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\S 1. Introduction.

In our preceding papers [5], [6] we have established among other things
that, denoting as usual by $\pi(x;q, a)$ the number of primes less than $x$ and
congruent to $a(mod q)$ , we have the inequality

(1)
$\pi(x;q, a)\leqq\frac{2x}{\varphi(q)\log\frac{X}{\sqrt{q}}}(1+o(\frac{\log\log x}{\log x}))$

,

for all $a(mod q)$ and for almost all $a(mod q)$ when $q\leqq x^{2/5}$ and $q\leqq x^{1-e}$ , respec-
tively. The former case is the first substantial improvement of the Brun-
Titchmarsh theorem and also of the recent result of Montgomery and others
[4]. The later case is an improvement of a result of Hooley [2].

Roughly speaking, these are concerning the fixed modulus $q$ and moving
residue $a$ . And it may be interesting to consider the dual problem in which
the residue $a$ is fixed and the modulus $q$ runs over a certain interval. Then
we may expect that the Brun-Titchmarsh theorem can be improved for almost
all $q$ . The first result in this field has been obtained in the above quoted
paper of Hooley. He has proved that, if $a$ is a fixed non-zero integer, $K$ any
positive constant and $W\leqq q<2W,$ $(q, a)=1$ , then we have

(2) $\pi(x;q, a)\leqq\left\{\begin{array}{ll}\frac{(1+\epsilon)x}{\varphi(q)\log\{(\frac{X^{2}}{W})^{1/6}\}} & for x^{1/2}\leqq W\leqq x^{4/5}\\\frac{(1+\epsilon)x}{\varphi(q)\log\frac{x}{W}} & for x^{4/5}\leqq W\leqq x^{1-\epsilon},\end{array}\right.$

save for at most $W(\log x)^{-K}$ exceptional values of $q$ .
This problem has certain similarity to the celebrated mean-value prime

number theorem of Bombieri [1] (see also A. I. Vinogradov [8]), and the result
of Hooley has definite interest, since Bombieri’s theorem and even the extended
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Riemann hypothesis give no information for $q\geqq x^{1/2}$ .
In the same paPer Hooley applied his result to the problem of the greatest

prime factor of $p+a$ ( $p$ a prime number) and obtained an improvement in our
estimate [7]. Recently he [3] took up again this problem and found a further
improvement. In his new method the complex integration used in the proofs
of (1) and (2) is avoided and the whole estimate is reduced to a rather simple
application of the large sieve inequality.

The Purpose of the present Paper is to provide(2) with an additional im-
provement appealing to this new argument. But we do not use the large sieve
at all, and our fundamental tool is the classical theorem of P\’olya-Vinogradov
(see (18) below). We shall prove

THEOREM. Let $a$ be a non-zero fixed integer and $K\geqq 2$ be arbitrary, and
let $X^{5/6}\leqq W\leqq x(\log x)^{-(\Psi+165)}$ . Then we have for $W\leqq q<2W,$ $(q, a)=1$ ,

$\pi(x;q, a)\leqq\frac{6x}{\varphi(q)\log x}(1+o(\frac{\log\log x}{\log x}))$ ,

save for at most $W(\log x)^{-K}$ exceptional values of $q$ .
NOTATIONS. $x$ is a positive variable assumed to be sufficiently large. For

any two integers $n_{1},$ $n_{2}$ the symbol $(n_{1}, n_{2})$ denotes their greatest common
divisor. $d(n)$ is the number of divisors of $n$ , and as usual we denote by $\varphi(n)$

and $\mu(n)$ Euler’s and Moebius’ functions respectively. $\chi$ is a Dirichlet character
and $\chi_{0}$ is generally a principal character regardless of its modulus. Finally
we remark that the all constants implied by the symbols “

$O$
’ and $‘‘\ll$ in what

follows depend on $K$ at most.

\S 2. Selberg’s sieve and the initial transformation of the problem.

