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\S 1. Introduction.

Let $(M, g)$ and $(\overline{M},\overline{g})$ be two Riemannian n-manifolds $(n\geqq 3)$ and $f$ a dif-
feomorphism of $(M, g)$ to $(\overline{M},\overline{g})$ . $f$ is called a curvature-preserving diffeomor-
phism if for every point $p\in M$ and for every 2-plane section $\sigma$ of the tangent
space $T_{p}(M)$

$\overline{K}(f_{*}\sigma)=K(\sigma)$

holds, where $K$ and $\overline{K}$ denote the sectional curvatures of $(M, g)$ and $(\overline{M},\overline{g})$ ,

respectively. A point $p\in M$ is said to be isotropic if $K(\sigma)=const$ . for every
2-plane section $\sigma$ of $T_{p}(M)$ , and is said to be non-isotropic otherwise.

Recently, R. S. Kulkarni considered in [3] the converse of the theorema
egrigium of Gauss, which asserts that the curvature is a metric invariant, and
proved that the curvature, in general, determines a conformal class of metric,

that is, a curvature-preserving diffeomorphism $f:(M, g)\rightarrow(\overline{M},\overline{g})$ is conformal
if the set of non-isotropic points is dense in $M$ (cf. Theorem 1 in [3]). It is
natural to ask furthermore whether $f$ is isometric or not. He showed in [3]

that the answer to this question is affirmative if $n\geqq 4$ (cf. Fundamental Theo-
rem in [3]), but he obtained only partial results for 3-manifolds assuming com-
pactness and restricting sign of curvature (cf. \S 6 in [3]). The purpose of
this note is to give some affirmative answers to the above question for 3-
manifolds.

In \S 2 we shall prepare some general formulas on the conformal change of
metric. In \S 3, starting with Kulkarni’s results, we shall obtain several lemmas
on the curvature-preserving diffeomorphism $f$ for later use. In \S 4, after con-
structing a useful constant associated with $f$ whose vanishing gives a necessary
and sufficient condition for $f$ to be isometric (cf. Theorem 1), we shall show
as a corollary to Theorem 1 that the answer to the above question is also
affirmative for conformally flat or compact 3-manifolds (cf. Corollary 1 and
Corollary 2). Furthermore, as an application of Theorem 2 we shall give a
partial result for complete manifolds with non-vanishing scalar curvatures (cf.

Theorem 3). The hypothesis $n=3$ is essential in \S 4.
We shall assume, throughout this paper, that Riemannian manifolds under

consideration are connected and of dimension $n\geqq 3$ , their metrics are positive
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definite, and all manifolds and all diffeomorphisms are of class $C^{\infty}$ . For the
terminology and notation, we generally follow [3].

\S 2. Notation and conformal diffeomorphism.

In this section, we shall summarize general transformation formulas of
some geometric objects under the conformal change of metric (for details see
[3] or [5]).

Let $(M, g)$ and $(\overline{M},\overline{g})$ be Riemannian n-manifolds with metrics $g$ and $\overline{g}$ ,
respectively. A diffeomorphism $f:(M, g)\rightarrow(\overline{M},\overline{g})$ is said to be conformal if
the induced metric $g^{*}=f^{*}\overline{g}$ is related to $g$ by

(2.1) $g^{*}=e^{2\varphi}g$ ,

where the function $\varphi$ is necessarily differentiable and is called the associated
function of $f$. $\varphi$ will be sometimes denoted by $\varphi_{f}$ . If $\varphi$ is constant, then $f$ is
homothetic, and if $\varphi$ is identically zero, then $f$ is an isometry.

Let $\mathfrak{F}(M)$ be the ring of differentiable real-valued functions on $M$ and $\mathfrak{X}(M)$

the Lie algebra of differentiable vector fields on $M$. Let $\nabla$ be the Riemannian
connection with respect to the metric $g$ and $R(X, Y)=\nabla_{[X,Y]}-[\nabla_{X}, \nabla_{Y}](X,$ $Y$

$\in \mathfrak{X}(M))$ the curvature operator of $\nabla$ . The Ricci tensor field and the scalar
curvature will be denoted by Ric and Sc, respectively. And also we indicate
the corresponding quantities with respect to the metric $g^{*}$ or $\overline{g}$ by asterisking
or by bar overhead, respectively. Then it is known that the above quantities
with respect to $g^{*}$ coincide with the induced ones of the corresponding quan-
tities with respect to $\overline{g}$ by $f$ and we have the following formulas. For any $X$,
$Y\in \mathfrak{X}(M)$ , we have

