Real hypersurfaces in a complex projective space with constant principal curvatures

By Ryoichi TAKAGI*)

(Received May 30, 1973)

Introduction.

This paper is a continuation of the previous one [6], in which we classified those homogeneous real hypersurfaces in a complex projective space $P_n(C)$ of complex dimension $n (\geq 2)$ which are orbits under analytic subgroups of the projective unitary group PU(n+1), and gave some characterization of those hypersurfaces. We shall call each of such hypersurfaces a model space for convenience' sake. The main purpose of this paper is to give another characterization of a geodesic hypersphere in $P_n(C)$ which is one of six kinds of the model space. It can be stated as follows.

THEOREM 1. If M is a connected complete real hypersurface in $P_n(C)$ with two constant principal curvatures, then M is a geodesic hypersphere.

In $\S 1$ we shall determine the principal curvatures of the model spaces. As a result of the determination we know that each model space has two or three or five constant principal curvatures. In $\S 3$ we shall prove Theorem 1 and in $\S 4$ give its application.

The author would like to express his thanks to Professor T. Takahashi for his constant encouragement.

§ 1. Principal curvatures of the model spaces.

In [6] we have seen that roughly speaking there is a one-to-one correspondence between the model spaces and the isotropy representations of various Hermitian symmetric spaces of rank two. The correspondence is given as follows. Let (\mathfrak{u},θ) be a Hermitian effective orthogonal symmetric Lie algebra of compact type and of rank two. \mathfrak{u} is a compact semisimple Lie algebra and θ is an involutive automorphism of \mathfrak{u} (cf. [3]). Let $\mathfrak{u}=\mathfrak{k}+\mathfrak{p}$ be the decomposition of \mathfrak{u} into the eigenspaces of θ for the eigenvalues +1 and -1, respectively. Then \mathfrak{k} and \mathfrak{p} satisfy $[\mathfrak{k},\mathfrak{k}]\subset\mathfrak{k}$, $[\mathfrak{k},\mathfrak{p}]\subset\mathfrak{k}$ and $[\mathfrak{p},\mathfrak{p}]\subset\mathfrak{k}$. For the Killing form B of \mathfrak{u} we define a positive definite inner product \langle , \rangle

^{*)} Partially supported by the Sakko-kai Foundation.

44 R. Takagi

on \mathfrak{p} by $\langle X,Y\rangle = -B(X,Y)$ for $X,Y\in \mathfrak{p}$. Let K be the analytic subgroup of the group of inner automorphisms of \mathfrak{u} with Lie algebra ad (†). Then K leaves the subspace \mathfrak{p} of \mathfrak{u} invariant and acts on \mathfrak{p} as an orthogonal transformation group with respect to \langle , \rangle . We define a representation ρ of K on \mathfrak{p} by $\rho(k)=k|\mathfrak{p}$ for $k\in K$. The differential ρ_* of ρ is an isomorphism of \mathfrak{k} into the Lie algebra of the orthogonal group of \mathfrak{p} and satisfies $(\rho_*X)Y=[X,Y]$ for $X\in \mathfrak{k}$ and $Y\in \mathfrak{p}$. Let \mathfrak{q} be a maximal abelian subspace in \mathfrak{p} and S be a hypersphere in \mathfrak{p} centered at the origin. For simplicity we assume that the radius of S is equal to 1. Let a be a regular element of \mathfrak{p} in $S\cap \mathfrak{a}$. Since dim $\mathfrak{q}=2$, the orbit $N=\rho(K)a$ of a under $\rho(K)$ is a hypersurface in S. It is known ([3]) that there is an element Z_0 in the center of \mathfrak{k} such that

$$(\rho_*Z_0)^2 = -1$$
,
 $\langle (\rho_*Z_0)X, (\rho_*Z_0)Y \rangle = \langle X, Y \rangle$ for $X, Y \in \mathfrak{p}$.

Thus we may regard $\mathfrak p$ as a complex vector (n+1)-space C^{n+1} with complex structure $I=\rho_*Z_0$ and Hermitian inner product $\langle \ , \ \rangle$, where $2(n+1)=\dim \mathfrak p$. The image $M=\pi(N)$ of N by the canonical projection π of S onto $P_n(C)$ becomes a real hypersurface in $P_n(C)$. The Riemannian metric of S induced from $\langle \ , \ \rangle$ will be denoted by g. Then g induces naturally what is called the Fubini-Study metric $\tilde g$ on $P_n(C)$ through π (as stated later). Then with respect to $\tilde g$, $P_n(C)$ has constant holomorphic sectional curvature 4. Let C denote the circle group in K generated by Z_0 . Then the group $G=\rho(K)/\rho(C)$ is a compact analytic subgroup of PU(n+1) which acts on M transitively as a transformation group of isometries of M, where as a Riemannian metric of M we take the one induced from $\tilde g$. Conversely every model space, that is, every real hypersurface in $P_n(C)$ being an orbit under an analytic subgroup of PU(n+1) is congruent to a real hypersurface M obtained in this way with respect to the group of isometries of $P_n(C)$ (for the last several results, cf. [6]).

