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\S 0. Introduction.

We have shown in [21], that there is a codimension one foliation on each
$(4k+3)$ -dimensional sphere, which is foliated cobordant to zero. The main
purpose of the present paper is to prove the following theorem:

THEOREM. On each $(4k+1)$ -dimensional homotopy sPhere, there exists a
codimension one foliation which is not foliated cobordant to zero but twice of
which is foliated cobordant to zero.

We shall prove this in Section 3 (Theorem 2).

Most of the codimension one foliations of spheres so far known, are ones
which are constructed from spinnable structures of spheres [4], [9], $[$16$]^{**)}$

Thus nice extensions of spinnable structures mean foliated cobordisms of
foliations of spheres. In fact, we can construct null-cobordisms of codimension
one foliations of $S^{3}$ and $S^{7}$ in this way [21]. From this view point, it is an
interesting problem to ask when two spinnable structures are “spinnable co-
bordant”. Concerning this problem, we shall prove ”Relative Spinnable Struc-
ture Theorem” in the Appendix, which is a generalization of Tamura [17] and
Winkelnkemper [24].

In Section 1, we shall state some basic definitions and notations.
In Section 2, we shall construct a spinnable structure of $S^{4n+1}(n\geqq 2)$ with

axis $S^{2n-1}\times S^{2n}$ which is slightly different from Tamura’s construction [16].

In Section 4, we obtain a codimension one foliation of $S^{5}$ with a single
compact leaf which is diffeomorphic to $T^{2}\times S^{2}$ . This leads us to new foliations
of higher dimensional spheres and highly connected manifolds.

Throughout the paper, foliations will be smooth, of codimension one and
transversely orientable unless otherwise stated.

I wish to thank Y. Matsumoto, S. Fukuhara, K. Sakamoto, T. Kawasaki,
M. Kato, especially my advisor I. Tamura for many helpful conversations.
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\S 1. Definitions and notations.

Let $R^{n}=\{ (x_{1}, x_{2}, \cdots , x_{n})\in R\times\cdots\times R\}$ be an n-dimensional Euclidean space
with standard codimension one foliation whose leaves are defined by $x_{n}=$

constant. Given a smooth manifold $M^{n}$ without boundary, a codimension one
foliation of $M^{n}$ is defined to be a maximal set of charts

{ $(U_{\lambda},$ $h_{\lambda}),$ $U_{\lambda}$ is open in $M^{n},$ $h_{\lambda}$ : $U_{\lambda}\rightarrow R^{n},$ $\lambda\in\Lambda$ }

of $M^{n}$ such that
$h_{\lambda}\circ h_{\mu}^{-1}$ : $h_{\mu}(U_{\lambda}\cap U_{\mu})\rightarrow h_{\lambda}(U_{\lambda}\cap U_{\mu})$

preserves the leaves of foliations which are induced on $h_{\mu}(U_{\lambda}\cap U_{\mu})$ and $h_{\lambda}(U_{\lambda}\cap U_{\mu})$

from that of $R^{n}$ . Similarly, if $M$ has a boundary, a codimension one foliation
of $M$ tangent to the boundary is defined by using a half space $H^{n}=\{(x_{1},$ $x_{2}$ ,
. . , $x_{n}$) $\in R^{n},$ $x_{n}\geqq 0$ } with a standard foliation whose leaves are defined by $x_{n}=$

constant. Also, a codimension one foliation of $M$ transverse to the boundary is
defined by uisng $H^{n}$ with a standard foliation whose leaves are defined by
$x_{n-1}=constant$ . More generally, we shall consider foliations of a manifold
with corner. In this case, a codimension one foliation of $M$ is defined to be a
maximal set of charts of $M$ modelled on a quadrant

$Q^{n}=\{(x_{1}, x_{2}, \cdots , x_{n-1}, x_{n})\in R^{n}, x_{n-1}\geqq 0, x_{n}\geqq 0\}$

with a standard foliation defined by $x_{n-1}=constant$ , such that the coordinate
transformations preserve the leaves of this foliation of $Q^{n}$ .

If $M$ is a foliated manifold, we denote by $(M, \mathcal{F})$ the oriented diffeomor-
phism class of a foliation of M. $\mathcal{F}$ stands for the set of all the leaves of the
foliation of $M$. Thus, two foliations $(M_{0}, \mathcal{F}_{0})$ and $(M_{1}, \mathcal{F}_{1})$ are identified if and
only if there exists an orientation preserving diffeomorphism $h:M_{0}\rightarrow M_{1}$ , which
maps each leaf of $\mathcal{F}_{0}$ into a leaf of $\mathcal{F}_{1}$ . By $-(M, \mathcal{F})$ , we mean the same
foliation as $(M, \mathcal{F})$ such that only the orientation of the underlying manifold is
reversed, $i$ . $e.,$ $-(M, \mathcal{F})=(-M, \mathcal{F})$ .

DEFINITION 1. Two foliations of closed manifolds $(M_{0}, \mathcal{F}_{0})$ and $(M_{1}, \mathcal{F}_{1})$

are called foliated cobordant if there exists a foliation of a compact manifold
$(W, \mathcal{F})$ which is transverse to the boundary such that $\partial W=M_{0}\cup-M_{1}$ and
$\mathcal{F}|M_{0}=\mathcal{F}_{0},$ $\mathcal{F}|-M_{1}=\mathcal{F}_{1}$ , in short, $\partial(W, \mathcal{F})=(M_{0}, \mathcal{F}_{0})-(M_{1}, \mathcal{F}_{1})$ .

A spinnable structure of a closed manifold was defined in Tamura [17]

and Winkelnkemper [24]. We extend the definition to a manifold with boun-
dary.

DEFINITION 2. A smooth manifold $W$ is said to have a spinnable structure
if,

(1) There exists a codimension two submanifold $A$ of $W$ , having the trivial



266 T. MIZUTANI

normal bundle, which we call the axis.
(2) Let $A\times D^{2}$ denote the tubular neighbourhood of $A$ , then $W-A\times IntD^{2}$

has a structure of a smooth fibre bundle over the circle. We call this bundle
the spinning bundle and the fibre of this bundle the generator of the spinnable
structure.

(3) The following diagram commutes:

$W-A\times IntD^{2}$
$\underline{\iota}$ $A\times S^{1}=A\times\partial D^{2}$

where $\iota$ is an inclusion map, $pr_{2}$ is a projection onto the second factor and $p$

is the bundle projection of the spinning bundle.
This definition is equivalent to the following:
Let $(F, A)$ be a pair of manifolds such that $A$ is a submanifold of $\partial F$ of

the same dimension. Then a spinnable structure is a pair $\{h, (F, A)\}$ where
$h$ is a diffeomorphism of the pair $h:(F, A)\rightarrow(F, A)$ such that $h|A=id_{A}$ .

To obtain $W$ from $\{h, (F, A)\}$ , one has only to consider the mapping torus
$M(h)$ of $h$ and define $W=M(h)\cup A\times D^{2}$ where the identification is an obvious
one.