(2.2) $\nabla_{X}^{*}Y=\nabla_{X}Y+S(X, Y)$

with

(2.3) $S(X, Y)=(X\varphi)Y+(Y\varphi)X-\langle X, Y\rangle G$ ,

where \langle X, $ Y\rangle$ $=g(X, Y)$ and $ G=grad\varphi$ , the gradient of $\varphi$ with respect to the
metric $g$. Using the hessian of $\varphi$

$hess_{\varphi}(X, Y)=(\nabla_{X}d\varphi)Y$

(2.4)
$=\langle\nabla_{X}G, Y\rangle$ ,

we define the symmetric $(0,2)$ -tensor field

(2.5) $ P(X, Y)=hess_{\varphi}(X, Y)-(X\varphi)(Y\varphi)+\frac{1}{2}\Vert G\Vert^{2}\langle X, Y\rangle$ ,

where I $G\Vert=\langle G, G\rangle^{\frac{1}{2}}$ . In general, for a given symmetric $(0,2)$ -tensor field $H$,

we denote by $H_{0}$ the canonical endomorphism of the tangent bundle $\mathfrak{T}(M)$



196 T. NASU

induced by $H$, that is, $\langle H_{0}(X), Y\rangle=H(X, Y)$ for all $X,$ $Y\in \mathfrak{X}(M)$ . Then by
(2.4) and (2.5) we have

(2.6) $P_{0}(X)=\nabla_{X}G-(X\varphi)G+\frac{1}{2}\Vert G\Vert^{2}X$ .
The following transformation formulas of the various tensor fields under the
conformal change of metric (2.1) are known:

(2.7) $R^{*}(X, Y)Z=R(X, Y)Z+\tilde{T}(X, Y)Z$ ,

where

$\tilde{T}(X, Y)Z=P(Y, Z)X-P(X, Z)Y+\langle Y, Z\rangle P_{0}(X)-\langle X, Z\rangle P_{0}(Y)$ ;

(2.8) Ric*(X, $Y$ ) $=Ric(X, Y)+\mathfrak{N}(X, Y)$ ,
where

$\mathfrak{N}(X, Y)=-(n-2)P(X, Y)-\langle X, Y\rangle$ Trace $P_{0}$ ;

(2.9) $e^{2\varphi}Ric_{0}^{*}(X)=Ric_{0}(X)+\mathfrak{N}_{0}(X)$ ,

where $Ric_{0}^{*}$ is defined by $g^{*}(Ric_{0}^{*}(X), Y)=Ric^{*}(X, Y)$ for all $X,$ $Y\in \mathfrak{X}(M)$ ; and

(2.10) $e^{2\varphi}Sc^{*}=Sc-2(n-1)$ Trace $P_{0}$ .
Weyl’s conformal curvature tensor on $M$ is a tensor field $C$ of tyPe $(1, 3)$

defined by

$C(X, Y)Z=R(X, Y)Z+\frac{1}{n-2}\{L(Y, Z)X-L(X, Z)Y$

(2.11)
$+\langle Y, Z\rangle L_{0}(X)-\langle X, Z\rangle L_{0}(Y)\}$

for all $X,$ $Y,$ $Z\in \mathfrak{X}(M)$ , where we have put

(2.12) $L=Ric-\frac{Sc}{2(n-1)}g$ .

The following Weyl’s 3-index tensor $D$ of type $(0,3)$ will also be useful:

(2.13) $D(X, Y, Z)=(\nabla_{X}L)(Y, Z)-(\nabla_{Y}L)(X, Z)$ .
The tensor field $C$ is invariant under any conformal change of metric, and
vanishes identically for $n=3$ . As is well-known, a necessary and sufficient
condition for $(M, g)$ to be conformally flat is that

$C=0$ for $n>3$

and
$D=0$ for $n=3$ .

We recall the following well-known facts (cf. Yano [5]):
LEMMA 1. The tensor fields $C$ and $D$ satisfy the following identities:

(a) $ D^{*}(X, Y, Z)=D(X, Y, Z)-(n-2)\langle C(X, Y)Z, G\rangle$ ,
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(b) Trace $\{X\rightarrow D_{0}(X, Y)\}=0$

for all $X,$ $Y,$ $Z\in \mathfrak{X}(M)$ , where $D_{0}$ is the tensor field of iype $(1, 2)$ defined by
$\langle D_{0}(X, Y), Z\rangle=D(X, Y, Z)$ .

Finally we remark that

(2.14) Trace $\{X\rightarrow(\nabla_{X}Ric_{0})(Y)\}=\frac{1}{2}Y(Sc)$

for all $X,$ $Y\in \mathfrak{X}(M)$ .