Since G is an analytic subgroup of PU(n+1), all principal curvatures of M is constant ([7], §1) and so let us evaluate the principal curvatures of M at a special point, say $\pi(a)$. Since the tangent space of C^{n+1} is identified with itself, a vector field on C^{n+1} can be regarded as a mapping of C^{n+1} into itself and the complex structure I of C^{n+1} as a vector field on S. Under such an identification, \tilde{g} is expressed as

$$\tilde{g}(\tilde{U}, \tilde{V}) \circ \pi = g(U, V) - g(U, I)g(V, I)$$

for vector fields U, V on S and vector fields \widetilde{U} , \widetilde{V} on $P_n(C)$ such that $\pi_*U=\widetilde{U}$ and $\pi_*V=\widetilde{V}$. When we denote by ∇ (resp. $\widetilde{\nabla}$) the Riemannian connection of S (resp. $P_n(C)$) associated to g (resp. \widetilde{g}), the following relation between ∇

and $\widetilde{\nabla}$ is fundamental:

(1.1)
$$\widetilde{g}(\widetilde{\nabla}_{\widetilde{W}}\widetilde{U}, \widetilde{V}) \circ \pi = g(\nabla_{W}U, V) - g(\nabla_{W}U, I)g(V, I)$$
$$-g(U, I)g(I(W), V) - g(W, I)g(I(U), V)$$

for vector fields U, V, W on S and vector fields \widetilde{U} , \widetilde{V} , \widetilde{W} on $P_n(C)$ such that $\pi_*U=\widetilde{U}, \ \pi_*V=\widetilde{V}$ and $\pi_*W=\widetilde{W}$.

Making use of (1.1) we shall find a relation between the second fundamental form of M and N. We denote the tangent space of a manifold L at $x \in L$ by L_x . In general the second fundamental form of a submanifold M' in a Riemannian manifold for a normal vector ν at $x \in M'$ induces the symmetric linear transformation of M'_x , which is called the shape operator of M' for ν . Let b be a unit vector normal to N at a in S. Then $\{a,b\}$ is an orthonormal base of $\mathfrak a$ and π_*b is a unit vector normal to M. Let N' denote the hyperplane in N_a orthogonal to the unit vector $I(a) \in N_a$. Let T (resp. \widetilde{T}) denote the shape operator of N (resp. M) for b (resp. π_*b). For $X \in \rho_*(\mathfrak k)$ we denote by X^* (resp. \widetilde{X}) the Killing vector field on S (resp. $P_n(C)$) induced by X. In our notation a vector I_a^* is identified with a vector I(a). It was proved in [7, pp. 471-473] that

$$\begin{split} &g(T(X_a^*),\,Y_a^*) = -g(\nabla_b X^*,\,Y_a^*)\,,\\ &\tilde{g}(\tilde{T}(\tilde{X}_{\pi(a)}),\,\tilde{Y}_{\pi(a)}) = -\tilde{g}(\tilde{\nabla}_{\pi_\bullet b}\tilde{X},\,\tilde{Y}_{\pi(a)})\,, \end{split}$$

and

$$T(I(a)) = -I(b)$$

for $X, Y \in \rho_*(\mathfrak{k})$ such that $X_a^*, Y_a^* \in N'$. These equations, together with (1.1), imply

(1.2)
$$g(T(u), v) = \tilde{g}(\tilde{T}(\pi_* u), \pi_* v), \quad T(I(a)) = -I(b)$$

for $u, v \in N'$.

We want to express the eigenvalues of \tilde{T} (they are by definition the principal curvatures of M) in terms of a root system of $\mathfrak u$ making use of (1.2). For a linear form α on $\mathfrak a$ we put

$$\begin{split} \mathfrak{p}_{\alpha} &= \{X \in \mathfrak{p} \; ; \; (\text{ad } H)^2 X = -\alpha(H)^2 X \qquad \text{for all} \quad H \in \mathfrak{a} \} \; , \\ \mathfrak{f}_{\alpha} &= \{X \in \mathfrak{f} \; ; \; (\text{ad } H)^2 X = -\alpha(H)^2 X \qquad \text{for all} \quad H \in \mathfrak{a} \} \; . \end{split}$$