Let $z$ be a positive number to be determined optimally later. We set

$\lambda_{d}=Y\mu(d)\frac{d}{\varphi(d)}\sum_{(r,a)--1}\frac{\mu^{2}(r)}{\varphi(r)}$ , $(d\leqq z)$ ,

where
$Y=\{\sum_{d\leqq z}\frac{\mu^{2}(d)}{\varphi(d)}\}^{-1}$

Then, as it is well-known, we have

(3) $\lambda_{d}=O(1)$ , $Y\leqq(\log z)^{-1}$

Further we set
$g(n)=\{\sum_{a|n}\lambda_{d}\}^{2}=\sum_{h1n}\rho_{h}$ , $(h\leqq z^{2})$ ,

where denoting by $[d_{1}, d_{2}]$ the least common multiple of $d_{1},$ $d_{2}$
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$\rho_{\hslash}=\sum_{h=\mathfrak{c}d_{1}d_{2}l}.\lambda_{d_{1}}\lambda_{d_{2}}$ .

Here we note that from (3) we have

(4) $g(n)=O(d(n)^{2})$ , $\rho_{h}=O(d(h)^{2})$ .
In what follows we use the notation

(5) $Y(q)=\sum_{(h,q)=1}\frac{\rho_{h}}{h}$ .

Then it can be shown (see [2, \S 4]) that

(6) $Y(q)\leqq\frac{q}{\varphi(q)}Y$ .

Now by the standard application of the Selberg sieve

(7) $\pi(x;q, a)\leqq$
$\sum_{n\equiv a(mod q),n\leqq x}g(n)+O(\frac{z}{q})$ .

But it should be remarked that this sieving weight $g(n)$ is not the one that
is usual in the case of the fixed modulus $q$ , and our choice is made in favor
of the moving modulus $q$ . Any way the main term of the right side of (7) is
$\frac{X}{q}Y(q)$ , and so we are led to consider the variance

(8) $V(x, z;W)=W\leqq q<2W\sum_{(q,a)=1}\{\sum_{n\leqq x}g(n)-\frac{X}{q}Y(q)\}^{2}n\equiv a(mod q)$

Henceforth we may restrict the parameters $z$ and $W$ by

(9) $x^{1/2}\leqq W\leqq x(\log x)^{-(6K+165)}$ and $z>(-\frac{X}{W})^{12}$

The second condition is necessary, since otherwise no improvement would
follow. And to make the calculations simple we introduce the following auxi-
liary function

$v(x, z;w)=w\leqq q\leqq ru\rangle\sum_{(q.a)=1}\{\sum_{n\leqq x}g(n)-\frac{X}{q}Y(q)\}^{2}n\equiv a(mod q)$

where $r=1+(\log x)^{-(aK+130)}$ . Then we have

$V(x, z;W)\leqq\frac{1}{\log r}\int_{W}^{2W}v(x, z;w)\frac{dw}{u}$ .
Now we have

$v(x, z;w)=\sum_{w\leqq q\leqq m_{1}}\{\sum_{k\leqq\frac{1}{q}(x-a)}g(a+qk)-\frac{x}{q}Y(q)\}^{2}$

$\ll\sum_{w\leqq q\leqq m}\{(g(a+qk)-\frac{X}{w}Y(q))^{2}+k\leqq\frac{\sum_{x}}{w}(\sum_{q}ga+qk))^{2}+(\frac{x}{q}Y(q)-\frac{X}{w}Y(q))^{2}\}\rightarrow^{1}x-a)<k\leqq\frac{x(}{w}$
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$=v_{1}(x, z;w)+G_{1}+G_{2}$ , say.

For $G_{1}$ we have from (4)

$G_{1}\ll\frac{X}{w}(r-1)\sum_{w\leqq q\leqq rw}\sum_{\frac{1}{q}(x-a)<k\leqq\frac{x}{w}}d^{4}(a+qk)$

$\ll\frac{x}{w}(r-1)\sum_{x-0<n\leqq rx}d^{4}(a+n)d(n)$ .