\S 3. Curvature-preserving diffeomorphism.

The following theorem due to Kulkarni is a starting point of this paper:
THEOREM $K$ ([3]). Let $f:(M, g)\rightarrow(\overline{M},\overline{g})$ be a curvature-preserving difeo-

morphism of two Riemannian n-manifolds $(n\geqq 3)$ . $SuPPose$ that the set of non-
isotroPic Points is dense in M. Then $f$ is conformal, that is, there exists a
function $\varphi\in \mathfrak{F}(M)$ such that

(3.1) $g^{*}=e^{2\varphi}g$

and furthermore we have

(3.2) $R^{*}=e^{2\varphi}R$ .
From the equations (3.1) and (3.2) it follows immediately

(3.3) Ric* $=e^{2\varphi}$ Ric and $Sc^{*}=Sc$ .
In this section, we shall prepare, for later use, some basic formulas for the
curvature-preserving diffeomorphism $f$. We shall use only the equations (3.1)

and (3.3), so that all results in the following are valid also for the Ricci-
curvature-preserving conformal diffeomorphism $f:(M, g)\rightarrow(\overline{M},\overline{g})$ .

From the equations (2.12) and (3.3) we get $L^{*}=e^{2\varphi}L$ , which gives

$e^{-2\varphi}D^{*}(X, Y, Z)-D(X, Y, Z)=(X\varphi)L(Y, Z)-(Y\varphi)L(X, Z)$

(3.4)
$+\langle X, Z\rangle L(Y, G)-\langle Y, Z\rangle L(X, G)$ .

In fact, we get

$D^{*}(X, Y, Z)=(\nabla_{X}^{*}L^{*})(Y, Z)-(\nabla_{Y}^{*}L^{*})(X, Z)$

$=e^{2\varphi}\{2(X\varphi)L(Y, Z)+(\nabla_{\dot{X}}^{*}L)(Y, Z)-2(Y\varphi)L(X, Z)-(\nabla_{Y}^{*}L)(X, Z)\}$

$=e^{2\varphi}[\{2(X\varphi)L(Y, Z)+(\nabla_{X}L)(Y, Z)-L(S(X, Y), Z)-L(Y, S(X, Z))\}$

$-$ { $replaceX$ by $Y$ in the above expression}] (by (2.2))

$=e^{2\varphi}[D(X, Y, Z)+2\{(X\varphi)L(Y, Z)-(Y\varphi)L(X, Z)\}$

$-\{L(Y, S(X, Z))-L(X, S(Y, Z))\}]$ .
On the other hand, using (2.3), we obtain
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$L(Y, S(X, Z))-L(X, S(Y, Z))$

$=(X\varphi)L(Y, Z)+(Z\varphi)L(Y, X)-\langle X, Z\rangle L(Y, G)$

$-$ { $replaceX$ by $Y$ in the above expression}

$=(X\varphi)L(Y, Z)-(Y\varphi)L(X, Z)-\{\langle X, Z\rangle L(Y, G)-\langle Y, Z\rangle L(X, G)\}$ ,

which implies (3.4). The equation (3.4) is equivalent to

(3.5) $D_{0}^{*}(X, Y)-D_{0}(X, Y)=(X\varphi)L_{0}(Y)-(Y\varphi)L_{0}(X)+L(Y, G)X-L(X, G)Y$ ,

where $g^{*}(D_{0}^{*}(X, Y),$ $Z$ ) $=D^{*}$ ( $X$, Y. $Z$ ) for all $X,$ $Y,$ $Z\in \mathfrak{X}(M)$ . In (3.5), we take
the trace of the linear map $\{X\rightarrow(D_{0}^{*}(X, Y)-D_{0}(X, Y))\}$ , where $Y$ is fixed.
Then by virtue of (b) in Lemma 1 and

Trace $L_{0}=\frac{n-2}{n-1)}\overline{2}$

( Sc

we have

(3.6) $L(Y, G)-\frac{n-2}{2n(n-1)}Sc\langle Y, G\rangle=0$

because of
Trace $\{X\rightarrow(X\varphi)L_{0}(Y)\}=L_{0}(Y)\varphi$

and
Trace $\{X\rightarrow L(X, G)Y\}=L(Y, G)$ .

For convenience, let us define another symmetric tensor field $T$ of type $(0,2)$

by

(3.7) $T=Ric-\frac{1}{n}$ Sc $g$ .