Then $\mathfrak{p}_{-\alpha} = \mathfrak{p}_{\alpha}$, $\mathfrak{f}_{-\alpha} = \mathfrak{f}_{\alpha}$, $\mathfrak{p}_{0} = \mathfrak{a}$ and \mathfrak{f}_{0} is the centralizer of \mathfrak{a} in \mathfrak{f} . Moreover ad a maps \mathfrak{f}_{α} onto \mathfrak{p}_{α} , and \mathfrak{p}_{α} onto \mathfrak{f}_{α} isomorphically. A root of \mathfrak{u} with respect to \mathfrak{a} is by definition a linear form α on \mathfrak{a} such that $\mathfrak{f}_{\alpha} \neq \{0\}$. Select a suitable ordering in the dual space of \mathfrak{a} and denote by Δ the set of positive roots of \mathfrak{u} with respect to \mathfrak{a} . Then we have the orthogonal direct decompositions of \mathfrak{p} and \mathfrak{f} with respect to B:

$$\mathfrak{f} = \mathfrak{f}_0 + \sum_{\alpha \in \Delta} \mathfrak{f}_{\alpha}, \qquad \mathfrak{p} = \mathfrak{a} + \sum_{\alpha \in \Delta} \mathfrak{p}_{\alpha}.$$

It is known that there exists the subset $\Delta' = \{\lambda, \mu\}$ of Δ consisting of strongly orthogonal roots, that is, none of $\pm \lambda \pm \mu$ is contained in Δ and $\dim \mathfrak{p}_{\lambda} = \dim \mathfrak{p}_{\mu} = 1$. By [4, Proposition 3.10] an element Z_0 of the center of \mathfrak{f} belongs to $\mathfrak{f}_0 + \mathfrak{f}_{\lambda} + \mathfrak{f}_{\mu}$. It follows that the vector space N' is spanned by \mathfrak{p}_{α} ($\alpha \in \Delta - \Delta'$) and I(b). On the other hand, we proved in [7] that for each $\alpha \in \Delta$, $\kappa_{\alpha} = -\alpha(b)/\alpha(a)$ is an eigenvalue of T and \mathfrak{p}_{α} is contained in the eigenspace of T for κ_{α} . It follows from (1.2) that for each $\alpha \in \Delta - \Delta'$, κ_{α} is an eigenvalue of T and $\pi_*\mathfrak{p}_{\alpha}$ is contained in the eigenspace of T for κ_{α} . Hence $\pi_*I(b)$ is an eigenvector of T for certain eigenvalue of T, say κ . Then again from (1.2) we see that the set of all eigenvalues of T coincides with $\{\kappa_{\alpha} : \alpha \in \Delta - \Delta'\}$ $\cup \{y : y^2 - \kappa y - 1 = 0\}$, from which we have $\kappa = \kappa_{\lambda} + \kappa_{\mu}$. Thus we proved

Theorem 2. Let the notation be in above. Then the principal curvatures of the model space M corresponding to (\mathfrak{u}, θ) are given by

$$-\alpha(b)/\alpha(a)$$
 $(\alpha \in \Delta - \Delta')$

and

$$-\lambda(b)/\lambda(a)-\mu(b)/\mu(a)$$
 $(\Delta'=\{\lambda,\mu\})$.

By virture of Theorem 2 we can read the distinct principal curvatures ξ_1, \dots, ξ_r of M and their multiplicities $m(\xi_1), \dots, m(\xi_r)$ from the table given by S. Araki [1]. It is easily checked that $\kappa_{\alpha} \neq \kappa_{\beta}$, $\kappa_{\alpha} \neq \kappa$ and $m(\kappa_{\alpha}) = \dim \mathfrak{p}_{\alpha}$ for all $\alpha, \beta \in \mathcal{A} - \mathcal{A}'$ with $\alpha \neq \beta$, and so $m(\kappa) = 1$. The values ξ_1, \dots, ξ_r depend on a position of a as well as (\mathfrak{u}, θ) and hence they include a parameter t. We have the following Table

