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Introduction.

We have widely extended the Krull-Remak-Schmidt-Azumaya’s theorem in
4], [5], [6], [7], and and succeeded to prove some of main theorems
by virtue of the theory of category ([12], Theorem 20.1 on page 30 and [13],
Theorem 2). However, most statements in the above papers are related to
modules, but not to categories. Thus, it is natural to expect to be able to
prove all results in the frame of ring theory.

Recently, T. Ishii succeeded to prove substantially the implication
from i) to ii) in [II] in the frame of ring theory. Hence, the remaining is
essentially in [6].

In this short note, we shall give a ring theoretical proof of the above
theorem by making use of an idea given in [10]. First, we shall translate a
factor category induced from completely indecomposable modules into a cate-
gory of semi-simple modules through equivalent functors, which gives a sim-
pler proof of [4], Theorem 7, however it does not work on category of pro-
jectives or injectives (see and [6]). Finally, we shall give a ring theoretical
proof of [6], by making great use of results in [10].

§1. Factor categories.

Throughout we shall assume that R is a ring with identity and all R-
modules are unitary right R-modules. We shall denote the category of all R-
modules by M. Let {T,}; be a set of R-modules. We shall define a full
subadditive category T induced from {T,}; (see [4]). Every objects in T con-
sist of all R-modules which are isomorphic to %EBT s, where Tj's are some

members in {T,}; and the set of morphisms coincides with the set of R-
homomorphisms. Let € be an ideal in ¥ (see or [9]). We define the
factor category T /€ as follows: the objects in /€ coincide with those in ¥
and [T, T']g/s=Hompg(T, T")/(Homg(T, T")N\Q) for T, T’ in T/C.
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An R-module M is called completely indecomposable if Endg(M) is a local
ring. Now, we assume {A,}; is a set of completely indecomposable modules
such that A,% Az if a#p. Let A be the category induced from {A,};. Every
morphisms in % can be expressed as column-summable matrices (¢,.) (see [1]
or [4]). We define an ideal 3’ in %A as follows: ' \[A4, A J={(as) | any Gor
are not R-isomorphic for all o, z} (see [L]).

Since A, is completely indecomposable, Endg(A,)/ J(Endz(A,)) is a division
ring 4,, where J() means the Jacobson radical of (). We put A:IIIAa, then

4 is a regular ring in the sense of Von Neumann and ;@Aa is the socle of

4. By & we shall denote the category induced from {4,}; in M, where we
regard 4, as a right 4-module. It is clear that © is a completely reducible
and Grothendieck subcategory in M4 We note that for any morphism f in &
Ker f and Im f in & coincide with those in M.

First, we shall prove the following

THEOREM 1 ([4], Theorem 7). Let U, Y’ and & be as above. Then A/’
is equivalent to S,

We need a lemma to prove it. Let {T,}: be a set of R-modules and &
the category induced from {7,};. We shall define a new category T*. Let
M:%@Mr be an object in &, where M;=T,. We consider a pair (M, %}@Mr).

We define (M, 2P M)=(N, 2P Ny) if and only if M=N and T PM;, DN+
K K K

Kl
are the same decompositions of M. We put the set of morphisms [(M, ;@M ),

(N, I;@Nr,)]-——HomR(M, N) (we should distinguish [(M, 2P M), (M, P M3.)]

and [((M, DM, (M, BM7.)] if decompositions are different even though
they are equal to Homgz(M, M’)). Then we have an additive category T*=
{(M, ZDMy)}.

LemMmAa 1. £ is equivalent to IT*.

PrROOF. We shall define functors S:E—%* and U:3I*—% such that SU
(resp. US) is equivalent to 1lg. (resp. 13). For each M in T we fix one decom-
position: M=>PM,; M,=T, and we define

SIM)=(M, ZD M) .

