ and complete $m$ . $r$. of $D_{2n}^{\#}$ modulo $D_{2n}$

are $u_{0}=0,$ $u_{1}=\frac{1}{2}\sum_{i=1}^{2n}e_{i},$ $u_{2}=e_{2n}$ and $u_{3}=\frac{1}{2}\sum_{i=1}^{2n}e_{i}-e_{2n}$ and we haue;

$(u_{1}, u_{1})=(u_{3}, u_{3})=\frac{2n}{4}$ and $(u_{2}, u_{2})=1$ ,

(iv) $E_{8}^{*}=E_{8}$ , (v) $B_{n}^{\#}=B_{n}$ ,

(vi) $E_{7}^{\#}/E_{7}\cong Z/2Z$ and compleie $m$ . $r$. of $E_{7}$ modulo $E_{7}$ are $0$ and

$e_{6}+\frac{e_{7}}{\sqrt{2}}$ and we have;

$(e_{6}+\frac{e_{7}}{\sqrt{2}},$ $e_{6}+\frac{e_{7}}{\sqrt{2}})=\frac{3}{2}$ ,

(vii) $E_{6}^{\#}/E_{6}\cong Z/3Z$ and complete $m$ . $r$ . of $E_{6}^{\#}$ modulo $E_{6}$ are $0,$ $e_{5}+\frac{e_{6}}{\sqrt{3}}$ and

$e_{5}-\frac{e_{6}}{\sqrt{3}}$ and we have;

$(e_{5}+\frac{e_{6}}{\sqrt{3}},$ $e_{5}+\frac{e_{6}}{\sqrt{3}})=(e_{5}-\frac{e_{6}}{\sqrt{3}},$ $e_{5}-\frac{e_{6}}{\sqrt{3}})=\frac{4}{3}$ .

REMARK 1. The values $(u_{r}, u_{r})(1\leqq r\leqq n)$ of $u_{r},$ $m$ . $r$ . of $A_{n}^{\#}$ modulo $A_{n}$

are necessary for our later argument and we give some as the table.
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The following lemma may simplify later arguments.
LEMMA 2-5. Let $L=L_{1}\oplus\cdots\oplus L_{t}(t\geqq 1)$ be an orthogonal sum of basic lat-

tices and $x=u+v$ and $x^{\prime}=u^{\prime}+v^{\prime}$ be a 2-vectors in the problem(P), where $u=$

$u_{1}+\cdots+u_{t}$ and $u^{\prime}=u_{1}^{\prime}+\cdots+u_{t^{\prime}}$ be the decompOsitiOns of $u$ and $u^{\prime}$ in the
manner of (4) and $(v, L)=(v^{\prime}, L)=0$ and $(v, u^{\prime})=(v^{\prime}, u)=0$ .

(i) It is clear that Aut $(L)$ contains the direct prOduct Aut $(L_{1})\times Aut(L_{2})\times$

... $\times Aut(L_{t})$ as the subgroup. If there exist $\sigma_{i}\in Aut(L_{i})$ ($i=1,$ $\cdots$ , t) such that
$u_{i^{\prime}}=\sigma_{i}u_{i}$ $(i=1, \cdots , t)$ , then $L+Zx$ is isomorphic to $L+Zx^{\prime}$ .

(ii) If there exist $w_{i}\in L_{i}$ ($i=1,$ $\cdots$ , t) such that $u_{i^{\prime}}=u_{i}+w_{i}$ and $(u_{i^{\prime}}, u_{i^{\prime}})=$

$(u_{i}, u_{i})$ for $i=1,$ $\cdots$ , $t$ , then $L+Zx$ is isomorphic to $L+Zx^{\prime}$ .
(iii) If the equation $(u_{i}, y_{i})=(u_{i^{\prime}}, y_{i})$ holds for any element $y_{i}$ of $L_{i}$ and for

$i=1,$ $\cdots$ , $t$ , then $L+Zx$ is isomorphic to $L+Zx^{\prime}$ .
PROOF OF (i). Let $y=y_{1}+\cdots+y_{t}$ be the general element of $L$ with $y_{i}\in L_{i}$

$(1\leqq i\leqq t)$ and $\varphi$ be the mapping from $L+Zx$ to $L+Zx^{\prime}$ defined by;

$\varphi(x)=x^{\prime}$ ,

$\varphi(y)=\sum_{i=1}^{t}\sigma_{i}y_{i}$

and
$\varphi(y+kx)=\varphi(y)+k\varphi(x)$ for $k\in Z$ ,

then we can easily verify that $\varphi$ is an isomorphism from $L+Zx$ to $L+Zx^{\prime}$ .
PROOF OF (ii). By the given condition we can say $L+Zx=L+Zx^{\prime\prime}$ , where

$x^{\prime\prime}=\sum_{i=1}^{t}u_{i^{\prime}}+v$ . Let $\varphi$ be the mapping from $L+Zx^{\prime\prime}$ to $L+Zx^{\prime}$ defined by;
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$\varphi(y)=y$ for $\forall y\in L$ ,

$\varphi(x^{\prime})=x^{\prime}$

and
$\varphi(y+kx^{\prime\prime})=\varphi(y)+k\varphi(x^{\prime\prime})$ for $\forall k\in Z$ ,

then we can say that $\varphi$ is an isomorphism from $L+Zx^{\prime\prime}$ to $L+Zx^{\prime}$ .
PROOF OF (iii). Let $\varphi$ be the mapping from $L+Zx$ to $L+Zx^{\prime}$ dePned by;

$\varphi(y)=y$ for $\forall y\in L$ ,

$\varphi(x)=x^{\prime}$

and
$\varphi(y+kx)=\varphi(y)+k\varphi(x)$ for $\forall k\in Z$ ,

then we can say that $\varphi$ is an isomorphism. Q. E. D.
We shall treat $u$ part of 2-vector $x$ in $A_{n}$ case (described in Lemma 2-3 (ii))

more precisely. By Lemma 2-3 we can set $u=\sum_{i=1}^{n+1}a_{i}e_{i}$ with the conditions
$a_{i}\in R(1\leqq i\leqq n+1)$ and (3). Moreover $u$ satisPes the inequality (5), so we have;

$(u, u)=\sum_{i=1}^{n+1}a_{i}^{2}\leqq 2$ . $\cdot$ . . . . . . . . . . . . . . . . . . . . . (6)

(I) Suppose that one of $a_{i}’ s$ is an integer, then by (3) each $a_{i}$ is also
integer for $i=1,$ $\cdots$ , $n+1$ . By the inequality (6) at most two of $a_{i}’ s$ are not
zero.

$(I)-(i)$ When exactly two of $a_{i}’ s$ are not zero (say $a_{i_{1}}$ and $a_{i_{2}},$
$i_{1}\neq i_{2}$), then

we can say that $|a_{i_{1}}|=|a_{i_{2}}|=1$ and $x=u=a_{i_{1}}e_{i_{1}}+a_{i_{2}}e_{i_{2}}$ . Since we aim the
solution of the problem (P) and the lattice $L+Zx$ is identical to $L+Z(-x)$ , we
can assume that $a_{i_{1}}=1$ . $u$ must be one of the forms $e_{i_{1}}-e_{i_{2}}$ and $e_{t_{1}}+e_{i2}$ . Since
there exists an element $w$ (resp. $w^{\prime}$ ) of $A_{n}$ such that $w+e_{i_{1}}-e_{i_{2}}=e_{n}-e_{n+1}$ (resp.
$w^{\prime}+e_{i1}+e_{i_{2}}=e_{n}+e_{n+1})$ and $(e_{i_{1}}-e_{i_{2}}, e_{i_{1}}-e_{i_{2}})=(e_{n}-e_{n+1}, e_{n}-e_{n+1})$ (resp. $(e_{i_{1}}+e_{i_{2}}$ ,
$e_{i_{1}}+e_{i_{2}})=(e_{n}+e_{n+1}, e_{n}+e_{n+1}))$ , by Lemma 2-5, (ii) we can set $u=e_{n}-e_{n+1}$ (resp.
$e_{n}+e_{n+1})$ . When $x=u=e_{n}-e_{n+1}$ , then $A_{n}+Zx=A_{n}$ and we shall neglect this
case henceforth. When $x=u=e_{n}+e_{n+1}$ , then $A_{n}+Zx=D_{n+1}(n\geqq 3),$ $A_{2}+Z(e_{2}+e_{3})$

$\cong A_{3}$ and $A_{1}+Z(e_{1}+e_{2})\cong A_{1}\oplus A_{1}$ . We shall call this vector $e_{n}+e_{n+1}$ singular
vector of first kind for $A_{n}$ .

$(I)-(ii)$ When only one $a_{i_{0}}(1\leqq i_{0}\leqq n+1)$ is not zero, then we have $|a_{io}|=1$

and $u=\pm e_{i_{0}}$ . Since -lXidentity is an element of Aut $(A_{n})$ , by Lemma 2-5,
(i) we can set $u=e_{i_{0}}$ . Since $e_{i_{0}}-e_{n+1}\in A_{n}$ and $(e_{i_{0}}, e_{i_{0}})=(e_{n+1}, e_{n+1})$ , by Lemma
2-5, (ii) we can set $u=-e_{n+1}$ . We shall call this vector singular vector of
second kind for $A_{n}$ .