9
≅
ಸ್ತ

$m(\xi_i)$	$m(\xi_1) = 2(n-1)$ $m(\xi_2) = 1$	$m(\xi_1) = 2(p-1)$ $m(\xi_2) = 2(q-1)$ $m(\xi_3) = 1$	$m(\xi_1) = p-2$ $m(\xi_2) = p-2$ $m(\xi_3) = 1$	$m(\xi_i)=2(p-2) \ (i=0,2)$ $m(\xi_i)=2 \ (i=1,3)$ $m(\xi_b)=1$	$m(\xi_i) = 4 \ (i=1, 2, 3, 4)$ $m(\xi_b) = 1$	$m(\xi_i)=8 \ (i=0, 2)$ $m(\xi_i)=6 \ (i=1, 3)$ $m(\xi_5)=1$
\$.	$\xi_1 = \cot t$ $\xi_2 = 2 \cot 2t$	$\xi_1 = \cot t$ $\xi_2 = -\tan t$ $\xi_3 = 2 \cot 2t$	$ \xi_1 = \cot(t - \pi/4) $ $ \xi_2 = -\tan(t - \pi/4) $ $ \xi_3 = 2 \cot 2t $	$\xi_i = \cot(t - \pi i/4) \ (i=1, 2, 3, 4)$ $m(\xi_i) = 2(p-2) \ (i=0, 2)$ $\xi_5 = 2 \cot 2t$ $m(\xi_5) = 1$ $m(\xi_5) = 1$	$\xi_i = \cot(t - \pi i/4) \ (i = 1, 2, 3, 4) $ $m(\xi_i) = 4 \ (i = 1, 2, 3, 4)$ $m(\xi_b) = 1$ $m(\xi_b) = 1$	$\xi_i = \cot(t - \pi i/4) \ (i = 1, 2, 3, 4) $ $m(\xi_i) = 8 \ (i = 0, 2) $ $\xi_5 = 2 \cot 2t $ $m(\xi_5) = 1 $ $m(\xi_5) = 1 $
7	2	က	3	ည	2	ಎ
dim M	2n-1	2(p+q)-3	2p-3	4 <i>p</i> -3	17	29
₩→	g(u(n)+u(1)) + g(u(1)+u(1))	$g(\mathfrak{u}(p) + \mathfrak{u}(1)) + g(\mathfrak{u}(q) + \mathfrak{u}(1))$	$\mathfrak{o}(\mathit{p})\!+\!\mathit{R}$	ğ(u(p)+u(2))	1.(5)	o(10)+ R
#	$\mathfrak{gu}(n+1) + \mathfrak{gu}(2)$ $(n \ge 2)$	$\mathfrak{gu}(p+1) + \mathfrak{gu}(q+1)$ $(p \ge q \ge 2)$	$\mathfrak{o}(p+2)$ $(p \ge 3)$	$\mathfrak{gu}(p+2)$ $(p \ge 3)$	0(10)	E,
	A_1	A_2	В	C	a	E

48 R. Takagi

As an example we work out the type C in detail. This corresponds to the type AIII in the table of [1] (Set p, l in AIII as 2, p+1 respectively). Then we know that two simple roots α , β of $\mathfrak u$ with respect to $\mathfrak a$ have the diagram $\underset{\alpha}{\circ} \Longrightarrow \underset{\beta}{\circ}$, and that $m(\alpha)=2$, $m(\beta)=2(p-2)$ and $m(2\alpha)=1$, where $m(\alpha)=\dim \mathfrak p_\alpha$. Since the Weyl group of $(\mathfrak u,\theta)$ is simply transitive on the set of Weyl chambers in $\mathfrak a$, we have $\Delta=\{\alpha,\beta,\alpha+\beta,2\alpha+\beta,2\alpha,2\alpha+2\beta\}$. Hence $m(2\alpha+\beta)=2$, $m(\alpha+\beta)=2(p-2)$, and $\Delta'=\{2\alpha,2\alpha+2\beta\}$. The values ξ_1,\cdots,ξ_5 depend on the angle t between α and a.

The model space $M(A_1)$ of type A_1 is a geodesic hypersphere in $P_n(C)$. In fact, a regular element a of \mathfrak{p} is decomposed into a=a'+a'', where $a' \in \mathfrak{Su}(n+1) \cap \mathfrak{p}$ and $a'' \in \mathfrak{Su}(2) \cap \mathfrak{p}$. Then it is easily seen that the distance between each point of $M(A_1)$ and the point $\pi(a'')$ in $P_n(C)$ is equal to $\cot^{-1}(|a''|/|a'|)$. Thus we saw that every geodesic hypersurface in $P_n(C)$ with constant holomorphic sectional curvature 4 has two constant principal curvatures ξ , η such that the multiplicity of η is equal to one and $\xi^2 - \xi \eta - 1 = 0$.

REMARK 1.1. If we denote by \tilde{J} the complex structure of $P_n(C)$ induced from I and by ν a normal vector field on an arbitrary model space then $\tilde{J}(\nu)$ is a direction of principal curvature (that is an eigenvector of \tilde{T} for the eigenvalue κ) everywhere.

REMARK 1.2. Among model spaces of any type there is a minimal one because the mean curvature $(\xi_1+\cdots+\xi_r)/(2n-1)$ vanishes everywhere for some t.

REMARK 1.3. By a theorem of Tashiro-Tachibana [8] there is no totally umbilical real hypersurface in $P_n(C)$.

§ 2. Structure equations.

Hereafter let $P_n(C)$ $(n \ge 2)$ be a complex projective space with the metric of constant holomorphic sectional curvature 4c and M be a connected Riemannian real hypersurface with the induced metric. We denote by F(M) the bundle of orthonormal frames of M. Then F(M) is a principal fibre bundle over M with structure group O(2n-1). An element u of F(M) can be expressed by $u=(p:e_1,\cdots,e_{2n-1})$, where p is a point of M and e_1,\cdots,e_{2n-1} is an ordered orthonormal base of M_p . We denote by θ_i , θ_{ij} and θ_{ij}^{*} the canonical 1-forms, the connection forms and the curvature forms of F(M) respectively. Then they satisfy

^{*)} Hereafter the indices i, j, k, l run from 1 to 2n-1 and the indices A, B, C, D run from 1 to 2n.

