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§1. Introduction.

Shapes of compact metric spaces were introduced by K. Borsuk [3]. He
generalized in and this concept to general metric spaces by defining
weak shapes and positions. The notions of shapes or weak shapes of spaces
give classifications of spaces coarser than homotopy type and they are deter-
mined by circumstance under which the space is embedded into an AR as a
closed set. In this paper we shall show that a given metric space X is em-
bedded into an AR with a convenient structure for investigating shape theo-
retical properties of X. By making use of this embedding, for a locally com-
pact metric space X, it is shown that there is a locally compact 4-space whose
weak shape is equal to X’s. In case X is compact this fact has been proved
in by Mardesié-Segal approach to shape [13]. However the compactness
of a space is essential in Mardesié-Segal approach and we can not use it for
our case. The concept of fundamental skeletons of a space is introduced.
Every 4d-space has fundamental skeletons, but it is known that there is an AR
which does not have fundamental skeletons. Finally a partial answer to a
problem concerning position raised by Borsuk [4] is given.

Throughout this paper all of spaces are metric and maps are continuous.
By an AR and an ANR we mean always an AR for metric spaces and an ANR
for metric spaces, and by dimension we imply the covering dimension.

§2. Embedding of spaces into ANR.

Let X and Y be metric spaces and let f: X—Y be a continuous map.
We define a metrizable mapping cylinder M(X, Y, f) as follows. It is obtained
by identifying points (x, 1) XX {1} C XX I and f(x)e VY for x€ X in a topo-
logical sum XX IVY, where I={0,1]. Let p: XX IVY—->MX,Y, f) be a
quotient map. We denote p(x, t) for (x,t)e XX I by (x,t) and p(y) for y€Y
by » simply. We consider X and Y as subsets of M(X, Y, f) (X is identified
with the set {(x,0): x= X}). We give M(X, Y, f) the following topology. A
point (x,t), x€ X and 0=t<1, has a neighborhood system consisting of all
sets of the form UXV, where U and V range over neighborhoods of x and ¢
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in X and [0,1)={f:0=<t<1} respectively. For a point y=Y, the collection
(WU W)x{t:1/n<t<1}: W is a neighborhood of y in Y and n=1, 2, ---}
forms a neighborhood base at vy in M(X, Y, f). Obviously M(X, Y, f) is metri-
zable and it contains X and Y as closed sets. If Y consists of one point, then
we obtain a metrizable cone C(X) over X. The following theorem is essentially
due to Bothe [5].

THEOREM 1. Let X be a finite dimensional metric space. Then there is an
ANR M(X) satisfying the following conditions.

(1) M(X) contains X as a closed set.

(2) wM(X)=w(X), where w(X) is the weight of X.

(3) dim M(X)=dim X+1.

(4) If X is complete, then M(X) is complete.

(5) If X is locally compact, then M(X) ts locally compact.

PrOOF. Choose a sequence of locally finite open covers {U,:n=1,2, -}

of X such that order of U, <dim X+1, un+1§un for each n and mesh 1,—0

(n—c0). Here we mean by U>%B (resp. 11;%) that U is a refinement (resp.
star refinement) of B. By K, we denote the nerve of I, with metric topology.
Take a vertex v of K,,; and let V be the element of U,,, corresponding to v.
Let a(v) be the closed simplex of K, which is spanned by vertices correspond-
ing to all elements of 11, containing V. Map v to the barycenter of o(v). By
extending linearly this map we obtain a map 7., : K,+;— K, which is a sim-
plicial map from K,,, into the barycentric subdivision of K,. The inverse
sequence {K,, m,,4+.} is called a barycentric system on the sequence {ll,} by
Isbell [8]. The limit space lir_n {K,} is equal to a completion X* of X (cf. [14,
Theorem 14.47] and [8, Lemma 33]). Let pg,: X*—K, be the projection and
put m,=p,| X, n=1,2, .. By M(K,,,, K,, Tnns,) denote a metrizable mapping
cylinder. Consider a topological sum N= olM(KnH, K,, n,,.). For each n,
by identifying K., X {0} of M(K, 1, Ky, Tpnyy) and Knyy of M(K i, Koty Tosinee)
in N we obtain a metrizable space M in which each M(K,.,, K,, Tnn::) has a
proper topology as a closed set. Since 7,,.; iS piecewise linear, M is a cell
complex. Put M(X)=M\UX. Give M(X) the following topology: M is open
in M(X) and has its proper topology. Take x X. For n=1,2,--, let V be
an open star containing 7,(x) in K,. For m>n, consider an open set (7, ,) 'V
X[0,1) of M(K, .1, Ky Trums1), Where mpm=~=pni1""* Tm-1m. The collection of