(II) Suppose that one of $a_{i}’ s$ is not integer, then by (3) each $a_{i}$ is not
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integer for $i=1,$ $\cdots$ , $n+1$ . In this case we can take $a_{1}$ as positive by Lemma
2-5 (ii). By (3) we can set $a_{i}$ as;

$a_{i}=a_{1}+k_{i}$ $(2\leqq i\leqq n+1)$ ,

where $k_{i}\in Z$ and $a_{1}\not\in Z$.
By the inequality (6) at most one of $a_{i}’ s$ has the absolute value larger

than one and less than two.
$(II)-(i)$ When each $|a_{i}|(1\leqq i\leqq n+1)$ takes the value between zero and one,

we can set as;

$0<a_{1}<1$

and
$a_{i}=a_{1}+k_{i}$ with $k_{i}=0$ or $-1$ for $i=2,$ $\cdots$ , $n+1$ .

Let $a_{1}$ appear $m$ times and $a_{1}-1$ appear [ times among $a_{i}’ s$ with $l+m=n+1$
and $l,$ $m\geqq 0$ , then taking Lemma 2-5, (i) into account we can set;

$u=a_{1}(e_{1}+\cdots+e_{m})+(a_{1}-1)(e_{m+1}+\cdots+e_{m+l})$ . $\cdot$ . . . . . . . . . (7)

In the case that $m<l$ , we take $-u$ instead of $u$ (this is justified by Lemma
2-5, $(i))$ , so that we can assume that $m\geqq l$ . By (7) we have;

$(u, u)=ma_{1}^{2}+l(a_{1}-1)^{2}$

$=(m+l)(a_{1}-\frac{l}{m+l})^{2}+\frac{ml}{m+l}$

$\geqq\frac{ml}{m+l}$ . $\cdot$ . . . . . . . . . . . . . (8)

In (8) the equality holds if and only if $a_{1}=\frac{l}{m+l}$ and then $u$ is a $m$ . $r$ . of $A_{n}^{*}$

modulo $A_{n}$ . We shall call the vector $u$ of the form (7) satisfying the inequality
(6) the singular vector of third kind for $A_{n}$ . In this case $a_{1}$ may vary con-
tinuously in the interval which is determined from (6). The vector $u$ of the

form (7) for fixed $m$ and $l$ with $a_{1}=\frac{l}{m+1}$ will be called the bottom vector
(as we remarked above this vector is a $m$ . $r$ . of $A_{n}^{\#}$ modulo $A_{n}$).

$(II)-(ii)$ When only one $|a_{i}|$ lies between one and two and other $|a_{i}|s$ lie
between zero and one, then by Lemma 2-5, (i) we can set as;

$1<a_{1}<2$

and
$a_{i}=a_{1}+k_{i}$ with $k_{i}=-1$ or $-2$ for $i=2,$ $\cdots$ , $n+1$ .

If there is a $k_{i_{0}}=-2$ , then we have;

$(u, u)=a_{1}^{2}+(a_{1}-2)^{2}$

$=2(a_{1}-1)^{2}+2>2$ .
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This contradicts the inequality (6), so $u$ must be of the form;

$u=a_{1}e_{1}+(a_{1}-1)(e_{2}+\cdots+e_{n+1})$ , $\cdot$ . . . . . . . . . . . . . . . (9)

and
$(u, u)=a_{1}^{2}+n(a_{1}-1)^{2}$

$>1$ . $\cdot$ . . . . . . . . . . . . . . . . . . . . . . . . . (10)

The vector $u$ of the form (9) satisfying the inequality (6) the singular vector
of fourth kind for $A_{n}$ . In the above we have enumerated the singular vectors
for the completeness of the discussion of type $A_{n}$ , but the following lemma
will show that we can manage the later discussions without singular vectors.

LEMMA 2-6. Let $L=L_{1}\oplus\cdots\oplus L_{t}$ be an orthogonal sum of basic lattices.
Let $x=u+v$ be a 2-vector in the Problem (P) and $u=u_{1}+\cdots+u_{t}$ be the decom-
position of $u$ in the manner of (4). If one of $L_{i}$ is of type $A_{n}$ (say $L_{1}=A_{n}$)

and $u_{1}$ is the singular vector of j-th kind $(2\leqq j\leqq 4)$ , then there exists a $m$ . $r$. $u_{1}^{\prime}$

of $A_{n}^{\#}$ modulo $A_{n}$ and a 2-vector $x^{\prime}=u^{\prime}+v^{\prime}$ with the following conditions;

$(u_{1}^{\prime}, u_{1}^{\prime})\leqq(u_{1}, u_{1})$ ,

$u^{\prime}=u_{1}^{\prime}+u_{2}+\cdots+u_{t}$ ,

$u_{1}^{f},$ $u_{2},$ $\cdots$ , $u_{t}$ and $L_{1},$ $\cdots$ , $L_{t}$ satisfies (4)

and
$L+Zx\cong L+Zx^{\prime}$ .

PROOF. When $u_{1}$ is the singular vector of second kind for $A_{n}$ , then we
put $u_{1}^{\prime}=\frac{1}{n+1}\sum_{i=1}^{n}e_{i}-\frac{n}{n+1}e_{n+1}=\frac{1}{n+1}\sum_{i=1}^{n+1}e_{i}-e_{n+1}$ and we have;

$(u_{1}^{\prime}, u_{1}^{\prime})=\frac{n}{n+1}<1=(u_{1}, u_{1})$ .

By Lemma 2-4, (i) $u_{1}^{f}$ is a $m$ . $r$ . of $A_{n}^{*}$ modulo $A_{n}$ and we put $u^{\prime}=u_{1}^{f}+u_{2}+$

$+u_{t}$ . We shall verify the third condition of the lemma. If $(u_{1}^{\prime}, L_{j})\neq 0$ for
some $j(2\leqq j\leqq t)$ , then there exists $b$ in $L_{j}$ such that $(u_{1}^{f}, b)\neq 0$ . By the assump-
tion of the lemma that $(u_{1}, L_{i})=0$ for $2\leqq i\leqq twe$ have $(u_{1}, b)=-(e_{n+1}, b)=0$ and

consequently $(u_{1}^{\prime}, b)=\frac{1}{n+1}(\sum_{i=1}^{n\neq 1}e_{i}, b)\neq 0$ . So we have;

$(\sum_{i=1}^{n\neq 1}e_{i}, b)=(\sum_{i=1}^{n}e_{i}, b)+(e_{n+1}, b)$

$=(\sum_{i=1}^{n}e_{i}, b)\neq 0$ .

Hence we can write $b$ as ;
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$b=\sum_{t=1}^{n}a_{i}e_{i}+b^{f}$ ,

where $a_{i}\in R$ and $(b^{\prime}, e_{i})=0$ for $i=1,$ $\cdots$ , $n$ and $a_{i_{0}}\neq 0$ for some $i_{0}(1\leqq i_{0}\leqq n)$ ,
and we have $(e_{i_{0}}-e_{n+1}, b)=(e_{i_{0}}, b)=a_{to}\neq 0$ . But $e_{i_{0}}-e_{n+1}$ belongs to $A_{n+1}$ . This
contradicts to the assumption of the lemma, that is, $(A_{n}, L_{j})=0$ , so we can
conclude that $u_{1}^{\prime},$

$u_{2},$ $\cdots$ , $u_{t}$ and $L_{1},$ $\cdots$ , $L_{t}$ satisfy the second condition of (4).
By the similar reasoning we can say that;

$(u_{1}^{\prime}, u_{j})=0$ for $2\leqq i\leqq t$ ,

and consequently the first condition in (4) holds for $u_{1}^{\prime},$
$u_{2},$ $\cdots$ , $u_{t}$ . We know;

$(u_{1}, e_{r}-e_{r+1})=(u_{1}^{\prime}, e_{r}-e_{r+1})$ for $1\leqq r\leqq n$ . $\cdot$ . . . . . . . . . . . (11)

The above equations (11) implies $(u_{1}^{\prime}, L_{1})\subseteqq Z$, and we can verify the last con-
dition in (4). It remains to prove the last condition of the lemma. Since we
know $(u_{1}^{\prime}, u_{1}^{\prime})<(u_{1}, u_{1})$ , we get $(u^{\prime}, u^{\prime})<(u, u)$ . Let $v^{f}$ be determined so that
the conditions, $(u_{1}^{\prime}, v^{\prime})=(u_{2}, v^{\prime})=\ldots=(u_{t}, v^{\prime})=0,$ $(L_{1}, v^{\prime})=(L_{2}, v^{\prime})=$ $=(L_{t}, v^{\prime})$

$=0$ and $x=u^{\prime}+v^{\prime}$ is a 2-vector, are all satisfied. The choice of such $v^{\prime}$ is
always possible in a sufficiently large Euclidean space. Since the assumptions
of Lemma 2-5, (iii) is satisfied, we can conclude that;

$L+Zx\cong L+Zx^{\prime}$ .
Thus we have proved the lemma in the case of the singular vector of second
kind.

When $u_{1}$ is the singular vector of third kind for $A_{n}$ , then we take the
bottom vector as $u_{1}^{f}$ and the process of the proof is similar to that in the
case of the singular vector of second kind and we omit it. The case where
$u_{1}$ is the singular vector of fourth kind is proved in the similar manner and
we also omit it for the sake of brevity. Q. E. D.