(2.1)
$$d\theta_i + \sum_j \theta_{ij} \wedge \theta_j = 0, \qquad \theta_{ij} + \theta_{ji} = 0,$$

(2.2)
$$d\theta_{ij} + \sum_{k} \theta_{ik} \wedge \theta_{kj} = \Theta_{ij}.$$

We denote by F(P) the bundle of orthonormal frames of $P_n(C)$, and by $\tilde{\theta}_A$, $\tilde{\theta}_{AB}$ and $\tilde{\Theta}_{AB}$ the canonical 1-forms, the connection forms and the curvature forms of F(P) respectively. Then $\tilde{\theta}_A$ and $\tilde{\theta}_{AB}$ satisfy

(2.3)
$$d\tilde{\theta}_A + \sum_B \tilde{\theta}_{AB} \wedge \tilde{\theta}_B = 0, \qquad \tilde{\theta}_{AB} + \tilde{\theta}_{BA} = 0,$$

and $\widetilde{\Theta}_{AB}$ are given by

(2.4)
$$\begin{split} \widetilde{\Theta}_{AB} &= d\widetilde{\theta}_{AB} + \sum_{C} \widetilde{\theta}_{AC} \wedge \widetilde{\theta}_{CB} \\ &= c\widetilde{\theta}_{A} \wedge \widetilde{\theta}_{B} + c \sum_{C,D} (\widetilde{J}_{AC}\widetilde{J}_{BD} + \widetilde{J}_{AB}\widetilde{J}_{CD}) \widetilde{\theta}_{C} \wedge \widetilde{\theta}_{D} \,, \end{split}$$

where $\tilde{J} = (\tilde{J}_{AB})$ denotes the complex structure of $P_n(C)$, that is, $J(\tilde{e}_A) = \sum_B \tilde{J}_{BA} \tilde{e}_B$ at $(\tilde{p}: \tilde{e}_1, \dots, \tilde{e}_{2n}) \in F(P)$. Moreover \tilde{J} satisfies

(2.5)
$$\sum_{C} \tilde{J}_{AC} \tilde{J}_{CB} = -\delta_{AB} , \qquad \tilde{J}_{AB} + J_{BA} = 0 ,$$

(2.6)
$$d\tilde{J}_{AB} = \sum_{C} (\tilde{J}_{AC}\tilde{\theta}_{CB} - \tilde{J}_{BC}\tilde{\theta}_{CA}).$$

The equation (2.6) means that \tilde{J} is parallel.

The isometric inclusion mapping ι of M into $P_n(C)$ induces three tensor fields $H = (H_{ij}), \ J = (J_{ij})$ and $f = (f_i)$ on F(M) as follows. For an element $u = (p:e_1,\cdots,e_{2n-1}) \in F(M)$ there exists a unique tangent vector e_{2n} of $P_n(C)$ at $\iota(p)$ such that $\tilde{u} = (\iota(p):\iota_*e_1,\cdots,\iota_*e_{2n-1},\tilde{e}_{2n})$ is an element of F(P) compatible with the orientation of $P_n(C)$ determined by \tilde{J} . This mapping $u \to \tilde{u}$ of F(M) into F(P) is also denoted by the same letter ι . Then denoting by ι^* the dual mapping of ι_* we have $\theta_i = \iota^*\tilde{\theta}_i$ and $\iota^*\tilde{\theta}_{2n} = 0$, from which we know $\theta_{ij} = \iota^*\tilde{\theta}_{ij}$ and $0 = \iota^*d\hat{\theta}_{2n} = -\sum_i \iota^*\tilde{\theta}_{2n,i} \wedge \theta_i = 0$. By Cartan's lemma we may write as

(2.7)
$$\phi_i \equiv \iota^* \tilde{\theta}_{2n,i} = \sum_j H_{ij} \theta_j, \qquad H_{ij} = H_{ji}.$$

The quadratic form $\sum_i \phi_i \theta_i$ is called the second fundamental form of M for \tilde{e}_{2n} . Put $J_{ij} = \tilde{J}_{ij} \circ \iota$ and $f_i = \tilde{J}_{2n,i} \circ \iota$. The pair (J, f) is called the almost contact structure of M. From (2.2), (2.4) and (2.7) we have the equation of Gauss

(2.8)
$$\Theta_{ij} = \phi_i \wedge \phi_j + c\theta_i \wedge \theta_j + c \sum_{k,l} (J_{ik}J_{jl} + J_{ij}J_{kl})\theta_k \wedge \theta_l.$$

