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\S 1. Introduction.

In [10], the big Picard theorem was generalized by P. Montel to the
case of a meromorphic function $\varphi(z)(\not\equiv 0)$ which satisfies the condition that

the multiplicities of any zeros of $\varphi(z),$ $\frac{1}{\varphi(z)}$ and $\varphi(z)-1$ are always multiples

of $p,$ $q$ and $r$ , respectively, where $p,$ $q$ and $r$ are arbitrarily fixed positive
integers with

$\frac{1}{p}+\frac{1}{q}+\frac{1}{r}<1$ .

The main purpose of this paper is to give analogous generalizations of
the extension theorems and degeneracy theorems of holomorphic maps into
the N-dimensional complex projective space $P_{N}(C)$ omitting some hyperplanes
given in the previous papers [4] and [5].

Let $\{H_{i} ; 1\leqq i\leqq q\}(q\geqq N+2)$ be hyperplanes in $P_{N}(C)$ located in general
position. Associate with each $H_{i}$ a positive integer $m_{i}(\leqq+\infty)$ such that

(1.1) $\sum_{t=1}^{N+1}\frac{1}{m_{i}}+\frac{1}{m_{q}}<\frac{1}{N}$

when they are arranged as $m_{1}\geqq m_{2}\geqq\ldots\geqq m_{q}$ by a suitable change of indices.
We consider in this paper a meromorphic map $f$ of a domain $D$ in $C^{n}$ into
$P_{N}(C)$ with the property that $f(D)\not\in H_{i}(1\leqq i\leqq q)$ and the intersection multi-
plicity of the image of $f$ with each $H_{i}$ at a point $w$ is always a common
multiple of all $m_{j}’ s$ for 7 with $w\in H_{j}$ . If the image of $f$ omits any $ H_{i}(1\leqq$

$i\leqq q)$ , then we can take $ m_{i}=\infty$ or $\frac{1}{m_{i}}=0$ in the above and so (1.1) is

necessarily valid. Holomorphic maps studied in [4] and [5] are thus a special
case of what is treated here.

The first main result in this paper is the following generalization of
Theorem A in [4].

Let $f$ be a meromorphic map of a domain $D$ excluding a nowhere dense
analytic subset $S$ into $P_{N}(C)$ with the above property. Then $f$ has a meromor-
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phic extension to the totality of $D$ or $f(D-S)$ is included in some linear sub-
variety of dimension $2N+1-q$ (Corollary 5.7).

Theorem $B$ in [4] will be generalized as follows:
If $f$ is a meromorphic map of $C^{n}$ into $P_{N}(C)$ with the above ProPerty, then

$f(C^{n})$ is included in a linear subvariety of dimension $[\frac{N}{q-N}]$ , where $[a]$

denotes the largest integer which does not exceed a number $a$ .
By using this, it will be possible to determine completely types of mero-

morphic maps of $C^{n}$ into $P_{N+1}(C)$ with images in the hypersurface

$V^{d}$ : $w_{0}^{d}+w_{1}^{d}+\cdots+w_{N+1}^{d}=0$

in the case $d>N(N+2)$ $($Corollary $6.4)^{1)}$ . Here, the author does not know
if the number $N(N+2)$ is best possible for analogous conclusions. Further
studies in this direction are expected.

We shall prove the above main theorems under slightly weaker conditions
(Theorem 5.4 and Theorem 6.2). The main tool to be used for the proof is
a defect relation given by H. Cartan in [2] which is a generalization of
Nevanlinna’s second fundamental theorem to the case of a system of holo-
morphic functions. With the aid of his defect relation, we shall give a gener-
alization of a classical theorem of E. Borel to the case of holomorphic func-
tions of several variables with zeros of sufficiently large multiplicities and,
using this, prove the above main theorems by a similar argument as in [4].

\S 2. Multiplicities of zeros of holomorphic functions of
several variables.

Let $f(z)$ be a not identically zero holomorphic function on a domain $D$

in $C^{n}$ . Take a point $z^{0}$ in the analytic set $N_{f}$ $:=\{z\in D;f(z)=0\}$ . We de-
note by $O_{z^{0}}$ the local ring consisting of all germs at $z^{0}$ of holomorphic func-
tions in a neighborhood of $z^{0}$ and by $\mathcal{I}_{z^{0}}(N_{f})$ the ideal of all elements in $O_{z^{0}}$

which vanish identically on $N_{f}$ . As is well-known, $\mathcal{I}_{z^{0}}(N_{f})$ is a principal
ideal of $O_{z^{0}}$ and so has a generator $g$.

