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§1. Introduction.

In this paper we treat isometric minimal immersions of the Euclidean 2-
plane with a standard flat metric into the unit sphere S¥ of the Euclidean
space RY*,

Analytically the problem can be stated as follows. Study a surface ¥ :
R*—RY*' which is given in the form

U(x, )= (x, ), -, T (x, 3))

and is defined on the whole plane R?, and has the following properties: a C*-
mapping ¥ satisfies on R? the equations

(L.1) Y, V=1,

(1.2) Y, )=, ¥)=1, T,¥,)=0
and

(1.3) Vot U,y =—2V,

where (,) denotes the inner product of R"*'. The condition [1.3) under
tells us that ¥'(R?) is a minimal surface in S¥.

In the part I of a previous paper [3], the author has proved some formulas
for the Laplacians of higher fundamental tensors. In the part II of the above
paper, by making use of these results and the complex function theory, we
have studied a restricted class of minimal immersions of R? into S?.

In the case of minimal immersions R?*—S*® [4], we have succeeded in a
generalization of our previous results.

The purpose of this paper is to give a complete description in the case of
any minimal immersions R*—S¥,

If ¥(R? is not contained in a linear subspace of R¥*', N must be an odd
integer [2], [3], say N=2n-+1. Then we shall prove that ¥(R?) is an orbit
of an abelian Lie subgroup of SO(2n+2) (Theorem 1). From this result and
Hsiang’s Theorem [1], we know that any isometric minimal immersion of a
flat torus into S®"*! must be real algebraic (Theorem 2).
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Our principal aim in this paper is to give a parametrization”of the set of
equivalent classes of ¥’s (Theorem 3). '

The method of a parametrization in this paper is different from [4]. But
since our main tools are the theorems in [3], in § 2 we state the notations and
results which were obtained in [3]. In §3, we shall give the Frenet-Boriivka
formula which is a generalization of §6 in [3]. In §4 we shall state and
prove our main theorem. In the last section we shall give some examples.

§2. Preliminaries (cf. part I of [3]).

Let ¥ : M—X be an isometric minimal immersion of a 2-dimensional Rie-
mannian manifold into a space of constant curvature X of the dimension N.
For any xeM and m=1, 2, ---, we denote the osculating space of order m by
T¢. Suppose x to be a regular point of order m—1=2 in the following sense:

(2.1) For b=1,2, -+, m—1, dim T is constant in a neighborhood of x.
We shall use the following ranges of indices:
1=2,=14,j,- =2
3=24,=dimT?,
(2.2) dmT@+1=2,<dim TP

..................

..................

dim TP P+1<4p =N

Let e, 1=A, B, -+ <N, be local orthonormal frame field, such that e;, e, *-, ez,
span T9™, b=0,1,---, m—2. We then have

(2.3) Wiy _ge1 =0, for a=b, b=1,2, -, m—2.

Let hjyiy.ipe; be the (b+1)-th fundamental tensors for e,. Then we have, by

(2.3),

(2.4) 22 hiyigeiy o Wayty ey :i§z Ry yiigip g gWipag o
) 2

Since ¥ is minimal, we have
(2.5) ?hzbjjis‘"ib+1:0’ b:]., 2,"' ,m_l.

We put
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H(a!b)zha1~-',1+ihal-~-12’ ag#b'l’ b:2: ) m ’
b b—-1

where we put g,-,=dim T2P+41. Then the higher order Codazzi equation is

(2.6) {dHP+ibHPw .+ ; 2 HPwgdd Awi—iw) =0,  a=py,.

2ip—1

In [3], we have defined non-negative scalar invariants in a neighborhood
of x.

@.7) Kpy= 2 |HP|?;
Xz ppq
(2.8) N(b)= I(E hauea)/\(z hauzea>|2 ;
14 b-1
(2.9) Jor=Kt»—4Nw, b=2,3,-,n.