the sets of the form (7, (V)N X))V ®+ (Tum) 'V X[0, 1), where V ranges over
m=n+1

open stars containing 7,(x) in K,, n=1, 2, ---, forms a neighborhood base of
x in M(X). Obviously M(X) is a metrizable space with dim M(X)=dim X+1
and contains X as a closed set. For each #n, let M, be the subspace
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n+1
mL=}1M(Km+1, Kn, Tmey) of M(X), where M,=K,. Define v,: M(X)— M, by

putting
vaX)=m,(x), xe€X,

”n(xy t) = 77'-71m+1<-x) ’ (X, t) = M(Km+1y Kmy 7rm'm.+1) ’ m .Z n ’
l)n(x: t) :(x, t) ’ (x) t) S -ZM(Km+17 Kmr ﬂmm+1) ’ m < n.

Obviously v, is continuous. Let U be an open set of M, and let W=y, }(U).
It is easy to show that U is a strong deformation retract of W. Thus we can
know that M(X) is locally contractible. Since M(X) is finite dimensional, M(X)
is an ANR by [9, Theorem 17]. If X is complete, then we can choose a sequece
of covers {ll,} used in the construction of M(X) such that X is equal to X*
:l(iln {K,}. It is easy to know that M(X) has a complete R, system of open

coverings in the sense of Frolik. From [6, Theorem 2.4] follows the complete-
ness of M(X). Finally, let X be locally compact. If we choose a locally finite
open cover Y,, n=1, 2, ---, such that each member of I, has a compact closure,
then leggl {K,} and M(X) is locally compact. By the construction of M(X)

it is obvious that w(M(X))=w(X). This completes the proof.

If we construct a metrizable cone C(K,) over the subset K, of M(X), then
the union M(X)\JC(K)) is an AR. Hence we have

COROLLARY 1. For every finite dimensional metric space X there is an
AR M(X) satisfying the conditions (1)-(4) in Theorem 1.

Let Y be a discrete space consisting of uncountable points. Then there
does not exist a locally compact AR containing Y. Hence we can not streng-
then by replacing (1)-(4) by (1)-(5).

COROLLARY 2. Let © be an infinite cardinal number. For each n=0,1, 2, -,
there is an AR A(z, n) with w(A(z, n))=7 and dim A(z, n)=n-+1 such that if
X is a metric space with w(X)<t and dim X=<n then X is embedded into
Az, n).

This is a consequence of Nagata and [Corollary 1.

§3. Fundamental skeletons and 4-spaces.

Let X be a space and n=0, 1, 2, --~. K. Borsuk [1] introduced the concept
of homological and homotopical n-skeletons of X. As a shape theoretical modi-
fication of it we introduce the following concept (see [10, p. 447]).

DEFINITION 1. Let X be a space and n=0,1, 2, ---. By a fundamental n-
skeleton X™ of X we mean a subset of X satisfying the following conditions:

(i) X™ is a closed subset of X with dim X" <n.

(ii) If x,€ X™ and 1: (X", x,)—(X, x,) is the inclusion map, then the induced
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homomorphisms ix of ﬁi (X":G) into ﬁi(X: G) and of (X" x,) into mu(X, x,)
are isomorphisms for 0 =% <% and epimorphisms for 2=n respectively. Here
ka is the éech homology group with compact carriers, G is an arbitrary abelian
group and 7y is the fundamental group defined in [3, § 32].

The n-skeleton of a simplicial complex is a fundamental n-skeleton of it.
For every continuum X, every closed 0-dimensional subset of X is its fundamental
0-skeleton. If X is totally disconnected and dim X >0, then there is no funda-
mental 0-skeleton of X.

