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The proof of Lemma 2 in [2] is not correct if the base field $F$ is of
characteristic 2. We give here a proof which is valid for any characteristic.
Rather than proving the lemma in its original form, it is more convenient
to prove it for every irreducible admissible representation (not necessarily
pre-unitary).

1. We keep the notation in [2]. Let $\pi$ be an irreducible admissible
representation of $\mathcal{H}(JC_{A}^{\times})$ in a vector space $\mathcal{V}$ . By [1, Proposition 9.1] $\pi$ is
the tensor product of irreducible admissible representations $\pi_{v}$ of $\mathcal{H}(JC_{v}^{\times})$ in
the space $\mathcal{V}_{v}$ . Let $\mathfrak{d}=\otimes \mathfrak{d}_{v}$ be an irreducible representation of $K$ ‘, $\mathfrak{d}_{v}$ being
an irreducible representation of $K_{v^{1}}$ . Almost all $\mathfrak{d}_{v}$ are the identity repre-
sentations. We define $\mathcal{V}(\mathfrak{d})$ or $\mathcal{V}_{v}(\mathfrak{d}_{v})$ in the same way as in [2, \S 3, No. 3].

LEMMA. $\mathcal{V}_{v}(\mathfrak{d}_{v})$ is finite dimensional. Moreover, if the restriction of $\pi_{v}$

to $K_{v}$ contains the identity representatiOn and if $\mathfrak{d}_{v}=1$ , then $\mathcal{V}_{v}(\mathfrak{d}_{v})$ is one-
dimensional.

PROOF. If $c\chi_{v}$ is a division algebra, the first assertion is trivial since
$\pi_{v}$ itself is finite dimensional, and the second assertion follows from the fact
that if $\pi_{v}$ contains the identity representation of $K_{v}$ , then $\pi_{v}$ is one-dimensional.

Let us assume that $J\zeta_{v}^{x}=GL_{2}(F_{v})$ .
i) $\pi_{v}$ is a representation of principal series (special representations are

included). In this case $\pi_{v}$ is realized in a subspace of some $\mathcal{B}(\mu_{1}, \mu_{2})$ . Since
$GL_{2}(F_{v})=TK_{v}^{1}$ , a function in $\mathcal{B}(\mu_{1}, \mu_{2})$ is determined by its restriction to $K_{v}^{1}$ .
A function $\varphi$ on $K_{v^{1}}$ which transforms according to $\mathfrak{d}_{v}$ by $\varphi(g)\rightarrow\varphi(gk)$

$(k\in K_{v^{1}})$ is a linear combination of the coefficients of $\mathfrak{d}_{v}$ . Hence they form
a finite dimensional space. This proves the first assertion. The second
assertion is obvious.

ii) $\pi_{v}$ is absolutely cuspidal ( $F_{v}$ is a non-archimedean local field). Let
the notation be the same as in [2, \S 5, No. 6], and assume that $\Psi$ is a character
of $F_{v}$ of conductor $\mathfrak{o}_{v}$ . Put

$H_{m}=\{k\in K_{v^{1}}|k\equiv 1(mod \mathfrak{p}^{m})\}$ .
It is enough to prove that the space $\mathcal{V}_{m}$ of all $H_{m}$-invariant functions in
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$S(F_{v}^{x})$ is finite dimensional. Put $\varphi^{\prime}=\pi_{v}(w)\varphi$ for $\varphi\in \mathcal{V}_{m}$ . Since $H_{m}$ is normal
in $K_{v^{1}},$ $\varphi^{\prime}$ is again in $\mathcal{V}_{m}$ . As in the proof of [2, Lemma 14], we see imme-
diately that the supports of $\varphi$ and $\varphi^{\prime}$ are contained in $\mathfrak{p}^{-m}$. Furthermore, if
we write

$ a_{n}(\nu)=\int_{0_{v}^{\times}}\varphi^{\prime}(\varpi^{n}\epsilon)\nu(\epsilon)d\epsilon$

$ b_{n}(\nu)=\eta_{v}(\varpi)^{n}\int_{0_{v}^{x}}\varphi(\varpi^{-n_{6}})\nu^{-1}\nu_{0}^{-1}(\epsilon)d\epsilon$ ,

we obtain

$\sum_{\eta=-\infty}^{\infty}t^{n}a_{n}(\nu)=(\sum_{n=-\infty}^{\infty}t^{n}b_{n}(\nu))(\sum_{n=-\infty}^{-2}t^{n}C_{n}(\nu))$

for all $t\in C$ with $|t|=1$ and for all characters $\nu$ of $0_{v}^{\times};$ $a_{n}(\nu)=0$ if $n<-m$
and $b_{n}(\nu)=0$ if $n>m$ . Hence $a_{n}(\nu)=0$ if $n>m-2$ . It implies that the sup-
port of $\varphi^{\prime}$ is contained in $\mathfrak{p}^{-m}-\mathfrak{p}^{m-1}$ . Interchanging the role of $\varphi$ and $\varphi^{\prime}$ , we
see that the same is true for $\varphi$ .

Let $\nu$ be a character of $\mathfrak{o}_{v}^{\times}$ and $M=M(\nu)$ the smallest integer such that
$\nu(1+\mathfrak{p}\eta=1$ . By [1, Proposition 2.16.6], if $M$ is large enough, then $C_{n}(\nu)\neq 0$

if and only if $n=-2M$. For such a $\nu$ , we have

$a_{n-2M}(\nu)=b_{n}(\nu)C_{-2K}(\nu)$

and hence $b_{n}(\nu)=0$ if $n-2M<-mi$ . $e$ . if $n<2M-m$ . Hence, if $2M-m>m$ ,
then $b_{n}(\nu)=0$ for all $n$ . We see that there is an integer $M_{0}$ such that $b_{n}(\nu)$

$=0$ for all $n$ and for all $\nu$ with $M(\nu)>M_{0}$ . It follows that $\varphi(\varpi^{-n}\epsilon)$ is, as a
function of $\epsilon$ , a linear combination of $\nu\nu_{0}(\epsilon)$ with $M(\nu)\leqq M_{0}$ . Evidently such
functions with support in $\mathfrak{p}^{-m}-\mathfrak{p}^{m-1}$ form a finite dimensional space. This
proves the lemma. (Note that no absolutely cuspidal representation contains
the identity representation of $K_{v}.$)

2. Since $\mathcal{V}(\mathfrak{d})=\otimes \mathcal{V}_{v}(\mathfrak{d}_{v})$ , the lemma shows that $\mathcal{V}(\mathfrak{d})$ is Pnite dimen-
sional. If $\mathcal{V}$ is the space of K-finite functions in an irreducible closed sub-
space $-\mathcal{L}$ of $L_{0}^{2}(\eta, JC_{A}^{x})$ , we $ha^{l}ve\mathcal{L}(\mathfrak{d})=\mathcal{V}(\mathfrak{d})$ . In fact, for every $\varphi\in \mathcal{L}$ and
for every $\epsilon>0$ , there exists a $\varphi^{\prime}\in \mathcal{V}$ such that $\Vert\varphi-\varphi^{\prime}\Vert<\epsilon$ . Then

$\Vert E(\mathfrak{d})\varphi-E(\mathfrak{d})\varphi^{\prime}\Vert<\epsilon\int_{K^{1}}|\chi_{\mathfrak{d}}|dk$

and hence $\mathcal{L}(\mathfrak{d})$ is the closure of $\mathcal{V}(\mathfrak{d})$ . Since $\mathcal{V}(\mathfrak{d})$ is finite dimensional
and closed, the both spaces are the same. This completes the proof of [2,

Lemma 2].
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