When we consider the problem (P) in the situation that $L=L_{1}\oplus\cdots\oplus L_{t}$ is
an orthogonal sum of basic lattices and $x=u+v$ is a 2-vector such that $u=u_{1}+$

$+u_{t}$ is the decomposition of $u$ in the manner of (4). If some of $L_{i}’ s$ are $A_{n}$

type and $u_{i}’ s$ are the singular vectors of j-th kind $(2\leqq j\leqq 4)$ , then by repeating
use of Lemma 2-6 we can replace such $u_{i}’ s$ by $m$ . $r$ . of $A_{n}$ modulo $A_{n}$ . If in
the decomposition of $u=u_{1}+\cdots+u_{t}$ the singular vector of the first kind for
$A_{n}$ appears (say $u_{1}$), then by the fact $(u_{1}, u_{1})=2$ we can say $u_{2}=\ldots=u_{t}=0$ ,
$x=uandL+Zx=(L_{1}+Zx)\oplus L_{2}\oplus\cdots\oplus L_{t}$ . $A_{n}+Z(e_{n}+e_{n+1})$ is already determined.
In this case $L_{2},$ $\cdots$ , $L_{t}$ are irrelevant to the problem (P). In general we shall
call a component $L_{i}$ of $L=L_{1}\oplus\cdots\oplus L_{t}$ , an orthogonal sum of basic lattices,
irrelevant to the problem (P) with respect to a 2-vector $x$ if $ L+Zx=L_{i}\oplus(L_{1}\oplus$

$\oplus L_{i-1}\oplus L_{i+1}\oplus\cdots\oplus L_{t}+Zx)$ holds. We call a 2-vector $x$ trivial for $L$ if
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$L+Zx=L$ holds. This happens when and only when $x$ belongs to $L$ .
LEMMA 2-7. Let $L=L_{1}\oplus\cdots\oplus L_{t}$ be an orthogonal sum of basic lattices and

$x=u+v$ be a 2-vector in the problem(P) and $u=u_{1}+$ $+u_{t}$ be the decompOsitiOn
of $u$ in the manner of (4). If one of $E_{8}$ and $B_{n}$ appears among $L_{i}’ s$ , then it is
irrelevant to the problem(P) or $x$ is trivial for $L$ .

PROOF. If say $L_{1}$ is $E_{8}$ , then by Lemma 2-4, (iv) $u_{1}$ belongs to $E_{8}$ and by
the inequality (5) $u_{1}$ satisfies $(u_{1}, u_{1})\leqq 2$ . Since any element $y$ of $E_{8}$ satisfies
$(y, y)\equiv 0(mod 2),$ $(u_{1}, u_{1})$ is either $0$ or 2. When $(u_{1}, u_{1})$ is $0,$ $u_{1}$ is zero and
$L+Zx=E_{8}\oplus(L_{2}\oplus\cdots\oplus L_{t}+Zx)$ . This implies that $E_{8}$ is irrelevant. When
$(u_{1}, u_{1})=2,$ $u_{1}$ is a 2-vector in $E_{8}$ and $u_{2}=\ldots=u_{t}=v=0$ . This implies that
$x=u_{1}$ is trivial for $L$ . If $L_{1}$ is $B_{n}(n\geqq 1)$ (by (1) and by the fact $B_{n_{1}}\oplus B_{n_{2}}=$

$B_{n1+n_{2}}$ we can assume without loss of generality that each $L_{t}(2\leqq i\leqq t)$ is not
of type $B_{n}$), then by Lemma 2-4, (v) $u_{1}$ belongs to $B_{n}$ and by the inequality
(5) $u_{1}$ satisfies $(u_{1}, u_{1})\leqq 2$ . Since $B_{n}$ contains both l-vector and 2-vector (the

latter occurs only when $n\geqq 2$), $(u_{1}, u_{1})$ is $0$ or 1 or 2. When $(u_{1}, u_{1})$ is $0,$ $u_{1}$ is
zero and in this case the lattice $L+Zx$ in (P) has the form $B_{n}\oplus(L_{2}\oplus\cdots\oplus L_{t}$

$+Zx)$ . This implies that $B_{n}$ is irrelevant to the problem. When $(u_{1}, u_{1})$ is 1,
$u_{2}=$ $=u_{t}=0$ and $v$ is such that $(v, v)=1$ bceause we assumed that each $L_{i}$

$(2\leqq i\leqq t)$ is not of type $B_{n}$ and hence $L_{i}(2\leqq i\leqq t)$ does not contain any l-vector.
In this case the lattice $L+Zx$ in (P) has the form $B_{n}\oplus L_{2}\oplus\cdots\oplus L_{t}\oplus B_{1}$ and $B_{n}$

is irrelevant to the problem (P). When $(u_{1}, u_{1})$ is 2, $u_{2}=\ldots=u_{t}=v=0$ and
$x=u_{1}$ belongs to $B_{n}$ (so we know $n\geqq 2$). Since $L+Zx=L,$ $x$ is trivial for $L$ .

Q. E. D.
From now on we can assume that neither $E_{8}$ nor $B_{n}$ appears as an ortho-

gonal component of the lattice $L$ for the problem (P).

LEMMA 2-8. Let $L$ be a basic lattice other than $B_{n}$ type and $L^{\#}$ be its. dual.
If an element $u$ of $L^{\#}$ is not $m$ . $r.$ , then we have;

$(u, u)\geqq 2$ ,

where the equality in the above estimate holds only if $u$ belongs to $L$ .
PROOF. Let $u_{0}$ be a $m$ . $r$ . of $L^{\#}$ modulo $L$ equivalent to $u$ modulo $L$ , then

there exists $y$ in $L$ such that $u_{0}=u+y$ and we have;

$(u, u)=(u_{0}-y, u_{0}-y)$

$=(u_{0}, u_{0})-2(u_{0}, y)+(y, y)$ .
Since $L$ is a basic lattice other than $B_{n},$ $L$ has basis consisting of 2-vectors
and $(y, y)$ is an integer divisible by 2 for each $y$ in $L$ . The value $(u_{0}, y)$ is
also an integer, so $(u, u)$ differs from $(u_{0}, u_{0})$ by a multiple of 2. Hence we
have;
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$(u, u)\geqq(u_{0}, u_{0})+2\geqq 2$ .
When $(u, u)$ is 2, then $(u_{0}, u_{0})$ is $0$ and $u_{0}=0$ . Such $u$ is equal to $y$ and $u\in L$ .

Q. E. D.
LEMMA 2-9. Let $L=L_{1}\oplus\cdots\oplus L_{t}$ be the orthogonal decompOsitiOn of a lattice

L. The element $u=u_{1}+\cdots+u_{t}$ , where $u_{i}$ is in $L_{i}^{\#}$ for $1\leqq i\leqq t$ , of $L^{\#}$ is a $m$ . $r$.
of $L^{*}$ modulo $L$ if and only if each $u_{i}$ is a $m$ . $r$. of $L_{i}^{\#}$ modulo $L_{i}(1\leqq i\leqq t)$ .

The proof of this lemma is easy and we omit it. The $m$ . $r$ . of each class
of $L^{\#}$ modulo $L$ is not necessarily unique, but we can prove the;

LEMMA 2-10. Let $L=L_{1}\oplus\cdots\oplus L_{t}$ be an orthogonal sum of basic lattices,
where each $L_{i}$ is not of type $B_{n}$ for $i=1,$ $\cdots$ , $t$ . Let $x=u+v$ and $x^{\prime}=u^{\prime}+v^{\prime}$ be
2-vectors for $L$ in the problem (P), where $u=u_{1}+u_{2}+\cdots+u_{t}$ and $u^{\prime}=u_{1}^{\prime}+u_{2}+$

... $+u_{t}$ are elements of $L^{\#}$ with $u_{i}\in L_{i}^{\#}(2\leqq i\leqq t)$ ond $u_{1}$ and $u_{1}^{f}\in L_{1}$ . If $u_{1}$

and $u_{1}^{\prime}$ are two $m$ . $r$ . of the same class of $L_{1}^{\#}$ modulo $L_{1}$ , then $L+Zx$ is isomor-
phic to $L+Zx^{\prime}$ .

PROOF. By the condition there is $y$ in $L_{1}$ such that $u_{1}=u_{1}^{\prime}+y$ . Since
$u_{1}$ and $L_{1}^{\prime}$ are $m$ . $r$ . of the same class of $L_{1}^{\#}$ modulo $L_{1}$ , we have $(u_{1}, u_{1})=$

$(u_{1}^{\prime}, u_{1}^{\prime}).$ Put x” $=u_{1}+u_{2}+\cdots+u_{t}+v^{\prime},$ $thenitclearlyholdsthatL+Zx^{\prime}=L+Zx^{n}$

and $(x^{\prime\prime}, x^{\prime\prime})=(x^{f}, x^{\prime})=(x, x)=2$ . It is easy to see that $L+Zx$ is isomorphic to
$L+Zx^{\prime\prime}$ . Q. E. D.