ExaMPLE 1. Let Y be a solenoid of Van Dantzig. Then Y has a funda-
mental 0-skeleton Y° such that Y° is homeomorphic to a Cantor discontinuum
and the quotient space Y/Y° is arcwise connected.

ExXAMPLE 2. It is known that every compact ANR has a fundamental k-
skeleton for £#=0,1. However there is a compact ANR which has no funda-
mental k-skeleton for each £=2, 3,---. Such an ANR X is given by a modi-
fication of the example constructed by Borsuk [1]. Consider a 2-sphere SZ.
Let A be an arc in S2 Take a map f from A onto the Hilbert cube Q. Let
X be the adjunction space obtained by S?% Q and f. Obviously X does not
have any fundamental k-skeletons for k=2.

ExaMpPLE 3. Consider the continua Mz, Mg, Mz, and My, constructed
in [14, Appendix, pp. 228-230]. Each of them does not have any fundamental
1-skeleton, because any open set in it contains a l-sphere which represents
non homologous cycle.

DEFINITION 2. A metric space X is said to be a 4d-space if there is an
inverse sequence {K,, 7,4} consisting of simplicial complexes K, with metric
topology and simplicial maps 7, .. : K,s1— K, whose limit space is homeomor-
phic to X (cf. [10] and [127).

Every polytope is a d-space. As known in [12, Theorem 1] there is a 1-
dimensional compact AR which is not a 4-space. For examples given above,
it is known that any solenoid of Van Dantzig is a 4-space but each of con-
tinua Mg, Mg,, Mz, and My, and the AR in Example 2 are not.

THEOREM 2. Let X be a finite dimensional locally compact metric space.
Then there is a locally compact Ad-space Y such that Shy(X)=Shy(Y) and
dim X=dim Y.

Here Shy(X) is the weak shape of X defined by K. Borsuk (see for defini-
tion [2, p. 79] and [4, §5]). In case X is compact, the theorem has been
proved in by using Marde$ié-Segal approach to shape [13]. In this
approach by means of ANR sequences, note that the compactness of a space
is essential.

PROOF OF THEOREM 2. We shall make use of an AR M(X) constructed
in the proofs of Theorem 1 and Corollary 1. LetW,, n=1,2, .-, be a sequence
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of locally finite open covers of X such that each member of U, has a compact

closure, order of I, <dim X+1, 11,,, >*11n for each n and mesh of U,—0 (n—co0).
Let K, be the nerve of I, and let 7,,4+; be a simplicial map of K,,, into the
barycentric subdivision of K, such that {K,, n,,.;} forms an inverse sequence
whose limit is X (see the proof of Theorem 1). Then M(X) is a union of X,

metrizable mapping cylinders M(K,,,, K, Tnpn41), n=1, 2, ---, and a metrizable
cone C(K,) over K,. Construct an inverse sequence {K}, ft, .1} as follows. Put
K,=K,, n=1,2,---. Let py,.::1: K,;,— K, be a natural simplicial projection,

that is, a vertex v of K,,, corresponding to an element Vll,,, is mapped by
Unnty tO @ vertex w corresponding to an element W e1ll, containing V. Then
two maps 7,4 and Yy of K, =K., into K,=K, are contiguous. Con-
sider an inverse sequence {K7, ft,,+:1} and put Y:li(_m{Ki,}. It is easy to

know that Y is a locally compact 4d-space and dim Y =dim X. By the same
argument as in the construction of M(X) we can construct an AR M(Y") which

’

is a union of Y, metrizable mapping cylinders M(K/1, K7, ton+1), =1, 2, -,

and a metrizable cone C(K}). For each n=1, 2, -, let M;}’:@llM(KmH, K., Tnmei)

UC(K,) and ME="U M(Knr, Ky ftmsn) Y CED. By v¥: M(X)— M and v :
m=1

M(Y)— MY denote the strong deformation retractions constructed in the proof
of Theorem 1. By local compactness of X and Y each of v¥ and v} is a per-
fect map. We define maps f, : M(X)—M(Y) and g,: M(Y)— M(X), n=1,2, -,

as follows. Let f7: C(K;)\U k(‘) K,—C(K)\U ku K, M(Y) be the identity map.
=2 =2

For £=1,2,-+,n—1, let us extend f;, over M(K,yi, K;, Trpss). Since maps
Trr+r @nd Y4 are contiguous, there is a homotopy H: K,,,XI— K} defined
by H(x,t)=1t mppss(x)+(A—1) prpr:(x) for (x,t)e K, X1 Define f, on
M(Kyi1y Kby Trpsr), =1, -+, n—1, by

