A characterization of arithmetic Fuchsian groups

By Kisao TAKEUCHI

(Received Feb. 28, 1975)

§1. Introduction.

Let k be a totally real algebraic number field of degree n. Then k has n distinct embeddings φ_i $(1 \le i \le n)$ into the real number field **R**, where φ_1 is the identity. Let A be a quaternion algebra over k which is unramified at the place φ_1 and ramified at all other infinite places φ_i $(2 \le i \le n)$. Then there exists an **R**-isomorphism

$$\rho: A \bigotimes_{\boldsymbol{q}} \boldsymbol{R} \longmapsto M_2(\boldsymbol{R}) \oplus \boldsymbol{H} \oplus \cdots \oplus \boldsymbol{H}, \qquad (1)$$

where H is the Hamilton quaternion algebra.

Denote by ρ_i the composite of $\rho|_A$ with the projection to the *i*-th factor. Then ρ_1 (resp. ρ_i $(2 \le i \le n)$) is an isomorphism of A into $M_2(\mathbf{R})$ (resp. \mathbf{H}). By changing the indices suitably, for any element a of k we have

$$\rho_1(a \cdot 1_A) = a \cdot 1_2, \qquad \rho_i(a \cdot 1_A) = \varphi_i(a) \cdot 1_H \quad (2 \le i \le n), \tag{2}$$

where 1_A , 1_H and 1_2 are the unities of A, H and $M_2(\mathbf{R})$ respectively.

Denote by $\operatorname{tr}_A()$ and $n_A()$ (resp. $\operatorname{tr}_{\mathbf{H}}()$ and $n_{\mathbf{H}}()$) the reduced trace and the reduced norm of A (resp. \mathbf{H}). Then for any $\alpha \in A$, we have

$$\operatorname{tr}_{A}(\alpha) = \operatorname{tr}(\rho_{1}(\alpha)), \qquad \varphi_{i}(\operatorname{tr}_{A}(\alpha)) = \operatorname{tr}_{H}(\rho_{i}(\alpha)) \quad (2 \leq i \leq n), \qquad (3)$$

$$n_{A}(\alpha) = \det\left(\rho_{1}(\alpha)\right), \qquad \varphi_{i}(n_{A}(\alpha)) = n_{H}(\rho_{i}(\alpha)) \quad (2 \leq i \leq n), \qquad (4)$$

where tr() and det() are the trace and the determinant of $M_2(\mathbf{R})$ respectively. Now take an order O of A and put

$$U = \{ \varepsilon \in O \mid \varepsilon O = O \text{ and } n_A(\varepsilon) = 1 \}.$$

Then U is a group called the unit group of O of norm 1. Denote by $\Gamma(A, O)$ the image $\rho_1(U)$ of U under ρ_1 . Then $\Gamma(A, O)$ is a discrete subgroup of $SL_2(\mathbf{R})$. The group $SL_2(\mathbf{R})$ operates on the upper half plane $H = \{z \in \mathbf{C} | \operatorname{Im}(z) > 0\}$ in the following way:

$$SL_2(\mathbf{R}) \ni g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} : z \longmapsto \frac{az+b}{cz+d}.$$

It is well-known that by the above operation $\Gamma(A, O)$ defines a Fuchsian group of the first kind i.e. a properly discontinuous group such that $H/\Gamma(A, O)$ is of finite volume. If we change the isomorphism ρ , $\Gamma(A, O)$ is transformed into a $GL_2(\mathbf{R})$ -conjugate group.

DEFINITION. Let Γ be a discrete subgroup of $SL_2(\mathbf{R})$ such that H/Γ is of finite volume. Then we call Γ a Fuchsian group of the first kind. When Γ is commensurable with some $\Gamma(A, O)$, Γ is called an arithmetic Fuchsian group (cf. [5]). Moreover, if Γ is a subgroup of $\Gamma(A, O)$ of finite index, then we call Γ a Fuchsian group derived from a quaternion algebra A.

In this paper we shall prove the following theorem which gives a characterization of arithmetic Fuchsian groups Γ by the properties of the set $tr(\Gamma) = \{tr(\gamma) | \gamma \in \Gamma\}$.

THEOREM 1. Let Γ be a Fuchsian group of the first kind. Then Γ is an arithmetic Fuchsian group if and only if Γ satisfies the following conditions (I) and (II₁):

(I) Let k_1 be the field $Q(\operatorname{tr}(\gamma)|\gamma \in \Gamma)$ generated by the set $\operatorname{tr}(\Gamma)$ over the rational number field Q. Then k_1 is an algebraic number field of finite degree, and $\operatorname{tr}(\Gamma)$ is contained in the ring O_{k_1} of integers of k_1 .

(II₁) Let k_2 be the field $Q((\operatorname{tr}(\gamma))^2 | \gamma \in \Gamma)$ generated by the set $\{(\operatorname{tr}(\gamma))^2 | \gamma \in \Gamma\}$ over Q. Let φ be any isomorphism of k_1 into the complex number field C such that $\varphi|_{k_2} \neq$ the identity. Then $\varphi(\operatorname{tr}(\Gamma))$ is bounded in C.

In order to prove Theorem 1 we must prove first the following

THEOREM 2. Let Γ be a Fuchsian group of the first kind. Then Γ is a Fuchsian group derived from a quaternion algebra if and only if Γ satisfies the condition (I) in Theorem 1 together with the following condition (II₂):

(II₂) Let φ be any isomorphism of $k_1 = Q(\operatorname{tr}(\gamma) | \gamma \in \Gamma)$ into C such that $\varphi \neq$ the identity. Then $\varphi(\operatorname{tr}(\Gamma))$ is bounded in C.