From (2.4) and (2.7) we have the equation of Codazzi

(2.9)
$$d\phi_i + \sum_i \phi_j \wedge \theta_{ji} = c \sum_i (f_j J_{ik} + f_i J_{jk}) \theta_j \wedge \theta_k.$$

50 R. Takagi

Moreover (J, f) satisfies by (2.5) and (2.6)

(2.10)
$$\sum_{k} J_{ik} J_{kj} = f_{i} f_{j} - \delta_{ij} , \qquad \sum_{j} f_{j} J_{ji} = 0 ,$$

$$\sum_{i} f_{i}^{2} = 1 , \qquad J_{ij} + J_{ji} = 0 ,$$

$$dJ_{ij} = \sum_{k} (J_{ik} \theta_{kj} - J_{kj} \theta_{ik}) - f_{i} \phi_{j} + f_{j} \phi_{i} ,$$

$$df_{i} = \sum_{i} (f_{j} \theta_{ji} - J_{ji} \phi_{j}) .$$

§ 3. Proof of Theorem 1.

Assume that M has two constant principal curvatures ξ and η ($\xi \neq \eta$). Let m be the multiplicity of η . Define the subbundle F' of F(M) by

$$F' = \{u \in F(M); \phi_a = \xi \theta_a, \phi_r = \eta \theta_r \text{ at } u\}^*\}$$

and restrict all differential forms and tensor fields under consideration to F'. Hereafter we shall promise that " $f_a = 0$ " means " $f_a = 0$ for all a on a nonempty open set of F'", and " $f_a \neq 0$ " means " $f_a \neq 0$ for some a on a nonempty open set of F'", etc.

LEMMA 3.1.

(1)
$$f_a J_{bc} = 0 \quad and \quad f_r J_{st} = 0.$$

(2)
$$(\eta - \xi)\theta_{ar} = c \sum_{b} (f_b J_{ar} - f_r J_{ab} + 2f_a J_{br})\theta_b$$

$$+ c \sum_{a} (f_s J_{ra} - f_a J_{rs} + 2f_r J_{sa})\theta_s.$$

PROOF. By (2.1) and (2.9) the exterior derivatives of $\phi_a = \xi \theta_a$ and $\phi_r = \eta \theta_r$ give

$$(3.1) \qquad (\xi - \eta) \sum_{r} \theta_{ar} \wedge \theta_{r} = c \sum_{j,k} (f_{j} J_{ak} + f_{a} J_{jk}) \theta_{j} \wedge \theta_{k} ,$$

$$(3.2) (\eta - \xi) \sum_{a} \theta_{ar} \wedge \theta_{a} = c \sum_{j,k} (f_{j} J_{rk} + f_{r} J_{jk}) \theta_{j} \wedge \theta_{k}.$$

Taking account of the coefficients of $\theta_b \wedge \theta_c$ in (3.1) we have

$$(3.3) f_b J_{ac} - f_c J_{ab} + 2f_a J_{bc} = 0.$$

Put c=a in (3.3) to get $f_aJ_{ba}=0$. Multiplying (3.3) by f_a therefore we have $f_aJ_{bc}=0$. Similarly we have $f_rJ_{st}=0$ from (3.2). We can prove (2) easily by applying a method of indeterminate coefficients to (3.1) and (3.2). Q. E. D.

LEMMA 3.2. $f_a = 0$ or $f_r = 0$.

PROOF. From (2.10) and (1) of Lemma 3.1 we have

^{*)} Hereafter the indices a, b, c run from 1 to 2n-1-m and the indices r, s, t run from 2n-m to 2n-1.

$$0 = \sum_{a,b} f_a J_{ab} J_{br} = \sum_{a} f_a (-\sum_{s} J_{as} J_{sr} + f_a f_r) = f_r \sum_{a} f_a^2$$

since
$$\sum_a f_a J_{as} = -\sum_r f_r J_{rs} = 0$$
.

Q. E. D.

Without loss of generality we may assume $f_a = 0$ and so $f_r \neq 0$ by Lemma 3.2. Then (1) of Lemma 3.1 implies $J_{rs} = 0$. By (2.11) and (2) of Lemma 3.1 the derivative of $f_a = 0$ gives

$$(3.4) (\xi^2 - \eta \xi - c) J_{ab} = 0.$$

Similarly the derivative of $J_{rs} = 0$ gives

(3.5)
$$(\eta^2 - \xi \eta + 2c)(f_r \delta_{st} - f_s \delta_{rt}) = 0.$$

LEMMA 3.3. m=1.