The following lemma is useful for construction of codimension one foliations.
LEMMA 1. Let $\{h, (F, A)\}$ be a spinnable structure and let $Q$ and $Q^{\prime}$ be the

mapping tori of $h$ and $h|A$ respectively. We consider $Q$ is a manifold having
corners along $\partial Q^{\prime}$ . Then $Q$ has a codimension one foliation which satisfies

(1) $Q^{\prime}$ is a union of leaves of the foliation.
(2) The other leaves of the foliation are transverse to $\partial Q-Q^{\prime}$ and they are

diffeomorphic to $Q-Q^{\prime}$ .
PROOF. Consider a (relative) collar neighbourhood of $Q^{\prime}$ and identify $Q$

with $Q\cup Q^{\prime}\times[0,1]$ where $Q^{\prime}\subset Q$ and $Q^{\prime}\times\{0\}$ are identified. On $S^{1}\times[0,1]$ ,

there exists a foliation $\mathcal{V}$ which satisfies: (a) the leaves of $\mathcal{V}$ are the tra-
jectories of a vectorfield. (b) $S^{1}\times\{1\}$ is a leaf. (c) the leaves of $\mathcal{V}$ intersect
normally with $S^{1}\times\{0\}$ .

Let $p;Q\rightarrow S^{1}$ be the bundle projection map, then the fibres of $p$ and the
pull-back of $\mathcal{V}$ under the projection, $p|_{Q^{\prime}}\times id:Q^{\prime}\times[0,1]\rightarrow s^{1}\times[0,1]$ define a
foliation of $Q\cup Q^{\prime}\times[0,1]=Q$ . It is easily verified that this foliation satisPes
the conditions (1), (2) of Lemma 1.
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\S 2. A construction of a spinnable structure of $S^{4n+1}(n\geqq 2)$

with axis $S^{n-1}\times S^{n}$ .
I. Tamura [16] constructed a spinnable structure of $S^{4n+1}(n\geqq 2)$ with axis

$S^{n-1}\times S^{n}$ and used it to prove that every odd dimensional sphere has a folia-
tion. In this section, we shall construct such a spinnable structure of $S^{4n+1}$ ,
whose generator is a simpler manifold.

First, we review briefly Tamura’s construction.
Decompose $S^{4n+1}$ as follows:

$S^{4n+1}=$ ( $S_{1}^{2n}\times D_{1}^{2n+1}\mathfrak{h}\cdots$ ta $S_{17}^{2n}\times D_{17}^{2n+1}$ ) $\cup(D_{1}^{2n+1}\times S_{1}^{2n}\#\cdots \mathfrak{h}D_{17}^{2n+1}\times S_{17}^{2n})$ ,

where the linking numbers $Lk(S_{i}^{2n}\times(0), $(0) $\times S_{i}^{2n})=1$ for $i=1,$ $\cdots$ , 17, and other
linking numbers of $S_{i}^{2n}\times(0)s$ and (0) $\times S_{j}^{2n}’ s$ are all zero. ((0) denotes the center
of $D^{2n+1}.$ )

Let $N(\Delta_{i})$ denote a tubular neighbourhood of the diagonal of $S_{i}^{2n}\times\partial D_{i}^{2n+1}$

and $N(\overline{\Delta}_{i})$ denote a tubular neighbourhood of ‘anti-diagonal’ of $S_{i}^{2n}\times\partial D_{\ell}^{2n+1}$ that
is, $N(\overline{\Delta}_{i})$ is a tubular neighbourhood of $S_{i}^{2n}\#(-\partial D_{i}^{2n+1})$ in $S_{\ell}^{2n}\times\partial D_{i}^{2n+1}$ . The self-
intersection number of $\Delta_{i}$ (resp. $\overline{\Delta}_{i}$ ) is equal to 2 (resp. $-2$).

Denote by $E_{9}$ the tree manifold which is obtained by making plumbings
of $N(\Delta_{1}),$ $\cdots$ , $N(\Delta_{9})$ according to the diagram;

and denote by $-E_{8}$ the tree manifold which is obtained from $N(\overline{\Delta}_{10}),$ $\cdots$ , $N(\overline{\Delta}_{17})$ ,
in the same way, according to the diagram;

Performing all these plumbings in the boundary of $S_{1}^{2n}\times D_{1}^{2n+1}\mathfrak{h}\cdots \mathfrak{h}S_{17}^{2n}\times D_{17}^{2n+1}$ ,
we may consider $E_{9}\#(-E_{8})$ is a submanifold of $\partial$ ( $S_{1}^{2n}\times D_{1}^{2n+1}\#\ldots$ in $S_{17}^{2n}\times D_{17}^{2n+1}$ )
$=\partial$ ( $ D_{1}^{2n+1}\times S_{1}^{2n}\#\cdots$ ta $D_{17}^{2n+1}\times S_{17}^{2n}$ ).

The inclusion maps;

$E_{9}\#(-E_{8})\rightarrow S\frac{\prime}{1}n\times D_{1}^{2n+1}\#\cdots\# S_{17}^{2\eta}\times D_{17}^{2\eta+1}$

$E_{9}$ ta $(-E_{8})\rightarrow D_{1}^{2n+1}\times Sj)n$ ta in $D_{17}^{2n+1}\times S_{17}^{2n}$
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are verified to be homotopy equivalences. Therefore, by (relative) h-cobordism
theorem [15], we have,

$S^{4n+1}=$ ( $E_{9}$ ta $(-E_{8})$ ) $\times I\cup$ ( $E_{9}$ za $(-E_{8})$ ) $\times I$ ,

and consequently, we obtain a spinnable structure of $S^{4n+1}$ with $E_{9}$ lt $(-E_{8})$ as
generator. The axis or the boundary of $E_{9}$ ta $(-E_{8})$ is proved to be diffeomor-
phic to $S^{n-1}\times S^{n}$ .

This is what Tamura constructed. See [19] for more details.
On the other hand, M. Kato [8] proved; to a unimodular integral matrix,

there corresponds a spinnable structure of $S^{2n+1}(n\geqq 3)$ . He called this matrix
“Seifert matrix” of the spinnable structure. See also K. Sakamoto [14].

If we use his theorem, we have a very simple spinnable structure of $S^{4n+1}$

with axis $S^{2n-1}\times S^{2n}$ . Namely, we take $\left(\begin{array}{ll}1-1 & 0\\0 0 & 1\\0-1 & 0\end{array}\right)$ as a Seifert matrix. Accord-

ing to Kato, the rank of $H_{2n}(F, Z)$ of the generator $F$ of the corresponding
spinnable structure is equal to 3 and the intersection matrix of $F$ is

$\left(\begin{array}{ll}2-1 & 0\\0-1 & 0\\0 0 & 0\end{array}\right)$ .

To prove $\partial F=S^{2n-1}\times S^{2n}$ , we re-construct such a spinnable structure more
geometrically.