Let $L$ be a basic lattice other than $B_{n}$ type. Two $m$ . $r$ . $u$ and $u^{\prime}$ of $L$

modulo $L$ are called complementary to each other if they satisfy the condition
$u+u^{\prime}\in L$ . The $m$ . $r$ . $u_{r}$ and $u_{n+1-r}$ in Lemma 2-4 of $A_{n}^{\#}$ modulo $A_{n}$ are com-
plementary to each other. In the $D_{2n+1}$ case $m$ . $r$ . $u_{1}$ and $u_{3}$ of $D_{2n+1}^{\#}$ modulo

$D_{2n+1}$ are complementary to each other. The $m$ . $r$ . $e_{5}+\frac{e_{6}}{\sqrt{3}}$ and $e_{5}-\frac{e_{6}}{\sqrt{3}}$ of
$E_{6}^{\#}$ modulo $E_{6}$ are complementary to each other.

LEMMA 2-11. Let $L=L_{1}\oplus\cdots\oplus L_{t}$ be an orthogonal sum of basic lattices,
where each $L_{i}$ is not of type $B_{n}$ for $i=1,$ $\cdots$ , $t$ . Let $x=u+v$ and $x^{\prime}=u^{f}+v^{f}$ be
2-vectors for $L$ in the problem(P), where $u=u_{1}+u_{2}+\cdots+u_{t}$ and $u^{\prime}=u_{1}^{\prime}+u_{2}+$

... $+u_{t}$ are elements of $L^{\#}$ with $u_{i}\in L_{\iota^{*}}(2\leqq i\leqq t)$ and $u_{1}$ and $u_{1}^{\prime}\in L_{1}$ and de-
compositions of $u$ and $u^{\prime}$ satisfy the conditions of (4). If $u_{1}$ and $u_{1}^{\prime}$ are com-
pIementary $m.r$. of $L_{1}^{\#}$ modulo $L_{1}$ , then $L+Zx$ is isomorphic to $L+Zx^{\prime}$ .

PROOF. By the assumption there is $y_{1}$ in $L_{1}$ such that $u_{1}^{\prime}=-u_{1}+y_{1}$ , and
by noting the fact $(u_{1}^{f}, u_{1}^{\prime})=(u_{1}, u_{1})$ we have;

$L+Zx^{f}=L_{1}\oplus\cdots\oplus L_{t}+Z(-u_{1}+y_{1}+u_{2}+ +u_{t}+v^{f})$

$=L_{1}\oplus\cdots\oplus L_{t}+Z(-u_{1}+u_{2}+\cdots+u_{t}+v^{\prime})$ .

It is easy to see that a mapping $\varphi$ defined by;

$\varphi(y_{1}+y_{2}+\cdots+y_{t})=-y_{1}+y_{2}+\cdots+y_{t}$
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and
$\varphi(-u_{1}+u_{2}+\cdots+u_{t}+v^{f})=u_{1}+u_{2}+$ $+u_{t}+v$ ,

where $y_{i}\in L_{i}$ for $1\leqq i\leqq t$ , can be extended to an isomorphism from $L+Zx^{f}$ onto
$L+Zx$. Q. E. D.

LEMMA 2-12. Let $L=L_{1}\oplus\cdots\oplus L_{t}$ be an orthogonal sum of basic lattices,
where each $L_{i}$ is not of type $B_{n}$ or of $E_{8}$ for $i=1,$ $\cdots$ , $t$. Let $u=u_{1}+\cdots+u_{t}$ be a
$m.r$. of $L^{\#}$ modulo $L$ in the manner of (4). The forms of $L$ and 2-vector $x$ in
the problem(P) which satisfy none of two conditions;

(a) each $L_{i}$ is irrelevant to the prOblem with respect to 2-vector $x=u+v$ and
(b) $x$ is trivial for $L$ ,

have the following possibilities, namely;

(i) $L=D_{n}(n\geqq 4),$ $u=e_{n}$ and $x=u+v$ ,

(here and henceforth $v$ is an arbitrarily chosen vector with $(v, L)=0$

and $(x, x)=(u, u)+(v, v)=2)$ ,

(ii) $L=D_{n}$ , $u=\frac{1}{2}\sum_{i=1}^{n}e_{i}(4\leqq n\leqq 8)$ and $x=u+v$ ,

(iii) $L=E_{6}$ , $u=e_{5}+\frac{e_{6}}{\sqrt 3}$ and $x=u+v$ ,

(iv) $L=E_{7}$ , $u=e_{6}+\frac{e_{7}}{\sqrt{2}}$ and $x=u+v$ ,

(v) $L=A_{n}$ , $u=\frac{1}{n+1}z_{--1}^{n}e_{i}-\frac{n}{n+1}e_{n+1}(n\geqq 1)$ and $x=u+v$ ,

(vi) $L=A_{n}$ , $u=\frac{2}{n+1}\sum_{i=1}^{n-1}e_{i}-\frac{n-1}{n+1}(e_{n}+e_{n+1})(n\cdot\geqq 2)$ and $x=u+v$ ,

(vii) $L=A_{n}$ , $u=\frac{3}{n+1}\overline{\partial_{=1}}n2e_{i}-\frac{n-2}{n+1}(e_{n- 1}+e_{n}+e_{n+1})(3\leqq n\leqq 8)$

and $x=u+v$ ,

(vii); $L=A_{7}$ , $u=\frac{1}{2}(e_{1}+e_{2}+e_{3}+e_{4})-\frac{1}{2}(e_{5}+e_{6}+e_{7}+e_{8})$ , $x=u$ ,

(viii) $L=E_{7}\oplus A_{1}$ , $u=e_{6}+\frac{e_{7}}{\sqrt{2}}+\frac{1}{2}(f_{1}-f_{2})$ and $x=u+v$ ,

where $A_{1}=[f_{1}-f_{2}]_{Z}$ ,

(ix) $L=E_{6}\oplus A_{1}$ , $u=e_{5}+\frac{e_{6}}{\wedge\Gamma_{3}}+\frac{1}{2}(f_{1}-f_{2})$ and $x=u+v$ ,

where $A_{1}=[f_{1}-f_{2}]_{Z}$ ,
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(x) $L=E_{6}\oplus A_{2}$ , $u=e_{6}+\frac{e_{6}}{\sqrt{3}}+\frac{1}{3}(f_{1}+f_{2}-2f_{3})=x$ ,

where $A_{2}=[f_{1}-f_{2}, f_{2}-f_{3}]_{Z}$ ,

(xi) $L=D_{n}\oplus D_{m}(n, m\geqq 4)$ , $u=e_{n}+f_{m}=x$ ,

where $D_{m}=[f_{1}-f_{2}, f_{2}-f_{3}, \cdots , f_{m-1}-f_{m}, f_{m- 1}+f_{m}]_{Z}$ ,

(xii) $L=D_{n}\oplus D_{4}(n\geqq 4)$ and $u=e_{n}+\frac{1}{2}(f_{1}+f_{2}+f_{3}+f_{4})=x$ ,

where $D_{4}=[f_{1}-f_{2}, f_{2}-f_{3}, f_{3}-f_{4}, f_{3}+f_{4}]_{Z}$ ,

(xiii) $L=D_{4}\oplus D_{4}=[e_{1}-e_{2}, e_{2}-e_{3}, e_{3}-e_{4}, e_{3}+e_{4}]_{Z}\oplus[f_{1}-f_{2},$ $f_{2}-f_{3}$ ,

$f_{3}-f_{4},$ $f_{3}+f_{4}]_{Z}$ and $u=\frac{1}{2}(e_{1}+\cdots+e_{4}+f_{1}+\cdots+f_{4})=x$ ,

(xiv) $L=D_{n}\oplus A_{m}(n\geqq 4, m\geqq 1)$ , $u=e_{n}+\frac{1}{m+1}\sum_{l=1}^{m}f_{i}-\frac{m}{m+1}f_{m+1}$

and $x=u+v$ , where $A_{m}=[f_{1}-f_{2}, \cdots , f_{m}-f_{m+1}]_{Z}$ ,

(xv) $L=D_{4}\oplus A_{m}(m\geqq 1)$ , $u=\frac{1}{2}(e_{1}+ +e_{4})+\frac{1}{m+1}\sum_{i=1}^{m}f_{i}-\frac{m}{m+1}f_{m+1}$

and $x=u+v$ ,

(xvi) $L=D_{5}\oplus A_{m}(1\leqq m\leqq 3)$ , $u=\frac{1}{2}(e_{1}+ +e_{5})+\frac{1}{m+1}\sum_{i=1}^{m}f_{i}$

$-\frac{m}{m+1}f_{m+1}$ and $x=u+v$ ,

(xvii) $L=D_{6}\oplus A_{1}=[e_{1}-e_{2}, \cdots , e_{5}-e_{6}, e_{5}+e_{6}]_{Z}\oplus[f_{1}-f_{2}]_{Z}$

and $u=\frac{1}{2}(e_{1}+\cdots+e_{6})+\frac{1}{2}(f_{1}-f_{Z})=x$ ,

(xviii) $L=D_{n}\oplus A_{3}$ and $u=e_{n}+\frac{1}{2}(f_{1}+f_{2}-f_{3}-f_{4})=x$ ,

(xix) $L=A_{n}\oplus A_{m}=[e_{1}-e_{2}, \cdots , e_{n}-e_{n+1}]_{Z}+[f_{1}-f_{2}, \cdots , f_{m}-f_{m+1}]_{Z}$ ,

$u=\frac{1}{n+1}\sum_{t=1}^{n}e_{i}-\frac{n}{n+1}e_{n+1}+\frac{1}{m+1}\sum_{j=1}^{m}f_{j}-\frac{m}{m+1}f_{m+1}$ and $x=u+v$ ,