And this sum is

$\ll\{\sum_{x-\alpha<n\leqq rx}d^{8}(a+n)\}^{\frac{1}{2}}\{\sum_{x-a<n\leqq rx}d^{2}(n)\}^{\frac{1}{2}}\ll(r-1)x(\log x)^{130}$ .
Thus we have

$G_{1}\ll\frac{X^{2}}{w}(r-1)(\log x)^{-3K}$ .
Also we have

$G_{2}\ll\frac{X^{2}}{w}(r-1)(\log x)^{-3K}$ .

Hence noticing $(r-1)/\log r\ll 1$ we get

(10) $V(x, z;W)\ll\frac{1}{\log r}\int_{W}^{2W}v_{1}(x, z;w)\frac{dw}{w}+0(\frac{X^{2}}{W}(\log x)^{-3K})$ ,

which implies that the problem has been reduced to the estimation of $v_{1}(x, z;w)$ .
We decompose this into three parts

$v_{1}(x, z;w)=\sum_{w\leqq q\leqq m_{1}}\{\sum_{k_{1},k_{2}\leqq\frac{x}{w}}g(a+k_{1}q)g(a+k_{2}q)$

(11)

$-2\frac{x}{w}Y(q)\sum_{k\leqq\frac{x}{w}}g(a+kq)+(\frac{x}{w}Y(q))^{2}\}$

$=J_{1}(x, z;w)-2\frac{X}{w}J_{2}(x, z;w)+(\frac{X}{w})^{2}\sum_{(q.a)=1}Y(q)^{2}$ , say.

\S 3. Estimation of $J_{2}(x, z;w)$ .
First we note that

$\sum_{k\leqq\frac{x}{w}}g(a+kq)=\sum_{(h,q)=1}\rho_{h}1kq\equiv-a\circ dh)k\leqq\frac{\sum_{x}(m}{w}$

and so classifying $h$ according to the greatest common divisor $\delta=(a, h)$ , we
have
(12)

$k\leqq\frac{\sum_{x}}{w}g(a+kq)=\sum_{\delta|a}(h.\frac{a}{\delta}q\sum)=1kq\equiv-\frac{a}{\leqq\delta}odh)\rho_{\delta h}1k\frac{\sum_{x}(m}{M}$
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$=\sum_{\delta|a}T(\delta, q)$ , say.

In the sum $T(\delta, q)$ we have $(h,$ $\frac{a}{\delta})=1$ , and we may use the expression

$kq\equiv-\frac{a}{\leqq\delta}odh)k\frac{\sum_{x}(m}{\delta u}1=\frac{1}{\varphi(h)}$
{ $(k11+\sum_{x\neq x_{0(mod h)}}X(-\frac{a}{\delta})$
$\sum_{k\leqq\frac{x}{\theta w},k\leqq\frac{}{\delta w},,\sum_{x}}\chi(kq)\}$

$=\frac{1}{\varphi(h)}\{P_{0}(\delta, h)+P(\delta, h;q)\}$ , say.

Thus we have

$T(\delta, q)=\sum_{-(,q}$$\frac{\rho_{\delta h}}{\varphi(h)}n_{\delta}^{a}\{P_{0}(\delta, h)+P(\delta, h ; q)\}$

(13)
$=T_{0}(\delta, q)+T_{1}(\delta, q)$ , say.

Here we use the well-known fact

$P_{0}(\delta, h)=\frac{\varphi(h)}{h\delta w}x+O(d(h))$ ,

and we get

$T_{0}(\delta, q)=\frac{X}{w}\sum_{\delta}\frac{\rho}{\delta}\delta hh-+O((\log x)^{8})(h,aq)=1$

since we have (4). Then by the definition (5) of $Y(q)$ we have

(14) $\sum_{\delta|a}T_{0}(\delta, q)=\frac{x}{w}Y(q)+O((\log x)^{8})$ .