Conversely, let M'=(M’, 2XPM;) be in T*. Put

UM)=X®M/=M.
It is clear that S and U are functors and US=1;. Let M'=UM)=3PM¥
be the fixed decomposition of M’. Then SUM")=(M’, %EBM;“). Put ;M,:l,,,

(el M, ZHMY), (M, ZPM¥)]). Then it is clear that SU and 1g. are naturally
equivalent through {¢u}.
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Now, we assume {A,}; is a set of completely indecomposable modules such
that A,#Ag if a#p. Let A be the category induced from {A,}; in M. We
can define the ideal 3’ in A* as above. Since I’ does not depend on decom-

positions of M by [4], [Corollary] to Lemma 4, we have
COROLLARY. /I’ is equivalent to A*/J’.

Proor oF THEOREM 1. We shall show an equivalence between */J’ and
&* Let M=(M, %@Mr) be an object in A*/Y’, where My=A,;. We put M=

Z@MY:; JZEBMmg; M. s=A, Let N=(N, ; 2 @ Nys) be another object.
a Ja

We divide matrices in Homg(M, N) into |I| X |I| blocks, where |I| means the
cardinal number of I. Then it is clear from the decomposition above that
every entries of matrix in every block except the diagonal consist of non iso-
morphisms and hence, those blocks belong to J’. We put M(a):JZ‘,@Maﬁ

and S(a)=> P 4,=4Y%. Then we have a natural isomorphism
Ja

Endz(M(a))/J3’ MEndp(M(a)) =~ End (S(@)) -+ ----rvevnee *),
(ctf. [4)).

We define T: A*/J'—S* by setting T(M):ZI)EBAQ;’“) and T(Homgz(M, N)/I' N
Homgz(M, N))=Homy(T(M), T(N)) via (*). Then T is a functor. Conversely,
let S=(S, X X P 4d.s) be in S*, where d,3~4,. We define

I Ig

V(S)=(M, ; D AT).

Since 4,~End(4,5)~Endg(A,)/J(Endg(As)) and J(Endg(A,)) consists of all non-
isomorphisms, V(Homy(S, $"))=Homz(V(S), V(8))/Y "Homgz(V(S), V(8)). V is
also a functor: &*—U*/J’. We have a natural isomorphism @y : 21 ;@Maﬁ
ﬁ;@A&JU‘) (and SbS: ZJ) IZ) EBAmg—ﬁEEBAE,f“)). Hence, TV~ le. and VT~ 191*/{}'.
a I

Let Sy;y and Uy (resp. S¢ and Ug) be functors in Lemma 1 Then X=
UgTSyy and Y=Uy,y VSs give the desired equivalence.

REMARK 1. The functor Y above does not depend on decompositions of
M in U, however X does. If we fix another decomposition of M : M:%‘,@M;.
and define a functor S’(M)=(M, %@M&,) in Cemma 1], then lygy~YX~Y X'
Hence, X~X'.

CorOLLARY ([1]) (Uniqueness of decompositions). Let M:}I_{]@Ma:%)@M;,

be two decompositions of M by completely indecomposable modules M, and M.
Then there exists a one-to-one mapping ¢ of K onto K’ such that M,=M 4 for
all e K (cf. [3] and [4])).

PROOF. Let M= 3 OMp=2 2 DMys. We may assume /=1 since

I Jg I Jhy

J. or J, may be empty. Then X(M):;@Aé{a)zX’(M):;@Aﬁz’&’ from
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Remark 1. Hence |J,|=|/.| since & is completely reducible.

From this corollary, we may understand that X: %/J'—& does not depend
on decompositions of M.

REMARKS 2. Let X, Y, ¢y and ¢s be as above. Then X(¢p,)=1yu» and
Y(¢s)=1ys, and hence, XY X=X and YXY=Y.

3. Let f: M—N be in A/Y’. Then X(f) has the image I and the kernel
K in M, and [=XY(I), K=XY(K) from Remark 2. Therefore, Y(I) and Y(K)
are the image and the kernel of f in A/, respectively. Let M=N, PN, in
Mz (N, are not necessarily in 2°/J’) and e; projections of M to N,. Then [5],
Proposition 2 and [10], Lemma 6 imply that there exist submodules N; of N,
such that N} are in /Y and X(V))=Im X(e;). We call them dense submodules

51

§2. Exchange property.