DEFINITION 2.1. We shall call $f$ to have a zero of multiplicity $m$ at $z^{0}$ if
there is some $h\in O_{z^{0}}$ with $h\not\in \mathcal{I}_{z^{0}}(N_{f})$ such that $f=g^{m}h$ , where $m$ is obviously
determined independently of any choice of a generator $g$.

Let $N_{f}=\bigcup_{\ell}N_{f}^{\iota}$ be the irreducible decomposition of $N_{f}$ . We have easily

(2.2) For each $N_{f},$ $f$ has a zero of the same multiplicity $m_{c}$ at any pOint
in $N_{f}^{\zeta}-\bigcup_{\iota\neq\iota},$

$N_{f}^{\zeta^{\prime}}$ . And, any other $z$ in $N_{f}$ is of multiPlicity $m:=\min\{m_{c} ; z\in N_{f}^{f}\}$ .

1) Recently, the author received the information that M. L. Green obtained also
the similar result on holomorphic maps into $V^{d}$ (cf., [7]).
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Now, let us consider a holomorphic function $f(\not\equiv 0)$ on a domain
$D:=G\times\tilde{D}$ in $C^{n}$ , where $G$ is an arbitrary domain in $C$ and $\tilde{D}$

$:=\{|z_{2}|<r_{2},$ $\cdots$ ,
$|z_{n}|<r_{n}\}$ $(r_{2}>0, \cdots , r_{n}>0)$ . For any fixed $\tilde{z}=(z_{2}, \cdots , z_{n})\in\tilde{D}$ we define a
holomorphic function $f_{z}^{*}(z_{1}):=f(z_{1},\tilde{z})$ of $z_{1}$ on $G$ .

(2.3) If $f(z)$ has a zero of multiPlicity $m$ at $z^{0}$ $:=(z_{1}^{0},2^{0})$ and $f_{p}^{*}(z_{1})\not\equiv 0$ ,

then $f_{z^{0}}^{*}(z_{1})$ has a zero of multiplicity $\geqq m$ at $z_{1}^{0}$ .
In fact, a generator $g$ of $\mathcal{I}_{z^{0}}(N_{f})$ can be written as $g_{\overline{z}^{0}}^{*}(z_{1})=(z_{1}-z_{1}^{0})\tilde{g}(z_{1})$

with some holomorphic function $\tilde{g}(z_{1})$ in a neighborhood of $z_{1}^{0}$ . Therefore,
if $f$ can be written $f=g^{m}h(h\in \mathcal{O}_{z^{0}})$ , we get

$f_{z^{0}}^{*}(z_{1})=(z_{1}-z_{1}^{0})^{m}\tilde{g}(z_{1})^{m}h_{z^{0}}^{*}(z_{1})$ ,
which implies (2.3).

More precisely, we can prove
PROPOSITION 2.4. There exists a subset $E$ of $D$ which is almost analytically

thin, $i$ . $e.$ , included in the union of at most countably many nowhere dense
locally analytic sets, such that for any $2\in D-Ef_{z}^{*}\not\equiv 0$ and the multiplicity of
any zero $z_{1}$ of $f_{z}^{*}$ equals that of a zero $z:=(z_{1},2)$ of $f$.

PROOF. Since $D$ is a Cousin II domain, we can find a holomorphic func-
tion $g$ on $D$ which gives a generator of $\mathcal{I}_{z}(N_{f})$ for any $z$ in $N_{f}$ . Consider
the set