(xx) $L=A_{3}\oplus A_{m}(m\geqq 1)$ , $u=\frac{1}{2}(e_{1}+e_{2}-e_{3}-e_{4})+\frac{1}{m+1}\sum_{j\Leftarrow 1}^{m}f_{j}-\frac{m}{m+1}f_{m+1}$

and $x=u+v$ ,

(xxi) $L=A_{4}\oplus A_{m}(1\leqq m\leqq 4)$ , $u=\frac{2}{5}(e_{1}+e_{2}+e_{3})-\frac{3}{5}(e_{4}+e_{5})$

$+\frac{1}{m+1}\sum_{j=1}^{m}f_{j}-\frac{m}{m+1}f_{m+1}$ and $x=u+v$ ,
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(xxii) $L=A_{5}\oplus A_{m}(1\leqq m\leqq 2)$ , $u=\frac{1}{3}(e_{1}+\cdots+e_{4})-\frac{2}{3}(e_{5}+e_{6})$

$+\frac{1}{m+1}\sum_{j=1}^{m}f_{j}-\frac{m}{m+1}f_{m+1}$ and $x=u+v$ ,

(xxiii) $L=A_{1}\oplus A_{m}=[e_{1}-e_{2}]_{Z}\oplus[f_{1}-f_{2}, f_{m}-f_{m+1}]_{Z}$ ,

$u=\frac{1}{2}(e_{1}-e_{2})+\frac{2}{m+1}\sum_{j=1}^{m-1}f_{j}-\frac{m-1}{m+1}(f_{m}+f_{m+1})(6\leqq m\leqq 7)$

and $x=u+v$ ,

(xxiv) $L=A_{1}\oplus A_{5}$ and $u=\frac{1}{2}(e_{1}-e_{2})+\frac{1}{2}(f_{1}+f_{2}+f_{3}-f_{4}-f_{5}-f_{6})=x$ ,

(xxv) $L=A_{1}\oplus A_{1}\oplus A_{m}=[e_{1}-e_{2}]_{Z}\oplus[f_{1}-f_{2}]_{Z}\oplus[g_{1}-g_{2}, \cdots , g_{m}-g_{m+1}]_{Z}$ ,

$u=\frac{1}{2}(e_{1}-e_{2})+\frac{1}{2}(f_{1}-f_{2})+\frac{1}{m+1}a_{--1}^{m}g_{i}-\frac{m}{m+1}g_{m+1}$ and $x=u+v$ ,

(xxvi) $L=A_{1}\oplus A_{1}\oplus A_{3}$ and $u=\frac{1}{2}(e_{1}-e_{2}+f_{1}-f_{2}+g_{1}+g_{2}-g_{3}-g_{4})=x$ ,

(xxvii) $L=A_{1}\oplus A_{1}\oplus D_{4}=[e_{1}-e_{2}]_{Z}+[f_{1}-f_{2}]_{Z}+[g_{1}-g_{2},$ $g_{2}-g_{3}$ ,

$g_{3}-g_{4},$ $g_{3}+g_{4}]_{Z}$ a $ndu=\frac{1}{2}(e_{1}-e_{2})+\frac{1}{2}(f_{1}-f_{2})+\frac{1}{2}(g_{1}+\cdots+g_{4})=x$ ,

(xxviii) $L=A_{1}\oplus A_{1}\oplus D_{n}$ and $u=\frac{1}{2}(e_{1}-e_{2})+\frac{1}{2}(f_{1}-f_{2})+g_{n}=x$ ,

(xxix) $L=A_{1}\oplus A_{2}\oplus A_{m}=[e_{1}-e_{2}]_{Z}\oplus[f_{1}-f_{2}, f_{2}-f_{3}]_{Z}\oplus[g_{1}-g_{2},$ $\cdots$ ,

$g_{m}-g_{m+1}]_{Z}(1\leqq m\leqq 5),$ $u=\frac{1}{2}(e_{1}-e_{2})+\frac{1}{3}(f_{1}+f_{2}-2f_{3})$

$+\frac{1}{m+1}\sum_{i=1}^{m}g_{i}-\frac{m}{m+1}g_{m+1}$ and $x=u+v$ ,

(xxx) $L=A_{1}\oplus A_{3}\oplus A_{3}=[e_{1}-e_{2}]_{Z}\oplus[f_{1}-f_{2}, \cdots , f_{3}-f_{4}]_{Z}\oplus[g_{1}-g_{2},$ $\cdots$ ,

$g_{3}-g_{4}]_{Z}$ and $u=\frac{1}{2}(e_{1}-e_{2})+\frac{1}{4}(f_{1}+f_{2}+f_{3}-3f_{4})$

$+\frac{1}{4}(g_{1}+g_{2}+g_{3}-3g_{4})=x$ ,

(xxxi) $L=A_{2}\oplus A_{2}\oplus A_{2}$ and $u=\frac{1}{3}(e_{1}+e_{2}-2e_{3})+\frac{1}{3}(f_{1}+f_{2}-2f_{3})$

$+\frac{1}{3}(g_{1}+g_{2}-2g_{3})=x$ ,

(xxxii) $L=A_{1}\oplus A_{1}\oplus A_{1}\oplus A_{1}=[e_{1}-e_{2}]_{Z}+[f_{1}-f_{2}]_{Z}+[g_{1}-g_{2}]_{Z}+[h_{1}-h_{2}]_{Z}$

and $u=\frac{1}{2}(e_{1}-e_{2}+f_{1}-f_{2}+g_{1}-g_{2}+h_{1}-h_{2})=x$ .
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This lemma is easily proved by using of Lemma 2-4, Remark 1, Lemma
2-7, 2-8 and Lemma 2-9 and we omit it. In the above lemma some of possi-
bilities are omitted but this omission is justiPed by Lemma 2-5, Lemma 2-10
and Lemma 2-11.

LEMMA 2-13. Let $\mathcal{L}=A_{n}+Zx$ , where $x$ is a 2-vector such that $(x, A_{n})\subseteqq Z$,
then the structure of $X$ is determined according to the value of $n$ in the follow-
ing way;

(i) when $1\leqq n\leqq 4$ or $n\geqq 9$ , then $\mathcal{L}=A_{n}$ or $\mathcal{L}=A_{n}\oplus A_{1}$ or $\mathcal{L}\cong A_{n+1}$ or $ X\cong$

$\cong D_{n+1}$ , (ii) when $5\leqq n\leqq 7$ , then $\mathcal{L}=A_{n}$ or $\mathcal{L}=A_{n}\oplus A_{1}$ or $\mathcal{L}\cong A_{n+1}$ or $\mathcal{L}\cong D_{n+1}$

or $X\cong E_{n+1}$ , (iii) when $n=8,$ $\mathcal{L}=A_{8}$ or $\mathcal{L}=A_{8}\oplus A_{1}$ or $\mathcal{L}\cong A_{9}$ or $\mathcal{L}\cong D_{9}$ or $\mathcal{L}\cong E_{8}$ .
PROOF. Let $u$ be the $A_{n}$ part of 2-vector $x$ and $x=u+v$ with $(v, A_{n}^{\#})=0$ .

If $u$ is zero, then we have $(v, v)=2$ and $A_{n}+Zx=A_{n}\oplus A_{1}$ . If $(u, u)=2$ and
$u\in A_{n}$ , then we have $v=0$ and $A_{n}+Zx=A_{n}$ . So we have only to consider the
remaining possibilities, namely, $(u, u)\leqq 2$ and $u\in A_{n}^{*}$ – $A_{n}$ . By Lemma 2-8 we
can assume that $u$ is a $m$ . $r$ . of $A_{n}$ modulo $A_{n}$ . M. $r$ . $u\neq 0$ of $A_{n}^{*}$ modulo $A_{n}$

with $(u, u)\leqq 2$ are listed at Lemma 2-12, (v), (vi) and (vii). In case of (v) $v$ is
not zero and $x$ is linearly independent over $Q$ from $e_{1}-e_{2},$ $e_{n}-e_{n+1}$ , the
basis of $A_{n}$ . Hence $\mathcal{L}$ has the basis $e_{1}-e_{2},$ $\cdots$ , $e_{n}-e_{n+1}$ and $-x$ over $Z$, and
$\mathcal{L}$ is isomorphic to $A_{n+1}$ by Lemma 2-5, (iii). In case of (vi) $v$ is not zero
and $x$ is linearly independent over $Q$ from $e_{1}-e_{2},$ $\cdots$ , $e_{n}-e_{n+1}$ , the basis of $A_{n}$ .
Hence $\mathcal{L}$ has the basis $e_{1}-e_{2},$ $\cdots$ , $e_{n}-e_{n+1}$ and $-x$ over $Z$, so $\mathcal{L}$ is isomorphic
to $D_{n+1}$ by Lemma 2-5, (iii). (Note that $D_{3}\cong A_{3}$). In case of (vii) $v$ is not zero
for $3\leqq n\leqq 7$ and then $x$ is linearly independent from $e_{1}-e_{2},$ $\cdots$ , $e_{n}-e_{n+1}$ over $Q$ .
When $n=3$ , with the basis $-x,$ $e_{1}-e_{2},$ $e_{2}-e_{3}$ and $e_{3}-e_{4}\mathcal{L}$ is isomorphic to $A_{4}$

by Lemma 2-5, (iii). (For the reason one should recall of the canonical basis
of $A_{4}.$) When $n=4$ , with the basis $e_{4}-e_{5},$ $e_{3}-e_{4},$ $e_{2}-e_{3},$ $e_{1}-e_{2}$ and $-xx$ is
isomorphic to $D_{6}$ by Lemma 2-5, (iii). When $5\leqq n\leqq 7$ , with the basis $e_{1}-e_{2}$ ,
$e_{2}-e_{3},$ $\cdots$ , $e_{n-2}-e_{n-1},$ $-x,$ $e_{n-1}-e_{n},$ $e_{n+1}-e_{n}X$ is isomorphic to $E_{n+1}$ . When $n=8$ ,
$v$ is zero and $x$ is linearly dependent on $e_{1}-e_{2},$ $\cdots$ , $e_{8}-e_{9}$ over $Q$ . This time
$e_{1}-e_{2}$ is linearly expressed over $Z$ as;