Let $S^{4n+1}=W_{0}\cup W_{1}$ ,

$W_{0}=S_{1}^{2n}\times D_{1}^{2n+1}qs^{n}\frac{o}{2}\times D_{2}^{o}\angle n+1$ ta $S_{3}^{2n}\times D_{3^{n+1}}^{Q}$

$W_{1}=D_{1}^{\Re+1}\times S_{1}^{2n}$ lt $D_{2}^{2n+1}\times S_{2}^{2n}$ ta $D_{3}^{2n+1}\times S_{3}^{2n}$

be adecomposition of $S^{4n+1}$ , which satisfies, $Lk(S_{1}^{2n}\times(0), S_{2}^{2n}\times(0))=1,$ $Lk(S_{i}^{2n}\times(0)$ ,
$S_{j}^{2n}\times(0))=0$ for $(i, j)\neq(1,2),$ $(2,1)$ and $Lk(S_{i}^{2n}\times(0), $(0) $\times S_{f}^{2n})=\delta_{ij}$ for $i,$ $j=1,2,3$ .

Instead of $E_{9}$ ta $(-E_{8})$ in Tamura’s construction, we take a submanifold $F_{3}$

of $\partial W_{0}=\partial W_{1}$ as follows.
Let $A_{i}$ denote the sphere $S_{i}^{2n}\times(^{*})$ in $W_{0}$ , where $(^{*})$ stands for a point in

$\partial D_{i}^{2n+1}$ , and let $N(A_{i})$ be its tubular neighbourhood in $\partial W_{0}$ .
Define

$F_{3}=N(A_{1})\mathfrak{h}N(A_{2})_{\vee}^{}N(\Delta_{3})$ ,

where we have taken $A_{1}$ and $A_{2}$ so that they link once each other in $S^{4n+1}$ ,
$X_{\vee}^{}Y$ is a plumbing of disk bundles $X$ and $Y$ , and $\Delta_{3}$ stands for a diagonal
sphere in $S_{3}^{2n}\times D_{3}^{2n+1}$ as before.

Again performing connected sum and plumbing in $\partial W_{0}=\partial W_{1}$ , we may
consider $F_{3}$ is a submanifold of $\partial W_{0}=\partial W_{1}$ (Fig. 1).

It is easily veriPed that $F_{3}$ is simply connected and the homomorphisms,
$H_{*}(F_{3}, Z)\rightarrow H_{*}(W_{0}, Z)$ and $H_{*}(F_{3}, Z)\rightarrow H_{*}(W_{1}, Z)$ which are induced by inclu-
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sion maps are isomorphisms. Since $n\geqq 2$ , by h-cobordism theorem,

$W_{0}=F_{3}\times I$ and $W_{1}=F_{3}\times I$ .

From these, we have a spinnable structure of $S^{4n+1}$ , whose generator is
$F_{3}$ . Clearly,

$\partial F_{3}=\partial(N(A_{1}))\#\partial(1V(A_{2})_{\vee}^{}N(\Delta_{3}))=\partial N(A_{1})\#S^{4n-1}=S^{2n}\times S^{2n-1}$

This finishes our construction.

Fig. 1.

For $n=1$ , the above argument can not be used since we can not use h-
cobordism theorem. We shall prove however, the theorem in case $n=1$ in the
next section.

For $(4n+3)$ -dimensional spheres, the matrix $\left(\begin{array}{lll}0 & 1 & 0\\1 & 0 & 0\\0 & 1 & 1\end{array}\right)$ available and by the

same method as above, we can construct a spinnable structure of $S^{4n+3}$ whose
axis is $S^{2n}\times S^{2n+1}$ for each $n\geqq 1$ . For $n=0$ , the assertion is obvious. Thus
we have,

THEOREM 1 (Tamura [16, 19]). $S^{2n+1}$ has aspinnable structure with $S^{n-1}\times S^{n}$

as axis $(n\geqq 0)$ . Further, for $n\geqq 1$ , we can choose a generator to be diffeomorphic
to $S^{n}\times D^{n}\mathfrak{h}S^{n}\times D^{n}\tau_{D}(S^{n})$ , where $\tau_{D}(S^{n})$ denotes a tangent disk bundle of $S^{n}$ .

COROLLARY. $S^{2n-1}\times D^{2}(n\geqq 1)$ has a spinnable structure with axis $S^{n-1}\times S^{n}$

which is an extension of the obvious spinnable structure of $S^{2n-1}\times\partial D^{2}i$ . $e$ . the
bundle $S^{2n-1}\times\partial D^{2}\rightarrow\partial D^{2}=S^{1}$ .

PROOF. Let $h$ be the diffeomorphism of $S^{n}\times D^{n}\mathfrak{h}S^{n}\times D^{n}\tau_{D}(S^{n})$ which
defines the spinnable structure of $S^{2n+1}$ . We can assume $h$ is an identity on
a small disk $D^{2n}$ which is contained Int $(S^{n}\times D^{n}\mathfrak{h}S^{n}\times D^{n\vee}\tau_{D}(S^{n}))$ . Deleting
the subbundle $S^{1}\times D^{2n}$ from the mapping torus of $h$ , we obtain a desired spin-
nable structure.
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\S 3. Main Theorem.

In this section, we shall prove our main theorem.
THEOREM 2. On every $(4n+1)$ -dimensional homotopy sphere $(n\geqq 0)$ , there

exists a codimension one foliation which is not foliated cobordant to zero but
twice of which is foliated cobordant to zero.

For $n=0$ , the theorem is easily proved and so from now on we always
assume $n\geqq 1$ .

First we remark that no foliations on a $(4n+1)$ -dimensional homotopy
sphere are foliated cobordant to zero. In fact, suppose that a codimension
one foliation on $S^{4n+1}$ extended to one of $W^{4n+2}(\partial W=S^{4n+1})$ . Then the Euler
number of $W^{4n+2}$ should vanish. The Euler number of the closed (PL-) mani-
fold $W^{4n+2}\cup D^{4n+2}$ should be equal to one. This is a contradiction because
Euler numbers of $(4n+2)$-dimensional closed (PL-) manifolds are all even.

Now, we will discuss a certain kind of diffeomorphisms of $S^{2n}\times S^{2n}$ .
Let $S$ be the set of all diffeomorphisms that satisfy the following two

conditions (1) and (2).
(1) Let $S^{2n-1}$ be a $(2n-1)$ -dimensional sphere which is imbedded in a small

disk $D_{1}^{4n}\subset S^{2n}\times S^{2n}$ . Then each element $f\in S$ is an identity map on a tubular
neighbourhood of $S^{2n-1}$ .

(2) Let $ S^{2n-1}\times$ Int $D^{2n+1}$ be the tubular neighbourhood of $S^{2n-1}$ on which $f$

is an identity and let $F$ be the deleted manifold $S^{2n}\times S^{2n}-S^{2n-1}\times$ Int $D^{2n+1}$ .
Then $F$ is diffeomorphic to $S_{1}^{2n}\times D_{1}^{2n}\vee\vee S_{2}^{2n}\times D_{2}^{2n}$ ta $S_{3}^{2n}\times D_{3}^{2n}$ . We denote the homo-
logy classes $[S_{1}^{2n}\times(0)],$ $[S_{2}^{2n}\times(0)]$ and $[S_{3}^{2n}\times(0)]$ by $a,$

$b$ and $c$ respectively.
The second condition is that the restriction $\overline{f}$ of each $f\in S$ to $F$ gives homo-
logy isomorphism such that $\overline{f}_{*}(a)=b+c,\overline{f}_{*}(b)=a$ and $\overline{f}_{*}(c)=c$ .