REMARK. Theorem 2 is a generalization of a result in [1].

We shall first prove Theorem 2, in §2. By making use of Theorem 2, we shall then prove Theorem 1, in §3. Finally in §4, it is shown that the conditions (I) and (II₁) are independent of each other.

The author would like to thank Professors G. Shimura and Y. Ihara for their valuable suggestions.

§2. Proof of Theorem 2.

In this section we shall prove Theorem 2.

2.1. Necessity of the conditions (I) and (II_2) .

Let Γ be a subgroup of $\Gamma(A, O)$ of finite index. Then $k_1 = Q(\operatorname{tr}(\gamma)|\gamma \in \Gamma)$ is contained in the center k of A. Therefore k_1 is totally real. Since $\operatorname{tr}_A(O)$

is contained in O_k , we see that tr(Γ) is contained in O_{k_1} . This shows that Γ satisfies the condition (I).

Now consider the case $n \ge 2$. By (3), we see that $\varphi_i(\operatorname{tr}(\Gamma))$ is contained in $\operatorname{tr}_{\mathbf{H}}(\rho_i(U))$ $(2 \le i \le n)$. On the other hand by (4) for any $\varepsilon \in U$ we have $n_{\mathbf{H}}(\rho_i(\varepsilon)) = \varphi_i(n_A(\varepsilon)) = 1$ $(2 \le i \le n)$. Hence $\rho_i(U)$ is contained in the set $\mathbf{H}^{(1)} = \{x \in \mathbf{H} | n_{\mathbf{H}}(x) = 1\}$. Since $\operatorname{tr}_{\mathbf{H}}(\mathbf{H}^{(1)})$ coincides with the interval [-2, 2], $\varphi_i(\operatorname{tr}(\Gamma))$ is bounded in \mathbf{R} $(2 \le i \le n)$.

Finally we shall show that k_1 coincides with k. Suppose that k is a proper extension of k_1 . Then there exists an isomorphism φ_i $(2 \leq i \leq n)$ such that $\varphi_i|_{k_1}$ =the identity. Using this φ_i , we see that $\operatorname{tr}(\Gamma)$ is contained in the interval [-2, 2]. This means that Γ contains no hyperbolic elements, which is a contradiction. Therefore, k_1 coincides with k. Thus we have shown that Γ satisfies the condition (II₂).

2.2. Sufficiency of the conditions (I) and (II_2) .

PROPOSITION 1. Let Γ be a Fuchsian group of the first kind. Let $A(\Gamma)$ be the vector space spanned by Γ over $k_1 = Q(\operatorname{tr}(\gamma) | \gamma \in \Gamma)$ in $M_2(\mathbf{R})$. Then $A(\Gamma)$ is a quaternion algebra over k_1 . Moreover, if Γ satisfies the condition (I), then the submodule $O(\Gamma)$ of $A(\Gamma)$ spanned by Γ over O_{k_1} is an order of $A(\Gamma)$.

This proposition is proved in [1].

We shall now prove the following

PROPOSITION 2. Let Γ be a Fuchsian group of the first kind. Assume that Γ satisfies the conditions (I) and (II₂). Then $k_1 = Q(\operatorname{tr}(\gamma) | \gamma \in \Gamma)$ is totally real. Moreover, let φ be any isomorphism of k_1 into \mathbf{R} such that $\varphi \neq$ the identity. Then $\varphi(\operatorname{tr}(\Gamma))$ is contained in the interval [-2, 2].

PROOF. Take any $\gamma \in \Gamma$. Let u and 1/u be the eigen-values of γ . Let φ be any isomorphism of k_1 into C such that $\varphi \neq$ the identity. Extend φ to an isomorphism ψ of $k_1(u)$ into C. We shall show that $|\psi(u)|=1$. Suppose that $|\psi(u)| \neq 1$. Then by the inequality

$$|\varphi(\operatorname{tr}(\gamma^{m}))| = |(\phi(u))^{m} + 1/(\phi(u))^{m}| \ge ||\phi(u)|^{m} - 1/|\phi(u)|^{m}|,$$

the set $\{\varphi(\operatorname{tr}(\gamma^m)) | m \in z\}$ is not bounded which contradicts (II₂). Therefore $|\phi(u)| = 1$. By the equations

$$\varphi(\operatorname{tr}(\gamma)) = \psi(u) + 1/\psi(u) = \psi(u) + \overline{\psi(u)},$$

 $\varphi(\operatorname{tr}(\gamma))$ is a real number contained in the interval [-2, 2]. This shows that k_1 is totally real and that $\varphi(\operatorname{tr}(\Gamma))$ is contained in the interval [-2, 2]. q.e.d.

PROPOSITION 3. Let Γ be a Fuchsian group of the first kind. Assume that Γ satisfies the conditions (I) and (II₂). Then

$$A(\Gamma) \otimes_{\mathbf{Q}} \mathbf{R} \cong M_2(\mathbf{R}) \oplus \mathbf{H} \oplus \cdots \oplus \mathbf{H}.$$

PROOF. In view of the proof of Proposition 1 in [1] by considering a suitable conjugate group of Γ , we may assume that Γ contains the following two elements:

$$\gamma_0 = \begin{pmatrix} w & 0 \\ 0 & 1/w \end{pmatrix} \quad (w^2 \neq 1), \qquad \gamma_1 = \begin{pmatrix} a_1 & 1 \\ c_1 & d_1 \end{pmatrix} \quad (c_1 \neq 0).$$

We shall show that $K = k_1(w)$ is a proper extension of k_1 . If k_1 is a proper extension of Q, then there exists an isomorphism ψ of K into C such that $\psi|_{k_1} \neq$ the identity. $\psi(w)$ and $1/\psi(w)$ are the roots of the equation $x^2 - \psi(t_0)x + 1 = 0$, where $t_0 = \operatorname{tr}(\gamma_0)$. By Proposition 2 we have $|\psi(t_0)| < 2$. Therefore $\psi(K) = \psi(k_1(w))$ is an imaginary field. On the other hand, by Proposition 2, $\psi(k_1)$ is a real field. It follows that K does not coincides with k_1 .