Then we have
LEMMA 2. The tensors $T$ and $\tau*$ satisfy on $M$ the following;

(a) Trace $T_{0}=0$ ,

(b) $\tau*=T-(n-2)P+\frac{n-2}{n}$ (Trace $P_{0}$)$g$,

(c) $T^{*}=e^{2\varphi}T$ ,

(d) $T(X, G)=0$ , or equivalently $T_{0}(G)=0$ ,

(e) $e^{-2\varphi}D^{*}(X, Y, Z)-D(X, Y, Z)=(X\varphi)T(Y, Z)-(Y\varphi)T(X, Z)$

for all $X,$ $Y,$ $Z\in \mathfrak{X}(M)$ .
PROOF. The equations (a), (b) and (c) follow immediately. The equation

(3.6) implies (d) because of

(3.8) $T=L-\frac{n-2}{2n(n-1)}$ Sc $g$ ,

which is a consequence of (2.12) and (3.7). And also the equation (3.4) implies
(e) because of (d) and (3.8). $q$ . $e$ . $d$ .
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Eliminating $\tau*$ from (b) and (c) in Lemma 2, we have by (2.6)

(3.9) $\nabla_{X}G=\frac{1-e^{2\varphi}}{n-2}T_{0}(X)+(X\varphi)G+\frac{1}{n}(\Delta\varphi-\Vert G\Vert^{2})X$

for all $X\in \mathfrak{X}(M)$ , where $\Delta\varphi$ is the Laplacian of $\varphi$ dePned by

$\Delta\varphi=Trace\{X\rightarrow\nabla_{X}G\}$ .
The equation (3.9) implies
LEMMA 3. The associated function $\varphi$ of $f$ has the following prOperties;

(a) the trajectories of the gradient vector field $G$ of $\varphi$ are geodesic arcs
in a neighborhood of an ordinary Point of $\varphi$ ,

(b) $ d(\Vert G\Vert^{2})=\frac{2}{n}\{\Delta\varphi+(n-1)\Vert G\Vert^{2}\}d\varphi$ .

PROOF. Putting $X=G$ in (3.9), we get by (d) in Lemma 2

$\nabla_{G}G=\frac{1}{n}\{\Delta\varphi+(n-1)\Vert G\Vert^{2}\}G$ ,

which implies (a) in Lemma 3. Take the inner product of the both sides of
(3.9) with $G$ , we have

$\frac{1}{2}X\langle G, G\rangle=\frac{1}{n}\{\Delta\varphi+(n-1)\Vert G\Vert^{2}\}X\varphi$

for any $X\in \mathfrak{X}(M)$ , which implies (b) in Lemma 3. $q$ . $e$ . $d$ .
Let $M^{\prime}$ be an open subset of $M$ defined by

$M^{\prime}=$ { $p\in M;p$ is the ordinary point of $\varphi,$
$(d\varphi)_{p}\neq 0$ }.

Then we have
LEMMA 4. There exist two smooth functions $\rho$ and $\psi$ on $M^{\prime}$ such that

(a) $ d(Sc)=\rho d\varphi$ , and

(b) $ d\rho=\psi d\varphi$ .
The function $\rho$ is given explicjtly by

(3.10) $\rho=2n(e^{2\varphi}-1)(n-2)^{-2}\Vert G\Vert^{-2}$ Trace $(T_{0}^{2})$ .
PROOF. Putting $Z=G$ in the equations (a) in Lemma 1 and (e) in Lemma

2, we have by (d) in Lemma 2

$D^{*}(X, Y, G)=D(X, Y, G)$ and $e^{-2\varphi}D^{*}(X, Y, G)=D(X, Y, G)$ ,

respectively, and hence by eliminating $D^{*}(X, Y, G)$ from these equations

$(e^{2\varphi}-1)D(X, Y, G)=0$ .
Since the set of zeroes of the function $\varphi$ is discrete in $M^{\prime}$ , if there is any, we
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have by continuity of $D(X, Y, G)$

(3.11) $D(X, Y, G)=0$ .
On the other hand, we get by substituting (3.8) into (2.13)

$D(X, Y, Z)=(\nabla_{X}T)(Y, Z)-(\nabla_{Y}T)(X, Z)$

(3.12)
$+\frac{n-2}{2n(n-1)}\{\langle Y, Z\rangle X(Sc)-\langle X, Z\rangle Y(Sc)\}$ .

