A characterization of arithmetic Fuchsian groups

By Kisao TAKEuchi

(Received Feb. 28, 1975)

§ 1. Introduction.

Let k be a totally real algebraic number field of degree n. Then k has n distinct embeddings $\varphi_{i}(1 \leqq i \leqq n)$ into the real number field \boldsymbol{R}, where φ_{1} is the identity. Let A be a quaternion algebra over k which is unramified at the place φ_{1} and ramified at all other infinite places $\varphi_{i}(2 \leqq i \leqq n)$. Then there exists an \boldsymbol{R}-isomorphism

$$
\begin{equation*}
\rho: A \underset{\boldsymbol{Q}}{\otimes} \boldsymbol{R} \longmapsto M_{2}(\boldsymbol{R}) \oplus \boldsymbol{H} \oplus \cdots \oplus \boldsymbol{H}, \tag{1}
\end{equation*}
$$

where \boldsymbol{H} is the Hamilton quaternion algebra.
Denote by ρ_{i} the composite of $\left.\rho\right|_{A}$ with the projection to the i-th factor. Then ρ_{1} (resp. $\rho_{i}(2 \leqq i \leqq n)$) is an isomorphism of A into $M_{2}(\boldsymbol{R})$ (resp. \boldsymbol{H}). By changing the indices suitably, for any element a of k we have

$$
\begin{equation*}
\rho_{1}\left(a \cdot 1_{A}\right)=a \cdot 1_{2}, \quad \rho_{i}\left(a \cdot 1_{A}\right)=\varphi_{i}(a) \cdot 1_{H} \quad(2 \leqq i \leqq n), \tag{2}
\end{equation*}
$$

where $1_{A}, 1_{H}$ and 1_{2} are the unities of A, \boldsymbol{H} and $M_{2}(\boldsymbol{R})$ respectively.
Denote by $\operatorname{tr}_{A}()$ and $n_{A}()\left(\right.$ resp. $\operatorname{tr}_{H}()$ and $\left.n_{H}()\right)$ the reduced trace and the reduced norm of A (resp. \boldsymbol{H}). Then for any $\alpha \in A$, we have

$$
\begin{array}{lll}
\operatorname{tr}_{A}(\alpha)=\operatorname{tr}\left(\rho_{1}(\alpha)\right), & \varphi_{i}\left(\operatorname{tr}_{A}(\alpha)\right)=\operatorname{tr}_{H}\left(\rho_{i}(\alpha)\right) & (2 \leqq i \leqq n), \\
n_{A}(\alpha)=\operatorname{det}\left(\rho_{1}(\alpha)\right), & \varphi_{i}\left(n_{A}(\alpha)\right)=n_{H}\left(\rho_{i}(\alpha)\right) & (2 \leqq i \leqq n), \tag{4}
\end{array}
$$

where $\operatorname{tr}()$ and $\operatorname{det}()$ are the trace and the determinant of $M_{2}(\boldsymbol{R})$ respectively.
Now take an order O of A and put

$$
U=\left\{\varepsilon \in O \mid \varepsilon O=O \text { and } n_{A}(\varepsilon)=1\right\} .
$$

Then U is a group called the unit group of O of norm 1. Denote by $\Gamma(A, O)$ the image $\rho_{1}(U)$ of U under ρ_{1}. Then $\Gamma(A, O)$ is a discrete subgroup of $S L_{2}(\boldsymbol{R})$. The group $S L_{2}(\boldsymbol{R})$ operates on the upper half plane $H=\{z \in \boldsymbol{C} \mid \operatorname{Im}(z)>0\}$ in the following way:

$$
S L_{2}(\boldsymbol{R}) \ni g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): z \longmapsto \frac{a z+b}{c z+d}
$$

It is well-known that by the above operation $\Gamma(A, O)$ defines a Fuchsian group of the first kind i. e. a properly discontinuous group such that $H / \Gamma(A, O)$ is of finite volume. If we change the isomorphism $\rho, \Gamma(A, O)$ is transformed into a $G L_{2}(\boldsymbol{R})$-conjugate group.

Definition. Let Γ be a discrete subgroup of $S L_{2}(\boldsymbol{R})$ such that H / Γ is of finite volume. Then we call Γ a Fuchsian group of the first kind. When Γ is commensurable with some $\Gamma(A, O), \Gamma$ is called an arithmetic Fuchsian group (cf. [5]). Moreover, if Γ is a subgroup of $\Gamma(A, O)$ of finite index, then we call Γ a Fuchsian group derived from a quaternion algebra A.

In this paper we shall prove the following theorem which gives a characterization of arithmetic Fuchsian groups Γ by the properties of the set $\operatorname{tr}(\Gamma)$ $=\{\operatorname{tr}(\gamma) \mid \gamma \in \Gamma\}$.

Theorem 1. Let Γ be a Fuchsian group of the first kind. Then Γ is an arithmetic Fuchsian group if and only if Γ satisfies the following conditions (I) and (II_{1}):
(I) Let k_{1} be the field $\boldsymbol{Q}(\operatorname{tr}(\gamma) \mid \gamma \in \Gamma)$ generated by the set $\operatorname{tr}(\Gamma)$ over the rational number field \boldsymbol{Q}. Then k_{1} is an algebraic number field of finite degree, and $\operatorname{tr}(\Gamma)$ is contained in the ring $O_{k_{1}}$ of integers of k_{1}.
(II_{1}) Let k_{2} be the field $\boldsymbol{Q}\left((\operatorname{tr}(\gamma))^{2} \mid \gamma \in \Gamma\right)$ generated by the set $\left\{(\operatorname{tr}(\gamma))^{2} \mid \gamma \in \Gamma\right\}$ over \boldsymbol{Q}. Let φ be any isomorphism of k_{1} into the complex number field \boldsymbol{C} such that $\left.\varphi\right|_{k_{2}} \neq$ the identity. Then $\varphi(\operatorname{tr}(\Gamma))$ is bounded in \boldsymbol{C}.

In order to prove Theorem 1 we must prove first the following
Theorem 2. Let Γ be a Fuchsian group of the first kind. Then Γ is a Fuchsian group derived from a quaternion algebra if and only if Γ satisfies the condition (I) in Theorem 1 together with the following condition $\left(\mathrm{II}_{2}\right)$:
$\left(\mathrm{II}_{2}\right)$ Let φ be any isomorphism of $k_{1}=\boldsymbol{Q}(\operatorname{tr}(\gamma) \mid \gamma \in \Gamma)$ into \boldsymbol{C} such that $\varphi \neq$ the identity. Then $\varphi(\operatorname{tr}(\Gamma))$ is bounded in \boldsymbol{C}.