PROOF. Suppose $m \ge 2$. Then (3.5) implies $\eta^2 - \xi \eta + 2c = 0$. Hence from (3.4) we have $J_{ab} = 0$ since $\xi^2 - \eta \xi - c \ne 0$. Take the exterior derivative of (2) of Lemma 3.1 making use of (2.1), (2.2), (2.8), (2.10) and (2) of Lemma 3.1 itself to obtain

$$\begin{split} &(\eta - \xi)(c + \xi \eta)\theta_a \wedge \theta_r + 3c\xi \, f_r \sum_s f_s \theta_a \wedge \theta_s \\ &+ c \sum_{b,s} ((2\eta - 3\xi)J_{ar}J_{bs} + (\eta - 3\xi)J_{as}J_{br})\theta_b \wedge \theta_s \\ &+ \frac{2c^2}{\eta - \xi} \sum_{b,s,t} (f_s^2 J_{ar}J_{bt} + f_r f_t J_{as}J_{bs})\theta_b \wedge \theta_t = 0 \,. \end{split}$$

Summing up the coefficients of $\theta_a \wedge \theta_r$ in above equation on r and making use of $\sum_r J_{ar}^2 = \sum_r f_r^2 = 1$ and $2c = \eta(\xi - \eta)$ we have

$$\eta^2 + m\xi\eta + (m+3)c = 0$$
,

which contradicts $\eta^2 - \xi \eta + 2c = 0$.

Q. E. D.

Let $S^{2n+1}(c)$ denote a (2n+1)-sphere with constant sectional curvature c and π be the canonical projection of $S^{2n+1}(c)$ onto $P_n(C)$.

PROOF OF THEOREM 1. It follows from (1.2) and Lemma 3.3 that the principal curvatures of a hypersurface $N=\pi^{-1}(M)$ in $S^{2n+1}(c)$ are given by ξ and the roots of the equation $y^2-\eta y-c=0$. On the other hand, we have $J_{ab}\neq 0$ since $f_a=0$ and $J_{ar}=0$. Hence (3.4) implies $\xi^2-\eta\xi-c=0$. Thus N has two constant principal curvatures ξ with multiplicity 2n-1 and $-c/\xi$ with multiplicity 1. By a theorem of E. Cartan [2, p. 180] we see that N is congruent to a product $S^{2n-1}(\xi^2+c)\times S^1(c(\xi^2+c)/\xi^2)$ of two spheres, which is exactly an orbit in $S^{2n+1}(c)$ of type A_1 in the Table in § 1. By a comment below the Table M is a geodesic hypersphere in $P_n(C)$. Q. E. D.

REMARK 2.1. The radius of above geodesic hypersphere M is equal to $(|\xi|/\sqrt{c})\cot^{-1}(|\xi|/\sqrt{c})$.

§ 4. An application of Theorem 1.

Now modifying the condition of Theorem 1 we obtain

THEOREM 3. If a connected complete real hypersurface M in $P_n(C)$ has two principal curvatures ξ with multiplicity 2n-2 and η with multiplicity 1, then M is a geodesic hypersphere.

PROOF. Owing to Theorem 1 it suffices to prove that both ξ and η are constant. We adopt the notation in § 3. Thus the index r stands for 2n-1. By (2.1) and (2.4) the exterior derivative of $\phi_a = \xi \theta_a$ and $\phi_r = \eta \theta_r$ give

$$(4.1) \qquad \sum_{\sigma} \{ \delta_{ab} d\xi + c \sum_{j} (f_{b} J_{aj} + f_{a} J_{bj}) \theta_{j} \} \wedge \theta_{b}$$

$$+ \{ (\eta - \xi) \theta_{ar} + c \sum_{j} (f_{r} J_{aj} + f_{a} J_{rj}) \theta_{j} \} \wedge \theta_{r} = 0 ,$$

$$(4.2) \qquad \sum_{a} \{ (\eta - \xi) \theta_{ar} + c \sum_{j} (f_{r} J_{aj} + f_{a} J_{rj}) \theta_{j} \} \wedge \theta_{a}$$

$$+ \{ d\eta + 2c f_{r} \sum_{j} J_{ra} \theta_{a} \} \wedge \theta_{r} = 0 .$$

It follows from Cartan's lemma that { }'s in (4.1) and (4.2) can be expressed as

(4.3)
$$\delta_{ab}d\xi + c\sum_{j}(f_{b}J_{aj} + f_{a}J_{rj})\theta_{j} = \sum_{c}A_{abc}\theta_{c} + A_{ab}\theta_{r},$$

$$(4.4) \qquad (\eta - \xi)\theta_{ar} + c\sum_{j} (f_r J_{aj} + f_a J_{rj})\theta_j = \sum_{b} A_{ab}\theta_b + A_a\theta_r,$$