$e_{1}-e_{2}=\sum_{\iota=}^{8}a_{i}(e_{i}-e_{i+1})+a_{9}x$ ,

where $a_{i}=-i(2\leqq i\leqq 6),$ $a_{7}=-4,$ $a_{8}=-2$ and $a_{9}=3$ . Hence 2-vectors $e_{2}-e_{3},$ $\cdots$ ,
$e_{6}-e_{7},$ $-x,$ $e_{7}-e_{8},$ $e_{9}-e_{8}$ the basis of $\mathcal{L}$ and $\mathcal{L}$ is isomorphic to $E_{8}$ . In case of
$(vii)^{f}$ , by the same argument, $\mathcal{L}$ is isomorphic to $E_{7}$ . By rearranging the above
arguments we have the form of lemma. Q. E. D.

With similar arguments to the proof of Lemma 2-13 we can prove the
following Lemmas 2-14, 2-15 and 2-16 and we shall omit those proofs. (The

reader can prove these lemmas by using Lemmas 2-5, 2-9, 2-10, 2-11 and 2-12.)

LEMMA 2-14. Let $\mathcal{L}=D_{n}+Zx$ , where $x$ is a 2-vector such that $(x, D_{n})\subseteqq Z$



438 M. OZEKI

and $n\geqq 4$ , then the structure of $\mathcal{L}$ is determined according to the value of $n$ in
the following way;

(i) when $n=4$ or $n\geqq 9$ , then $\mathcal{L}=D_{n}\oplus A_{1}$ or $\mathcal{L}=D_{n}$ or $\mathcal{L}\cong D_{n+1}$ , (ii) when
$5\leqq n\leqq 7$ , then $\mathcal{L}=D_{n}\oplus A_{1}$ or $\mathcal{L}=D_{n}$ or $\mathcal{L}\cong D_{n+1}$ or $\mathcal{L}\cong E_{n+1}$ , (iii) when $n=8$,
then $\mathcal{L}=D_{8}\oplus A_{1}$ or $\mathcal{L}=D_{8}$ or $\mathcal{L}\cong D_{9}$ or $\mathcal{L}\cong E_{8}$ .

LEMMA 2-15. Let $\mathcal{L}=E_{j}+Zx(6\leqq j\leqq 8)$ , where $x$ is a 2-vector such that
$(x, E_{j})\subseteqq Z$, then we have;

(i) if $j=6$ or 7, then $\mathcal{L}=E_{j}$ or $\mathcal{L}=E_{j}\oplus A_{1}$ or $X\cong E_{j+1}$ , (ii) if $j=8$ , then
$\mathcal{L}=E_{8}$ or $\mathcal{L}=E_{8}\oplus A_{1}$ .

LEMMA 2-16. Let $L=L_{1}\oplus\cdots\oplus L_{t}$ be an orthogonal sum of basic lattices,
where each compOnent is other than $B_{n}$ type and $t\geqq 2$ . $\mathcal{L}=L+Zx$ , where $x$ is
a 2-vector such that $(x, L)\subseteqq Z$, is the solution of the Problem (P) which satisfies
none of two conditions (a) and (b) stated in Lemma 2-12 if and only if $L$ has
one of the forms given in Lemma 2-12, $(viii)-(xxxii)$ and $x$ is a 2-vectors uni-
quely attached to such L. According to the numbering of such $L$ we have the
following isomorphisms;

(viii) $\mathcal{L}\cong E_{8}$ , (ix) $\mathcal{L}\cong E_{7},$ $(x)\mathcal{L}\cong E_{8}$ , (xi) $\mathcal{L}\cong D_{m+n}$ , (xii) $\mathcal{L}\cong D_{n+4}$ , (xiii) $\mathcal{L}$

$\cong D_{8}$ , (xiv) $\mathcal{L}\cong D_{m+n+1}$ , (xv) $\mathcal{L}\cong D_{m+6}$ , (xvi) $\mathcal{L}\cong E_{\text{\’{o}}+m}1\leqq m\leqq 3$ , (xvii) $\mathcal{L}\cong E_{7}$ ,
(xviii) $\mathcal{L}\cong D_{n+3}$ , (xix) $\mathcal{L}\cong A_{m+n+1}$ , (xx) $\mathcal{L}\cong D_{m+4}$ , (xxi) $\mathcal{L}\cong E_{m+5}$ for $1\leqq m\leqq 3$

and $\mathcal{L}\cong E_{8}$ for $m=4$ , (xxii) $\mathcal{L}\cong E_{m+6}(1\leqq m\leqq 2)$ , (xxiii) $\mathcal{L}\cong E_{8}$ , (xxiv) $\mathcal{L}\cong E_{6}$ ,
(xxv) $\mathcal{L}\cong D_{m+3}$ , (xxvi) $\mathcal{L}\cong D_{5}$ , (xxvii) $\mathcal{L}\cong E_{6}$ , (xxviii) $\mathcal{L}\cong D_{n+2}$ , (xxix) $\mathcal{L}\cong E_{n+4}$

for $2\leqq n\leqq 4$ and $\mathcal{L}\cong E_{8}$ for $n=5$ , (xxx) $\mathcal{L}\cong E_{7}$ , (xxxi) $\mathcal{L}\cong E_{6}$ , (xxxii) $\mathcal{L}\cong D_{4}$ .
Now it is an easy matter to prove Proposition 2-2. SuPpose a lattice $L$ is

generated by 2-vectors $\alpha_{1},$ $\cdots$ , $\alpha_{l}$ in L. $Z\alpha_{1}$ is a sublattice of $L$ isomorphic to
$A_{1}$ . $Z\alpha_{1}+Z\alpha_{2}$ is then equal to $Z\alpha_{1}$ or $Z\alpha_{1}\oplus Z\alpha_{2}\cong A_{1}\oplus A_{1}$ or isomorphic to $A_{2}$

by Lemma 2-13, (i). We continue this argument inductively. If $Z\alpha_{1}+$ $+Z\alpha_{j}$

$(j\leqq l)$ is isomorphic to an orthogonal sum of basic lattices whose components
are other than $B_{n}$ type, then $Z\alpha_{1}+\cdots+Z\alpha_{j}+Z\alpha_{j+1}$ is also isomorphic to an
orthogonal sum of basic lattices by Lemmas 2-13, 2-14, 2-15 and 2-16. In this
way we can say that $Z\alpha_{1}+\cdots+Z\alpha_{t}$ is isomorphic to an orthogonal sum of
basic lattices. Since $\alpha_{1},$

$\cdots$ , $\alpha_{t}$ generate $L,$ $Z\alpha_{1}+$ $+Z\alpha_{l}=L$ and this implies
that $L$ has the basis consisting of 2-vectors. As an immediate consequence of
the above considerations we have;

PROPOSITION 2-17. Let $L$ be an irreducible lattice generated by 2-vectors,
then $L$ is isomorphic to one of the lattices $A_{n},$ $D_{n}(n\geqq 4),$ $E_{6},$ $E_{7}$ and $E_{8}$ .

\S 3. Main results.

Let $L$ be a lattice. For the first time we decompose $L$ as (1). So that $L^{f}$

has no l-vector. Since $L$ has a positive definite metric, the number of 2-
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vectors is finite. We consider the sublattice $M$ of $L^{\prime}$ generated by 2-vectors
of $L^{f}$ . In general it holds that rank $M\leqq rankL^{\prime}$ and $M$ is not necessarily
irreducible. We can say that by the arguments in the proof of Proposition
2-2 $M$ is written as;

$M=M_{1}\oplus\cdots\oplus M_{k}$

where each $M_{j}$ is irreducible and generated by 2-vectors. Then by Proposition
2-17 each $M_{j}$ is isomorphic to one of $A_{n},$ $D_{n},$ $E_{6},$ $E_{7}$ , or $E_{8}$ . The sublattice
$M\oplus B_{r}$ of $L$ is called characteristic sublattice of $L$ . We shall denote by $V_{2}(L)$

the number of 2-vectors in the lattice $L$ .
LEMMA 3-1. We have the following formulas;

(i) $V_{2}(A_{n})=n(n+1)$ ,

(ii) $V_{2}(B_{n})=V_{2}(D_{n})=2n(n-1)$ if $n\geqq 4$ ,

(iii) $V_{2}(E_{8})=240$ ,

(iv) $V_{2}(E_{7})=126$ ,

(v) $V_{2}(E_{6})=72$ .
These are well-known results and we neglect its proofs. Though $A_{0},$ $D_{0}$ ,

$B_{0},$ $D_{1}$ and $D_{2}$ are meaningless, for the simplicity of the later description we
shall write $V_{2}(A_{0})=V_{2}(D_{0})=V_{2}(B_{0})=0,$ $V_{2}(D_{1})=V_{2}(B_{1})=0,$ $V_{2}(D_{2})=V_{2}(B_{2})=4$ and
$V_{2}(D_{3})=V_{2}(B_{3})=12$ . $D_{3}$ is isomorphic to $A_{3}$ .