If $k_1 = Q$, then t_0 is a rational integer such that $|t_0| > 2$. Therefore the polynomial $x^2 - t_0 x + 1$ is irreducible over Q. This shows that K is a proper extension of k_1 .

Consequently we have

$$\gamma_0 = \begin{pmatrix} w & 0 \\ 0 & w' \end{pmatrix} \quad (w^2 \neq 1), \qquad \gamma_1 = \begin{pmatrix} a_1 & 1 \\ c_1 & a'_1 \end{pmatrix} \quad (c_1 \neq 0 \in k_1),$$

and we see that

$$A(\Gamma) = A = \left\{ \begin{pmatrix} a & b \\ b'c_1 & a' \end{pmatrix} \middle| a, b \in K \right\},\$$

where a' is the k_1 -conjugate of a.

LEMMA 1. Let ψ be any isomorphism of $K = k_1(w)$ into C such that $\psi|_{k_1} \neq$ the identity. Then for any element $\gamma = \begin{pmatrix} a & b \\ b'c_1 & a' \end{pmatrix}$ of Γ we have the inequality $|\psi(a)| \leq 1$.

COROLLARY. Let ψ be the same as in Lemma 1. Then we have $\psi(c_1) < 0$, where $\gamma_1 = \begin{pmatrix} a_1 & 1 \\ c_1 & a'_1 \end{pmatrix}$.

PROOF OF LEMMA 1. By Proposition 2 for any $\gamma = \begin{pmatrix} a & b \\ b'c_1 & a' \end{pmatrix} \in \Gamma$ we have the inequality $|\psi(\operatorname{tr}(\gamma \cdot \gamma_0^m))| \leq 2$. Then we have

$$\phi(\operatorname{tr}(\gamma \cdot \gamma_0^m)) = \phi(aw^m) + \phi(a'w'^m) = \phi(aw^m) + \phi(\overline{aw^m}) = 2 \operatorname{Re}(\phi(a) \cdot \phi(w^m)).$$

In view of the proof of Proposition 2, we see that $|\psi(w)|=1$. Since w is not a root of unity, the set $\{\psi(w)^m | m \in \mathbb{Z}\}$ is a dense subgroup of $C^{(1)}=\{z \in C | |z|=1\}$. Therefore we have $|\operatorname{Re}(\psi(a) \cdot z)| \leq 1$, for any $z \in C^{(1)}$. It follows that $|\psi(a)| \leq 1$. q. e. d.

PROOF OF COROLLARY. Applying Lemma 1 to γ_1 we see that $|\phi(a_1)| \leq 1$.

K. TAKEUCHI

By the equation

$$\det(\gamma_1) = a_1 a_1' - c_1 = 1$$

we have

$$\psi(c_1) = \psi(a_1a_1) - 1 = |\psi(a_1)|^2 - 1 \leq 0$$

q. e. d.

By the fact that $c_1 \neq 0$ we see that $\phi(c_1) < 0$.

Let $\{\varphi_i\}$ $(1 \leq i \leq n_1)$ be all distinct isomorphisms of k_1 into \mathbf{R} , where we assume that $\varphi_1 =$ the identity. Extend φ_i to an isomorphism ψ_i of $K = k_1(w)$ into \mathbf{C} . Moreover we shall define an isomorphism Ψ_i of $A(\Gamma)$ into $M_2(\mathbf{C})$ in the following way:

$$\Psi_i: \alpha = \begin{pmatrix} a & b \\ b'c_1 & a' \end{pmatrix} \longmapsto \Psi_i(\alpha) = \begin{pmatrix} \psi_i(a) & \psi_i(b) \\ \psi_i(b'c_1) & \psi_i(a') \end{pmatrix}.$$

Then $A_i = \Psi_i(A(\Gamma))$ is a quaternion algebra over $\psi_i(k_1)$. By definition of ψ_i we see easily that

$$A(\Gamma) \otimes_{\boldsymbol{Q}} \boldsymbol{R} \cong \bigoplus_{i=1}^{n_1} (A_i \otimes_{\varphi_i(k_1)} \boldsymbol{R}).$$

Since we have

$$\psi_i(a') = \overline{\phi_i(a)} \qquad (2 \leq i \leq n_1),$$

we see that

$$A_i = \left\{ \begin{pmatrix} a & b \\ \bar{b}\psi_i(c_1) & \bar{a} \end{pmatrix} \middle| a, b \in \psi_i(K) \right\} \,.$$

It follows from Corollary to Lemma 1 that

$$A_{i} \bigotimes_{\varphi_{i}(k_{1})} \mathbf{R} \cong \mathbf{H} \qquad (2 \leq i \leq n_{1}) \,.$$

This completes the proof of Proposition 3.

By Propositions 1, 2 and 3 k_1 , $A(\Gamma)$ and $O(\Gamma)$ satisfy the assumptions in §1. Clearly, Γ is a subgroup of $\Gamma(A(\Gamma), O(\Gamma))$. Since both H/Γ and $H/\Gamma(A(\Gamma), O(\Gamma))$ are of finite volume, Γ is a subgroup of $\Gamma(A(\Gamma), O(\Gamma))$ of finite index. This shows that Γ is a Fuchsian group derived from a quaternion algebra.