Next, we shall give a proof of [6], by means of the concept
of locally direct summands in [9] and [10]. Let {T.}; be a set of R-modules.
We take any countable subset {T;}7 of {T,}; and any set {f;} of non-isomor-
phisms f;:7T;—T;,,. If for any above sets and any element ¢ in T,, there
exists a number 7, depending on t and given sets, such that f,f,-, -+ f:(£)=0,
then we call the set {T,}; locally semi-T-nilpotent. We assume {A.}; is a set
of completely indecomposable modules and we put A:?@Aa. Then we

know from [9], Theorem 3.1.2 that Endz(A)N\Y’=J(Endz(A)) if and only if

{A,}; is locally semi-T-nilpotent. Finally, let M=N,(BN, be R-modules. If for

any decomposition M= B L, of M there exist submodules L, of L, such
K

that M=N,DO>BL,, then we say N, has the exchange property in M (cf. [5]).
K

Now, we are ready to state [6],
THEOREM 2. Let {M,}; be a set of completely indecomposable modules and
M= ZEBM Let I=I\JI, be a partition of I and N;= ZEBM If {Mg};, is

locally semi-T-nilpotent, N, and N, have the exchange property m M.

First, we shall prepare some fundamental properties of dense submodules
(see Remark 3). We note that those properties below are trivial if we use the
functors X and Y in the proof of [Theorem 1. Let M2N be R-modules. By
iy we always denote, in the following, the inclusion of N into M.

We shall quote here [10], Corollaries 1 and 2 to Proposition 8.

LEmMMA 2 ([10]). Let M be in A. M=3PM, and e, the projection of M

I

onto M,. Let N, be a submodule of M,, which is in . Then N, is a dense
submodule of M, if and only if there exists an R-homomorphism p,: M— N,
such that iy, pa—eo € Endg(M)NY. In those cases for all acl, Ny is a
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dense submodule of M.,

We shall denote the fact iy, pa—eaEEndeg(M)NJ’ by iy, poa=e, (mod J’) or
simply iy, po=¢.. We refer to for other terminologies.

LEMMA 3. Let M be an object in W and N a direct summand of M. We
assume that A, A, are in U, ADA, is a dense submodule of N ond e a pro-
jection of M onto N. Then there exist R-homomorphisms p;: M—A; which
satisfy i) e=i,p,+iype, ii) pji;=0;;14; and iii) pe=p; (e1;=1i;), where 6,; is the
Kronecker 3 and i;=i,,.

PROOF. From there exists an R-homomorphism p: M— A, DA,
such that e=ip and pi=1,,04,, Where i=i 04, Since e=e’=ipe, we may as-
sume pe=p. Let i;,p; be the injections and projections of A; in A,PA,,
respectively. Then 14,04,=Upi-+13p5 Put p;=pjp, then pje=p; and i,p,+1,p,
=il pi+iup)p=ip=e. psi;=p;pi;=p;pi;=pji;=14,. The remaining parts are
also trivial.

LEMMA 4. Let M and N be as above. We assume A,PA, and APA} are
dense submodules of N. Then A, is R-isomorphic to Aj via pii,, where the A,
and A} are in .

PROOF. Let pj, i; be as above and put 6=pji,. We shall show 0 is iso-
morphic modulo &’. Let a: B—A, and B€9. We assume da=0. Then i,a=
el a =i, pi+ i pa),a=1, pil,a, where p|: M—A, S AP A} Hence, a=p,i,a=p,i,pli,a
=0. Next, let 8: A;—B and B0=0. Then Bp;= Bp:e= Bpi(i,pi-+isps) = PP
=0. Since p} is epimorphic modulo ¥/, =0. Therefore, 0 is isomorphic modulo
X’ by [10], Corollary 1 to Then A, is R-isomorphic to A} since A,,

5 are in U (cf. [Corollary| to [Theorem 1 or [37).