Let $f$ be an element of $S$ and $\overline{f}$ be a diffeomorphism of $F$ defined above,
then we have the following lemma.

LEMMA 2. $\overline{f}:(F, \partial F)\rightarrow(F, \partial F)$ gives a spinnable structure of a $(4n+1)-$

dimensional homotopy sPhere.
PROOF. Let $M(\overline{f})$ be the mapping torus of $f$ and put $\Sigma=M(\overline{f})\cup S^{2n}\times$

$S^{2n-1}\times D^{2}$ , where the attaching map is ”identity map”, this means we glue the
two manifolds so that the product structure of $\partial(M(\overline{f}))=S^{2n}\times S^{2n-1}\times S^{1}$ extends
to $S^{2n}\times S^{2n-1}\times D^{2}$ .

We have only to prove $\Sigma$ is a homotopy sphere. It is easily seen by Van-
Kampen’s theorem that $\Sigma$ is simply connected including the case when $k=1$ .

Further, from Wang sequence we have,

$H_{i}(M(\overline{f}))\cong\left\{\begin{array}{ll}Z & for i=0,1,2n and 2n+1\\0 & otherwise.\end{array}\right.$
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The generator of $H_{2n}(M(\overline{f}))$ is the image of $a$ under the inclusion map $F\rightarrow M(\overline{f})$

and the generator of $H_{2n+1}(M(\overline{f}))$ is identified with $[S^{1}]\times c$ where $[S^{1}]$ is the
generator of $H_{1}(M(\overline{f}))$ . Applying Mayer-Vietoris exact sequence to the triple
$(\Sigma, M(\overline{f}),$ $S^{2n}\times S^{2n}\times D^{2}$), we can see $H_{i}(\Sigma)=0$ for all $i,$ $i\neq 0,4n+1$ and $H_{0}(\Sigma)$

$=H_{4n+1}(\Sigma)\cong Z$. Thus $\Sigma$ is a homotopy sphere. This completes the proof.
The following lemma shows $S$ is a non-empty set.
LEMMA 3. Let $T:S^{2n}\times S^{2n}\rightarrow S^{2n}\times S^{2n}$ denote the involution defined by

$T(x, y)=(y, x),$ $(x, y)\in S^{2n}\times S^{2n}$ . Then $T$ is isotopic to a diffeomorPhism $f$ be-
longing to $S$ .

PROOF. There exists a diffeomorphism $\rho_{1}$ of $S^{2n}\times S^{2n}$ which is isotopic to
the identity such that $\rho_{1}\circ T$ is the identity on a disk $D_{0}^{4n}\subset S^{zn}\times S^{2n}$ . Take a
$(2n-1)$ -dimensional sphere imbedded in $D_{0}^{4n}$ and denote it by $S_{0}^{2n-1}$ . Let $S_{0}^{2n-1}$

$\times D_{0}^{2n+1}(\epsilon)$ be a closed tubular neighbourhood of $ S_{0}^{2n-1}(\epsilon$ denotes the radius of
the disk for some metric). We take $\epsilon$ so small that $S_{0}^{2n-1}\times D_{0}^{2n+1}(\epsilon)$ is contained
in Int $D_{0}^{4n}$ . By an ambient isotopy, there exists a diffeomorphism $\rho_{2}$ such that
$\rho_{2}\circ\rho_{1}\circ T(S_{1}^{2n}\times(^{*}))=(^{*})\times S_{2}^{2n}\#\partial D_{0}^{2n+1}(\epsilon)$ , where $S_{1}^{2n}(S_{2}^{2n})$ denotes the sphere of
$S^{2n}\times S^{2n}$ in the first (second) factor, $\partial D_{0}^{2n+1}(\epsilon)$ denotes a $2n$-dimensional sphere
which is the boundary of a fibre of $S_{0}^{2n-1}\times D_{0}^{2n+1}(\epsilon)$ and $(^{*})$ stands for a fixed
point in $S_{1}^{2n}$ (or $S_{2}^{2n}$ ). Take a regular neighbourhood $K$ of $S_{1}$

)
$n\times(^{*})\vee(^{*})\times S_{2}^{2n}$ .

If $K$ is sufficiently small, $S_{0}^{2n-1}\times D_{0}^{2n+1}(\epsilon/2)$ is outside $\rho_{2^{C}}\rho_{1}\circ T(K)$ . Thus, both
$S_{0}^{2n-1}$ and $\rho_{2}\circ\rho_{1}\circ T(S_{0}^{2n-1})$ are in a disk $D_{1}^{4n}$ which is contained in $S^{2n}\times S^{2n}-$

$\rho_{2}\circ\rho_{1}\circ T(K)=IntD^{4n}$ . Since $S_{0}^{2n-1}$ and $\rho_{2}\circ\rho_{1}\circ T(S_{0}^{2n-1})$ are isotopic in $D_{1}^{4n}$ , there
exists a diffeomorphism $\rho_{3}$ of $S^{2n}\times S^{2n}$ which is isotopic to the identity such
that the restriction $\rho_{3}\circ\rho_{2}\circ\rho_{1}\circ T|S_{0}^{2}$ is an identity map. Let $f=\rho_{3}\circ\rho_{2}\circ\rho_{1}\circ T$ .
To prove $f$ satisfies the Condition (1), we have to check the trivializations of
the tubular neighbourhoods $f(S_{0}^{2n-1}\times D_{0}^{2n+1})$ and $S_{0}^{2n-1}\times D_{0}^{2n+1}$ will coincide. This
can be done as follows. Let $\mu_{t}(\nu_{t})$ be an isotopy between $\rho_{2}(\rho_{3})$ and the
identity map of $S^{2n}\times S^{2n}$ . $\mu_{t}$ and $\nu_{t}$ define the imbeddings:

$\rho_{1}\circ T(S_{0}^{2n-1})\times[0,1]\rightarrow S^{2n}\times S^{2n}\times[0,1]$ given by $(x, t)-(\mu_{t}(x), t)$

and
$\rho_{2}\circ\rho_{1}\circ T(S_{0}^{2n-1})\times[0,1]\rightarrow S^{2n}\times s^{2n}\times[0,1]$ given by $(y, t)\rightarrow(\nu_{t}(y), t)$ .

Since $\mu_{1}$ and $\nu_{0}$ ( $\mu_{0}$ and $\nu_{1}$ ) define the same imbedding, these give an imbedding
$S^{2n-1}\times S^{1}\rightarrow S^{2n}\times S^{2n}\times S^{1}$ .

The normal bundle of this imbedding is trivial because both manifolds are
(stably) parallelizable and the normal bundle is $(2k+1)$ -dimensional. This means
there is no difference between the two trivializations in question. From this
we can see $f$ satisPes Condition (1).