Remark. Theorem 2 is a generalization of a result in [1].
We shall first prove Theorem 2, in §2. By making use of Theorem 2, we shall then prove Theorem 1, in §3. Finally in §4, it is shown that the conditions (I) and (II_{1}) are independent of each other.

The author would like to thank Professors G. Shimura and Y. Ihara for their valuable suggestions.

§ 2. Proof of Theorem 2.

In this section we shall prove Theorem 2.
2.1. Necessity of the conditions (I) and (II_{2}).

Let Γ be a subgroup of $\Gamma(A, O)$ of finite index. Then $k_{1}=\boldsymbol{Q}(\operatorname{tr}(\gamma) \mid \gamma \in \Gamma)$ is contained in the center k of A. Therefore k_{1} is totally real. Since $\operatorname{tr}_{A}(O)$
is contained in O_{k}, we see that $\operatorname{tr}(\Gamma)$ is contained in $O_{k_{1}}$. This shows that Γ satisfies the condition (I).

Now consider the case $n \geqq 2$. By (3), we see that $\varphi_{i}(\operatorname{tr}(\Gamma))$ is contained in $\operatorname{tr}_{H}\left(\rho_{i}(U)\right)(2 \leqq i \leqq n)$. On the other hand by (4) for any $\varepsilon \in U$ we have $n_{H}\left(\rho_{i}(\varepsilon)\right)=\varphi_{i}\left(n_{A}(\varepsilon)\right)=1(2 \leqq i \leqq n)$. Hence $\rho_{i}(U)$ is contained in the set $\boldsymbol{H}^{(1)}=$ $\left\{x \in \boldsymbol{H} \mid n_{H}(x)=1\right\}$. Since $\operatorname{tr}_{H}\left(\boldsymbol{H}^{(1)}\right)$ coincides with the interval [-2, 2], $\varphi_{i}(\operatorname{tr}(\Gamma))$ is bounded in $\boldsymbol{R}(2 \leqq i \leqq n)$.

Finally we shall show that k_{1} coincides with k. Suppose that k is a proper extension of k_{1}. Then there exists an isomorphism $\varphi_{i}(2 \leqq i \leqq n)$ such that $\left.\varphi_{i}\right|_{k_{1}}=$ the identity. Using this φ_{i}, we see that $\operatorname{tr}(\Gamma)$ is contained in the interval $[-2,2]$. This means that Γ contains no hyperbolic elements, which is a contradiction. Therefore, k_{1} coincides with k. Thus we have shown that Γ satisfies the condition (II_{2}).
2.2. Sufficiency of the conditions (I) and (II_{2}).

Proposition 1. Let Γ be a Fuchsian group of the first kind. Let $A(\Gamma)$ be the vector space spanned by Γ over $k_{1}=\boldsymbol{Q}(\operatorname{tr}(\gamma) \mid \gamma \in \Gamma)$ in $M_{2}(\boldsymbol{R})$. Then $A(\Gamma)$ is a quaternion algebra over k_{1}. Moreover, if Γ satisfies the condition (I), then the submodule $O(\Gamma)$ of $A(\Gamma)$ spanned by Γ over $O_{k_{1}}$ is an order of $A(\Gamma)$.

This proposition is proved in [1].
We shall now prove the following
Proposition 2. Let Γ be a Fuchsian group of the first kind. Assume that Γ satisfies the conditions (I) and (II_{2}). Then $k_{1}=\boldsymbol{Q}(\operatorname{tr}(\gamma) \mid \gamma \in \Gamma)$ is totally real. Moreover, let φ be any isomorphism of k_{1} into \boldsymbol{R} such that $\varphi \neq$ the identity. Then $\varphi(\operatorname{tr}(\Gamma))$ is contained in the interval $[-2,2]$.

Proof. Take any $\gamma \in \Gamma$. Let u and $1 / u$ be the eigen-values of γ. Let φ be any isomorphism of k_{1} into \boldsymbol{C} such that $\varphi \neq$ the identity. Extend φ to an isomorphism ψ of $k_{1}(u)$ into C. We shall show that $|\psi(u)|=1$. Suppose that $|\psi(u)| \neq 1$. Then by the inequality

$$
\left|\varphi\left(\operatorname{tr}\left(\gamma^{m}\right)\right)\right|=\left|(\psi(u))^{m}+1 /(\psi(u))^{m}\right| \geqq\left||\psi(u)|^{m}-1 /|\psi(u)|^{m}\right|
$$

the set $\left\{\varphi\left(\operatorname{tr}\left(\gamma^{m}\right)\right) \mid m \in z\right\}$ is not bounded which contradicts $\left(\mathrm{II}_{2}\right)$. Therefore $|\psi(u)|=1$. By the equations

$$
\varphi(\operatorname{tr}(\gamma))=\psi(u)+1 / \psi(u)=\psi(u)+\overline{\psi(u)},
$$

$\varphi(\operatorname{tr}(\gamma))$ is a real number contained in the interval $[-2,2]$. This shows that k_{1} is totally real and that $\varphi(\operatorname{tr}(\Gamma))$ is contained in the interval [-2,2]. q.e.d.

Proposition 3. Let Γ be a Fuchsian group of the first kind. Assume that Γ satisfies the conditions (I) and $\left(\mathrm{II}_{2}\right)$. Then

$$
A(\Gamma) \otimes_{\mathbf{Q}} \boldsymbol{R} \cong M_{2}(\boldsymbol{R}) \oplus \boldsymbol{H} \oplus \cdots \oplus \boldsymbol{H}
$$

Proof. In view of the proof of Proposition 1] in [1] by considering a suitable conjugate group of Γ, we may assume that Γ contains the following two elements:

$$
\gamma_{0}=\left(\begin{array}{cc}
w & 0 \\
0 & 1 / w
\end{array}\right) \quad\left(w^{2} \neq 1\right), \quad \gamma_{1}=\left(\begin{array}{cc}
a_{1} & 1 \\
c_{1} & d_{1}
\end{array}\right) \quad\left(c_{1} \neq 0\right) .
$$

We shall show that $K=k_{1}(w)$ is a proper extension of k_{1}. If k_{1} is a proper extension of \boldsymbol{Q}, then there exists an isomorphism ψ of K into \boldsymbol{C} such that $\left.\phi\right|_{k_{1}} \neq$ the identity. $\psi(w)$ and $1 / \psi(w)$ are the roots of the equation $x^{2}-\psi\left(t_{0}\right) x+1$ $=0$, where $t_{0}=\operatorname{tr}\left(\gamma_{0}\right)$. By Proposition 2 we have $\left|\psi\left(t_{0}\right)\right|<2$. Therefore $\psi(K)$ $=\psi\left(k_{1}(w)\right)$ is an imaginary field. On the other hand, by Proposition 2, $\psi\left(k_{1}\right)$ is a real field. It follows that K does not coincides with k_{1}.