§3. Proof of Theorem 1.

In this section we shall prove Theorem 1 by making use of Theorem 2. 3.1. Necessity of the conditions (I) and (II_1) .

Let Γ be a Fuchsian group of the first kind. Denote by $\Gamma^{(2)}$ the subgroup of Γ generated by the set $\{\gamma^2 | \gamma \in \Gamma\}$. Then $\Gamma^{(2)}$ is a normal subgroup of Γ such that $\Gamma/\Gamma^{(2)}$ is of exponent 2. Since Γ is finitely generated, $\Gamma/\Gamma^{(2)}$ is a finite abelian group of type $(2, 2, \dots, 2)$. Therefore $\Gamma^{(2)}$ is a subgroup of Γ of finite index.

In view of the proof of Proposition 1 there exist two elements γ_0 , and γ_1 of Γ such that $\{1_2, \gamma_0, \gamma_1, \gamma_0, \gamma_1\}$ is a basis of $A(\Gamma)$ over $k_1 = Q(\operatorname{tr}(\gamma)|\gamma \in \Gamma)$. It is easy to see that we may assume that

$$\gamma_0 = \alpha^2$$
, $\gamma_1 = \beta^2$,

where α and β are hyperbolic elements of Γ . Since tr $(\alpha^2) \neq 0$, by the equation

$$\beta^4 - \operatorname{tr}(\beta^2) \cdot \beta^2 + 1 = 0$$
,

either tr $(\alpha^2 \cdot \beta^2)$ or tr $(\alpha^2 \cdot \beta^4)$ is non-zero. Therefore without loss of generality we may assume that

$$\operatorname{tr}\left(\alpha^{2}\cdot\beta^{2}\right)\neq0.$$
 (5)

PROPOSITION 4. Let Γ be a Fuchsian group of the first kind. Denote by $\Gamma^{(2)}$ the subgroup of Γ generated by the set $\{\gamma^2 | \gamma \in \Gamma\}$. Let $k_2 = Q((\operatorname{tr}(\gamma))^2 | \gamma \in \Gamma)$ and $k'_2 = Q(\operatorname{tr}(\gamma) | \gamma \in \Gamma^{(2)})$. Then k_2 coincides with k'_2 .

PROOF. Take any basis of $A(\Gamma)$ over k_1 of the form $\{1_2, \alpha^2, \beta^2, \alpha^2 \cdot \beta^2\}$ where α and β are elements of Γ satisfying (5). Let A_0 be the vector space spanned by $\{1_2, \alpha^2, \beta^2, \alpha^2 \cdot \beta^2\}$ over k_2 . We shall show that A_0 is a quaternion algebra over k_2 and that A_0 coincides with $A(\Gamma^{(2)})$. The multiplication table of the algebra $A(\Gamma)$ with respect to the basis $\{1_2, \alpha^2, \beta^2, \alpha^2 \cdot \beta^2\}$ is as follows:

	12	α^2	eta^2	$lpha^2 \cdot eta^2$
12	12	α^2	β^2	$lpha^2 \cdot eta^2$
α^2	α^2	α^4	$lpha^2 \cdot eta^2$	$lpha^4\cdoteta^2$
β^2	β^2	$eta^2 \cdot lpha^2$	β^4	$\beta^2 \cdot \alpha^2 \cdot \beta^2$
$lpha^2 \cdot eta^2$	$lpha^2 \cdot eta^2$	$\alpha^2 \cdot \beta^2 \cdot \alpha^2$	$lpha^2 \cdot eta^4$	$(lpha^2 \cdot eta^2)^2$

For any $\gamma \in \Gamma$ we have

$$\operatorname{tr}(\gamma^2) = (\operatorname{tr}(\gamma))^2 - 2.$$

It implies that k_2 is contained k'_2 . It is easy to see that, α^4 , β^4 , $\alpha^4 \cdot \beta^2$ and $\alpha^2 \cdot \beta^4$ are all contained in A_0 .

LEMMA 2. Let δ_1 and δ_2 be two elements of Γ . Then tr $(\delta_1^2 \cdot \delta_2^2)$ is contained in k_2 .

PROOF. We have

$$\operatorname{tr} \left(\delta_1^2 \cdot \delta_2^2 \right) = \operatorname{tr} \left((\operatorname{tr} \left(\delta_1 \right) \cdot \delta_1 - 1_2) (\operatorname{tr} \left(\delta_2 \right) \cdot \delta_2 - 1_2) \right)$$
$$= \operatorname{tr} \left(\delta_1 \right) \operatorname{tr} \left(\delta_2 \right) \operatorname{tr} \left(\delta_1 \cdot \delta_2 \right) - (\operatorname{tr} \left(\delta_1 \right))^2 - (\operatorname{tr} \left(\delta_2 \right))^2 + 2.$$

On the other hand, using the equation

$$\operatorname{tr}(\delta_1)\operatorname{tr}(\delta_2) = \operatorname{tr}(\delta_1 \cdot \delta_2) + \operatorname{tr}(\delta_1 \cdot \delta_2^{-1}),$$

we obtain

$$(\operatorname{tr}(\delta_1 \cdot \delta_2^{-1}))^2 = (\operatorname{tr}(\delta_1))^2 (\operatorname{tr}(\delta_2))^2 + (\operatorname{tr}(\delta_1 \cdot \delta_2))^2$$

$$-2 \operatorname{tr}(\delta_1) \operatorname{tr}(\delta_2) \operatorname{tr}(\delta_1 \cdot \delta_2).$$

It implies that $\operatorname{tr}(\delta_1)\operatorname{tr}(\delta_2)\operatorname{tr}(\delta_1\cdot\delta_2)$ is contained in k_2 . Hence $\operatorname{tr}(\delta_1^2\cdot\delta_2^2)$ is contained in k_2 . q. e. d.