As for Condition (2), we can easily see, from the construction, $f$ has the
desired homological property. Thus we have proved $f$ belongs to $S$ , complet-
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ing the proof. We are going to prove Theorem 2.
PROOF OF THEOREM 2. By Lemma 3, there exists a diffeomorphism $H$ of

$S^{2n}\times S^{2n}\times[0,1]$ such that $H|S^{2n}\times S^{2n}\times\{0\}$ is the involution $T$ and $ H|S^{2n}\times$

$S^{2n}\times\{1\}$ is a diffeomorphism $f$ belonging to $S$ , which fixes a closed tubular
neighbourhood $N(S^{2n-1})$ of an imbedded $S^{2n-1}$ . Let $Q$ be the mapping torus of
$H$. By Lemma 1 (Put $F=S^{2n}\times S^{2n}\times I$ and $A=S^{2n}\times S^{2n}\times\{0\}\cup(N(S^{2n-1})\times\{1\})$),
$Q$ has a codimension one foliations with properties, (a) the mapping torus of
$H|S^{2n}\times S^{2n}\times\{0\}=T$ is a compact leaf, (b) the mapping torus of $H|N(S^{2n-1})$

is a compact leaf (with boundary), (c) other leaves are diffeomorphic to $ S^{2n}\times$

$S^{2n}\times(0,1]-N(S^{2n-1})\times\{1\}$ .
On the other hand, there is a codimension one foliation of $S^{2n-1}\times D^{2n+1}\times D^{2}$

which is a pull-back of a foliation of $S^{2n-1}\times D^{2}$ whose boundary is a compact
leaf [16].

By identifying the mapping torus of $H|N(S^{2n-1})$ and $S^{2n-1}\times D^{2n+1}\times\partial D^{2}$ , and
by smoothing the corners, we obtain a smooth foliated manifold $W^{4n+2}=$

$Q\cup S^{2n-1}\times D^{2n+1}\times D^{2}$ . The boundary of $W$ is a union of two disjoint closed
manifolds; the mapping torus of $T$ and a homotopy sphere $\Sigma$ (see, Lemma 2).

The foliation of $W$ is transverse to $\Sigma$ and $\Sigma$ is foliated by using the spinnable
structure which was described in Lemma 2.

To complete the proof of Theorem 2, we need the following two lemmas.
LEMMA 4. Given a homotoPy sphere $\tilde{\Sigma}^{4n+1}$ , we can modify $W^{4n+2}$ into $\pi 4n+2$

so that
(1) $\varpi 4n+2$ is a cobordism between the mapping torus of $T$ and $\sum 4n+1$

(2) $\varphi 4n+2$ has a foliation which has the pr0perties (a) and (b) described
above.

LEMMA 5. The mapping torus of $T$ has an orientation reversing differenti-
able involution.

Assume, for a moment, Lemma 4 and Lemma 5. Then we can prove
Theorem 2 as follows. Given a homotopy sphere $\overline{\Sigma}^{4n+1}$ , we take two copies of
$ffl4n+2$ which is obtained by Lemma 4. Glue them along the mapping torus of
$T$ by the orientation reversing involution which is obtained by Lemma 5. The
resulting foliated manifold is a desired foliated cobordism. This completes the
proof of Theorem 2.

Now, we must prove Lemma 4 and Lemma 5.
PROOF OF LEMMA 4. Let $g$ and $h$ be diffeomorphisms of $S^{4n}$ , which cor-

respond to $\Sigma^{4n+1}$ and $\tilde{\Sigma}^{4n+1}$ respectively. Then $h\circ g^{-1}$ corresponds to the homo-
topy sphere $-\Sigma^{4n+1}\#\overline{\Sigma}^{4n+1}$ . By a theorem of H. Winkelnkemper [23], $h\circ g^{-1}$

extends to a diffeomorphism $G$ of a $(4n+1)$ -dimensional manifold $V^{4n+1}$ whose
boundary is $S^{4n}$ . We can assume $G$ is an identity on a small half disk $D_{+}^{4n+1}$

in $V^{4n+1}$ . Consider the manifold; $X=S^{2n}\times S^{2n}\times I$ ta $V^{4n+1}$ where the boundary



Foliations and foliated cobordisms of spheres 273

connected sum is made along $D_{+}^{4n+1}$ and a half disk in $S^{2n}\times S^{2n}\times I$, which is
disjoint from $ S^{2n}\times S^{2n}\times\{0\}\cup S^{2n-1}\times$ Int $D^{2n+1}\times\{1\}$ and where $H$ is an identity
map. We can define a diffeomorphism $H\# G$ of $X$ in an obvious fashion. Using
(Hta $G,$ $X$ ) instead of $(H, S^{2n}\times S^{2n}\times I)$ in the proof of Theorem 2, we obtain a
desired foliated manifold $\tilde{W}^{4n+2}$ as in the case of $W^{4n+2}$ .

PROOF OF LEMMA 5. The mapping torus of $T$ is the manifold obtained
from $S^{2n}\times S^{2n}\times[0,1]$ by identifying $(x, 0)$ and $(T(x), 1)$ for $x\in S^{2n}\times S^{2n}$ . It is
easily verified that the reflection of the interval $[0,1]$ defined by $r(t)=1-t$ ,
$t\in[0,1]$ is compatible with the identification. From this Lemma 5 follows.

\S 4. A remark on foliations of highly connected manifolds.

In this section, we shall consider the foliations of highly connected mani-
folds. In [19], Tamura proved that every $(n-1)$ -connected $(2n+1)$-manifold
$(n\geqq 3)$ has a codimension one foliation. A similar result for even dimensional
manifolds was obtained in [13]. We shall describe more explicitly the folia-
tions of these manifolds.

LEMMA 6. $S^{5}$ has a spinnable structure whose axis is diffeomorphic to
$S^{1}\times S^{2}$ .

This is an immediate consequence of Lemma 2 and Lemma 3 of Section 3.
It can be proved this spinnable structure can not be obtained as a Milnor
fibering of an isolated sigularity.

A smooth manifold is said to be specially spinnable if it admits a spinnable
structure whose axis is a sphere.

LEMMA 7. Let $M^{2n+1}$ be a specially spinnable manifold then $M^{2n+1}$ has a
spinnable structure whose axis is diffeomorphic to a product of $S^{1}$ and even
dimensional spheres.

PROOF. First we shall prove $S^{2n-1}\times D^{2}$ has a spinnable structure whose
axis is a product of $S^{1}$ and even dimensional spheres and its restriction to
$S^{2n-1}\times\partial D^{2}$ is a trivial bundle over $S^{1}=\partial D^{2}$ . For $n=1$ , this assertion is clearly
true. For $n=2$ , Lemma 6 means $S^{3}\times D^{2}$ has such a spinnable structure (see

Corollary to Theorem 1). Suppose we have proved the assertion for $S$ ” $- 1\times D^{2}$ ,
$1\leqq k<n$ . By Corollary to Theorem 1, $S^{2n-1}\times D^{2}$ has a spinnable structure with
axis $S^{n-1}\times S^{n}$ . But our hypothesis says $S^{n-1}\times S^{n}\times D^{2}$ has a spinnable structure
with desired axis, which is induced from the one of $S^{n-1}\times D^{2}(S^{n}\times D^{2})$ when
$n$ is even (odd), by projections.