If $k_{1}=\boldsymbol{Q}$, then t_{0} is a rational integer such that $\left|t_{0}\right|>2$. Therefore the polynomial $x^{2}-t_{0} x+1$ is irreducible over \boldsymbol{Q}. This shows that K is a proper extension of k_{1}.

Consequently we have

$$
\gamma_{0}=\left(\begin{array}{cc}
w & 0 \\
0 & w^{\prime}
\end{array}\right) \quad\left(w^{2} \neq 1\right), \quad \gamma_{1}=\left(\begin{array}{cc}
a_{1} & 1 \\
c_{1} & a_{1}^{\prime}
\end{array}\right) \quad\left(c_{1} \neq 0 \in k_{1}\right),
$$

and we see that

$$
A(\Gamma)=A=\left\{\left.\left(\begin{array}{cc}
a & b \\
b^{\prime} c_{1} & a^{\prime}
\end{array}\right) \right\rvert\, a, b \in K\right\},
$$

where a^{\prime} is the k_{1}-conjugate of a.
Lemma 1. Let ψ be any isomorphism of $K=k_{1}(w)$ into \boldsymbol{C} such that $\left.\psi\right|_{k_{1}} \neq$ the identity. Then for any element $\gamma=\left(\begin{array}{cc}a & b \\ b^{\prime} c_{1} & a^{\prime}\end{array}\right)$ of Γ we have the inequality $|\psi(a)| \leqq 1$.

Corollary. Let ψ be the same as in Lemma 1. Then we have $\psi\left(c_{1}\right)<0$, where $\gamma_{1}=\left(\begin{array}{cc}a_{1} & 1 \\ c_{1} & a_{1}^{\prime}\end{array}\right)$.

Proof of Lemma 1. By Proposition 2 for any $\gamma=\left(\begin{array}{cc}a & b \\ b^{\prime} c_{1} & a^{\prime}\end{array}\right) \in \Gamma$ we have the inequality $\left|\psi\left(\operatorname{tr}\left(\gamma \cdot \gamma_{0}^{m}\right)\right)\right| \leqq 2$. Then we have

$$
\left.\psi\left(\operatorname{tr}\left(\gamma \cdot \gamma_{0}^{m}\right)\right)=\psi\left(a w^{m}\right)+\psi\left(a^{\prime} w^{\prime m}\right)=\psi\left(a w^{m}\right)+\psi \overline{\left(a w^{m}\right.}\right)=2 \operatorname{Re}\left(\psi(a) \cdot \psi\left(w^{m}\right)\right) .
$$

In view of the proof of Proposition 2, we see that $|\psi(w)|=1$. Since w is not a root of unity, the set $\left\{\psi(w)^{m} \mid m \in \boldsymbol{Z}\right\}$ is a dense subgroup of $\boldsymbol{C}^{(1)}=\{\boldsymbol{z} \in \boldsymbol{C}| | \boldsymbol{z} \mid=1\}$. Therefore we have $|\operatorname{Re}(\psi(a) \cdot z)| \leqq 1$, for any $z \in \boldsymbol{C}^{(1)}$. It follows that $|\psi(a)| \leqq 1$.

Proof of Corollary. Applying Lemma 1 to γ_{1} we see that $\left|\psi\left(a_{1}\right)\right| \leqq 1$.

By the equation

$$
\operatorname{det}\left(\gamma_{1}\right)=a_{1} a_{1}^{\prime}-c_{1}=1
$$

we have

$$
\psi\left(c_{1}\right)=\psi\left(a_{1} a_{1}^{\prime}\right)-1=\left|\psi\left(a_{1}\right)\right|^{2}-1 \leqq 0 .
$$

By the fact that $c_{1} \neq 0$ we see that $\psi\left(c_{1}\right)<0$.
q. e. d.

Let $\left\{\varphi_{i}\right\}\left(1 \leqq i \leqq n_{1}\right)$ be all distinct isomorphisms of k_{1} into \boldsymbol{R}, where we assume that $\varphi_{1}=$ the identity. Extend φ_{i} to an isomorphism ψ_{i} of $K=k_{1}(w)$ into \boldsymbol{C}. Moreover we shall define an isomorphism Ψ_{i} of $A(\Gamma)$ into $M_{2}(\boldsymbol{C})$ in the following way:

$$
\Psi_{i}: \alpha=\left(\begin{array}{lr}
a & b \\
b^{\prime} c_{1} & a^{\prime}
\end{array}\right) \longmapsto \Psi_{i}(\alpha)=\left(\begin{array}{ll}
\psi_{i}(a) & \psi_{i}(b) \\
\psi_{i}\left(b^{\prime} c_{1}\right) & \psi_{i}\left(a^{\prime}\right)
\end{array}\right) .
$$

Then $A_{i}=\Psi_{i}(A(\Gamma))$ is a quaternion algebra over $\psi_{i}\left(k_{1}\right)$. By definition of ψ_{i} we see easily that

$$
A(\Gamma) \otimes_{\boldsymbol{Q}} \boldsymbol{R} \cong \bigoplus_{i=1}^{n_{1}}\left(A_{i} \otimes_{\varphi_{i}\left(k_{1}\right)} \boldsymbol{R}\right) .
$$

Since we have

$$
\psi_{i}\left(a^{\prime}\right)=\overline{\psi_{i}(a)} \quad\left(2 \leqq i \leqq n_{1}\right),
$$

we see that

$$
A_{i}=\left\{\left.\left(\begin{array}{ll}
a & b \\
\bar{b} \psi_{i}\left(c_{1}\right) & \bar{a}
\end{array}\right) \right\rvert\, a, b \in \psi_{i}(K)\right\} .
$$

It follows from Corollary to Lemma 1 that

$$
A_{i} \otimes_{\varphi_{i}\left(k_{1}\right)} \boldsymbol{R} \cong \boldsymbol{H} \quad\left(2 \leqq i \leqq n_{1}\right) .
$$

This completes the proof of Proposition 3.
By Propositions 1, 2 and $3 k_{1}, A(\Gamma)$ and $O(\Gamma)$ satisfy the assumptions in $\S 1$. Clearly, Γ is a subgroup of $\Gamma(A(\Gamma), O(\Gamma))$. Since both H / Γ and $H / \Gamma(A(\Gamma)$, $O(\Gamma)$) are of finite volume, Γ is a subgroup of $\Gamma(A(\Gamma), O(\Gamma))$ of finite index. This shows that Γ is a Fuchsian group derived from a quaternion algebra.