LEMMA 3-2. Assume that the lattices $L_{1},$ $\cdots$ , $L_{k}$ do not contain any l-vector,
then we have;

$L_{2}(L_{1}\oplus\cdots\oplus L_{k})=\sum_{i=1}^{k}V_{2}(L_{i})$ .

PROOF. It is sufficient to show that any 2-vector in $L_{1}\oplus\cdots\oplus L_{k}$ belongs
to some $L_{i}$ . If it is not true, then there is a 2-vector $u$ which can be written
in the form $u=u_{i_{1}}+u_{i_{2}}$ with $i_{1}\neq i_{2},$ $u_{i_{1}}\in L_{\iota_{1}}$ and $u_{i_{2}}\in L_{i_{2}}$ . Then we have;

$(u, u)=(u_{i_{1}}, u_{i_{1}})+(u_{i_{2}}, u_{i_{2}})$

$=2$ .
The case $(u_{i_{1}}, u_{i_{1}})=(u_{i_{2}}, u_{i_{2}})=1$ does not appear by the assumption. So we
can say that $(u_{i_{1}}, u_{i_{1}})=2$ or $(u_{i_{2}}, u_{i_{2}})=2$ and the rest vector equals to zero. In
either case $u=u_{i_{1}}$ or $u=u_{i_{2}}$ . Q. E. D.

LEMMA 3-3. Assume that the lattice $L_{1}$ does not contain any l-vector, then
we have;

$V_{2}(B_{r}+L_{1})=V_{2}(B_{r})+V_{2}(L_{1})$

$=2r(r-1)+V_{2}(L_{1})$
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where $r$ is a positive rational integer.
This lemma is proved in a similar way to the proof of Lemma 3-2, and

we omit the proof.
LEMMA 3-4. Let $n_{1},$ $n_{2}$ be integers not smaller than one, then we have the

following inequalities;

(i) $V_{2}(A_{n_{1}}\oplus A_{n_{2}})<V_{2}(A_{n1+n_{2}})$ ,

(ii) $V_{2}(D_{n_{1}}\oplus D_{n_{2}})<V_{2}(D_{n1+n2})$ ,

where both $n_{1}$ and $n_{2}$ are not smaller than 3,

(iii) $V_{2}(A_{n_{1}})<V_{2}(D_{n_{1}})$ if $n_{1}\geqq 4$ ,

(iv) $V_{2}(A_{n_{1}}\oplus D_{n_{2}})\leqq V_{2}(D_{n_{1}+n_{2}})$ if $n_{1}+n_{2}\geqq 4$ ,

(v) $V_{2}(A_{n_{1}}\oplus B_{n_{2}})\leqq V_{2}(D_{n1+n_{2}})$ if $n_{1}+n_{2}\geqq 4$ .
PROOF. Proof of (i).

By Lemmas 3-1 and 3-2 we know that;

$V_{2}(A_{n_{1}}\oplus A_{n_{2}})=V_{2}(A_{n_{1}})+V_{2}(A_{n_{2}})$

$=n_{1}(n_{1}+1)+n_{2}(n_{2}+1)$

$<(n_{1}+n_{2})(n_{1}+n_{2}+1)$

$=V_{2}(A_{n1+n_{2}})$ .
In the same way $(ii)\sim(v)$ can be proved. Q. E. D.

LEMMA 3-5.

(i) $V_{2}(E_{8}\oplus E_{8})=V_{2}(D_{16})$ ,

(ii) $V_{2}(E_{8}\oplus E_{7})<V_{2}(D_{15})$ ,

(iii) $V_{2}(E_{7}\oplus E_{7})<V_{2}(D_{14})$ ,

(iv) $V_{2}(E_{6}\oplus E_{7})<V_{2}(D_{13})$ ,

(v) $V_{2}(E_{6}\oplus E_{7})<V_{2}(D_{13})$ ,

(vi) $V_{2}(E_{6}\oplus E_{6})<V_{2}(D_{12})$ .
PROOF. Proof of (i).

By Lemmas 3-1 and 3-2 we know that;

$V_{2}(E_{8}\oplus E_{8})=V_{2}(E_{8})+V_{2}(E_{8})$

$=480$

$=V_{2}(D_{16})$ .
In the same way $(ii)\sim(iv)$ can be proved. Q. E. D.
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LEMMA 3-6. The following inequalities hold;

(i) $V_{2}(E_{6}\oplus A_{n})<V_{2}(D_{n+6})$ if $n\geqq 1$ ,

(ii) $V_{2}(E_{7}\oplus A_{n})<V_{2}(D_{n+7})$ if $n\geqq 2$ ,

(iii) $V_{2}(E_{8}\oplus A_{n})<V_{2}(D_{n+8})$ if $n\geqq 4$ ,

(iv) $V_{2}(E_{6}\oplus D_{n})<V_{2}(D_{n+6})$ if $n\geqq 4$ ,

(v) $V_{2}(E_{7}\oplus D_{n})<V_{2}(D_{n+7})$ if $n\geqq 4$ ,

(vi) $V_{2}(E_{8}\oplus D_{n})\leqq V_{2}(D_{n+8})$ if $n\geqq 4$ .
PROOF. Proof of (i).

By Lemmas 3-1 and 3-2 we know that;

$V_{2}(D_{n+6})-V_{2}(E_{6}\oplus A_{n})=2(n+6)(n+5)-72-n(n+1)$

$=n^{2}+21n-12>0$ if $n\geqq 1$ .
In the same way $(ii)\sim(vi)$ can be proved. Q. E. D.

LEMMA 3-7. Let $s,$ $t,$ $p$ be non-negative real numbers and $s+t+p=\sigma>0$ ,

then we have the following inequalities;

72a $\leqq 72s+126t+240p\leqq 240\sigma$ ,

$ 6\sigma\leqq 6s+7t+8p\leqq 8\sigma$ .
Since the proof of this lemma is easy, we omit it.
LEMMA 3-8. Let $N$ be a lattice of the form;

$N=(\bigoplus_{\iota}E_{6})\oplus(\bigoplus_{t}E_{7})\oplus(\bigoplus_{p}E_{8})$

where $s,$ $t,$ $p$ are non-negative rational integers and the symbol $\bigoplus_{l}E_{6}$ means
orthogonal sum of $s$ times of $E_{6}’ s$ and so on. If $s+t+p\geqq 2$ , then we get the
following inequality;

$V_{2}(N)\leqq V_{2}(D_{6S+7t+8p})$ . .. . . . . . . . . . . . . . . . . . . (12)

PROOF. By Lemmas 3-1 and 3-2 we know that;

$V_{2}(N)=72s+126t+240p$

and
$V_{2}(D_{6S+7t+8p})=2(6s+7i+8p)(6s+7t+8p-1)$ .

If $s+t+P=2$ , then the inequality (12) is nothing else one of the inequalities in
Lemma 3-4. If $s+t+P=3$ , then the inequality (12) is also proved by using
Lemmas 3-4 and 3-5. If $s+t+P=\sigma\geqq 4$ then we know from Lemmas 3-1, 3-2
and 3-7 that;
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$=2(6s+7t+8p)(6s+7t+8p-1)-(72s+126t+240p)$

$\geqq 2\times 6\sigma(6\sigma-1)-240\sigma$

$=\sigma(72\sigma-252)>0$ $(\sigma\geqq 4)$ . Q. E. D.

LEMMA 3-9. Let 1, $m,$ $q$ be non-negative rational integers such that $l+m+q$
$\geqq 4$ , then we have the inequality;

$V_{2}(A_{l}\oplus D_{m}\oplus B_{q})\leqq V_{2}(D_{l+m+q})$ . . . . . .. . . . . . . . . (13)

PROOF. When $l+q\leqq 3$ , by Lemmas 3-1 and 3-2 we can verify that;

$V_{2}(A_{l}\oplus B_{q})\leqq V_{2}(A_{l+q})$ .
By the assumptions that $l+m+q\geqq 4$ and by (iv) of Lemma 3-3 we can say
that;

$V_{2}(A_{l+q}\oplus D_{m})\leqq V_{2}(D_{l+q+m})$ .

When $f+q\geqq 4$ , by (v) of Lemma 7 we know;

$V_{2}(A_{l}\oplus B_{q})\leqq V_{2}(D_{l+q})$ .

By the same assumption and by (ii) of Lemma 3-3 we can also say that;

$V_{2}(D_{l+q}\oplus D_{m})\leqq V_{2}(D_{l+m+q})$ .

In either case we have established the inequality (13) using Lemma 3-2.
Q. E. D.