fulx, )=(x,2t), x=K,,, and 0=5t=1/2,
frlx, )=H(x, 2t—-1), x€K,,, and 1/2=<t<1.
We obtain a continuous map f,: Mf—M(Y). Let f,=fwX: M(X)— M(Y).
Similarly let us define g5, : MY— M(X) by
g4l C(KD U Ky =the identity,
=2

gnlx, )=(x,2t), x€K,y, 05t=1/2, k=1, ,n—1,
&n(x, 1) =Ct=1) prp 14:(x)F+2—28) 7o a(x), xE Kiyy,
1/25t<1, k=1, -, n—1,
and let g, =gnvy : M(Y)— M(X). We obtain sequences of maps f={f,}: M(X)
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—M(Y) and g={g,}: M(Y)—M(X). Let F be a compact set of X. Let H,
be a finite subcomplex of K, consisting of all closed simplexes intersecting
vX¥(F) and put F/' =Y n\E)f.(H,), where n is any positive integer. Then it
is easy to see that I’/ is a compact set of ¥ which is f-assigned to F (see [4,
p. 1427). Similarly, for a compact set F’ of Y, if H, is a finite subcomplex
of K, consisting of closed simplexes intersecting vi(F’) and we put F=
XN (vR)'g.(Hy), then F is a compact set of X being g-assigned to F’. By the
definitions of f and g, since g,f, = vy and fh,g, =y} for each n, it is easy to
see that g-f =iy, yx and f+g =1y uw) Where ix,yx) and iy yv) are the identity
W-sequences for X in M(X) and for Y in M(Y) respectively (see [4, §2]).
This completes the proof.

REMARK. If we use the same argument as in the proof of [11, Theorem
2], then it is known that SA(X)=Sh(Y) for the 4d-space Y constructed in
Here SA(X) means the shape of X defined by Fox [7]

COROLLARY 3. Let X be an n-dimensional locally compact metric space.
For every m<mn, there is an n-dimensional d-space Z such that I:Ii(X: G)=
ﬁi(Z: G) for k>m+1 and f[i(Z: G)=0 for k<m, where G is an arbitrary
abelian group and }VIS,< is the reduced Cech homology group with compact carriers.

ProOF. Let Y be an n-dimensional 4-space such that Shy(X)=Shy(Y).
Let {K,, 7,:+:} be an inverse sequence consisting of simplicial complexes and
simplicial bonding maps whose limit space is Y. Let m<n. Consider the
inverse sequence {K7, 7). | K7}, where K7 is the m-skeleton of K,, and put
Y"‘:l@ {K7}. Then it is easy to see that Y™ is a fundamental k-skeleton

of Y. Let N, be the union of K, and a metrizable cone over K. Extend
Tppe1: Kpei— K, naturally to a simplicial map gy 41t Nis1— Ni. Consider the
inverse sequence {N,, tyr+:} and put Z=Ilim {N,}. Obviously Z is an n-

dimensional 4-space satisfying the conditions of the corollary.

EXAMPLE 4. We can not remove the local compactness of X in
2. Let X be the set of all rational numbers in a real line. If Y is a 0-dimen-
sional metric space such that Shz(Y)=Shy(X), then X and Y are homeomor-
phic by [11, Theorem 1]. Therefore such a space Y is not completely metri-
zable. Since every finite dimensional 4-space is completely metrizable, Y is
not a 4-space.

Finally, we shall give a partial answer to a problem [4, (8.8)] raised by
K. Borsuk.

THEOREM 3. Let X and Y be finite dimensional metric spaces. Suppose
that there exist sequences of compact sets {A,} and {B,} of X and Y and a
sequence of onto homeomorphisms {f.}, fo: X—VY, satisfying the conditions;

(1) AynCIntA, and B Clnt By, k=1,2, -,
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(2) flAp=B;, k=1,2, -,

(3) filAw=fu| A, rel. Bd A, in B,, for every <k,

(@) [l (X\NA) =fw|(X\A,) for every k<F/,
where Int A is the interior of A and Bd A is the boundary of A. Then
Pos (X, N A))=Pos (Y, A\ B,

For the proof we need the following lemma.