LEMMA 3. Let α , β be the same as in the definition of A_0 . Then an element γ of $A(\Gamma)$ is contained in A_0 if and only if $\operatorname{tr}(\gamma)$, $\operatorname{tr}(\gamma \cdot \alpha^{-2})$, $\operatorname{tr}(\gamma \cdot \beta^{-2})$ and $\operatorname{tr}(\gamma \cdot \beta^{-2} \cdot \alpha^{-2})$ are all contained in $k_2 = Q((\operatorname{tr}(\gamma))^2 | \gamma \in \Gamma)$.

PROOF. Let γ be any element of $A(\Gamma)$. Then we have

$$\gamma = x_0 \mathbf{1}_2 + x_1 \alpha^2 + x_2 \beta^2 + x_3 \alpha^2 \cdot \beta^2$$
,

where x_i $(0 \le i \le 3)$ belongs to the field k_1 .

Multiplying γ by α^{-2} , β^{-2} and $\beta^{-2} \cdot \alpha^{-2}$ respectively and taking the traces, we have the equations

$$\operatorname{tr}(\gamma) = 2x_{0} + \operatorname{tr}(\alpha^{2})x_{1} + \operatorname{tr}(\beta^{2})x_{2} + \operatorname{tr}(\alpha^{2} \cdot \beta^{2})x_{3},$$

$$\operatorname{tr}(\gamma \cdot \alpha^{-2}) = \operatorname{tr}(\alpha^{2})x_{0} + 2x_{1} + \operatorname{tr}(\alpha^{2} \cdot \beta^{-2})x_{2} + \operatorname{tr}(\beta^{2})x_{3},$$

$$\operatorname{tr}(\gamma \cdot \beta^{-2}) = \operatorname{tr}(\beta^{2})x_{0} + \operatorname{tr}(\alpha^{2} \cdot \beta^{-2})x_{1} + 2x_{2} + \operatorname{tr}(\alpha^{2})x_{3},$$

$$\operatorname{tr}(\gamma \cdot \beta^{-2} \cdot \alpha^{-2}) = \operatorname{tr}(\alpha^{2} \cdot \beta^{2})x_{0} + \operatorname{tr}(\beta^{2})x_{1} + \operatorname{tr}(\alpha^{2})x_{2} + 2x_{3})$$

Put

$$D = \begin{pmatrix} 2 & \operatorname{tr}(\alpha^2) & \operatorname{tr}(\beta^2) & \operatorname{tr}(\alpha^2 \cdot \beta^2) \\ \operatorname{tr}(\alpha^2) & 2 & \operatorname{tr}(\alpha^2 \cdot \beta^{-2}) & \operatorname{tr}(\beta^2) \\ \operatorname{tr}(\beta^2) & \operatorname{tr}(\alpha^2 \cdot \beta^{-2}) & 2 & \operatorname{tr}(\alpha^2) \\ \operatorname{tr}(\alpha^2 \cdot \beta^2) & \operatorname{tr}(\beta^2) & \operatorname{tr}(\alpha^2) & 2 \end{pmatrix}$$

Then

$$D \cdot \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} \operatorname{tr}(\gamma) \\ \operatorname{tr}(\gamma \cdot \alpha^{-2}) \\ \operatorname{tr}(\gamma \cdot \beta^{-2}) \\ \operatorname{tr}(\gamma \cdot \beta^{-2} \cdot \alpha^{-2}) \end{pmatrix}$$

Now we shall show that the matrix D is contained in the group $GL_4(k_2)$. By Lemma 2 we see that D belongs to $M_2(k_2)$. Considering x_i $(0 \le i \le 3)$ as variables, we can express the norm form of $A(\Gamma)$ in the following way:

$$n_{A(\Gamma)}(\gamma) = x_0^2 + \operatorname{tr}(\alpha^2) x_0 x_1 + \operatorname{tr}(\beta^2) x_0 x_2 + \operatorname{tr}(\alpha^2 \cdot \beta^2) x_0 x_3$$
$$+ x_1^2 + \operatorname{tr}(\alpha^2 \cdot \beta^{-2}) x_1 x_2 + \operatorname{tr}(\beta^2) x_1 x_3 + x_2^2 + \operatorname{tr}(\alpha^2) x_2 x_3 + x_2^2$$
$$= \frac{1}{2} (x_0, x_1, x_2, x_3) \cdot D \cdot \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{pmatrix}.$$

Since $A(\Gamma)$ is a quaternion algebra over k_1 , the norm form of $A(\Gamma)$ is nondegenerate. Hence det(D) is non-zero. This shows that D is contained in the group $GL_4(k_2)$. It follows that γ is contained in A_0 if and only if tr (γ) , tr $(\gamma \cdot \alpha^{-2})$, tr $(\gamma \cdot \beta^{-2})$ and tr $(\gamma \cdot \beta^{-2} \cdot \alpha^{-2})$ are all contained in k_2 . q. e. d.

We shall show that $\beta^2 \alpha^2$ is contained in A_0 . By Lemma 2 tr $(\beta^2 \alpha^2)$ and tr $(\beta^2 \alpha^2 \beta^{-2} \alpha^{-2})$ (=tr $((\beta^2 \alpha \beta^{-2})^2 \cdot \alpha^{-2}))$ are contained in k_2 . Applying Lemma 3 to $\beta^2 \alpha^2$ we see that $\beta^2 \alpha^2$ is contained in A_0 . It follows from this that $\alpha^2 \cdot \beta^2 \alpha^2$ and $\beta^2 \alpha^2 \cdot \beta^2$ are also contained in A_0 . Thus we have shown that A_0 is an algebra over k_2 such that

$$A_0 \otimes_{k_2} k_1 = A(\Gamma)$$
.