§ 3. Proof of Theorem 1.

In this section we shall prove Theorem 1 by making use of Theorem 2.
3.1. Necessity of the conditions (I) and (II_{1}).

Let Γ be a Fuchsian group of the first kind. Denote by $\Gamma^{(2)}$ the subgroup of Γ generated by the set $\left\{\gamma^{2} \mid \gamma \in \Gamma\right\}$. Then $\Gamma^{(2)}$ is a normal subgroup of Γ such that $\Gamma / \Gamma^{(2)}$ is of exponent 2 . Since Γ is finitely generated, $\Gamma / \Gamma^{(2)}$ is a finite abelian group of type $(2,2, \cdots, 2)$. Therefore $\Gamma^{(2)}$ is a subgroup of Γ of finite index.

In view of the proof of Proposition 1 there exist two elements γ_{0}, and γ_{1} of Γ such that $\left\{1_{2}, \gamma_{0}, \gamma_{1}, \gamma_{0} \cdot \gamma_{1}\right\}$ is a basis of $A(\Gamma)$ over $k_{1}=\boldsymbol{Q}(\operatorname{tr}(\gamma) \mid \gamma \in \Gamma)$. It is easy to see that we may assume that

$$
\gamma_{0}=\alpha^{2}, \quad \gamma_{1}=\beta^{2},
$$

where α and β are hyperbolic elements of Γ. Since $\operatorname{tr}\left(\alpha^{2}\right) \neq 0$, by the equation

$$
\beta^{4}-\operatorname{tr}\left(\beta^{2}\right) \cdot \beta^{2}+1=0,
$$

either $\operatorname{tr}\left(\alpha^{2} \cdot \beta^{2}\right)$ or $\operatorname{tr}\left(\alpha^{2} \cdot \beta^{4}\right)$ is non-zero. Therefore without loss of generality we may assume that

$$
\begin{equation*}
\operatorname{tr}\left(\alpha^{2} \cdot \beta^{2}\right) \neq 0 \tag{5}
\end{equation*}
$$

Proposition 4. Let Γ be a Fuchsian group of the first kind. Denote by $\Gamma^{(2)}$ the subgroup of Γ generated by the set $\left\{\gamma^{2} \mid \gamma \in \Gamma\right\}$. Let $k_{2}=\boldsymbol{Q}\left((\operatorname{tr}(\gamma))^{2} \mid \gamma \in \Gamma\right)$ and $k_{2}^{\prime}=\boldsymbol{Q}\left(\operatorname{tr}(\gamma) \mid \gamma \in \Gamma^{(2)}\right)$. Then k_{2} coincides with k_{2}^{\prime}.

Proof. Take any basis of $A(\Gamma)$ over k_{1} of the form $\left\{1_{2}, \alpha^{2}, \beta^{2}, \alpha^{2} \cdot \beta^{2}\right\}$ where α and β are elements of Γ satisfying (5). Let A_{0} be the vector space spanned by $\left\{1_{2}, \alpha^{2}, \beta^{2}, \alpha^{2} \cdot \beta^{2}\right\}$ over k_{2}. We shall show that A_{0} is a quaternion algebra over k_{2} and that A_{0} coincides with $A\left(\Gamma^{(2)}\right)$. The multiplication table of the algebra $A(\Gamma)$ with respect to the basis $\left\{1_{2}, \alpha^{2}, \beta^{2}, \alpha^{2} \cdot \beta^{2}\right)$ is as follows:

	1_{2}	α^{2}	β^{2}	$\alpha^{2} \cdot \beta^{2}$
1_{2}	1_{2}	α^{2}	β^{2}	$\alpha^{2} \cdot \beta^{2}$
α^{2}	α^{2}	α^{4}	$\alpha^{2} \cdot \beta^{2}$	$\alpha^{4} \cdot \beta^{2}$
β^{2}	β^{2}	$\beta^{2} \cdot \alpha^{2}$	β^{4}	$\beta^{2} \cdot \alpha^{2} \cdot \beta^{2}$
$\alpha^{2} \cdot \beta^{2}$	$\alpha^{2} \cdot \beta^{2}$	$\alpha^{2} \cdot \beta^{2} \cdot \alpha^{2}$	$\alpha^{2} \cdot \beta^{4}$	$\left(\alpha^{2} \cdot \beta^{2}\right)^{2}$

For any $\gamma \in \Gamma$ we have

$$
\operatorname{tr}\left(\gamma^{2}\right)=(\operatorname{tr}(\gamma))^{2}-2 .
$$

It implies that k_{2} is contained k_{2}^{\prime}. It is easy to see that, $\alpha^{4}, \beta^{4}, \alpha^{4} \cdot \beta^{2}$ and $\alpha^{2} \cdot \beta^{4}$ are all contained in A_{0}.

Lemma 2. Let δ_{1} and δ_{2} be two elements of Γ. Then $\operatorname{tr}\left(\delta_{1}^{2} \cdot \delta_{2}^{2}\right)$ is contained in k_{2}.

Proof. We have

$$
\begin{aligned}
\operatorname{tr}\left(\delta_{1}^{2} \cdot \delta_{2}^{2}\right) & =\operatorname{tr}\left(\left(\operatorname{tr}\left(\delta_{1}\right) \cdot \delta_{1}-1_{2}\right)\left(\operatorname{tr}\left(\delta_{2}\right) \cdot \delta_{2}-1_{2}\right)\right) \\
& =\operatorname{tr}\left(\delta_{1}\right) \operatorname{tr}\left(\delta_{2}\right) \operatorname{tr}\left(\delta_{1} \cdot \delta_{2}\right)-\left(\operatorname{tr}\left(\delta_{1}\right)\right)^{2}-\left(\operatorname{tr}\left(\delta_{2}\right)\right)^{2}+2 .
\end{aligned}
$$

On the other hand, using the equation

$$
\operatorname{tr}\left(\delta_{1}\right) \operatorname{tr}\left(\delta_{2}\right)=\operatorname{tr}\left(\delta_{1} \cdot \delta_{2}\right)+\operatorname{tr}\left(\delta_{1} \cdot \delta_{2}^{-1}\right),
$$

we obtain

$$
\begin{aligned}
\left(\operatorname{tr}\left(\delta_{1} \cdot \delta_{2}^{-1}\right)\right)^{2}= & \left(\operatorname{tr}\left(\delta_{1}\right)\right)^{2}\left(\operatorname{tr}\left(\delta_{2}\right)\right)^{2}+\left(\operatorname{tr}\left(\delta_{1} \cdot \delta_{2}\right)\right)^{2} \\
& -2 \operatorname{tr}\left(\delta_{1}\right) \operatorname{tr}\left(\delta_{2}\right) \operatorname{tr}\left(\delta_{1} \cdot \delta_{2}\right) .
\end{aligned}
$$

It implies that $\operatorname{tr}\left(\delta_{1}\right) \operatorname{tr}\left(\delta_{2}\right) \operatorname{tr}\left(\delta_{1} \cdot \delta_{2}\right)$ is contained in k_{2}. Hence $\operatorname{tr}\left(\delta_{1}^{2} \cdot \delta_{2}^{2}\right)$ is contained in k_{2}.
q.e.d.