LEMMA 4. Let X, Y be finite dimensional metric spaces and let {UX} and
{UX} be sequences consisting of locally finite open covers of X and Y respec-
tively. By KZ and KY denote the nerves of WX and WY. Let ¥, : KX ,— K%
and w¥,.: KX, — KY be piecewise linear maps constructed in the proof of Theo-
rem 1 for n=1,2,---. Denote by M(X) and M(Y) ANR’s constructed for the
inverse sequences {KZ, n%,.,} and {KY, n¥,.} and put Xn:XUkO M(K¥,, K%,
7Fen) and Yn:YUan M(KY,y, K¥, t¥4s1), where X,=M(X) and Y,=M(Y).
Let f: X—Y be a map such that Wi> MY, n=1,2,---. Then f has an exten-
sion f: M(X)— M(Y) such that {X,)—Y, for each n. Let f and g be homo-
topic maps and let &: XXI—Y be a homotopy connecting f and g. Suppose
that for each n there is an open cover I8, of I such that NEXW,>ENY., Then
there is a homotopy &: M(X)X I—M(Y) such that &(x, 0):f(x) and é&(x,1)=
g(x) for xe M(X) and E(X,xI)CY, for each n.

PrROOF. Since UX>f"'UY for each #n, there is a natural simplicial projec-
tion ¢,: KX¥—KY. Note that n},.¥%,. and ¢,7%.4 are contiguous. Hence
we can define the map ¢, : M(K¥,, K&, of,.)— M(KY,,, K¥, n¥,.) as follows:

¢n(x7 t)=(€0n+1(x), 2t)’ xe K{-H and O§t§1/27
(/"n(xy £)=2t=1) Cpry i 1(x)+(2—2t) 7 1P :(x), xE KFy

and 1/2=tL1,
Pa(x)=p(x), xE K7

Let us define f: M(X)—M(Y) by fIX=f and fIM(KZ.,, KX, ¥, )=, n=
1,2, ---. Obviously f is a continuous extension of f and A(X,)CY, for each n.
The second assertion is proved by the same argument as in the first part and
we omit it.

PrROOF OF THEOREM 3. By (3) and (4), for k<k’ there is a homotopy
&%+ XX I—Y such that

Eﬁ'(x, O)ka<x) and Eﬁ’(x, l)ka:(x) for x X,
ve(x, 1) =fi(x) = frl(x) for xe X\A4,.
‘Since f#'|B,=f#'|B, rel. Bd B, in A,, there is a homotopy &%, : Y XI—X such
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that
(¥, 0)=/¥'(») and &Ly, 1)=f'(y) for yev,

ey, = () =/(y) for yEY\B,, k<Fk.

Let Y and UF be locally finite open covers of ¥ and X such that mesh UY <1,
mesh Uf <1, order of W =order of Uf <dim X+1 and Uf > /T W. For n=2,
choose locally finite open covers ¥ and WY of X and Y as follows;

b3
(5) uy > 11"/\f1 , WESUWIASTUEA SN and for some
*
open cover I8, of [ ULX W, > (&5 UL,

By the compactness of A; we can find Uf and 2B, in (5). By repeating this
process we can find inductively sequences of locally open covers {II¥} and {I¥}
of X and Y satisfying the following conditions for n=1, 2, ---;

(6) order of U%, order of WY <dim X-+1,

) mesh UZ, mesh UW¥ -0 (n—o0),

* n
ur, > /_\ fUXANY and for some open cover B,,, of [

(8)
1IIH—I><QB1':+1 > /\ (ELH-l 111%;’
* n+1
WX > A fiUE, ANY and for some open cover ,,, of [
i=1
9)
n+1><%n+l > /\ (ELZ+1 n+l
Let Kf and KY, n=1,2, ---, be the nerves of U¥ and Uf, and let 7%, :

KZ,,— K be a piecewise linear map constructed in the proof of Theorem 1.
Similarly, define a piecewise linear map #¥,u: Kiy—KZ. Then {KZ, ©¥,11}
and {KY, n¥,,} are barycentric systems on {l1¥} and {lI¥} respectively. As
in the proof of Theorem 1, construct AR’s M(X) and M(Y) for {K¥} and