It is clear by definition that A_0 is contained in $A(\Gamma^{(2)})$. Take any $\gamma \in \Gamma$. We shall show that γ^2 is contained in A_0 . By Lemma 2 tr (γ^2) , tr $(\gamma^2 \alpha^{-2})$ and tr $(\gamma^2 \beta^{-2})$ are all contained in k_2 . Considering the assumption (5), by the equations

$$\operatorname{tr} (\gamma^{2}\beta^{-2}\alpha^{-2}) = \operatorname{tr} (\alpha^{2}\beta^{2}\gamma^{-2}) = \operatorname{tr} (\alpha^{2}\beta^{2}\gamma^{-1}) \operatorname{tr} (\gamma) - \operatorname{tr} (\alpha^{2}\beta^{2}),$$

$$(\operatorname{tr} (\alpha^{2}\beta^{2}\gamma))^{2} = (\operatorname{tr} (\alpha^{2}\beta^{2}) \operatorname{tr} (\gamma) - \operatorname{tr} (\alpha^{2}\beta^{2}\gamma^{-1}))^{2}$$

$$= (\operatorname{tr} (\alpha^{2}\beta^{2}))^{2} (\operatorname{tr} (\gamma))^{2} + (\operatorname{tr} (\alpha^{2}\beta^{2}\gamma^{-1}))^{2}$$

$$-2 \operatorname{tr} (\alpha^{2}\beta^{2}) \operatorname{tr} (\alpha^{2}\beta^{2}\gamma^{-1}) \operatorname{tr} (\gamma),$$

we see that $\operatorname{tr}(\gamma^2\beta^{-2}\alpha^{-2})$ is contained in k_2 . We can apply Lemma 3 to γ^2 . Hence we see that γ^2 is contained in A_0 . It follows that $\Gamma^{(2)}$ is contained in A_0 . In particular, $\operatorname{tr}(\Gamma^{(2)})$ is contained in k_2 . Therefore k'_2 is contained in k_2 . Thus we have shown that k'_2 coincides with k_2 . This completes the proof of Proposition 4. By the way since $A(\Gamma^{(2)})$ is a quaternion algebra over k'_2 ($=k_2$), we see that $A_0 = A(\Gamma^{(2)})$.

PROPOSITION 5. Let Γ be an arithmetic Fuchsian group commensurable with $\Gamma(A, O)$ where A and O are the same as in § 1. Then $k_2 = Q((\operatorname{tr}(\gamma))^2 | \gamma \in \Gamma)$ coincides with the center k of A and $A(\Gamma^{(2)})$ coincides with $\rho_1(A)$.

PROOF. By the assumption there exists a subgroup Γ_1 of both Γ and $\Gamma(A, O)$ of finite index. By 2.1. § 2 we see that k coincides with the field

 $Q(\operatorname{tr}(\gamma)|\gamma \in \Gamma_1)$. Moreover by Proposition 1 we see that $A(\Gamma_1) = \rho_1(A)$. We may take Γ_1 as a normal subgroup of Γ . Take any $\gamma \in \Gamma$. Then γ induces an automorphism φ_{γ} of Γ_1 defined as follows:

$$\varphi_{\gamma} \colon \Gamma_{1} \ni \alpha \longmapsto \gamma^{-1} \alpha \gamma \in \Gamma_{1}$$

 φ_r can be extended to an automorphism φ_r of $A(\Gamma_1) = \rho_1(A)$ in a natural way which is the identity of the center $k \cdot 1_2$ of $\rho_1(A)$. By the Skolem-Noether's Theorem there exists an invertible element δ_0 of A such that for any $\alpha \in \rho_1(A)$ we have

$$\varphi_{\mathbf{r}}(\alpha) = \rho_1(\delta_0)^{-1} \cdot \alpha \cdot \rho_1(\delta_0) \,.$$

Since we have

$$\rho_1(A) \bigotimes_k \mathbf{R} \cong M_2(\mathbf{R})$$
,

we have the expression

$$\gamma = a \cdot \rho_1(\delta_0)$$
,

where a is a non-zero real number. By the equation

$$1 = \det(\gamma) = \alpha^2 \det(\rho_1(\delta_0)) = a^2 n_A(\delta_0),$$

 a^2 is a non-zero element of k. Hence γ^2 is contained in $\rho_1(A)$. It follows that $\Gamma^{(2)}$ is contained in $\rho_1(A)$. Therefore, $A(\Gamma^{(2)})$ is contained in $\rho_1(A)$ and k_2 is contained in k.

It is clear that

$$A(\Gamma^{(2)}) \otimes_{k_2} k \cong \rho_1(A) \, .$$

By the assumption (1) of A, k_2 coincides with k and that $A(\Gamma^{(2)}) = \rho_1(A)$. This completes the proof of Proposition 5.

We shall show that (I) and (II₁) are necessary conditions. Let Γ be an arithmetic Fuchsian group commensurable with $\Gamma(A, O)$. Take any $\gamma \in \Gamma$. Then γ^m is contained in $\rho_1(O)$ for some positive integer m. Let u and 1/u be the eigen-values of γ . Then u^m and $1/u^m$ are the eigen-values of γ^m . Since tr (γ^m) is contained in O_k , u^m and $1/u^m$ are algebraic integers. Hence u and 1/u are also algebraic integers. It follows that tr (γ) is contained in O_{k1} . This shows that Γ satisfies the condition (I).