Lemma 3. Let α, β be the same as in the definition of A_{0}. Then an element γ of $A(\Gamma)$ is contained in A_{0} if and only if $\operatorname{tr}(\gamma), \operatorname{tr}\left(\gamma \cdot \alpha^{-2}\right), \operatorname{tr}\left(\gamma \cdot \beta^{-2}\right)$ and $\operatorname{tr}\left(\gamma \cdot \beta^{-2} \cdot \alpha^{-2}\right)$ are all contained in $k_{2}=\boldsymbol{Q}\left((\operatorname{tr}(\gamma))^{2} \mid \gamma \in \Gamma\right)$.

Proof. Let γ be any element of $A(\Gamma)$. Then we have

$$
\gamma=x_{0} 1_{2}+x_{1} \alpha^{2}+x_{2} \beta^{2}+x_{3} \alpha^{2} \cdot \beta^{2},
$$

where $x_{i}(0 \leqq i \leqq 3)$ belongs to the field k_{1}.
Multiplying γ by α^{-2}, β^{-2} and $\beta^{-2} \cdot \alpha^{-2}$ respectively and taking the traces, we have the equations

$$
\begin{aligned}
& \operatorname{tr}(\gamma)=2 x_{0}+\operatorname{tr}\left(\alpha^{2}\right) x_{1}+\operatorname{tr}\left(\beta^{2}\right) x_{2}+\operatorname{tr}\left(\alpha^{2} \cdot \beta^{2}\right) x_{3}, \\
& \operatorname{tr}\left(\gamma \cdot \alpha^{-2}\right)=\operatorname{tr}\left(\alpha^{2}\right) x_{0}+2 x_{1}+\operatorname{tr}\left(\alpha^{2} \cdot \beta^{-2}\right) x_{2}+\operatorname{tr}\left(\beta^{2}\right) x_{3}, \\
& \operatorname{tr}\left(\gamma \cdot \beta^{-2}\right)=\operatorname{tr}\left(\beta^{2}\right) x_{0}+\operatorname{tr}\left(\alpha^{2} \cdot \beta^{-2}\right) x_{1}+2 x_{2}+\operatorname{tr}\left(\alpha^{2}\right) x_{3}, \\
& \operatorname{tr}\left(\gamma \cdot \beta^{-2} \cdot \alpha^{-2}\right)=\operatorname{tr}\left(\alpha^{2} \cdot \beta^{2}\right) x_{0}+\operatorname{tr}\left(\beta^{2}\right) x_{1}+\operatorname{tr}\left(\alpha^{2}\right) x_{2}+2 x_{3} .
\end{aligned}
$$

Put

$$
D=\left(\begin{array}{llll}
2 & \operatorname{tr}\left(\alpha^{2}\right) & \operatorname{tr}\left(\beta^{2}\right) & \operatorname{tr}\left(\alpha^{2} \cdot \beta^{2}\right) \\
\operatorname{tr}\left(\alpha^{2}\right) & 2 & \operatorname{tr}\left(\alpha^{2} \cdot \beta^{-2}\right) & \operatorname{tr}\left(\beta^{2}\right) \\
\operatorname{tr}\left(\beta^{2}\right) & \operatorname{tr}\left(\alpha^{2} \cdot \beta^{-2}\right) & 2 & \operatorname{tr}\left(\alpha^{2}\right) \\
\operatorname{tr}\left(\alpha^{2} \cdot \beta^{2}\right) & \operatorname{tr}\left(\beta^{2}\right) & \operatorname{tr}\left(\alpha^{2}\right) & 2
\end{array}\right) .
$$

Then

$$
D \cdot\left(\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
\operatorname{tr}(\gamma) \\
\operatorname{tr}\left(\gamma \cdot \alpha^{-2}\right) \\
\operatorname{tr}\left(\gamma \cdot \beta^{-2}\right) \\
\operatorname{tr}\left(\gamma \cdot \beta^{-2} \cdot \alpha^{-2}\right)
\end{array}\right) .
$$

Now we shall show that the matrix D is contained in the group $G L_{4}\left(k_{2}\right)$. By Lemma 2 we see that D belongs to $M_{2}\left(k_{2}\right)$. Considering $x_{i}(0 \leqq i \leqq 3)$ as variables, we can express the norm form of $A(\Gamma)$ in the following way:

$$
\begin{aligned}
n_{A(\Gamma)}(\gamma)= & x_{0}^{2}+\operatorname{tr}\left(\alpha^{2}\right) x_{0} x_{1}+\operatorname{tr}\left(\beta^{2}\right) x_{0} x_{2}+\operatorname{tr}\left(\alpha^{2} \cdot \beta^{2}\right) x_{0} x_{3} \\
& +x_{1}^{2}+\operatorname{tr}\left(\alpha^{2} \cdot \beta^{-2}\right) x_{1} x_{2}+\operatorname{tr}\left(\beta^{2}\right) x_{1} x_{3}+x_{2}^{2}+\operatorname{tr}\left(\alpha^{2}\right) x_{2} x_{3}+x_{3}^{2} \\
= & \frac{1}{2}\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \cdot D \cdot\left(\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
\end{aligned}
$$

Since $A(\Gamma)$ is a quaternion algebra over k_{1}, the norm form of $A(\Gamma)$ is nondegenerate. Hence $\operatorname{det}(D)$ is non-zero. This shows that D is contained in the group $G L_{4}\left(k_{2}\right)$. It follows that γ is contained in A_{0} if and only if $\operatorname{tr}(\gamma), \operatorname{tr}\left(\gamma \cdot \alpha^{-2}\right)$, $\operatorname{tr}\left(\gamma \cdot \beta^{-2}\right)$ and $\operatorname{tr}\left(\gamma \cdot \beta^{-2} \cdot \alpha^{-2}\right)$ are all contained in k_{2}.
q. e.d.