LEMMA 5. Let M be in A and {P,, Qp}1,; a set of completely indecomposa-

ble modules. We assume ;@Pa and %)EBQ@ are dense submodules of M. Then

for any subset I’ of I there exists a subset J' of ] such that 121 DP.D > DQg
p— J’

is also a dense submodule of M.

PrOOF. We put P=;@Pa and Q———;EBQ,S. We may assume I'# 1. Let
« be in I—TI and put P*:a§ P;. Then there exist p,, p* such that 1, =
*¥p*+i,p, from Furthermore, there exists an isomorphism modulo
Y pp: M—P from Let p» be the projection of P onto P, Since
PPpioEO, there exists B in J such that pppig#0, where i[g:iQﬁ (cf. the definition
of J’). Hence, pppis is R-isomorphic from [10], Corollary 2 to
Now, we consider an external direct sum QgD P* and put j={(ig, 1*): QP P*
—M. We shall show that j is monomorphic modulo J’. Let o= (?) i L—QsPP*
and LeA. We assume jo=0. Then iga+i*b=0=pppiga+pppi*b=pppiga+
Pppipt* b= pppiga+pi*’b=pppiza, where i*': P*—P. Hence, since pppis is iso-
morphic, a=0 and so *»=0. Since i* is monomorphic modulo J’, 6=0. There-
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fore, j is monomorphic modulo J’. Thus Imj=Qs+P* is an internal direct
sum Qg+P* in M and QﬁB;@P,,(;Q;;EBP*) is a locally direct summand in
M from [107, Now, we consider a set B={Tx=SOP.DTD Q!
Kc ] and Ty is locally direct summand of M}. Then B is not empty. We de-
fine a partial order = in B by setting Tx=Tg. if and only if K2K'. We
can take a maximal element T in B from Zorn’s lemma. If T is not a dense
submodule of M, we can take a dense submodule TPL of M (see [10], Remark
2). If we use the first argument on a component of L, we can find Qs such
that TPQs is in B, which contradicts the maximality of 7. Therefore, T is a
dense submodule.

COROLLARY. Let M=N,PN,; N,€¥ and ;@Pa be as above., Then there
exists a subset I' of I such that NﬁB;EBR; 1s a dense submodule of M.

PROOF. Since N;’s are in U, N,BN, is itself a dense submodule of M.

PrOOF OF THEOREM 2. First, we shall show that N, has the exchange
property in M. Let M= ZEBQr and Z @ Py, a dense submodule of @, where

P;’s are completely 1ndecomposab1e Smce Z} 2 @ P;. is a dense submodule

in M by Lemma 2, there exists a subset J of ]r for each y=K such that
N, D2 DD Py is dense in M from [Corollary] tolL_e_La_ﬂ Let ¢, be the pro-

K J'r

D
jection of M=N,PN, onto N, and ¢;: M —> N1 AN M and put P/= %}JE P Pr..
‘r

Then p,ip is isomorphic modulo ¥’ by On the other hand, {M.}
is locally semi-T-nilpotent from the assumption. Hence, p,ip. is R-isomorphic
and M=P’'®Ker p,=FP'PN,. Finally, we shall show N, has the exchange pro-
perty in M. Similarly to the above, we obtain subsets /¥ of Jr such that
NP> PPy. is dense in M. We put P¥ Z@Prs, Pl = E@Pn and P*

K J*T

:Z)GBP?, where J{=Jr—]J¥. Then N,= EGBP from Since P§
P*EB E 2 @D P,. is dense in M, there exist R-homomorphisms py : M—P} and

aFr Ja

po: M—PFD DIDY P P, such that
aFr Ja
ly=ipy4ieche voveiiiiiiii i (1),
where i,: P¥P X X B P.—M. Furthermore, since {Pr.},., is locally semi-T-
a¥Fr Ja

n1lpotent and p{iy=1p,, M=P}/PKerpy. We put QF =Q;N\Ker p/, then Qy=
Pr& Q¥ and

M= EEBP @E@Q* .................... (2).