{K¥}, namely, M(X)=X\UC(K{)\J U M(K¥,.,, KX, =¥,,,) and M(Y)=YUC(KY)
U U M(KY,, K¥, n¥,,). For each k=1, 2, -+, let C%(n, k) and D*(n, k) be the
subcomplexes of K¥ spanned by vertices corresponding to elements of U¥
intersecting A, and X\A, respectively. Similarly let C¥(n, k) and D¥(n, k) be
the subcomplexes of KY for B, and Y \B,. Put EX(n, k)=C*(n, &)N\DX(n, k)
and E¥(n, B)=C¥(n, )\ D¥(n, k). Then for each i and %k =& (C¥(i+1, k))C
CX(1, k) and n¥; . (C¥(i+1, k))CC¥(t, k). For each n and k& we put
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FX(n, k)= AU U MC¥(i+1, B), CX(iy ), 7in),
G*(n, k)= X\A, u@ M(D*(i-+1, k), D¥(i, ), n¥.11),
F¥(n, )=B,\J U M(CT(i-+1, k), C¥(G, ), 7w,

oo

G¥(n, k) =Y \B,\J U M(D*(i+1, k), D¥(i, k), m{iss) -

Let X,=M(X), Y,=MY), X,=X\UU MKE, K% 75) and Y,=YU

lg M(KY,, K¥, n¥iy) for n>1. Then F¥(n, k) and G¥(n, k) are closed sets of

X, and F¥(n, k) and G¥(n, k) are closed sets of Y, for each n and k. For
m=n=1, since UL> Ny by (9), there is an extension ¢¥: X,—Y, of f,:
X—Y which is given in the proof of Also, for m=n>1, since
nr. > fUZ by (8), there is an extension ¢%:Y,—X,_, of f71;:Y,—X. From
the definition of ¢f and ¢¥ it follows that

PRHKDCKL,  PR(KL)C KR,
PR(M(K s, K5, i) C MK, KT, Ahma)  for mzmn,
or (MK, K5y ) © M(K 5, K, i) -

For each k< n we have

Pa(FX(n, k) C F¥(n, k),

i (GX(n, k)T G¥(n, k),

Pr(F¥(n, k))C F¥(n—1, k),

PE(G¥(n, k))CGX¥(n—1, k).

(10)

From (8), (9) and it follows that there is a homotopy gxp+i: Xns1 X1
— Y, connecting ¥%|X,,, and ¢¥,; which extends &%,,,: XX I—Y. Similarly

we know that there is a homotopy g, : Y, X I— X, connecting ¢%|Y 4+ and
¢©Y. . which extends &f,,,: XX I—Y and from their definitions (cf. the proof of

Lemma 4) the following relations hold:

W (FX(n+1, )X [)C F¥(n+1, k), k<n,
Ea(GX(n+1, )X T G¥(n+1, k), k<n,
LEa(F¥(n+1, )X YC FX(n, k), k<n,

W on(G¥ (41, X )T GX(n, k), k<n.

(11
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Consider the maps ¢%,; and ¢X|X,., of X,., into Y,,,, and ¢¥,, and ©¥|Y ..,
of Y,,, into X,. From (4), if necessary, by replacing {U¥} and {UY} by refine-
ments, we can assume that

Pp(x)=8(x) = na(x, 1), x&€DX¥(n+1,n) and tel,
X (N=0r (=L, «(y,t), yeD¥(n+1,n—1) and tel.

(12)

Let A= kF\ A, and B= kﬁBk. Now, to prove Pos(X, A)=Pos (Y, B), we
=1 =1

have to find sequences of maps a={a;, X, Y }ycx;,mcry and b= {by, Y, X} yos, w0
such that

o’ ={ay A, B}M(X),M(Y') ) a” ={a;, X\A, Y\B} e, nws
b= {bk: B, A}M(Y),M(X) , b= {bk, Y\B, X\A}M(Y),M(X)

are W-sequences and

(13)

Il ~ 4 Nall ~ 4
_b_g =1'A,M(X)) Q a :Z'.(X,A),M(X)1

(14)