Next as for $T_{1}(\delta, q)$ we note

$w\leqq q\leqq m_{1}\sum_{(q,a)=}Y(q)T_{1}(\delta, q)=(h,-a_{-})=1\sum_{\delta}\frac{\rho_{\delta h}}{\varphi(h)}\sum_{(q,(IJ\iota)=1}P(\delta w\leqq q\leqq rwh;q)Y(q)$

(15)

$=\sum_{a,h,--\delta}\frac{\rho_{\delta h}}{\varphi(h)}\sum_{x\neq x_{0^{(mod h)}},=1}7(-\frac{a}{\delta})\{\chi(k)\}\{$$\sum_{w,()k\leqq\frac{\sum_{x}}{\delta w}\leqq q\leqq m_{1}}\chi(q)Y(q)\}$ .

For the last factor we have from (5)

(16)
$w\leqq q\leqq m\sum_{(q.a)=1}\chi(q)Y(q)=\sum_{h}\frac{\rho_{h}}{h}\sum_{w\leqq q\leqq m}\chi(q)=Y\sum_{w\leqq q\leqq m}\chi(q)$ .

Further we have

$(q.a)=1\sum_{w\leqq q\leqq m}\chi(q)=\sum_{w\leqq q\leqq rw}\chi(q)\sum_{l,\iota 1_{q}^{a}}\mu(l)$

(17)
$=\sum_{l|a}\mu(l)\chi(l)\sum_{\frac{w}{l}\leqq q\leqq\frac{r}{l}}\chi(q)$

.

Thus combining (15) with (16) and (17), we get
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$|$

$\sum_{w\leqq q\leqq rw}$
$Y(q)T_{1}(\delta, q)|$

$(q,a)=1$

$\ll\sum_{l|a}\sum_{h\leqq z^{2}}h\sum_{x\neq x_{0^{(mod h)}}}|\chi(k)|\underline{d}(\delta\underline{h)^{2}}k\leqq\frac{\sum_{x}}{\delta w}|\sum_{\frac{w}{l}\leqq q\leqq\frac{r}{l}w}\chi(q)|$ ,

since we have (4). Here we quote the well-known result of P\’olya-Vinogradov,
which states that for any non-principal character $\chi(mod f)$ and for any real
numbers $\xi_{1}$ and $\xi_{2}$ we have

(18) $|\sum_{=}\chi(n)\xi_{1\leqq?l^{\prime}}\xi_{2}|\ll f^{\frac{1}{2}}$ log $f$ .

Applying this to the last two factors of the above expression we find

$|$

$\sum_{w\leqq q\leqq m}$
$Y(q)T_{1}(\delta, q)|\ll z^{4}(\log x)^{5}$

$(q,a)=1$

which, with (12), (13) and (14), gives

(19) $J_{2}(x, z;w)=\frac{x}{w}\sum_{cv\leqq q\leqq nv}Y(q)^{2}+O\{z^{4}(\log x)^{5}+w(r-1)(\log x)^{8}\}$ .
$(q,a)=1$

\S 4. Estimation of $J_{1}(x, z;w)$ .
By the abreviations introduced in the preceding paragraph we have

$ J_{1}(x, z;w)=\sum$ $\Sigma$ $T(\delta_{1}, q)T(\delta_{2}, q)$

$\delta_{1}|aw\leqq q\leqq m$

$\delta_{2}|a(q,a)=1$

(20)
$=\sum$ $\sum$ $\{T_{0}(\delta_{1}, q)T_{0}(\delta_{2}, q)+T_{0}(\delta_{1}, q)T_{1}(\delta_{2}, q)$

$\delta_{1}|aw\leqq q\leqq rw$

$\delta_{2}|a(q.a)=1$

$+T_{1}(\delta_{1}, q)T_{0}(\delta_{2}, q)+T_{1}(\delta_{1}, q)T_{1}(\delta_{2}, q)\}$

$=U_{1}(x, z;w)+U_{2}(x, z;w)+U_{3}(x, z;w)+U_{4}(x, z;w)$ , say.

From (14) we get easily

$U_{1}(x, z;w)=$ $\sum$ $\{\sum T_{0}(\delta, q)\}^{2}$

$w\leqq q\leqq m\delta|a$

$(q.a)=1$

(21)

$=(\frac{X}{w})^{2}\sum_{(q,a)=1}Y(q)^{2}+O\{(r-1)x(\log x)^{8}\}$ .