Putting $Z=G$ in the above, we get, on account of (3.11),

$(X\varphi)Y(Sc)-(Y\varphi)X(Sc)=0$ ,

because

$(\nabla_{X}T)(Y, G)-(\nabla_{Y}T)(X, G)=-T(Y, \nabla_{X}G)+T(X, \nabla_{Y}G)$ (by (d) in Lemma 2)

$=\frac{1-e^{2\varphi}}{n-2}\{T(X, T_{0}(Y))-T(Y, T_{0}(X))\}$ (by (3.9))

$=0$ .
Hence there exists a function $\rho$ defined on $M^{\prime}$ such that

(3.13) $ X(Sc)=\rho X\varphi$

on $M^{\prime}$ for all $X\in \mathfrak{X}(M)$ . Since $\rho$ is independent of $X$, this implies (a) in
Lemma 4.

The explicit form (3.10) of $\rho$ is obtained as follows. Since $T_{0}(G)=0$ by
(d) in Lemma 2, we have

(3.14) $(\nabla_{X}T_{0})G=-T_{0}(\nabla_{X}G)$ .
We now obtain

Trace { $ X\rightarrow$ (the left hand side of (3.14))}

$=Trace\{X\rightarrow(\nabla_{X}Ric_{0})G\}-\frac{1}{n}$ Trace $\{X\rightarrow X(Sc)G\}$ (by (3.7))

$=\frac{1}{2}G(Sc)-\frac{1}{n}G(Sc)$ (by (2.14))

$=\frac{n-2}{2n}\rho\Vert G\Vert^{2}$ (by (3.13))

and
Trace { $ X\rightarrow$ (the right hand side of (3.14))}

$=\frac{e^{2\varphi}-1}{n-2}$ Trace $(T_{0}^{2})$ (by (3.9))

because of the equations (a) and (d) in Lemma 2, so that we obtain (3.10) by
equating these two traces.
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Finally taking exterior derivative of (a) in Lemma 4 we get (b) in Lemma
4 at once. $q$ . $e$ . $d$ .

\S 4. Theorems.

In this section we shall assume $n=3$ throughout and define an associated
constant of the curvature-preserving diffeomorphism.

First, we remark that the restriction $n=3$ ’ on the dimension of $M$ implies
two important relations as follows. Since Weyl’s conformal curvature tensor
$C$ vanishes identically, we have by the equation (a) in Lemma 1

(4.1) $D^{*}(X, Y, Z)=D(X, Y, Z)$

for all $X,$ $Y,$ $Z\in \mathfrak{X}(M)$ . On the other hand, the equation (d) in Lemma 2 means
that $G$ is an eigen-vector of $T_{0}$ corresponding to an eigen-value zero at each
point $p\in M^{\prime}$ . Hence the equation (a) in Lemma 2 and the assumption $n=3$

imply that the eigen-values of $T_{0}$ are $0,$ $\kappa(p)$ and $-\kappa(p)$ at each point $p\in M^{\prime}$ ,
so that we find

(4.2) Trace $(T_{0}^{3})=0$

on $M^{\prime}$ .
First we need the following two lemmas.
LEMMA 5. We have on $M^{\prime}$

$\psi\Vert G\Vert^{2}+\frac{4}{3}\rho\Delta\varphi+\frac{2}{3}\rho\Vert G\Vert^{2}=0$ .

PROOF. The equation (3.10) yields on $M^{\prime}$

(4.3) $\rho\Vert G\Vert^{2}=6(e^{2\varphi}-1)$ Trace $(T_{0}^{2})$ .
Applying $\nabla_{G}$ to (4.3) we obtain directly

$6(e^{2\varphi}-1)\Vert G\Vert^{-2}\nabla_{G}$ Trace $(T_{0}^{2})$

(4.4)
$=\psi\Vert G\Vert^{2}+\frac{2}{3}\rho(\Delta\varphi+2\Vert G\Vert^{2})-12e^{2\varphi}$ Trace $(T_{0}^{2})$

because of the equations
$\nabla_{G}\varphi=\Vert G\Vert^{2}$

$\nabla_{G}(\Vert G\Vert^{2})=\frac{2}{3}(\Delta\varphi+2\Vert G\Vert^{2})\Vert G\Vert^{2}$ (by (b) in Lemma 3)

and
$\nabla_{G}\rho=\psi\Vert G\Vert^{2}$ (by (b) in Lemma 4).

On the other hand, we get by (e) in Lemma 2 and (4.1)

$(e^{-2\varphi}-1)D(X, Y, Z)=(X\varphi)T(Y, Z)-(Y\varphi)T(X, Z)$
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for all $X,$ $Y,$ $Z\in X(M)$ , so that we obtain by setting $Y=G$ and $Z=T_{0}(X)$

(4.5) $(e^{2\varphi}-1)D(X, G, T_{0}(X))=e^{2\varphi}\Vert G\Vert^{2}\langle T_{0}(X), T_{0}(X)\rangle$ .
Then we have by (3.12) and (a) in Lemma 4

$D(X, G, T_{0}(X))=(\nabla_{X}T)(G, T_{0}(X))-(\nabla_{G}T)(X, T_{0}(X))$

(4.6)
$+\frac{\rho}{12}\{(X\varphi)\langle G, T_{0}(X)\rangle-(G\varphi)\langle X, T_{0}(X)\rangle\}$ .