For a geometric and function theoretic meaning of fu, we have, by [2.6),

LEMMA 1. Under the above notations, Y, (H®)Xw,+iw,)® is an abelian
azpup—1
form of degree 2b. Moreover we have

(2.10) f(b):l§(ﬁg‘))2|2-
For the Laplacians of K, and f,, we know from

(2.11) Adf oy =4{bf iy K+ | A|*} ;

N(b)
N(b—l)

+21b2_1|H511§)_1,1|2, if Ne-n#0,

(2.12) L gk, =—2

) K-+ bKKpy+2Kp41

where we define Ny,=1, K4,=2 and K is the Gaussian curvature of M and
Ap=22HPHP,, and H=har.1 st 1Rar 12,
a

§3. Frenet-Boruvka formula.

Let M=R? be an oriented Euclidean 2-plane with a standard flat metric
and X=S¥. Then we have, by the Gauss equation,

3.1) K=0 and Kgy=1.

By [(2.9) and [(3.1), f«», is bounded and subharmonic on R® Hence f,,
must be a constant function on R? and we have A,=0. and tell
us that N, is also constant. Thus the 2nd osculating space is globally defined

on R% Since R? has the standard coordinate system of R? orthonormal tan-
gent vector fields ¢, and e, are globally defined. Hence X (H®)? is also
az3
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globally defined for any fixed e; and e, and holomorphic by By
its norm is constant. Hence 3 (H®)* must be a constant by Liouville’s theo-
rem. If N,=0, ¥(R?) is contained in a 3-dimensional totally geodesic S*® in
S¥ (cf. [B]). If N+#0, then we have

LEMMA 2. There exist globally defined orthonormal vectors ey, e, and (locally)
defined orthonormal vectors e,, =5, such that

hg; >0, hs12=0;
(3.2) hy, =0, he#0;
haij:(): a'gs;

where hg;j, 3=a=4, are also globally defined constant functions on R*
PROOF. Since N¢,#0, vectors {e,, e,, a§3ha119a, 0§3h“”e"} are basis of TP
at each point of R% We set
2 haizla
a3
V2 hi

By the Gram-Schmidt’s orthogonalization in 7% and any other normal vectors
in the orthogonal complement of T2, we have, then Af;,=0 and hZ%;;=0, a=5.
By definition, ef and ef are globally defined, and h#;, h¥; are globally defined
on R? By taking a suitable sign of ¢} and ¢f, we may assume 43, =0 and
h:=0. We know N=(h#h%,)?#0. Since Ky, N, and 3 (HP)? are constant,
h¥/'s are also constant, q.e. d.

We drop the asterisks. Since we know w;;=0, we have w;=0 by [2.6).
Since N, #0, we get H?,=0, by virtue of dK,,=0 and dAy=0 (cf. part II
of [3]). The formula says that

3.4) Ky =2N.

(3.3) ef =

By [2.9), [(2.11) and (3.4), fcs is bounded and subharmonic. Since the 3rd funda-
mental tensors are globally defined, f;, must be a constant function on R? and
we have Au,=0. As Ny, is also constant, the 3rd osculating space is globally
defined on R® Since ags(ﬁs?)z is also globally defined and holomorphic by [2.6),
this is constant by [2.10) If N,=0, ¥(R?) is contained in a 5-dimensional
totally geodesic S°CS?. If Ng,#0, then we have '

LEMMA 3. There exist globally defined orthonormal vectors es;, e, and
(locally defined) orthonormal vectors e,, =7, such that

hsi1:1 >0, hs112=0;
(35) : h6111 =0, heuz #0 N

haijr=0, az=7,
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where hgijp, a=5,6, are globally defined constant functions on R*

Since the proof of are almost same as its of we shall
omit it. Since w,,=w,;,=0, we have wz;=0 by Continuing in this way,
if N, is defined on R? and non-zero constant on R? we must have Kgipn=
Ko-5Nwy/Nes-, and Ny is a constant. Therefore ¥(R?) must be contained
in an odd dimensional totally geodesic S*"**S¥ such that N, - Noy#0 and
Nenin=0 (cf. [3]). Thus we have