As for $U_{2}(x, z;w)$ and $U_{3}(x, z;w)$ we can treat them analogously as in
the case of $J_{2}(x, z;w)$ . And we show here only the final result

(22) $|U_{2}(x, z;w)|$ , $|U_{3}(x, z;w)|\ll\frac{X}{w}z^{4}(\log x)^{14}$

Now for $U_{4}(x, z;w)$ we note that
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$w\leqq q\leqq m_{1}\sum_{(q,a)=}T_{1}(\delta_{1}, q)T_{2}(\delta_{2}, q)=\frac{\rho_{\delta_{1}h_{1}}\rho_{\delta_{2}h_{2}}}{\varphi(h_{1})\varphi(h_{2})}\sum_{(q,h_{1}h_{2}a)=1}P(\delta_{1}(h_{1},\frac{\sum_{a}}{\delta_{1}})=1w\leqq q\leqq rwh_{1} ; q) P(\delta_{2}, h_{2} ; q)$
.

$(h_{2}.\frac{a}{\delta_{2}})=1$

Also we have

$\sum_{w\leqq q\leqq m}P(\delta_{1}, h_{1} ; q)P$ ( $\delta_{2},$ $h_{2}$ ; q)
$(q.h_{1}h_{2}a)=1$

$=_{\chi\neq\chi}\sum_{mod h_{1} ,\not\in \mathfrak{t}_{mod}d^{\overline{x}_{1}(-\frac{a}{\delta_{1}})x_{2}(-\frac{a}{\delta_{2}})\{\chi_{1}(k_{1})\}\{\chi_{2}(k_{2})\}\{\sum_{(q.a)=1}\chi_{1}\chi_{2}(q)\}}k_{1}\leqq\frac{\sum_{x}}{\delta_{1}w}k_{2}\leqq\frac{\sum x}{\delta_{2}w}w\leqq q\leqq m}$

$=\sum_{\chi_{1}\chi_{2=}\chi_{0}}+\sum_{x_{1}x_{2\neq\chi_{0}}}=R_{0}(h_{1}, h_{2} ; \delta_{1}, \delta_{2})+R_{1}(h_{1}, h_{2} ; \delta_{1}, \delta_{2})$
, say.

Thus $U_{4}(x, z;w)$ is divided into two parts

$U_{4}(x, z;w)=\sum_{\delta_{2}|a}\frac{\rho_{\delta 1h1}\rho_{\delta_{2}h_{2}}}{\varphi(h_{1})\varphi(h_{2})}\{R_{0}(h_{1}\delta_{1}|a(n_{2},)=1(h_{1}.\frac{\sum_{a}}{\frac,\delta_{2}\delta_{1}a})=1h_{2} ; \delta_{1}, \delta_{2})+R_{1}(h_{1}, h_{2} ; \delta_{1}, \delta_{2})\}$

(23)
$=U_{4}^{(0)}(x, z;w)+U_{4}^{(1)}(x, z;w)$ , say.

In the sum $R_{1}(h_{1}, h_{2} ; \delta_{1}, \delta_{2})$ $\chi_{1}\chi_{2}$ can be considered as a non-principal
character $(mod h_{1}h_{2})$ , and so by (18) we have, using the device (17),

$|R_{1}(h_{1}, h_{2} ; \delta_{1}, \delta_{2})|\ll z^{2}$
log

$x\{\sum|\chi_{1}(k_{1})|\}\{\sum|\chi_{2}(k_{2})|\}x_{1}\neq xo^{(mod h_{1})_{k_{1}\leqq\frac{\sum x}{\delta_{1}w}}}x_{2}\neq x_{0^{(mod h_{2})_{k_{2}\leqq\frac{\sum_{x}}{\delta_{2}w}}}}$

which implies that

$|U_{4}^{(1)}(x, z;w)|\ll z^{2}(\log x)^{3}\{\sum_{\delta|a}\sum_{h\leqq z^{2}}\frac{d(h)^{2}}{h}\sum_{x\neq\chi_{0}(mod h)}|\sum_{k\leqq-\delta\frac{x}{w}}\chi(k)|\}^{2}$ .