Fix a point $p\in M^{\prime}$ and let $E=\{E_{1}, E_{2}, E_{3}\}$ be a local orthonormal frame in a
neighborhood of $p$ such that $\nabla_{E_{i}}E_{j}=0$ at $p$ for all $i,$ $j$ . Putting $X=E_{i}$ in (4.5)

and summing up for $i=1,2,3$ , we have

$-(e^{2\varphi}-1)\{\frac{1}{3}(\Delta\varphi-\Vert G\Vert^{2})$ Trace $(T_{0}^{2})+\frac{1}{2}\nabla_{G}$ Trace $(T_{0}^{2})\}$

(4.7)
$=e^{2\varphi}\Vert G\Vert^{2}$ Trace $(T_{0}^{2})$ ,

because we have at $p$

$\sum_{i}(\nabla_{E_{i}}T)(G, T_{0}(E_{i}))=-\sum_{i}T(\nabla_{E_{i}}G, T_{0}(E_{i}))$ (by (d) in Lemma 2)

$=(e^{2\varphi}-1)\sum_{i}T(T_{0}(E_{i}), T_{0}(E_{i}))$

$-\frac{1}{3}(\Delta\varphi-\Vert G\Vert^{2})\sum_{i}T(E_{i}, T_{0}(E_{i}))$ (by (3.9))

$=-\frac{1}{3}(\Delta\varphi-\Vert G\Vert^{2})$ Trace $(T_{0}^{2})$ (by (4.2))

and

$\sum_{i}:(\nabla_{G}T)(E_{i}, T_{0}(E_{i}))=\frac{1}{2}\sum_{i}\nabla_{G}\langle T_{0}(E_{i}), T_{0}(E_{i})\rangle-\sum_{i}T(\nabla_{G}E_{i}, T_{0}(E_{i}))$

$=\frac{1}{2}\nabla_{G}$ Trace $(T_{0}^{2})$ .
If we eliminate $\nabla_{G}(Trace(T_{0}^{2}))$ from (4.4) and (4.7) and substitute (4.3) into

the resulting equation, then the lemma follows. $q$ . $e$ . $d$ .
LEMMA 6. Let $F$ be a function on $M$ defined by

(4.8) $F=(e^{-2\varphi}-1)\Vert G\Vert^{2}$ Trace $(T_{0}^{2})$ .
Then it is constant on $M$.

PROOF. We may assume that $M^{\prime}$ is not empty. Evidently the function $F$

is smooth on $M$ and given by

(4.9) $F=-\frac{1}{6}e^{-2\varphi}\rho\Vert G\Vert^{4}$

on $M^{\prime}$ by (4.3). HenCe, from the equations (b) in Lemma 3 and (b) in Lemma
4 we have by direct calculation
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$-6dF=e^{-2\varphi}\Vert G\Vert^{2}(\psi\Vert G\Vert^{2}+\frac{4}{3}\rho\Delta\varphi+\frac{2}{3}\rho\Vert G\Vert^{2})d\varphi$

$=0$ (by Lemma 5)

on $M^{\prime}$ . Consequently, $F$ is constant on each connected component of $M^{\prime}$ . Thus,
because of (4.8) we find $F=0$ on $M$ if $M\neq M^{\prime}$ , that is, if there exists at
least one stationary point of $\varphi$ . If $M=M^{\prime},$ $F$ is obviously constant on $M$ by
connectedness of M. $q$ . $e$ . $d$ .

For the diffeomorphism $f$ in Theorem $K$ for $n=3$ , we define

$c_{f}=(e^{-2\Phi}-1)\Vert G\Vert^{2}$ Trace $(T_{0}^{2})$ .
Then owing to Lemma 6 we can call $c_{f}$ the associated constant of the curvature-
preserving diffeomorphism $f$.

THEOREM 1. Under the circumstances of Theorem $K,$ $suPPosen=3$ . Then
a necessary and sufficient condition for $f$ to be isometric is $c_{f}=0$ .