Gluing the spinning bundle of $S^{2n-1}\times D^{2}$ and that of $S^{n-1}\times S^{n}\times D^{2}$ along
$S^{n-1}\times S^{n}\times\partial D^{2}$ , we have a new spinnable structure of $S^{2n-1}\times D^{2}$ whose axis is
a desired one. Thus the assertion is true for any $S^{2n-1}\times D^{2},$ $n\geqq 1$ .

Given a specially spinnable manifold $M^{2n+1}$ , consider the spinning bundle
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M–S $\times IntD^{2}\rightarrow S^{1}$ . Glue $M-S^{2n-1}\times IntD^{2}$ and the spinning bundle of
$S^{2n-1}\times D^{2}$ just obtained, along the boundaries in an obvious way. Thus, $M$ has
a new spinnable structure with a desired axis. This completes the proof.

In [13], we have proved that an $(n-2)$ -connected $2n$ -manifold has a spin-
nable structure with axis which is diffeomorphic to $S^{odd}\times S$ odd if $n\geqq 3$ and if
its Euler number and signature vanish. Therefore, by the same argument as
above, such an even dimensional manifold also has a spinnable structure whose
axis is diffeomorphic to a product of $S^{1}$ and higher dimensional spheres.

Applying Lemma 1 to these spinnable structures we have the following
theorem.

THEOREM 3. Every $(n-1)$ -connected $(2n+1)$ -manifold and every $(n-2)$ -con-
nected $2n$-manifold with vanishing Euler number and signature $(n\geqq 3)$ , has a
foliation with single compact leaf which is diffeomorphic to a pr0duct of $T^{2}$ and
higher dimensional spheres.

REMARK. There are only two kinds of non-compact leaves of the above
foliations: One is diffeomorphic to the interior of the generator of a spinnable
structure and the other is diffeomorphic to a product of $R^{2}$ and higher dimen-
sional spheres.

Appendix.

In this appendix, we shall prove the following ”Relative Spinnable Structure
Theorem”. Our proof is essentially a modification of those of [13], [17], [19],
[24] to the relative case.

THEOREM. Let $W^{n+1}$ be a compact, simply connected smooth manifold of
dimension $n+1(n\geqq 6)$ . Supp0se the boundary $\partial W$ admits a spinnable $s$ tructure
whose generator $F$ is simpfy connected and $\partial F$ is connected. If $n+1=4k,$ suP-
pose further the signature of the intersection pairing

$H_{2k}(W, F;Z)/Tor\otimes H_{2k}(W, F;Z)/Tor\rightarrow Z$

vanishes ( $Tor$ stands for the torsion subgroup). Then $W^{n+1}$ has a spinnable
structure which is an extension of the given spinnable structure of $\partial W$ .

PROOF. (In this proof, we use only homology and cohomology groups with
integer coefficient.) Since $\partial W$ has a spinnable structure with generator $F,$ $\partial W$

is decomposed into $(F\times I)_{0}\cup(F\times I)_{1}$ , where $(F\times I)_{i}(i=0,1)$ is a copy of $F\times I$

(round the corners if necessary) and the pasting map is one which is deter-
mined by the monodromy of the spinnable structure of $\partial W$ .

Using the relative Hurewicz theorem, we can proceed as Smale [15] and
obtain a handle decomposition of $W$ relative to $(F\times I)_{0}$ , which is minimal with
respect to the homology structure of $(W, (F\times I)_{0})$ . Hereafter, we will fix one
of such a handle decomposition of $W$ .
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We separate the proof into two cases.
CASE I. When $n+1=2m+1(m\geqq 3)$ .
Let $V_{0}$ be the submanifold of $W$ , which is obtained by attaching to $(F\times I)_{0}$

$\times[0, \epsilon]$ (a collar neighbourhood of $(F\times I)_{0}$ ) all the handles of $W$ whose indices
are less than $m+1$ and put $V_{1}=\overline{W-V_{0}}$.

Since $F$ and $W$ are simply connected, $V_{0},$ $V_{1}$ are also simply connected.
We will denote by $\partial_{0}V_{0}$ (resp. $\partial_{0}V_{1}$ ) the manifold $\partial V_{0}-(F\times IntI)_{0}$ (resp.
$\partial V_{1}-(F\times IntI)_{1})$ . Clearly $\partial_{0}V_{0}=\partial_{0}V_{1}$ in $W$ and $\partial_{0}V_{0}$ is a manifold whose
boundary is the double of $F$ (if $F$ is closed, the disjoint union of two copies
of $F$ ). Since $7l\geqq 6$ and $F$ and $V_{0}$ are simply connected, $\partial_{0}V_{0}$ is also verified
to be simply connected by using the homotopy exact sequence of $(V_{0}, \partial_{0}V_{0})$ .

We have the following homology exact sequence of the triple $(V_{0}, \partial_{0}V_{0}, F)$

$\rightarrow H_{i+1}(V_{0}, \partial_{0}V_{0})\rightarrow H_{i}(\partial_{0}V_{0}, F)\rightarrow H_{i}(V_{0}, F)\rightarrow H_{i}(V_{0}, \partial_{0}V_{0})\rightarrow$ .
By Poincar\’e-Lefschetz duality we have

$H_{i}(V_{0}, \partial_{0}V_{0})=H^{2m+1-i}(V_{0}, (F\times I)_{0})$ .

But $V_{0}$ is a handlebody obtained from $(F\times I)_{0}$ by attaching the handles of
indices less than $m+1$ , so

$H^{2m+1-i}(V_{0}, (F\times I)_{0})=0$ for $i\leqq m$ .
Therefore the inclusion map $(\partial_{0}V_{0}, F)\rightarrow(V_{0}, F\times I)_{0})$ induces homomorphisms
$H_{i}(\partial_{0}V_{0}, F)\rightarrow H_{i}(V_{0}, (F\times I)_{0})$ which are bijective for $i<m$ , and surjective for
$i=m$ . If we choose a handle decomposition of $\partial_{0}V_{0}$ relative to $F$, then we
have a submanifold $G_{0}$ of $\partial_{0}V_{0}$ which consists of the handles of indices less
than $m+1$ such that the homomorphisms $H_{i}(G_{0}, F)\rightarrow H_{i}(V_{0}, (F\times I)_{0})$ induced by
inclusion map are isomorphisms for $i\leqq m$ (use ”handle addition theorem” for
m-handles of $G_{0}$).

Consider the dual handle decomposition of W. $V_{1}$ is regarded as a handle-
body relative to $(F\times I)_{1}$ which is obtained by attaching the handles of indices
less than $m+1$ to $(F\times I)_{1}$ and minimal with respect to the homology structure
of $(W, (F\times I)_{1})$ .

We have the following diagram where all the homomorphisms are bijective
for $i<m$ .
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Also as before, we have a surjective homomorphism

$H_{m}(\partial_{0}V_{1}, F)\rightarrow H_{m}(V_{1}, (F\times I)_{1})$ . (2)

Now, we are going $to$ modify $G_{0}$ in order to obtain a generator of a spin-
nable structure of $W$ .