PROPOSITION 1. Let W : R*-S¥ be an isometric minimal immersion such
that the image is not contained in a linear subspace of R¥**. Then

i) N must be an odd integer, N=2n-+1;
iil) Any x€R? is a regular point of order n;

iii) Kemyy Nemy, m=2,3, -+, n+1, are constant functions on R® and
K
(36) K(m)'— NE: Z) N(m -1

iv) With respect to any fixed e, and e,, the globally defined complex func-

tion X (HP)? is also constant on R
az2b—1

We have also

PROPOSITION 2. Let ¥ : R*—-S%**! be an isometric minimal immersion such
that the image is not contained in a linear subspace of R***®, Then there exist
globally defined orthonormal vector fields e; and e, such that higher fundamental
tensors satisfy

h(zb-1>1_~-_'~1> 0, h(2b~1)1‘-:.‘12:0; b=2,3,-,n+1,

b -1
3.7 henia =0,  hepr#0;  0=2,3,-,n,
3 1
hayei =Hhar0:=0, az=2b+1, b=2,3,--,n.
b -1

Moreover, hepyra, Papyieizy Pop-nia R4 Rgninya are globally defined constant
Sunctions and we have

K(b 2)
2 2 .
h(2b D1 I—J N(b"l)—h(ZD)l"'l_h(2b)1-“12 ;

(b 2)

(3.8) ’ b1
h(2n+1)1 I“x/Kcn = N(n) ’

(n 1)

Wi =Wgg= -+ :wzn—1,2n:0 .

PROOF. From the preceding discussion, with b=n is valid for any
orthonormal vectors ¢, and ¢,, We can choose suitable ¢; and e, such that
hanine-12=0. If necessary we take —ey,41, we may assume hepin.>0. g.e.d.
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We call such a frame the Frenet-Borivka frame. From these results we
have a system of Pfaff for ¥ by making use of the formulas in pp. 477 and
478 of the part I of [3]:

We put
B+1 ®
Q= hearinia Ba= hespenias
VN vV New
(39) o
5, — —C2k+ L1 , k:L 2, ,n—1.
* VN
Wy=dx, w,=dy, Wy= -+ =Wy, =0,

Wop-1,2k41= VNep-y 0 Br-1dx+a,,dy),

Wok-1,2k+2= \/N(k—l) (Br-rop—a - Br)dx+ \/ch—n (.Bk—1,3k+ak—1ak)dy )
Woryarer =— VN 04-10,dY,

(3.10)
Wok,opre = \/ch—l) 0p-1(Brdx—a,dy),

Wip= -+ :wzn—1,2n:wzk-1,a:w2k,a:0, az=2k+3,

Wan-1y2n+1=— '\/N(n—.l) 5n(‘8n-1dx+an—3dy) ’
Wanyon+1= " \/N(n—l) On-10,dY ,

where we set Ngy=K,=1, a,=0, B,=0,=1 and we have
i+ p=1,

Qo By =g fhagtOha),  m=2,3, 0, 1,
m-1)

(3.11)
N(m—l) - (NCm—2)‘3m-25m-2)2 y

0= Ny (@ Bhat33)

The Pfaff system (3.10) is completely integrable if and only if (3.11) is valid.
From (3.10) we can get a system of total differential equations with constant
coefficients for M(x, )= (x, ¥), es(x, y), -+, ean+1(X, ¥)), where we consider
U(x, y), ex,y), elx,¥) as row vectors in R***2, We put

(3.12) dM(x, y)=(Pdx+Qdy)M(x, y),

where P and @ are constant skew symmetric matrices which are determined
by haiyq,e Since (3.10) is completely integrable, we have PQ=QP. We can
seek the solution of as follows: Let T be an orthogonal matrix such
that
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P, 0 & 0
T-'PT = ., T-QT= ' ,
0 Pun 0 Qun
Pi:( )1 Q‘L:( )’ i:1127"'yn+17
—21; 0 — 0

and & +/—12; (resp. =+/—1 ;) are the eigenvalues of P (resp. Q). We set
T'M=(f4p). Since we have d(T*M)=(T*PTdx+T-*QTdy)T*M), (3.12) is
equivalent to

a<f(2k_l)B+ax —Llawe) — V=12 fer-ns+ V=1 fans),
(3.13)

a(f(”_DB_'_a;/_l Jaws) = V=1 p(feor-va+vV—1fans),
where k=1, 2, ---, n+1, B=1, 2, -+, 2n-+2.
(3.13) can be easily solved:

11 Jearna(x, ¥)=Cap-18 COS (’zkx—l—[lky)_l'c(zk)B sin (Apx—+p¢:Y),

Sfawns(x, ¥)=—Cp-1p Sin (ka‘i‘ﬂ #Y)+Cems COS (ka‘HlkJJ) ,

where Cegi-pp and Cy,yyp are constants.
Then under the initial condition M(0, 0)=T, we have M(x, y)=TG, where

6.0 (Axty)  sin(Axtpm)
. COoSs {(4;x iy sin (4;x iy
(3.15) G= - , Gi= # # .
. —sin (4;x+p¢,Y)  cos (Ax+p,y)
0 Gn+1
We set
(3.16) S={T'(xP+yQ)T: (x,y)e R*} .

& is an abelian Lie subalgebra of the Lie algebra of SO(2n+2) and we have
G=exp@®. Hence we have

THEOREM 1. Let ¥ : RE:—>S*"*! be an isometric minimal immersion such that
U(R?) is not contained in a linear subspace of R*™** Then W(R?) is an orbit
of an abelian Lie subgroup of SO(2n-+2).

By and a Hsiang’s Theorem [1], we get

THEOREM 2. Let ¥ :T?—S**! be an isometric minimal immersion of a flat
torus into S**!' such that the image is not contained in a linear subspace of
R*+%  Then ¥ is real algebraic.

Proor. We set T?=R?/I", where I' of translations of R? is generated by
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2 linearly independent vectors and = : R*—R?/I" is the natural projection. Let
¥ be an isometric minimal immersion of R? into S*"*! with ¥ (u, v)=%or(u, v).
There exist some isometry, A, of R? such that ¥oA(x, »)=(vy, -, Vsn+2)G by
Then there is a set of points (a, ¢), (b, d) such that

(3.14) Aa+p,c=2mp;, Ab+p,d=2rq,, i=1,--,n+1,

where ad—bc#0 and {p;, ¢;} are integers. Hence G is the closed Lie subgroup
of SO(2n+2). By [1], ¥ is real algebraic. g. e. d.

§4. Parametrization.

Let us say that two minimal immersions ¥, ¥,: R®—S?"*! are equivalent
if there is an isometry F of S®"*! and an orientation preserving isometry A
of R? so that F-¥,=¥,-A. By [¥] we denote the equivalence class of ¥’s.
We denote the set of [¥]’s such that ¥'(R?) is not contained in a linear sub-
space of R*™*? by 3. Then X can be written as a disjoint union of X2(Ke, -+,
K.))'s, where Y(Ky, -+, Ko) is the set of [¥]e€ X such that 3 (hii.+hi10)

a=28+1
=Ksspy $=1, -+, n—1 and hgyy.i,,,’s are the higher fundamental tensors of V.

We remark that any immersions in 2(K,, ---, K¢y) have the same quantities
N(3)1 Tty N(n—l) by '

In this section we intend to parametrize 2 (K, -+, Komy). We consider a
[w]EZ(K(Z)r Tty K(n))' Since N(Z); Ty N(n):/:ov we knOW

= ()2 2 K- 2
(4.1) | 2 (HP) :f(b)<( N, N(b—.l)) 1 b=2,3,--,n.
a=2b-1 -2

For simplicity we write C,_,=(H®)?, b=2,3, .-, n+1. We remark that C,
is independent for the adapted normal vectors ¢;,. Under the transformation
e, +ie,—e'%(e,+ie,)=2,+i8,, we have

(4.2) Coy=e®C, . b=23 - ntl.