Let φ be any isomorphism of k_1 into C such that $\varphi|_{k_2} \neq$ the identity. Then by Proposition 5 k_2 coincides with k and hence $\varphi|_{k_2} = \varphi_i$ for some i $(2 \le i \le n)$. Extend φ to an isomorphism ψ of $k_1(u)$ in to C. Since γ^m belongs to $\rho_1(A)$, $\varphi(\operatorname{tr}(\gamma^m))$ is contained in the interval [-2, 2]. Since $\psi(u^m)$ and $1/\psi(u^m)$ are the roots of the equation

$$x^2 - \psi(\operatorname{tr}(\gamma^m))x + 1 = 0$$
,

we have $|\phi(u^m)| = 1$. Hence we have $|\phi(u)| = 1$. It follows from the equations

$$\varphi(\operatorname{tr}(\gamma)) = \psi(u) + 1/\psi(u) = \psi(u) + \overline{\psi(u)}$$

that $\varphi(\operatorname{tr}(\gamma))$ is contained in the interval [-2, 2]. This shows that $\varphi(\operatorname{tr}(\Gamma))$ is bounded. Therefore, Γ satisfies the condition (II₁).

3.2. Sufficiency of the conditions (I) and (II_1) .

Let Γ be a Fuchsian group of the first kind satisfying the conditions (I) and (II₁). By Proposition 4 we see easily that $\Gamma^{(2)}$ satisfies the conditions (I) and (II₂) in Theorem 2. By Theorem 2 $\Gamma^{(2)}$ is a Fuchsian group derived from a quaternion algebra. Since $\Gamma^{(2)}$ is a subgroup of Γ of finite index, Γ is an arithmetic Fuchsian group. This completes the proof of Theorem 1.

REMARK. In view of the proof of Theorem 1 Γ is an arithmetic Fuchsian group if and only if $\Gamma^{(2)}$ is a Fuchsian group derived from a quaternion algebra.

§4. Independency of the conditions (I) and (II_1) .

In this section we shall show that the conditions (I) and (II₁) in our Theorem are independent of each other. First we shall give an example of a Fuchsian group which satisfies the condition (I) but does not satisfy the condition (II₁).

For any rational integer q such that $q \ge 7$ put $\lambda = 2\cos(\pi/q)$. Then the field $k_{\lambda} = \mathbf{Q}(\lambda)$ is a totally real algebraic number field of degree $1/2 \cdot \varphi(2q)$, where $\varphi()$ is the Euler function. Let $\Gamma(\lambda)$ be the subgroup of $SL_2(\mathbf{R})$ generated by the following two elements:

$$S = egin{pmatrix} 0 & 1 \ -1 & 0 \end{pmatrix}, \quad T_{\lambda} = egin{pmatrix} 1 & \lambda \ 0 & 1 \end{pmatrix}.$$

 $\Gamma(\lambda)$ is introduced by E. Hecke in [3] and is shown to be a Fuchsian group of the first kind. It is easy to see that $k_{\lambda} = Q(\operatorname{tr}(\gamma) | \gamma \in \Gamma(\lambda))$. Since λ is contained in $O_{k_{\lambda}}$, $\Gamma(\lambda)$ is a subgroup of $SL_2(O_{k_{\lambda}})$. Therefore, we have $\operatorname{tr}(\Gamma(\lambda))$ $\subset O_{k_{\lambda}}$. It follows that $\Gamma(\lambda)$ satisfies the condition (I). Since $\Gamma^{(2)}(\lambda)$ contains $(ST_{\lambda})^2 T_{\lambda}^{2m}$ for any rational integer m, we see that $\Gamma(\lambda)$ does not satisfy the condition (II₁).

Now we shall construct a Fuchsian group which satisfies the condition (II₁) but does not satisfy the condition (I). For this purpose we make use of the arithmetic Fuchsian group $\Gamma(A, O)$ defined in §1. Let k, A, O and $\Gamma(A, O)$ be the same as in §1. We assume that $k \neq Q$. Then A is a division quaternion algebra over k. Hence $H/\Gamma(A, O)$ is compact (cf. e.g. [2]). It follows that $\Gamma(A, O)$ does not contain any parabolic elements. Since $\Gamma(A, O)$ is a finitely generated subgroup of $SL_2(\mathbf{R})$, by Lemma 8 in [4] there exists a torsion-free subgroup Γ of $\Gamma(A, O)$ of finite index. It follows that Γ is generated by 2g $(g \geq 2)$ hyperbolic elements Κ. ΤΑΚΕυCHI

$$\{lpha_{1},\,eta_{1},\,lpha_{2},\,eta_{2},\,\cdots,\,lpha_{g},\,eta_{g}\}$$
 ,

which satisfy the unique fundamental relation

$$\alpha_1 \cdot \beta_1 \cdot \alpha_1^{-1} \cdot \beta_1^{-1} \cdots \alpha_g \cdot \beta_g \cdot \alpha_g^{-1} \cdot \beta_g^{-1} = I_2.$$

By considering a suitable conjugate group instead of Γ , we may assume that

$$\beta_1 = \begin{pmatrix} w & 0 \\ 0 & w' \end{pmatrix}, \qquad \alpha_1 = \begin{pmatrix} a_1 & b_1 \\ c_1 b'_1 & a'_1 \end{pmatrix} \quad (k \ni c_1 \neq 0),$$

and that

$$A(\Gamma) = A = \left\{ \begin{pmatrix} a & b \\ c_1 b' & a' \end{pmatrix} \middle| a, b \in K \right\} .$$