We shall show that $\beta^{2} \alpha^{2}$ is contained in A_{0}. By Lemma $2 \operatorname{tr}\left(\beta^{2} \alpha^{2}\right)$ and $\operatorname{tr}\left(\beta^{2} \alpha^{2} \beta^{-2} \alpha^{-2}\right)\left(=\operatorname{tr}\left(\left(\beta^{2} \alpha \beta^{-2}\right)^{2} \cdot \alpha^{-2}\right)\right)$ are contained in k_{2}. Applying Lemma 3 to $\beta^{2} \alpha^{2}$ we see that $\beta^{2} \alpha^{2}$ is contained in A_{0}. It follows from this that $\alpha^{2} \cdot \beta^{2} \alpha^{2}$ and $\beta^{2} \alpha^{2} \cdot \beta^{2}$ are also contained in A_{0}. Thus we have shown that A_{0} is an algebra over k_{2} such that

$$
A_{0} \otimes_{k_{2}} k_{1}=A(\Gamma)
$$

It is clear by definition that A_{0} is contained in $A\left(\Gamma^{(2)}\right)$. Take any $\gamma \in \Gamma$. We shall show that γ^{2} is contained in A_{0}. By Lemma $2 \operatorname{tr}\left(\gamma^{2}\right), \operatorname{tr}\left(\gamma^{2} \alpha^{-2}\right)$ and $\operatorname{tr}\left(\gamma^{2} \beta^{-2}\right)$ are all contained in k_{2}. Considering the assumption (5), by the equations

$$
\begin{aligned}
\operatorname{tr}\left(\gamma^{2} \beta^{-2} \alpha^{-2}\right)= & \operatorname{tr}\left(\alpha^{2} \beta^{2} \gamma^{-2}\right)=\operatorname{tr}\left(\alpha^{2} \beta^{2} \gamma^{-1}\right) \operatorname{tr}(\gamma)-\operatorname{tr}\left(\alpha^{2} \beta^{2}\right), \\
\left(\operatorname{tr}\left(\alpha^{2} \beta^{2} \gamma\right)\right)^{2}= & \left(\operatorname{tr}\left(\alpha^{2} \beta^{2}\right) \operatorname{tr}(\gamma)-\operatorname{tr}\left(\alpha^{2} \beta^{2} \gamma^{-1}\right)\right)^{2} \\
= & \left(\operatorname{tr}\left(\alpha^{2} \beta^{2}\right)\right)^{2}(\operatorname{tr}(\gamma))^{2}+\left(\operatorname{tr}\left(\alpha^{2} \beta^{2} \gamma^{-1}\right)\right)^{2} \\
& -2 \operatorname{tr}\left(\alpha^{2} \beta^{2}\right) \operatorname{tr}\left(\alpha^{2} \beta^{2} \gamma^{-1}\right) \operatorname{tr}(\gamma),
\end{aligned}
$$

we see that $\operatorname{tr}\left(\gamma^{2} \beta^{-2} \alpha^{-2}\right)$ is contained in k_{2}. We can apply Lemma 3 to γ^{2}. Hence we see that γ^{2} is contained in A_{0}. It follows that $\Gamma^{(2)}$ is contained in A_{0}. In particular, $\operatorname{tr}\left(\Gamma^{(2)}\right)$ is contained in k_{2}. Therefore k_{2}^{\prime} is contained in k_{2}. Thus we have shown that k_{2}^{\prime} coincides with k_{2}. This completes the proof of Proposition 4. By the way since $A\left(\Gamma^{(2)}\right)$ is a quaternion algebra over $k_{2}^{\prime}\left(=k_{2}\right)$, we see that $A_{0}=A\left(\Gamma^{(2)}\right)$.
q. e. d.

Proposition 5. Let Γ be an arithmetic Fuchsian group commensurable with $\Gamma(A, O)$ where A and O are the same as in $\S 1$. Then $k_{2}=Q\left((\operatorname{tr}(\gamma))^{2} \mid \gamma \in \Gamma\right)$ coincides with the center k of A and $A\left(\Gamma^{(2)}\right)$ coincides with $\rho_{1}(A)$.

Proof. By the assumption there exists a subgroup Γ_{1} of both Γ and $\Gamma(A, O)$ of finite index. By 2.1. § 2 we see that k coincides with the field
$\boldsymbol{Q}\left(\operatorname{tr}(\gamma) \mid \gamma \in \Gamma_{1}\right)$. Moreover by Proposition 1 we see that $A\left(\Gamma_{1}\right)=\rho_{1}(A)$. We may take Γ_{1} as a normal subgroup of Γ. Take any $\gamma \in \Gamma$. Then γ induces an automorphism φ_{r} of Γ_{1} defined as follows:

$$
\varphi_{\gamma}: \Gamma_{1} \ni \alpha \longmapsto \gamma^{-1} \alpha \gamma \in \Gamma_{1} .
$$

φ_{r} can be extended to an automorphism φ_{r} of $A\left(\Gamma_{1}\right)=\rho_{1}(A)$ in a natural way which is the identity of the center $k \cdot 1_{2}$ of $\rho_{1}(A)$. By the Skolem-Noether's Theorem there exists an invertible element δ_{0} of A such that for any $\alpha \in \rho_{1}(A)$ we have

$$
\varphi_{r}(\alpha)=\rho_{1}\left(\delta_{0}\right)^{-1} \cdot \alpha \cdot \rho_{1}\left(\delta_{0}\right)
$$

Since we have

$$
\rho_{1}(A) \otimes_{k} \boldsymbol{R} \cong M_{2}(\boldsymbol{R}),
$$

we have the expression

$$
\gamma=a \cdot \rho_{1}\left(\delta_{0}\right)
$$

where a is a non-zero real number. By the equation

$$
1=\operatorname{det}(\gamma)=\alpha^{2} \operatorname{det}\left(\rho_{1}\left(\delta_{0}\right)\right)=a^{2} n_{A}\left(\delta_{0}\right)
$$

a^{2} is a non-zero element of k. Hence γ^{2} is contained in $\rho_{1}(A)$. It follows that $\Gamma^{(2)}$ is contained in $\rho_{1}(A)$. Therefore, $A\left(\Gamma^{(2)}\right)$ is contained in $\rho_{1}(A)$ and k_{2} is contained in k.

It is clear that

$$
A\left(\Gamma^{(2)}\right) \bigotimes_{k_{2}} \cong \cong \rho_{1}(A)
$$

By the assumption (1) of A, k_{2} coincides with k and that $A\left(\Gamma^{(2)}\right)=\rho_{1}(A)$. This completes the proof of Proposition 5.