This sum on $h$ is

$\ll\{\sum_{A}\frac{d(h)^{4}}{h}\}^{\frac{1}{2}}\{\sum_{h\leqq}\sum_{\chi(mod h)}2|k\leqq\frac{\sum_{x}}{\delta w}\chi(k)|^{2}\}^{\frac{1}{2}}$

$\ll(\log x)^{8}\{\sum_{h\leqq}2(h+\frac{x}{\delta w})\frac{X}{\delta w}\}^{\frac{1}{2}}\ll z^{2}(\frac{x}{w})^{\frac{1}{2}}(\log x)^{8}$

since we have assumed (9). Thus we get

(24) $|U_{4}^{(1)}(x, z;w)|\ll z^{6}\frac{x}{w}(\log x)^{19}$

Next in the sum $R_{0}(h_{1}, h_{2} ; \delta_{1}, \delta_{2})$ the condition $\chi_{1}\chi_{2}=\chi_{0}$ implies $x_{1}=\overline{x}_{2}$

$(mod h_{1}h_{2})$ . And so naturally it must be that

$\chi_{1}*=X_{2}^{*}$ , $h_{\perp}^{*}=h_{2}^{*}$ ,

where $\chi_{t}*(mod h_{i}^{*})$ is the primitive character which induces $\chi_{i}(mod h_{i}),$ $(i=$

$1,2)$ . Hence we have
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$|R_{0}(h_{1}, h_{2} ; \delta_{1}, \delta_{2})|\ll w$

$\sum$ $|$ $\sum$

$x_{1}^{*}(k_{1})||\sum_{x}\chi_{1}*(k_{2}.m_{2})=1(k_{2})|$

$n_{2}=h_{1}^{*}m_{2}h_{1}=h_{1}^{*}m_{1}(k_{1},1k_{1}\leqq\frac{m_{1})=x}{\delta_{1}w}$

$k_{2}\leqq i5_{Z}\overline{w}$

$\ll w\sum_{xh|h_{1}\neq xo^{(} ,h|h_{2}}\sum_{mod \hslash)}(h_{1}=hm_{1},h_{2}=hm_{2})|\sum_{\delta^{\frac{x)=}{1w}}}\chi(k_{1})||\sum_{B_{2}^{x}\overline{w}}\chi(k_{2})|(k_{1}.m_{1}1k_{1}\leqq-(k_{2},m_{2})=1k_{2}\leqq-$

And we have

$|U_{4}^{(0)}(x, z;w)|$

$\ll w(\log x)^{2}\sum_{\delta_{2}},\sum_{m_{1}\delta_{1},1_{a}^{a}m_{2}\leqq z^{2}}\frac{d(m_{1})^{2}d(m_{2})^{2}}{m_{1}m_{2}}\sum_{h\leqq z^{2}}\frac{d(h)^{4}}{h^{2}}\sum_{x\neq xo^{(mod h)}}|\chi(k_{1})(k_{1}.1k_{1}\leqq\frac{\sum_{x}m_{1})=}{\delta_{1}w}||\chi(k_{2})|(k_{2}.1k_{2}\leqq\frac{\sum_{x}m_{2})=}{\delta_{2}w}$

We denote this sum on $h$ by $H(\delta, m)$ . Then using the device (17) we have

$H(\delta, m)\ll_{\iota,\iota_{2}^{1}}\sum\sum_{h\leqq z^{2}}\frac{d(h)^{4}}{h^{2}}\sum_{x\neq\chi_{0}(mod h)}|\chi(k_{1})||_{m_{2}}^{m_{1}}k_{1}\leqq\frac{\sum_{x}}{\delta_{1}l_{1}w}|\chi(k_{2})|k_{2}\leqq\frac{\sum_{x}}{\delta_{2}l_{2}w}$