THEOREM 1. Let $\mathcal{L}_{n}$ be the set of all integral lattices with fixed rank $n$ . If
$n$ is not less than 17, then we have that;

Max $V_{2}(L)=2n(n-1)$ . . . . . . . . . . . . . . . . . . . . (14)
LE $x_{n}$

and $V_{2}(L)=2n(n-1)$ is attained by $L=B_{n}$ or $L=D_{n}$ .
PROOF. Let $L\in \mathcal{L}_{n}$ and we decompose $L$ into the form (1);

$L=B_{r}\oplus L^{\prime}$ $r\geqq 0$ .
Let $M$ be the characteristic sublattice of $L^{f}$ , then $M$ can be written in the
following form by Propositions 2-2, 2-15;

$M=(\bigoplus_{s}E_{6})\oplus(\bigoplus_{t}E_{7})\oplus(\bigoplus_{p}E_{8})\oplus(\bigoplus_{i=1}^{l}A_{ni})\oplus(\bigoplus_{j=1}^{h}D_{mj})$

where $l$ and $h$ are non-negative rational integers and $n_{i}$ and $m_{j}$ are positive
rational integers. It clearly holds that;
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rank $L^{\prime}\geqq 6s+7t+8p+\sum_{t=1}^{l}n_{i}+\sum_{j=1}^{h}m_{j}$ .
Put

$M_{1}=(\bigoplus_{s}E_{6})\oplus(\bigoplus_{t}E_{7})\oplus(\bigoplus_{p}E_{8})\oplus(\bigoplus_{i=1}^{l}A_{ni})\oplus(\bigoplus_{j=1}^{h}D_{m_{j}})\oplus B_{r}\oplus B_{q}$ . . . . (15)

where $q=rankL^{f}$–rank $M$.
Then we can see that $M_{1}\in \mathcal{L}_{n}$ and that

$V_{2}(M_{1})\geqq V_{2}(M)$ by Lemmas 3-2 and 3-3.
Put

$M_{2}=(\bigoplus_{s}E_{6})\oplus(\bigoplus_{t}E_{7})\oplus(\bigoplus_{p}E_{8})\oplus A_{\lambda}\oplus D_{\mu}\oplus B_{q_{1}}$

where $\lambda$ is the number $\sum_{i=1}^{l}n_{i}$ and $\mu$ is the number $\sum_{J=1}^{h}m_{j}$ and $q_{1}=r+q$ . If $1=0$ ,

then we shall understand that the part $A_{\text{{\it \^{A}}}}$ does not appear. If $h=0$ , then we
shall understand that the part $D_{\mu}$ does not aPpear. At any rate, we can see
that $M_{2}\in \mathcal{L}_{n}$ and that $V_{2}(M_{2})\geqq V_{2}(M_{1})$ by using Lemmas 3-2, 3-3 and 3-4.
When $s+t+p\geqq 2$ , we put

$M_{3}=D_{6s+7t+8p}\oplus A_{\lambda}\oplus D_{\mu}\oplus B_{q_{1}}$ .
Then by Lemmas 3-5 and 3-8 we can say that $M_{3}\in \mathcal{L}_{n}$ and that $ V_{2}(M_{3})\geqq$

$V_{2}(M_{2})$ . Moreover we put

$M_{4}=A_{\lambda}\oplus D_{6s+7t+8p+\mu}\oplus B_{q_{1}}$ .
Then by Lemmas 3-3 and 3-5 we can see that $M_{4}\in \mathcal{L}_{n}$ and that

$V_{2}(M_{4})\geqq V_{2}(M_{2})$ .
Thus we started from any element $L$ of $\mathcal{L}_{n}$ and arrived a suitable element $M$

of $\mathcal{L}_{n}$ such that $V_{2}(M)\geqq V_{2}(L)$ , where $M$ is one of the following forms;

(i) $E_{\tau}\oplus A_{\lambda}\oplus D_{\mu}\oplus B_{q_{1}}$

where $\tau=6$ or 7 or 8 and $\tau+\lambda+\mu+q_{1}=n=rankL$ ,

(ii) $A_{\lambda}\oplus D_{\mu}\oplus B_{q_{1}}$

where $\lambda+\mu+q_{1}=n=rankL$ .
For the first case, by the assumption that $n\geqq 17$ we can see that

$\lambda\neq\mu+q_{1}\geqq 9$ .
Then by Lemma 3-9 we can say that;

$V_{2}(A_{\lambda}\oplus D_{\mu}\oplus B_{q_{1}})\leqq V_{2}(D_{\lambda+\mu+q_{1}})$ .
Now we can see that $E_{\tau}\oplus D_{\lambda+\mu+q_{1}}\in \mathcal{L}_{n}$ and that
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$V_{2}(L)\leqq V_{2}(E_{r}\oplus D_{\lambda+\mu+q_{1}})$ .

But we know that $D_{\tau+\lambda+\mu+q_{1}}\in \mathcal{L}_{n}$ and that

$V_{2}(E_{r}\oplus D_{\lambda+\mu+q_{1}})\leqq V_{2}(D_{r+\lambda+\mu+q_{1}})$ by Lemma 3-6.

For the second case, we can see that

$D_{\lambda+\mu+q_{1}}\in \mathcal{L}_{n}$

and that
$V_{2}(A_{\lambda}\oplus D_{\mu}\oplus B_{q_{1}})\leqq V_{2}(D_{\lambda+\mu+q_{1}})$ by Lemma 3-9.

Theorem 1 is thus established if we take (ii) of Lemma 3-1 into account.
Q. E. D.

We call the rank of characteristic sublattice $M$ of $L$ as the characteristic
number and we denote it by $c(L)$ . In the following we shall prove;

THEOREM 2. Let $\mathcal{L}_{n}$ be the same set as Theorem 1, and let $d(L)$ be the
determinant of a lattice $L\in \mathcal{L}_{n}$ . If $d(L)>2^{n}$ , then we have the inequality;

$c(L)<rankL$ .

To prove this theorem, we need some lemmas.
LEMMA 3-10. Let $L_{1}$ and $L_{2}$ be lattices, then we have;

$d(L_{1}\oplus L_{2})=d(L_{1})d(L_{2})$ .

Since this lemma is easy to prove, we omit the proof. For the basic lat-
tices, we know the following:

LEMMA 3-11.

(i) $d(D_{n})=4$ $n\geqq 4$ ,

(ii) $d(E_{8})=1$ ,

(iii) $d(E_{7})=2$ ,

(iv) $E(E_{6})=3$ ,

(v) $d(A_{n})=n+1$ ,

(vi) $d(B_{n})=1$ .
We also omit the proof of this lemma. We shall prove Theorem 2. Let

$L$ be a lattice in $\mathcal{L}_{n}$ , and assume that $c(L)=rankL$ , then the characteristic
sublattice $M$ of $L$ is written in the form;

$M=(\bigoplus_{s}E_{6})\oplus(\bigoplus_{t}E_{7})\oplus(\bigoplus_{p}E_{8})\oplus(\bigoplus_{i=1}A_{\mathfrak{n}i})\oplus(\bigoplus_{j=1}^{h}D_{m_{j}})\oplus B_{q}$
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where $6s+7t+8p+\sum_{l=1}^{l}n_{i}+\sum_{j=1}^{h}m_{j}+q=rankL$ . It is known that the determinant

of a sublattice of a lattice is divisible by the determinant of the latter if both
rank have the same value, so we can say that;

$d(M)\geqq d(L)$ .

It is clearly that $M$ also belongs to $\mathcal{L}_{n}$ .
We put; $M^{\prime}=\bigoplus_{n}A_{1}$ .
We can see that $M^{\prime}$ belongs to $\mathcal{L}_{n}$ . If we can show that $d(M^{\prime})$ is not less

than $d(M)$ and that $d(M^{\prime})$ is equal to $2^{n}$ , then we complete the proof. By
Lemmas 3-10 and 3-11 we have that;

$d(M)=3^{s}\times 2^{t}\times(\prod_{l=1}^{l}(n_{i}+1))\times 2^{2h}$

Also by Lemmas 3-10 and 3-11 we have that;

$d(M^{\prime})=2^{6S}\times 2^{7t}\times 2^{8p}\times 2_{i=1}^{\Sigma^{l}n_{i}}\times 2f_{--1}^{h}m_{j}\times 2^{q}$

$=2^{n}$

It is clear that the following inequalities hold;

$3^{s}\leqq 2^{6S}$

$2^{t}\leqq 2^{7t}$

$1\leqq 2^{8p}$ ,

$2^{2h}\leqq 2_{j=1}^{\Sigma^{h}m_{j}}$ ,

$1\leqq 2^{q}$ .
If we can show that the inequality;

$k+1\leqq 2^{k}$ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (16)

holds for each positive rational integer $k$ , then we can say that;

$\prod_{i=1}^{l}(n_{i}+1)\leqq 2_{i\Leftarrow 1}^{\Sigma^{\prime}n_{i}}$

and consequently that $d(M)\leqq d(M^{\prime})$ .
The inequality (16) is easily proved by the induction on $k$ , and we omit

its proof. Q. E. D.
It should be remarked that there always exists a lattice $L$ whose charac-

teristic number is equal to rank $L$ minus one and its determinant is arbitrary
positive rational integer $d$ . Such a lattice $L$ is given as follows;

$L=[e_{1}, \cdots , e_{n-1}, \sqrt{d}e_{n}]_{Z}$ where $n$ is the rank $L$ .
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