We shall show that (I) and (II_{1}) are necessary conditions. Let Γ be an arithmetic Fuchsian group commensurable with $\Gamma(A, O)$. Take any $\gamma \in \Gamma$. Then γ^{m} is contained in $\rho_{1}(O)$ for some positive integer m. Let u and $1 / u$ be the eigen-values of γ. Then u^{m} and $1 / u^{m}$ are the eigen-values of γ^{m}. Since $\operatorname{tr}\left(\gamma^{m}\right)$ is contained in O_{k}, u^{m} and $1 / u^{m}$ are algebraic integers. Hence u and $1 / u$ are also algebraic integers. It follows that $\operatorname{tr}(\gamma)$ is contained in $O_{k_{1}}$. This shows that Γ satisfies the condition (I).

Let φ be any isomorphism of k_{1} into \boldsymbol{C} such that $\left.\varphi\right|_{k_{2}} \neq$ the identity. Then by Proposition 5 k_{2} coincides with k and hence $\left.\varphi\right|_{k_{2}}=\varphi_{i}$ for some $i(2 \leqq i \leqq n)$. Extend φ to an isomorphism ψ of $k_{1}(u)$ in to C. Since γ^{m} belongs to $\rho_{1}(A)$, $\varphi\left(\operatorname{tr}\left(\gamma^{m}\right)\right)$ is contained in the interval [-2,2]. Since $\psi\left(u^{m}\right)$ and $1 / \psi\left(u^{m}\right)$ are the roots of the equation

$$
x^{2}-\psi\left(\operatorname{tr}\left(\gamma^{m}\right)\right) x+1=0
$$

we have $\left|\psi\left(u^{m}\right)\right|=1$. Hence we have $|\psi(u)|=1$. It follows from the equations

$$
\varphi(\operatorname{tr}(\gamma))=\psi(u)+1 / \psi(u)=\phi(u)+\overline{\psi(u)}
$$

that $\varphi(\operatorname{tr}(\gamma))$ is contained in the interval [-2,2]. This shows that $\varphi(\operatorname{tr}(\Gamma))$ is bounded. Therefore, Γ satisfies the condition $\left(\mathrm{II}_{1}\right)$.
3.2. Sufficiency of the conditions (I) and (II_{1}).

Let Γ be a Fuchsian group of the first kind satisfying the conditions (I) and (II_{1}). By Proposition 4 we see easily that $\Gamma^{(2)}$ satisfies the conditions (I) and $\left(\mathrm{II}_{2}\right)$ in Theorem 2, By Theorem 2 $\Gamma^{(2)}$ is a Fuchsian group derived from a quaternion algebra. Since $\Gamma^{(2)}$ is a subgroup of Γ of finite index, Γ is an arithmetic Fuchsian group. This completes the proof of Theorem 1.

Remark. In view of the proof of Theorem 1Γ is an arithmetic Fuchsian group if and only if $\Gamma^{(2)}$ is a Fuchsian group derived from a quaternion algebra.
§4. Independency of the conditions (I) and ($\left(\mathrm{II}_{1}\right)$.
In this section we shall show that the conditions (I) and (II_{1}) in our Theorem are independent of each other. First we shall give an example of a Fuchsian group which satisfies the condition (I) but does not satisfy the condition (II_{1}).

For any rational integer q such that $q \geqq 7$ put $\lambda=2 \cos (\pi / q)$. Then the field $k_{\lambda}=\boldsymbol{Q}(\lambda)$ is a totally real algebraic number field of degree $1 / 2 \cdot \varphi(2 q)$, where $\varphi()$ is the Euler function. Let $\Gamma(\lambda)$ be the subgroup of $S L_{2}(\boldsymbol{R})$ generated by the following two elements:

$$
S=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right), \quad T_{\lambda}=\left(\begin{array}{ll}
1 & \lambda \\
0 & 1
\end{array}\right) .
$$

$\Gamma(\lambda)$ is introduced by E. Hecke in [3] and is shown to be a Fuchsian group of the first kind. It is easy to see that $k_{\lambda}=\boldsymbol{Q}(\operatorname{tr}(\gamma) \mid \gamma \in \Gamma(\lambda))$. Since λ is contained in $O_{k_{\lambda}}, \Gamma(\lambda)$ is a subgroup of $S L_{2}\left(O_{k_{\lambda}}\right)$. Therefore, we have $\operatorname{tr}(\Gamma(\lambda))$ $\subset O_{k_{k}}$. It follows that $\Gamma(\lambda)$ satisfies the condition (I). Since $\Gamma^{(2)}(\lambda)$ contains $\left(S T_{\lambda}\right)^{2} T_{\lambda}^{2 m}$ for any rational integer m, we see that $\Gamma(\lambda)$ does not satisfy the condition (II_{1}).

Now we shall construct a Fuchsian group which satisfies the condition (II_{1}) but does not satisfy the condition (I). For this purpose we make use of the arithmetic Fuchsian group $\Gamma(A, O)$ defined in $\S 1$. Let k, A, O and $\Gamma(A, O)$ be the same as in $\S 1$. We assume that $k \neq \boldsymbol{Q}$. Then A is a division quaternion algebra over k. Hence $H / \Gamma(A, O)$ is compact (cf. e.g. [2]). It follows that $\Gamma(A, O)$ does not contain any parabolic elements. Since $\Gamma(A, O)$ is a finitely generated subgroup of $S L_{2}(\boldsymbol{R})$, by Lemma 8 in [4] there exists a torsion-free subgroup Γ of $\Gamma(A, O)$ of finite index. It follows that Γ is generated by $2 g$ ($g \geqq 2$) hyperbolic elements

$$
\left\{\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, \cdots, \alpha_{g}, \beta_{g}\right\}
$$

which satisfy the unique fundamental relation

$$
\alpha_{1} \cdot \beta_{1} \cdot \alpha_{1}^{-1} \cdot \beta_{1}^{-1} \cdots \alpha_{g} \cdot \beta_{g} \cdot \alpha_{g}^{-1} \cdot \beta_{g}^{-1}=I_{2}
$$

By considering a suitable conjugate group instead of Γ, we may assume that

$$
\beta_{1}=\left(\begin{array}{cc}
w & 0 \\
0 & w^{\prime}
\end{array}\right), \quad \alpha_{1}=\left(\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} b_{1}^{\prime} & a_{1}^{\prime}
\end{array}\right) \quad\left(k \ni c_{1} \neq 0\right)
$$

and that

$$
A(\Gamma)=A=\left\{\left.\left(\begin{array}{ll}
a & b \\
c_{1} b^{\prime} & a^{\prime}
\end{array}\right) \right\rvert\, a, b \in K\right\}
$$

For any non-zero real number u we put

$$
\alpha(u)=\alpha_{1} \cdot\left(\begin{array}{ll}
u & 0 \\
0 & 1 / u
\end{array}\right)
$$