1 ~ 4 "h? ~ 4
a’b’ = Ip,mry, a’b =Ly ,B), MY -

(See for notations [4, pp. 146, 1477].) For k=1, let a,=¢¥ and let b, be an
arbitrary map of M(Y) into M(X). For k=2, we define a, and b, as follows.
Consider ¢¥:Y,—X,. Since X,=M(X) is an AR, there is an extension b, :
M(Y)Y— M(X) of ¢¥. To construct a,: M(X)— M(Y), put a,=9¢¥ on the set
X,. Consider the sets DX(2, 1) KZ, D¥*(1,1)C K¥ and the mapping cylinder
M(DX*(2,1), DX(1,1), ) G%*(1, 1). Since ¥¥(x)=¢f(x)=ua,(x) for x= D¥(2,1)
by (12), we can put a,=a;, on M(DX(2,1), DX(1, 1), #f). Consider the sets
T=CX(2, DVYUMEX(2, 1), EX(1, 1), zHyc M(C*(2, 1), C*(1, 1), =) and S=
M(C¥(2, 1), C¥(1, 1), z}). By (12) we know a,|T =a,|T rel. M(EX(2, 1), EX(1, 1),
) in S. Since a,|T has an extension a, over M(C*(2,1),C*(1, 1), =) and S
is an ANR, by homotopy extension theorem a,|T has an extension over
M(CX(2,1),C*(1, 1), ). Finally, since M(Y) is an AR, we can extend a, to
a map from M(X) into M(Y) which we denote by a, again. This completes
the definition of a,. Note that a,|M(C¥(2,1),C¥(1, 1), nf)=a,| M(CX(2, 1),
C*¥(1, 1), =) rel. M(EX(2, 1), EX(1, 1), =) in M(C¥(2,1), C¥(1,1), z%) and as a
consequence

a,| F¥(n, ) =a,|F¥(n,1) in F¥(n, 1) for each n,
a2|GX<1y l)ZallGX(l-y 1) .

(15)

By repeating this process we can construct maps a,: M(X)—M(Y) and b,:
M(Y)—M(X), k=3, 4, ---, satisfying the following conditions for n<k;

(16) @ | Xy=9% and b,|Y,=¢7,



Embeddings of spaces into ANR and shapes 543

an a,|GX(n, n)=a,|G¥(n, n),

(18) bl G¥(n, n)=1b,1G¥(n, n),

(19) a,|FX(n, n)=a,|FX(n, n) in F¥(n, n),

(20) by F¥(n, n)=b,|F¥(n,n) in FX(n—1,n—1).

k
(a, is defined as follows; on the set XU k_leX(n, n) a, is defined by (16) and
h—
(17}, and on the set U M(CX(n-+1, n), CX(n, n), ©¥sss) a, is obtained from aj.,
n=1

by homotopy extension theorem; the definition of b, is similar.)

Now it is immediate that a={a,} and b={b,} satisfy (13) and (14). To
show that ¢’ is a W-sequence, note that {F¥(n, n):n=1, 2, ---} and {F¥(n, n):
n=1,2,--} form neighborhood bases of A and B in M(X) and in M(Y)
respectively. Then [(19) shows that a’ is a W-sequence. Also, that a” is a
W-sequence follows from [17). Next, let us show that a’b’ =1ip yw). Consider
the map a,_.b,|F¥(n, n): F¥(n, n)—F¥(n—1, n—1). For k>n, note two maps
An-1b, 1 K¥ and 7w¥_, of K} into K}, are contiguous. Let us define y: Y,—Y,_;
by 7|B,=the identity and 7(y, t)=(2},u(¥), t) for (3, t) € M(K¥., K%, 7% 5,
k=mn, n+1, ---. Obviously n|F¥(n, n)=1i in F¥(n—1, n—1), where 1 is the inclu-
sion map of F¥(n, n) into F¥(n—1, n—1). Since n|F¥(n, n)=a,_b,|F¥(n, n) in
F¥(n—1, n—1) by the contiguity of =z}, and a,_,b,|KY¥ for n <k, we know
that a,-.b,| F¥(n, n)=1i in F¥(n—1, n—1). By this relation, and [(20), we
can conclude a’b’=ip x> The other assertions in (13) and (14) are proved
similarly. This completes the proof.
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