For an isometric minimal immersion ¥ : R?—S?"*! the Frenet-Borlivka frame
is not unique. Let &, and &, be a Frenet-Boruvka frame on R2 Since we
kl’lOW h(2n+1)1...1220 and h(2n+1)1...12:O, we must have

—— ~
— 1 2. . 2 —
Co=HEGLE) =Kt iy=C,

and hence we get 0=krn/n+1, £=0,1, 2, ---. Thus we have
LEMMA 4. We set

d,={zeC: |z|<1}

8y={zeC: 12| <HELDNGL,  b=2, -, n—1.
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Then we have a correspondence X :¥—[(C,, -+, Co.)]ed, X <« XA,/ where

expx/——l—nzl—fl—ﬂ: 0
(4.3) r= I k=0,1,2, -

— an
0 exp\/ I

2bk
n+1
The map X in induces the one-to-one correspondence of 2(Kcy,

, Kiny) into 4, X -+ X4,_,/I": Let @ and ¥ be isometric minimal immersions
of R? into S*"*! such that [®] and [¥] are elements of 2(Ky, -+, Kay). We
denote X(¥)=[(C,, -+, Cp-.)] and X(®)=[(D,, ---, D,-,)]. Now we suppose X(¥)

=X(®). Then we have C,_ 1——exp(\/ 1 2bk n)Db-l. Under the transforma-

n+l
tion f,+ v “1fz—’eXp("— V=1 n+1 )(f1+ '\/—fz) f1+ \/——fz; where (f1, f2)

and (f, fz) are orthonormal tangent vectors of the Frenet-Borivka frames of
@, we have D,_ 1—exp(x/ 12b—=5 )D,, =Cy_y and Popinis=0, where

k<2,,+1,1...12 is a component of the (n+1) th fundamental tensor of @ with respect to
fi and f, of the Frenet-Borivka frame of ®@. Therefore @ is equivalent to ¥.

LEMMA 5 (Surjectiveness). For any [(C,, ---, C,-)]€d, X -+ X4,_,/I there
exists an equivalence class of a minimal immersion ¥ : R*—S*** with X(¥)=
[(Cy, -+, Cap)]

PrROOF. We can define constants a;, 8, and d, such that they satisfy

and exp+/—1

7 acts on d,_,.

Reclzl—"Z‘B%, Im C1:2a1‘31, alzo, ‘81:#0,
0;= '\/I-a%—ﬁ% , Ney=(8:6,)*,

N
&)

ReCy= (f)n N(b-z)(a%—2+ﬁ%—2+5%—2)"2N<bJﬁ% ’

ImeZZN(b)abﬂb, ab_z_o, ‘Bbio, b=2, 3, "',n—l,

(4.4)
x/N(b 2 (C(b 2+,8b—-2+5 2)’"“%_ % ’

(bl

N(b>:(N(b—1>,8b—15b—1) ’

_ 1
b=y (@t Bt 1)

Nwp=1, a,=0, ,30———50:1.

For a C,, if Im C,#0, then a;, and B, satisfying ;=0 and B,#0 is uniquely
determined. In the case of Im C,=0, ¥, (resp. ¥_) denotes the minimal immer-
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sion constructed by @,=0 and B, (resp. @,=0 and —p;) from (3.10). Then by
taking suitable transformation of e¢,,., and e,, we have ¥, =V _. q.e.d.

Thus we have

THEOREM 3. There exists a 1-1 correspondence between X(K, -+, Kay)
and 4, X --- xd,.,/I.

REMARK. In the case of ¥ : R*—S°® with N, #0, we have 2=23(K,), be-
cause of Ky,=1 for any ¥ and so Y=4,/I" (cf. [4]).

§5. Examples.

In general it is not easy that we calculate the eigenvalues of P and Q.
See [3] for the minimal immersions with f,= -+ =f=0 into S**!, We shall
give some another examples in this paper.

(5.1) V(x, )=

1 / _ V2T GG YAYE TSV
AT 256—2s) \VSB2s) e , VA2 (I—s)e?

Ve VEEY) (Ve Nes'cc.

By the direct verification, we can see the following results of [5.1): For each
0<s<1, (5.1) is an isometric minimal immersion of R* into S’ satisfying f,=0,
Jo=1/4—s(1—s)=0 and Ng,=s(1—s)/4. Therefore, for 0<s<1/2, these non-
equivalent minimal immersions are different from one’s constructed by T. Itoh
[2]. Especially, in the case of s=((6/5)2—1)/2, the ¥, induces an isometric
minimal immersion of a flat torus into S’.
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