Then

$$
\lim _{u \rightarrow 1} \alpha(u)=\alpha(1)=\alpha_{1}
$$

Let Γ_{u} be the subgroup of $S L_{2}(\boldsymbol{R})$ generated by $2 g$ elements

$$
\left\{\alpha(u), \beta_{1}, \alpha_{2}, \beta_{2}, \cdots, \alpha_{g}, \beta_{g}\right\}
$$

which satisfy the following relation :

$$
\alpha(u) \cdot \beta_{1} \alpha(u)^{-1} \cdot \beta_{1}^{-1} \cdot \alpha_{2} \beta_{2} \cdot \alpha_{2}^{-1} \cdot \beta_{2}^{-1} \cdots \alpha_{g} \cdot \beta_{g} \cdot \alpha_{g}^{-1} \cdot \beta_{g}^{-1}=I_{2}
$$

Since H / Γ is compact, we can apply to Γ the theory of small deformations which is proved by A. Weil in [6]. Therefore, there exists a neighbourhood V of 1 in \boldsymbol{R} such that for any u in $V \Gamma_{u}$ is a Fuchsian group of the first kind.

Now we impose on Γ_{u} the following condition:

$$
K \ni u \quad \text { and } \quad u u^{\prime}=1
$$

Then Γ_{u} is contained in A. It follows that Γ_{u} satisfies the condition $\left(\mathrm{II}_{1}\right)$.
By the relation $\operatorname{tr}(\alpha(u))=\operatorname{tr}_{K / k}\left(a_{1} u\right)$, where $\operatorname{tr}_{K / k}()$ means the trace map of K to k, if $\operatorname{tr}_{K / k}\left(a_{1} u\right)$ is not contained in O_{k}, then Γ_{u} does not satisfy the condition (I). We need the following

LEMMA 4. There exists a sequence $\left\{u_{m}\right\}$ which satisfies the following conditions:
(i) u_{m} is contained in K and $u_{m} \cdot u_{m}^{\prime}=1$,
(ii) $\lim _{m \rightarrow \infty} u_{m}=1$,
(iii) $\operatorname{tr}_{K / k}\left(u_{m}\right)$ is not contained in O_{k}.

Proof. Let u be an element of K such that $u \cdot u^{\prime}=1$. Then by Hilbert's Theorem 90 we can find an element v of K such that $u=v / v^{\prime}$. Put

$$
d_{1}=\left(\operatorname{tr}\left(\beta_{1}\right)\right)^{2}-4=\left(w-w^{\prime}\right)^{2} .
$$

Then $K=k(w)=k\left(\sqrt{d_{1}}\right)$. Since v can be expressed as follows:

$$
v=\left(1+\sqrt{\left.\overline{d_{1}} x\right) y, ~}\right.
$$

where x and y are elements of k, we have

$$
\begin{equation*}
u=\frac{1+d_{1} x^{2}+2 x \sqrt{d_{1}}}{1-d_{1} x^{2}} . \tag{6}
\end{equation*}
$$

Since $\operatorname{tr}_{K / k}\left(a_{1}\right)=\operatorname{tr}\left(\alpha_{1}\right)$ is contained in $O_{k}, \operatorname{tr}_{K / k}\left(a_{1} u\right)$ is contained in O_{k} if and only if $\operatorname{tr}_{K / k}\left(a_{1}(u+1)\right)$ is so. By (6), we have

$$
\begin{equation*}
\operatorname{tr}_{K / k}\left(a_{1}(u+1)\right)=\frac{2 \operatorname{tr}_{K / k}\left(a_{1}\right)+2\left(a_{1}-a_{1}^{\prime}\right) \sqrt{d_{1}} \cdot x}{1-d_{1} \cdot x^{2}} \tag{7}
\end{equation*}
$$

Since k is a totally real algebraic number field of degree $n \geqq 2$, we can find an element x_{0} of O_{k} such that $0<\left|x_{0}\right|<1$. For any positive integer m, put

$$
u_{m}=\frac{1+d_{1} x_{0}^{2 m}+2 x_{0}^{m} \cdot \sqrt{d_{1}}}{1-d_{1} x_{0}^{2 m}} .
$$

Then we see easily that $\left\{u_{m}\right\}$ satisfies the conditions (i) and (ii).
Since $n_{k / \mathbf{Q}}\left(x_{0}\right)$ is a non-zero rational integer, there exists an index i such that $\left|\varphi_{i}\left(x_{0}\right)\right|>1$. Therefore, we have

$$
\begin{aligned}
\lim _{m \rightarrow \infty} n_{k / \mathbf{Q}}\left(\operatorname{tr}_{K / k}\left(a_{1}\left(u_{m}+1\right)\right)\right) & =2^{n} \lim _{m \rightarrow \infty} \prod_{i=1}^{n} \frac{\varphi_{i}\left(\operatorname{tr}_{K / k}\left(a_{1}\right)\right)+\varphi_{i}\left(\left(a_{1}-a_{1}^{\prime}\right) \sqrt{d_{1}}\right) \varphi_{i}\left(x_{0}\right)^{m}}{1-\varphi_{i}\left(d_{1}\right) \cdot \varphi_{i}\left(x_{0}\right)^{2 m}} \\
& =0 .
\end{aligned}
$$

On the other hand, by (7) we have

$$
\lim _{m \rightarrow \infty} \operatorname{tr}_{K / k}\left(a_{1}\left(u_{m}+1\right)\right)=2 \operatorname{tr}_{K / k}\left(a_{1}\right) \neq 0
$$

This implies that for any sufficiently large $m, \operatorname{tr}_{K / k}\left(a_{1} u_{m}\right)$ is not contained in O_{k}. This completes the proof of Lemma 4.

By this lemma we can give an example of a Fuchsian group which satisfies the condition $\left(\mathrm{II}_{1}\right)$ but does not satisfy the condition (I).

References

[1] K. Takeuchi, On some discrete subgroups of $S L_{2}(\boldsymbol{R})$, J. Fac. Sci. Univ. Tokyo, Sec. I, 16 (1969), 97-100.
[2] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Publications of Math. Soc. Japan, 1971.
[3] E. Hecke, Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung, Math. Ann., 113 (1936), 664-669.
[4] A. Selberg, On discontinuous groups in higher-dimensional symmetric spaces, Contribution to Function Theory, Tata Institute, Bombay, 1960, 147-164.
[5] A. Borel, Introduction aux groupes arithmetiques, Hermann, Paris, 1969.
[6] A. Weil, Discrete subgroups of Lie groups, Ann. of Math., 72 (1960), 369-384.

Kisao TAKEUCHI
Department of Mathematics
Faculty of Science and Engineering
Saitama University
Urawa, Saitama
Japan