$=$
$\sum_{l|m_{1},\ell_{2}^{1}|m_{2}}\{\sum_{\hslash\leqq E}+\sum_{E<\hslash\leqq z^{2}}\}_{1_{m_{2}^{1}}^{m}}=\sum_{l,\iota_{2}^{1}}\{H_{1}(\delta, m, l)+H_{2}(\delta, m, 1)\}$

, say,

where $E$ is to be determined later. To $H_{1}(\delta, m, l)$ we aPply (18), and we get
easily

$H_{1}(\delta, m, l)\ll E(\log x)^{17}$

As for $H_{2}(\delta, m, 1)$ we note

$\chi(mod h)_{k_{1}\leqq\frac{\sum_{x}}{\delta_{1}l_{1}w}}\sum|\chi(k_{1})||\sum_{\mathfrak{P}_{2}\iota}\chi(k_{2})|k_{2}\leqq-\frac{x}{z^{w}}$

$\ll\{\sum_{\chi(mod h)}|\sum_{\delta_{J}^{-\frac{x}{l_{1}w}}}\chi(k_{1})|^{2}\}^{\frac{1}{2}}\{\sum|\chi(k_{2})|^{2}\}^{\frac{1}{2}}k_{1}\leqq- x^{(mod h)_{k_{2}\leqq\frac{\sum x}{\delta_{2}l_{2}w}}}$

$\ll(h+\frac{x}{w})\frac{x}{w}$ .

This gives

$H_{2}(\delta, m, l)\ll\frac{x}{w}\sum_{E\leqq h\leqq z^{2}}\{\frac{1}{h}+\frac{X}{wh^{2}}\}d(h)^{4}$

$\ll\frac{x}{w}(1+\frac{x}{Ew})(\log x)^{16}$

Hence the optimal value of $E$ is $x/w(<z^{2})$ , and we find

$H(\delta, m)\ll d(m_{1})d(m_{2})\frac{x}{w}(\log x)^{17}$

Inserting this into (25) we get

(26) $|U_{4}^{(0)}(x, z;w)|\ll x(\log x)^{35}$

Collecting (20), (21), (22), (23), (24) and (26) we obtain
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(27) $J_{1}(x, z;w)=(\frac{X}{w})^{2}\sum_{(q,a)-\rightarrow}Y(q)^{2}+O\{\frac{x}{w}(z^{6}+w)(\log x)^{35}\}$ .

\S 5. Proof of the Theorem.

Now from (11), (19) and (27) we have

$v_{1}(x, z;w)\ll\frac{x}{w}(z^{6}+w)(\log x)^{35}$ ,

which, with (10), gives

$V(x, z;W)\ll\frac{x}{W}(z^{6}+W)(\log x)^{aK+165}+\frac{x^{2}}{W}(\log x)^{-aK}$ .
Thus if we set

$z=x^{1/6}(\log x)^{-(K+ID)}$ ,

then we have

$V(x, z;W)\ll\frac{X^{2}}{W}(\log x)^{-a\kappa}$ .

By the definition of $V(x, z;W)$ the result means that, save for at most $W(\log^{\eta}x)^{-R}$

exceptional values of $q$ , we have

$n\equiv a(mod q)\sum_{n\leqq x}g(n)=\frac{x}{q}Y(q)+o(\frac{X}{W}(\log x)^{-K})$
,

and hence from (6) and (7)

$\pi(x;q, a)\leqq\frac{x}{\varphi(q)\log z}(1+O((\log x)^{-1}))$

$\leqq\overline{\varphi(q})1\overline{ogx}6x(1+O(\frac{lo}{og}))$ .

This ends the proof of our theorem.

Added in proof: In the mean time Hooley (Proc. London Math. Soc., (3)

30 (1975), 114-128) obtained a result which supersedes our theorem, by applying
a simple variant of Linnik’s dispersion method. Both Hooley’s and our argu-
ments give an interesting result on the least almost prime number in an arith-
metic progression. To this see our paper which will appear in Proc. Japan
Acad.
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