Let $p$ denote the rank of $H_{m}(G_{0}, F)(=rankH_{m}(V_{0}, (F\times I)_{0})=rankH_{m}(V_{1}$ ,
$(F\times I)_{1}))$ and take a natural decomposition of $S^{2m+1}$ ;

$S^{2m+1}=$ ( $S_{1}^{m}\times D_{1}^{m+1}\#\cdots$ ix $S_{p}^{m}\times D_{p}^{m+1}$ ) $\cup$ ( $ D_{1}^{m+1}\times S_{1}^{m}\mathfrak{h}\cdots$ ta $D_{p}^{m+1}\times S_{p}^{m}$).

Set
$\tilde{V}_{0}=V_{0}$ ta $S_{1}^{m}\times D_{1}^{m+1}$ ta... ta $S_{p}^{m}\times D_{p}^{m+1}$

$\tilde{V}_{1}=V_{1}$ ta $ D_{1}^{m+1}\times S_{1}^{m}\#\cdots$ ta $D_{p}^{m+1}\times S_{p}^{m}$ .
Clearly, $V_{0}\cup V_{1}=W\#S^{2m+1}=W$ .

Let $\alpha_{i}(i=1, p)$ denote the generators of $H_{m}(G_{0}, F)\subset H_{m}(\partial_{0}V_{0}, F)$ and
let $\beta_{i}(i=1, p)$ be the generators of $H_{m}(\partial_{0}V_{0}, F)$ which are maPped onto
the generators of $H_{m}(V_{1}, F\times I)_{1})$ under the homomorphism (2) above and let
$a_{i},$ $b_{i}(i=1, p)$ denote the homology classes of $\partial_{0}\tilde{V}_{0}=\partial_{0}V_{0}\# S_{1}^{m}\times\partial D_{1}^{m+1}\#\cdots$

$\# S_{p}^{m}\times\partial D_{p}^{m+1}$ which are represented by $S_{i}^{m}\times(point)$ and (point) $\times\partial D_{i}^{m+1}$ respec-
tively.

Define $\tilde{G}$ to be the handlebody in $\partial_{0}V_{0}$ relative to $F$ satisfying the following:
(1) The handles of indices less than $m$ and the handles of index $m$ which

generate the relations in $H_{m- 1}(\tilde{G}, F)$ are the same ones as those of $G_{0}$ .
(2) The handles of index $m$ which are the generators of $H_{m}(\tilde{G}, F)$ , are the

handles representing the homology classes $\alpha_{i}+b_{i},$ $\beta_{i}+a_{i}$ ($i=1,$ $\cdots$ , p) (we con-
sider $\alpha_{i},$ $\beta_{i}$ are naturally the elements of $H_{m}(\partial_{0}\tilde{V}_{0}, F))$ . Such a handlebody is
obtained by virtue of handle addition theorem.

By the construction of $\tilde{G}$ and the diagram (2) above, we can see the inclu-
sion maps $\tilde{G}\rightarrow V_{0}$ and $\tilde{G}\rightarrow V_{1}$ induce isomorphisms of homology groups and
hence they are homotopy equivalences.

By duality, we can also see that $\tilde{G}^{\prime}=\partial_{0}\tilde{V}_{0}-$ Int $\tilde{G}\rightarrow\tilde{V}_{0}$ and $\tilde{G}^{\prime}\rightarrow\tilde{V}_{1}$ are also
homotopy equivalences.

Thus $(\tilde{V}_{0},\tilde{G},\tilde{G}^{\prime})$ and $(\tilde{V}_{1},\tilde{G},\tilde{G}^{\prime})$ are considered as relative h-cobordisms.
Therefore by relative h-cobordism theorem, we have $ W=\tilde{V}_{0}\cup\tilde{V}_{1}=(\tilde{G}\times I)\cup$

$(\tilde{G}\times I)$ . This shows that $W$ has a spinnable structure with $\tilde{G}$ as generator.
This finishes the proof in Case I.

CASE II. When $n+1=2m(m\geqq 4)$ .
We will proceed in almost the same way as in Case I and will not repeat

the details which are stated in Case I.
Again we fix a handlebody decomposition of $W$ relative to $(F\times I)_{0}$ , which

is minimal with respect to the homology structure of $(W, (F\times I)_{0})$ .
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Let $V_{0}$ be the submanifold of $W$ which consists of the following handles:
(1) The handles of indices less than $m$ .
(2) The handles of index $m$ which represent the torsion generators of

$H_{m}(W, (F\times I)_{0})$ .
(3) The handles of index $m$ which represent free generators $e_{i}(i=1,$ $r$ ,

$r=1/2$ rank $H_{m}(W, F))$ in $H_{m}(W, (F\times l)_{0})$ where $e_{i},$ $f_{i}$ ($i=1,$ $\cdots$ , r) are the basis
of $H_{m}(W, (F\times I)_{0})/Tor$ whose intersections satisfy $(e_{i}, e_{j})=0,$ $(e_{i}, f_{j})=\pm\delta_{ij}$ ,
( $i,$ $j=1,$ $\cdots$ , r) (such a basis do exist since the signature of the intersection
form is zero for $m$ even).

Set $V_{1}=\overline{W-V_{0}}$ and $\partial_{0}V_{0}=\partial V_{0}-(F\times IntI_{0})$ . As in case I, the homomor-
phisms induced by the inclusion map $H_{i}(\partial_{0}V_{0}, F)\rightarrow H_{i}(V_{0}, (F\times I)_{0})$ are bijective
for $i<m-1$ and surjective for $i=m-1$ . The homomorphism $ H_{m-1}(\partial_{0}V_{1}, F)\rightarrow$

$H_{m-1}(V_{1}, (F\times I)_{1})$ is also surjective as in case I.
We need the following lemma which we will prove later.
LEMMA. For $i\leqq m$ , rank $H_{i}(V_{0}, (F\times I)_{0})=rankH_{i}(V_{1}, (F\times I)_{1})$ and the im-

ages of inclusion maPs $H_{i}(V_{0}, F)\rightarrow H_{i}(W, F)$ and $H_{i}(V_{1}, F)\rightarrow H_{i}(W, F)$ coincide.
In particular, the intersection forms of $H_{m}(V_{0}, (F\times I)_{0})$ and $H_{m}(V_{1}, (F\times I)_{1})$ are
zero.

From the last statement of this lemma, we have surjective homomorphisms

$H_{m}(\partial_{0}V_{0}, F)\rightarrow H_{m}(V_{0}, (F\times I)_{0})$ , $H_{m}(\partial_{0}V_{1}, F)\rightarrow H_{m}(V_{1}, (F\times I)_{1})$ .
Choose a minimal handlebody decomposition of $\partial_{0}V_{0}$ relative to $F$. From the
above observation, we have a handlebody $G_{0}$ in $\partial_{0}V_{0}$ consisting of handles of
indices less than $m+1$ such that the homomorphisms induced by the inclusion
map

$H_{i}(G_{0}, F)\rightarrow H_{i}(V_{0}, (F\times I)_{0})$

are bijective for $i<m-1$ an $d$ surjective for $i=m-1,$ $m$ . (In order to attach
m-handles to $(m-1)$-skeleton, we use the simply-connectedness of $W$ and $F$ and
the condition $m\geqq 4.$)

Let $p_{1}$ and $p_{2}$ denote the rank of $H_{m-1}(V_{0}, F)$ and the rank of $H_{m}(V_{0}, F)$

respectively and put $p=\max\{p_{1}, p_{2}\}$ .
Take a natural decom position

$S^{2m}=A_{0}\cup A_{1}$ , where
$A_{0}=S_{1}^{m-1}\times D_{1}^{m+1}$ in ta $S_{p}^{m-1}\times D_{p}^{m+1}$ ca $S_{1}^{m}\times D_{1}^{m}$ ta... ta $S_{p}^{m}\times D_{p}^{m}$

$A_{1}=D_{1}^{m}\times S_{1}^{m}\mathfrak{h}$ ... $\mathfrak{h}D_{p}^{m}\times S_{p}^{m}\mathfrak{h}D_{1}^{m+1}\times S_{1}^{m-1}\mathfrak{h}$ ... ta $D_{p}^{m+1}\times S_{p}^{m-1}$ .