Let Qf be a dense submodule of QF via inclusion ##/. Then Q¥ @ P{ and
P¥@Py are dense submodules of Qy. F'=(17py 41,001 =1,0,1F from (1), since
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QF SQ¥SKerpy. Put d=pyif'=(7): Q¥ ~P¥® Y X ®Po.. Then we have a

a¥ty Ja
commutative diagram modulo J’:
Or =", 1)
¥ P¥@ X ZDP P> PP
aFy Ja aFr Je
. 1= (i, 1)
H A
M

where 1, ¢ etc. mean injections. Furthermore, let ¢; and e, be projections of
M=Q,( X Q,) onto each components. Then 0=e, i} =e,ii'0,=e,1;1"a+e,1"b=
aFty
e;i"b=i"b, since P¥+Qf'SQr and 3 X OPoS 3 OQa Hence, 6=0. Thus,
aFty Ja aFEy
we obtain a commutative diagram modulo J’:

Or

M i

Qr

Now, since PY@P¥ and P7YPQF are dense in @, there exists, from Lemmas
3 and 4, an R-homomorphism p¥: M—P¥ such that pfi¥f=1r¥ and pfi¥ is
isomorphic modulo J’. Hence, d;=pFi}¥ is isomorphic modulo J’. Put d=

>0 2PRF -PPF. Since SDQF is a dense submodule of > POF, we
K K K K

have an R-homomorphism p* : M—>@PQ¥ such that 1—f=i*p* from Lemma
2, where ™ : 2 PQ¥—M and f: M—>PHPY{ is the projection in (2). On the
other hand,

SPPFBN, o 4)

is a dense submodule of M. Hence, there exist R-homomorphisms p*: M —
@ P# and py,: M—N, such that

Lo = DD i a Doy oeeeeee e ).
Since P QF S P QF=Ker f, fi*’=0. Using this result, a fact that 0 is iso-
K K

morphic modulo J’ and (3), (4) and (5), we can prove similarly to Lemma 4
that fiy, is isomorphic modulo J’. Hence, fiy, is R-isomorphic and M=

Nl@kerf:N1@§@Q;‘k-

REMARK 4. If we translate the last part of the proof of Theorem 2 into
the category @ by functors X, Y in the proof of Theorem 1, then we obtain
a much simpler proof than the above as follows:

Let M, Qr and P;. be as above and e;’s projections of M onto Qr. We
shall use the same notations as above. Then X(M)=X2@Im X(e;), Im X(ey)
:JE b X(Py.) from Lemma 2. Since & is completely reducible, X(M)= X(N,)

7
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2 XD X(Pr) and 2 DD X(Pr)= X(N)=2 S X(M,). Hence, {Prdg,s is
7 T 1

locally semi-T-nilpotent. Let i; be the injection of Py into M. Since X is
equivalent, there exists an R-homomorphism py: M — P# such that X(p,iy) =
1y, and X(Pr)|(6§@X(P5)@X(P;k)):0- Hence, M=P/®Xer pr, since {Pr},-,

is locally semi-T-nilpotent. Let QF and @} be as before. Then X(Q¥)S
Ker X(;br):(% B X(Ps)D X(PF) < a% D X(Ps)D X(Pr) and X(Pr)=X(P7)DX(QF).

Hence, X(QF)< X(P¥). On the other hand, X(P;)=X(P{)P X(QF)=X(Py)P
X(P¥). Therefore, X(P¥H)=X(Q¥'). Now, let f be the projection of M onto
;@P# in (2). X(M)=X(M)EB;ZGBX(P?‘):X(Nl)@ZEBX(Q%"’) and X(M)=

SOXPHDID X(QF). Since QF &Q*SKerf, Ker X(f)=2@ X(QFf') and
X(f)| X(N,) is d-isomorphic. Hence, f|N,: N,—>P P} is R-isomorphic and M=
NO 2B}

REMARK 5. If we use directly the factor category 2A/3J’, we have a further
simpler proof than the above (see [6] and [7], the foot note).
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