PROOF. The necessity is trivial, so we prove the sufficiency in the follow-
ing. For the moment, suppose that $M^{\prime}$ is non-empty. Then, the set of zeroes
of the function $\varphi$ is closed in $M^{\prime}$ , which is open. Thus we can choose a point
and its open neighborhood $U\subset M^{\prime}$ , on which $\varphi\neq 0$ . By the assumption $c_{f}=0$ ,

we find Trace $(T_{0}^{2})=0$ on $U$ , from which $T=0,$ $i$ . $e$ . Ric $=\frac{1}{n}$ Scg on $U$, be-
cause we have

Trace $(T_{0}^{2})=\langle T_{0}, T_{0}\rangle$ ,

where $\langle, \rangle$ denotes the canonical inner product on tensor algebra induced by
Riemannian metric $g$. Since $C=0$ on $M$ by the assumption $n=3$ , this implies
by the equations (2.11) and (2.12)

$R(X, Y)Z=\frac{Sc}{n(n-1)}\{\langle X, Z\rangle Y-\langle Y, Z\rangle X\}$

on $U$ . Thus each point of $U$ is isotropic. But this contradicts the assumption
that the set of non-isotropic points is dense in $M$. Thus $M^{\prime}$ is empty, that is,

$d\varphi=0$ on $M$. So $f$ is homothetic. Then we have

$\overline{K}(f_{*}\sigma)=e^{-2\varphi}K(\sigma)$

by (2.7) for any 2-plane section $\sigma\subset T_{p}(M)$ at any point $p\in M$. Since $f$ is
curvature-preserving, we obtain

$(e^{2\varphi}-1)K(\sigma)=0$ .
Since, by the assumption of Theorem 1, $K\neq 0$ for at least one $\sigma$ at almost all
points, it follows $\varphi=0$ . Thus, $f$ is isometric. $q$ . $e$ . $d$ .

COROLLARY 1. Under the assumptions of Theorem $K,$ suppose that $n=3$

and $(M, g)$ is conformally flat. Then $f$ is an isometry.
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PROOF. Since $(M, g)$ is conformally flat and $n=3$ , we have $D^{*}=D=0$ .
So, it follows from (e) in Lemma 2

$(X\varphi)T_{0}(Y)-(Y\varphi)T_{0}(X)=0$

for all $X,$ $Y\in \mathfrak{X}(M)$ . Setting $Y=G$ in the above, we find easily $c_{f}=0$ by (d)
in Lemma 2. Hence $f$ is an isometry by Theorem 1. $q$ . $e$ . $d$ .

This Corollary has been obtained independently in a different way by
Kulkarni [4].

COROLLARY 2. Under the assumptiOns of Theorem $K$, suppOse that $n=3$

and $M$ is comPact. Then $f$ is an isometry.
PROOF. Since there exists at least one stationary point of $\varphi$ by compact-

ness of $M$, it follows $c_{f}=0$ , from which $f$ is isometric by Theorem 1. $q$ . $e$ . $d$ .
Corollary 2 is an improvement of the results of Kulkarni (cf. Theorem 6

and Theorem 7 in [3]) in the sense that the additional assumptions on the sign
of curvature have been removed in Corollary 2.

The author does not know as yet whether there exists a global non-
isometric curvature-preserving diffeomorphism satisfying the assumptions of
Theorem $K$ in the case $n=3$ . In this respect, it may be helpful to keep the
next theorem in mind while constructing such an example, if there is.

THEOREM 2. Under the circumstances of Theorem $K$, suPpose $n=3$ . $A$

necessary and sufficient condition for $f$ to be non-isometric is that the manifold
$(M, g)$ and the associated function $\varphi$ of $f$ satisfy simultaneously the following
three conditions (a), (b) and (c):

(a) $\varphi$ has no stationary Point on $M$,

(b) there exists no isotropic Point on $M$,

(c) the range of $\varphi$ is either $\varphi>0$ or $\varphi<0$ ,
$or$ , equivalently, satisfy simultaneously the two conditions (a) and

(d) the scalar curvature Sc has no stationary Point on $M$.
PROOF. The condition $c_{f}\neq 0$ is equivalent to the following:

(i) $\Vert G\Vert\neq 0$ , (ii) Trace $(T_{0}^{2})\neq 0$ and (iii) $e^{2\varphi}\neq 1$ .
Evidently $(i)\Leftrightarrow(a)$ . We have $(ii)\Leftrightarrow T_{0}\neq 0$ , which is equivalent to the condition
(b) by the assumption $n=3$ , as is easily verified by Lemma 1 in [3]. Since
$M$ is assumed to be connected and $\varphi$ is continuous on $M$, the range of $\varphi$ is a
connected subset of $R$ , so that we see $(iii)\Leftrightarrow(c)$ . Owing to another expression
(4.9) of $c_{f}$ , we find similarly $ c_{f}\neq 0\Leftrightarrow$ { $(a)$ and $(d)$ }. Thus, Theorem 2 follows
from Theorem 1. $q$ . $e$ . $d$ .