For any non-zero real number u we put

$$\alpha(u) = \alpha_1 \cdot \begin{pmatrix} u & 0 \\ 0 & 1/u \end{pmatrix}.$$

Then

$$\lim_{u\to 1} \alpha(u) = \alpha(1) = \alpha_1 \, .$$

Let Γ_u be the subgroup of $SL_2(\mathbf{R})$ generated by 2g elements

 $\{\alpha(u), \beta_1, \alpha_2, \beta_2, \cdots, \alpha_g, \beta_g\},\$

which satisfy the following relation:

$$\alpha(u) \cdot \beta_1 \alpha(u)^{-1} \cdot \beta_1^{-1} \cdot \alpha_2 \beta_2 \cdot \alpha_2^{-1} \cdot \beta_2^{-1} \cdots \alpha_g \cdot \beta_g \cdot \alpha_g^{-1} \cdot \beta_g^{-1} = I_2.$$

Since H/Γ is compact, we can apply to Γ the theory of small deformations which is proved by A. Weil in [6]. Therefore, there exists a neighbourhood V of 1 in \mathbf{R} such that for any u in $V \Gamma_u$ is a Fuchsian group of the first kind.

Now we impose on Γ_u the following condition:

$$K \ni u$$
 and $uu' = 1$.

Then Γ_u is contained in A. It follows that Γ_u satisfies the condition (II₁).

By the relation tr $(\alpha(u)) = \operatorname{tr}_{K/k}(a_1u)$, where tr_{K/k}() means the trace map of K to k, if tr_{K/k} (a_1u) is not contained in O_k , then Γ_u does not satisfy the condition (I). We need the following

LEMMA 4. There exists a sequence $\{u_m\}$ which satisfies the following conditions:

- (i) u_m is contained in K and $u_m \cdot u'_m = 1$,
- (ii) $\lim_{m\to\infty} u_m = 1$,

(iii) $\operatorname{tr}_{K/k}(u_m)$ is not contained in O_k .

PROOF. Let u be an element of K such that $u \cdot u' = 1$. Then by Hilbert's Theorem 90 we can find an element v of K such that u = v/v'. Put

$$d_1 = (\operatorname{tr}(\beta_1))^2 - 4 = (w - w')^2$$

Then $K = k(w) = k(\sqrt{d_1})$. Since v can be expressed as follows:

$$v = (1 + \sqrt{d_1} x) y,$$

where x and y are elements of k, we have

$$u = \frac{1 + d_1 x^2 + 2x \sqrt{d_1}}{1 - d_1 x^2}.$$
 (6)

Since $\operatorname{tr}_{K/k}(a_1) = \operatorname{tr}(\alpha_1)$ is contained in O_k , $\operatorname{tr}_{K/k}(a_1u)$ is contained in O_k if and only if $\operatorname{tr}_{K/k}(a_1(u+1))$ is so. By (6), we have

$$\operatorname{tr}_{K/k}(a_1(u+1)) = \frac{2\operatorname{tr}_{K/k}(a_1) + 2(a_1 - a_1')\sqrt{d_1} \cdot x}{1 - d_1 \cdot x^2}.$$
(7)

Since k is a totally real algebraic number field of degree $n \ge 2$, we can find an element x_0 of O_k such that $0 < |x_0| < 1$. For any positive integer m, put

$$u_m = \frac{1 + d_1 x_0^{2m} + 2x_0^m \cdot \sqrt{d_1}}{1 - d_1 x_0^{2m}}.$$

Then we see easily that $\{u_m\}$ satisfies the conditions (i) and (ii).

Since $n_{k/\mathbf{Q}}(x_0)$ is a non-zero rational integer, there exists an index *i* such that $|\varphi_i(x_0)| > 1$. Therefore, we have

$$\lim_{m\to\infty} n_{k/\mathbf{Q}}(\operatorname{tr}_{K/k}(a_1(u_m+1))) = 2^n \lim_{m\to\infty} \prod_{i=1}^n \frac{\varphi_i(\operatorname{tr}_{K/k}(a_1)) + \varphi_i((a_1-a_1')\sqrt{d_1})\varphi_i(x_0)^m}{1 - \varphi_i(d_1) \cdot \varphi_i(x_0)^{2m}} = 0.$$

On the other hand, by (7) we have

$$\lim_{m\to\infty} \operatorname{tr}_{K/k}(a_1(u_m+1)) = 2 \operatorname{tr}_{K/k}(a_1) \neq 0.$$

This implies that for any sufficiently large m, $tr_{K/k}(a_1u_m)$ is not contained in O_k . This completes the proof of Lemma 4.

By this lemma we can give an example of a Fuchsian group which satisfies the condition (II_1) but does not satisfy the condition (I).

References

[1] K. Takeuchi, On some discrete subgroups of SL₂(R), J. Fac. Sci. Univ. Tokyo, Sec. I, 16 (1969), 97-100.

Κ. ΤΑΚΕUCHI

- [2] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Publications of Math. Soc. Japan, 1971.
- [3] E. Hecke, Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung, Math. Ann., 113 (1936), 664-669.
- [4] A. Selberg, On discontinuous groups in higher-dimensional symmetric spaces, Contribution to Function Theory, Tata Institute, Bombay, 1960, 147-164.
- [5] A. Borel, Introduction aux groupes arithmetiques, Hermann, Paris, 1969.
- [6] A. Weil, Discrete subgroups of Lie groups, Ann. of Math., 72 (1960), 369-384.

Kisao TAKEUCHI Department of Mathematics Faculty of Science and Engineering Saitama University Urawa, Saitama Japan