Set $\tilde{V}_{0}=V_{0}$ ta $A_{0}$ and $\tilde{V}_{1}=V_{1}$ ta $A_{1}$ .
Let $\alpha_{i}$ (resp. $\beta_{i}$) $(i=1, \cdots p_{1})$ be the homology classes of $H_{m-1}(\partial_{0}V_{0}, F)$

$=H_{m-1}(\partial_{0}V_{1}, F)$ whose images by inclusion homomorphism $ H_{m- 1}(\partial_{0}V_{0}, F)\rightarrow$

$H_{m- 1}(V_{0}, (F\times I)_{0})$ (resp. $H_{m-1}(\partial_{0}V_{1},$ $F)\rightarrow H_{m-1}(V_{1},$ $(F\times I)_{1})$ ) form a basis of
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$H_{m-1}(V_{0}, (F\times I)_{1})$ (resp. $H_{m- 1}(V_{1},$ $(F\times I)_{1})$ ). Similarly, let $\xi_{i}$ (resp. $\eta_{i}$) $(i=1,$ $\cdots$ ,
$p_{2})$ be the homology class of $H_{m}(\partial_{0}V_{0}, F)=H_{m}(\partial_{0}V_{1}, F)$ whose images by inclu-
sion homomorphism $H_{m}(\partial_{0}V_{1}, F)\rightarrow H_{m}(V_{0}, (F\times I)_{0})$ (resp. $ H_{m}(\partial_{0}V_{1}, F)\rightarrow$

$H_{m}(V_{1}, (F\times I)_{1}))$ form a basis of $H_{m}(V_{0}, (F\times I)_{0})$ (resp. $H_{m}(V_{1},$ $(F\times I)_{1})$). Further,
let $a_{i}$ (resp. $b_{i}$)($i=1,$ $\cdots$ , p) be the homology classes of $\partial V_{0}$ represented by
$ S_{i}^{m-1}\times$ (point) (resp. (point) $\times S_{i}^{m-}$ ) and denote by $x_{i}$ (resp. $y_{i}$)($i=1,$ $\cdots$ , p) the
homology classes represented by $S_{i}^{m}\times(point)$ (resp. $(point)\times S_{i}^{m}$).

Now define the handlebody $\tilde{G}$ relative to $F$ as follows.
(1) $(m-1)$ -handles of $\tilde{G}$ are the handles corresponding to the homology

classes $\alpha_{i}+b_{i},$ $\beta_{i}+a_{i},$ $a_{j}+b_{j}(i=1, p_{1}, i=p_{1}+1, p)$ .
(2) $7n$-handles of $G$ are the handles corresponding to the homology classes

$\xi_{k}+y_{k},$ $\eta_{k}+x_{k},$ $x_{l}+y_{l}(k=1, p_{2}, l=p_{2}+1, p)$ .
(3) Other handles are the same as those of $G_{0}$ .
By the construction, the inclusion map $(\tilde{G}, F)\rightarrow(\tilde{V}_{0}, (F\times I)_{0})$ (resp. $(\tilde{G}, F)$

$\rightarrow(V_{1}, (F\times I)_{1}))$ induces an isomorphism of the homology groups, hence it is a
homotopy equivalence.

By the same argument as in Case I, we can conclude that $W$ has a spin-
nable structure with $\tilde{G}$ as generator, which is an extension of the given spin-
nable structure of $\partial W$ .

To complete the proof, we must prove Lemma.
PROOF OF LEMMA. For $i\leqq m-1$ , the assertion is clear if we consider the

dual handlebody decomposition of $W$ .
Consider the following diagram

where all the homomorphism are induced by inclusion maps.
By Poincar\’e-Lefschetz duality, we have

$H_{m}(V_{1}, F)\cong H^{m}(W, V_{0})$

and by the universal coefficient theorem

Tor $H_{m}(V_{1}, F)=TorH_{m-1}(W, V_{0})=0$

rank $H_{m}(V_{1}, F)=rankH_{m}(W, V_{0})$ .
But from the homology exact sequence for the triple $(W, V_{0}, F)$ , it is easily
seen rank $H_{m}(W, V_{0})=r+the$ number of torsion generators (of $H_{m-1}(W,$ $F)$ ),
which is equal to rank $H_{m}(V_{0}, F)$ .

It is well-known that the map $j_{1}\circ i_{0}$ is determined by the intersection matrix
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of $H_{m}(V_{0}, F)$ . But every element of $H_{m}(V_{0}, F)$ is mapped to zero under $j_{1}\circ i_{0}$

because $H_{m}(V_{0}, F)$ is generated by $e_{l}^{\prime}$ ($i=1,$ $\cdots$ , r) and by $t_{j}^{\prime}(j=1,$ $\cdots$ , $s$ ,
$s=rankH_{m}(V_{0}, F)-r)$ such that $i_{0}(e_{i}^{\prime})=e_{i}$ and $i_{0}(t_{j}^{\prime})s$ are the torsion generators
in $H_{m}(W, F)$ and hence their intersections are all zero. Therefore, ${\rm Im} i_{0}\subset$

Ker $j_{1}={\rm Im} i_{1}$ .
Since $H_{m}(V_{1}, F)$ is free abelian of rank $r+s,$ $H_{m}(V_{1}, F)$ contains the gen.

erators $e_{i}^{\prime\prime}$ ($i=1,$ $\cdots$ , r) and $t_{j}^{\prime\prime}$ ($j=1,$ $\cdots$ , s) such that $i_{1}(e_{l}^{\prime\prime})=e_{i}$ and $ i_{1}(t_{j}^{\prime\prime})\subset$

Tor $H_{m}(W, F)$ .
From this we can see the intersection matrix of $H_{m}(V_{1}, F)$ is zero. (Con-

sider the intersection matrix of $(V_{1}, F)$ in $(W, F))$ . Thus by the same argu-
ment as above, we have ${\rm Im} i_{1}\subset{\rm Im} i_{0}$ . This completes the proof.
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Added in proof.

$**)$ W. Thurston has succeeded in constructing codimension one foliations of
arbitrary closed manifold with vanishing Euler number. His method does not use
the spinnable structures of manifolds.

$***)$ I express my hearty thanks to the referee for many valuable comments.
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