The technique developed in the proofs of Lemma 5 in [1] and Proposition
10.4 in [2] is applicable to the following

THEOREM 3. Under the assumptions of Theorem $K,$ $suPPose$ that $n=3$ and
two metrics $g,\overline{g}$ are comPlete. If $f$ is an onto diffeomorphism and Sc does not



Curvature and metric in Riemannian $3\cdot manifolds$ 205

vanish, then $f$ is an isometry.
PROOF. On the contrary, assume that $f$ is non-isometric. Then the func-

tion $\lambda=\Vert G\Vert$ vanishes nowhere on $M$ by (a) of Theorem 2. The range of Sc
is either $Sc>0$ or $Sc<0$ , and hence one of two functions $(1-e^{2\varphi})Sc$ and $(1-e^{-2\varphi})Sc$

is positive-valued, because of (c) of Theorem 2. The diffeomorphism $f$ is onto
and the associated functions $\varphi_{f}$ and $\overline{\varphi}_{f^{-1}}$ of conformal diffeomorphisms $f$ and
$f^{-1}$ , respectively, are related by

$\overline{\varphi}_{f^{-1}}=-\varphi_{f}\circ f^{-1}$

so that we have by the equation (3.3)

$\{(1-e^{2\overline{\varphi}}f^{-1})\overline{Sc}\}\circ f=(1-e^{-2\varphi_{f}})Sc$ .
Thus, we may assume that

(4.10) $(1-e^{2\varphi})Sc>0$

by considering $f^{-1}$ , if necessary. The trajectory $x(t)$ of the vector field $G$

passing through a point $p=x(0)$ of $M$ is a geodesic by (a) of Lemma 3. We

can assume that the parameter $t$ is the arc-length. Let $X=\frac{1}{\lambda}G$ be the unit
tangent vector field to $x(t)$ . Then we have along $x(t)$

$2\lambda\frac{d\lambda}{dt}=\nabla_{X}\Vert G\Vert^{2}=\frac{1}{\lambda}\nabla_{G}\Vert G\Vert^{2}$

(4.11)
$=\frac{2}{3}\lambda(\Delta\varphi+2\lambda^{2})$

by (b) in Lemma 3. On the other hand, we obtain by (2.10)

(4.12) $(1-e^{2\varphi})Sc=4$ Trace $P_{0}=4(\Delta\varphi+\frac{1}{2}\lambda^{2})$ .

Eliminating $\Delta\varphi$ from the equations (4.11) and (4.12) we get

(4.13) $\frac{d\lambda}{dt}=\frac{1}{2}\lambda^{2}+\alpha(t)$

along $x(t)$ , where $\alpha=\frac{1}{12}(1-e^{2\varphi})Sc$ is a smooth positive-valued function by
(4.10).

We consider an auxiliary differential equation

(4.14) $\frac{d\lambda}{dt}=\frac{1}{2}\lambda^{2}$

on the $(t, \lambda)$ -plane. The solution of (4.14) with initial condition $\mu(0)=\Vert G\Vert_{p}$

$(=\lambda(0))>0$ is given by

$\mu(t)=-\frac{2}{t-a}$ ,
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where $a=2\Vert G\Vert_{p}^{-1}>0$ . It is easy to prove that for the solution $\lambda(t)$ of (4.13)
and the continuous solution $\mu(t)$ of (4.14) it holds

$\mu(t)\leqq\lambda(t)$ for $0\leqq t<a$ .
Hence the function $\lambda(t)=\Vert G\Vert(x(t))$ must have a singularity at finite positive
time. But this is impossible, because $x(t)$ must be extended indefinitely with
respect to the arc-length parameter $t$ by the completeness of the metric $g$ and
the function $\lambda(t)$ must be defined for all $t$ . Thus, $f$ is isometric. $q$ . $e$ . $d$ .
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isometric diffeomorphism f satisfying the assumptions of Theorem K [cf. S. T.
Yau: Curvature preserving diffeomorphisms, Ann. of Math., 100 (1974), 121-
130].

Toshio NASU
Department of Mathematics
Faculty of General Education
Okayama University
Tsushima, Okayama
Japan


	\S 1. Introduction.
	\S 2. Notation and conformal ...
	\S 3. Curvature-preserving ...
	THEOREM $K$ ...

	\S 4. Theorems.
	THEOREM 1. ...
	THEOREM 2. ...
	THEOREM 3. ...

	References