(4.5)
$$d\eta + 2cf_r \sum_{\alpha} J_{ra} \theta_{\alpha} = \sum_{\alpha} A_{\alpha} \theta_{\alpha} + A\theta_r ,$$

where $A_{abc}=A_{acb}=A_{bac}$. From (4.3) we have $A_{abc}=c(f_bJ_{ac}+f_aJ_{bc})$ and $A_{ab}=c(f_bJ_{ar}+f_aJ_{br})$ for $a\neq b$. Hence $0=A_{abc}-A_{acb}=c(f_bJ_{ac}-f_cJ_{ab}+2f_aJ_{bc})$ for $a\neq b$. From this we have $f_aJ_{bc}=0$ as in the proof of (1) of Lemma 3.1. Then putting $d\xi=\sum_a\xi_a\theta_a+\xi_r\theta_r$ and $d\eta=\sum_a\eta_a\theta_a+\eta_r\theta_r$ we have from (4.3) and (4.5)

$$A_{aa} = 2cf_aJ_{ar} + \xi_r$$
, $A_a = -\eta_a$,

Thus (4.4) was reduced to

$$(4.6) \qquad (\eta - \xi)\theta_{ar} = c \sum_{b} (f_b J_{ar} - f_r J_{ab} + 2f_a J_{br})\theta_b + \xi_r \theta_a + \eta_a \theta_r.$$

Here we shall divide into two cases.

(1) The case where $f_a \neq 0$. Then we have $f_r = 0$ as in the proof of Lemma 3.2. By (2.11) and (4.6) the derivative of $f_r = 0$ gives $\eta_a = 0$ and

(4.7)
$$(\xi^2 - \eta \xi + 2c) J_{ar} + f_a \xi_r = 0.$$

Multiply (4.7) by f_a and sum up on a to obtain $\xi_r = 0$. Thus (4.7) again implies $\xi^2 - \eta \xi + 2c = 0$ since $J_{ar} \neq 0$. The derivative of $\xi^2 - \eta \xi + 2c = 0$ gives $\xi_a = 0$ and $\eta_r = 0$, which shows that both ξ and η are constant.

(2) The case $f_a = 0$. Then since $J_{ab} \neq 0$, the derivative of $f_a = 0$ gives

 $\xi_r = 0$, $\eta_a = 0$ and $\xi^2 - \eta \xi - c = 0$ as in the case (1). The derivative of $\xi^2 - \eta \xi - c = 0$ gives $\eta_r = 0$, which implies that η is constant, and hence ξ is also constant.

Q. E. D.

Following S. Tachibana and T. Kashiwada [5] we shall call a real hypersurface in $P_n(C)$ totally η -umbilic if $H_{ij} = \alpha \delta_{ij} + \beta f_i f_j$ holds good for some scalar functions α and β . For a matrix $Q = (x \delta_{\lambda \mu} + y_{\lambda} z_{\mu})$ of degree D we see that $\det Q = x^D + (\sum_{\lambda} y_{\lambda} z_{\lambda}) x^{D-1}$ by induction on D and differentiation on x. Thus if M is η -umbilic hypersurface in $P_n(C)$ then each principal curvature κ of M satisfies

$$0 = \det (H - \kappa \delta_{ij}) = \det ((\alpha - \kappa) \delta_{ij} + \beta f_i f_j)$$
$$= (\alpha - \kappa)^{2n-2} (\alpha - \kappa + \beta)$$

since $\sum_i f_i^2 = 1$. So $\kappa = \alpha$ or $\alpha + \beta$. But β does not vanish everywhere. In fact by [8, Theorem 3] the set $F' = \{u \in F(M); \beta = 0 \text{ at } u\}$ contains no nonempty open sets of F(M). On the other hand, Theorem 3 shows that both α and β are constant on F(M) - F' and hence $F' = \emptyset$ by continuity of β . Thus Theorem 3 again implies

COROLLARY 4. If M is a connected complete totally η -umbilic hypersurface in $P_n(C)$ then M is a geodesic hypersphere.

References

- [1] S. Araki, On root systems and an infinitesimal classification of irreducible symmetric spaces, J. Math. Osaka City Univ., 13 (1962), 1-34.
- [2] E. Cartan, Familles de surfaces isoparamétriques dans les espaces à courbure constante, Ann. Mat. Pura Appl., 17 (1938), 177-191.
- [3] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962.
- [4] A. Korányi and J. A. Wolf, Realization of hermitian symmetric spaces as generalized half planes, Ann. Math., 81 (1965), 265-288.
- [5] S. Tachibana and T. Kashiwada, On a characterization of spaces of constant holomorphic curvature in terms of geodesic hypersphere, to appear.
- [6] R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math., 10 (1973), 495-506.
- [7] R. Takagi and T. Takahashi, On the principal curvatures of homogeneous hypersurfaces in a sphere, Differential Geometry, in honor of K. Yano, Kinokuniya, Tokyo, 1972.
- [8] Y. Tashiro and S. Tachibana, On Fubinian and C-Fubinian manifolds, Kōdai Math. Sem. Rep., 15 (1963), 176-183.

Ryoichi TAKAGI
Department of Mathematics
Faculty of Science
Tokyo University of Education
Otsuka, Bunkyo-ku
Tokyo, Japan