$E_{1}$ $:=$ { $\tilde{z}\in\tilde{D};g(z_{1},\tilde{z})\equiv 0$ as a function of $z_{1}$ }

which is evidently a nowhere dense analytic subset of $\tilde{D}$ . Then

$A:=N_{f}\cap\{\frac{\partial g}{\partial z_{1}}=0\}\cap(G\times(\tilde{D}-E_{1}))$

is an analytic set of codimension $\geqq 2$ in $G\times(\tilde{D}-E_{1})$ . In fact, otherwise, there

is a point $z^{0}=(z_{1}^{0},\tilde{z}^{0})\in A$ such that $N_{f}\cap U\subset\{\frac{\partial g}{\partial z_{1}}=0\}\cap U$ for a neighbor-

hood $U$ of $z^{0}$ . We may write

(2.5) $\frac{\partial g}{\partial z_{1}}=h\cdot g$ or $\frac{dg_{z^{0}}^{*}}{dz_{1}}=h_{\overline{z}^{0}}^{*}\cdot g_{z^{0}}^{*}$

with some $h\in O_{z^{0}}$ . Since $g_{\overline{z}^{0}}^{*}(z_{1}^{0})=0$ , by differentiating (2.5) repeatedly and

observing their values at $z_{1}=z_{1}^{0}$ successively, we have easily $\frac{d^{l}g_{\overline{z}^{0}}^{*}}{dz_{1}^{l}}=0$ at $z_{1}^{0}$

for any $l=1,2,$ $\cdots$ It then follows from the theorem of identity that $g_{z^{0}}^{*}\equiv 0$ ,
$i$ . $e.,\tilde{z}^{0}\in E_{1}$ , which is a contradiction. Now, by the projection map $\pi:(z_{1},\tilde{z})$

$-\tilde{z}$ , we define $E_{2}$ $:=\pi(A\cup(N_{f})_{sing})$ , where $(N_{f})_{sing}$ denotes the set of all
singularities of the analytic set $N_{f}$ . Since dim $(A\cup(N_{f})_{sing})\leqq n-2,$ $E_{2}$ is an al-
most analytically thin subset of $\tilde{D}-E_{1}$ . We shall show that $E;=E_{1}\cup E_{2}$ satis-
fies the desired condition of Proposition 2.4. Let $f$ have a zero of multiplicity

$m$ at $z^{*}=(z_{1}^{*},\tilde{z}^{*})$ in $N_{f}\cap(G\times(D-E))$ . Since $\frac{\partial g}{\partial z_{1}}\neq 0$ at $z^{*},$ $g_{z}^{*}.(z_{1})$ has a
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zero of multiplicity one at $z_{1}^{*}$ . On the other hand, if $f=g^{m}h$ in a neigh-
borhood of $z^{*}$ for some $h\in O_{z}$ . with $h\not\in \mathcal{I}_{z^{*}}(N_{f})$ , then $h(z^{*})\neq 0$ because $N_{f}$ is
regular at $z^{*}$ . Therefore, $f_{z^{*}}^{*}(z_{1})$ has a zero of multiplicity $m$ at $z_{1}=z_{1}^{*}$ . This
completes the proof.

Let us take next a holomorphic function $f(z_{1}, \cdots , z_{n})$ on $C^{n}$ , where we
assume $f(0, \cdots, 0)\neq 0$ . For any arbitrarily Pxed $z=(z_{1}, \cdots, z_{n})(\mp 0:=(0, \cdots, 0))$ ,
consider a holomorphic function $f_{z}^{\#}(u):=f(zu)$ of $u$ , where $zu=(z_{1}u,$ $z_{2}u$ . $\cdots$ ,
$z_{n}u)$ .

Similarly to (2.3), we see easily
(2.6) If $f$ has a zero of multipljcity $m$ at $z^{0}(\neq 0)$ and $f_{z^{0}}^{\#}(u)\not\equiv 0$ , then $f_{z^{0}}^{\#}(u)$

has a zero of multipljcity $\geqq m$ at $u=1$ .
And, we can prove
PROPOSITION 2.7. Let $E$ be the set of all points $z(\neq 0)$ in $C^{n}$ such that

$f_{z}^{\#}(u)\equiv 0$ or the multiplicify of some zero $u^{0}$ of $f_{z}^{\#}$ is larger than that of a zero
$zu^{0}$ of $f$. Then, for the canonical map $\tilde{\pi}$ ; $(z_{1}, \cdots , z_{n})-,z_{1}$ : $z_{2}$ ; $\ldots$ : $z_{n}$ of $C^{n}-\{0\}$

into $P_{n-1}(C)$ , the set $\tilde{\pi}(E)$ is almost analytically thin in $P_{n-1}(C)$ .
PROOF. As in the proof of Proposition 2.4, we take a holomorphic func-

tion $g$ on $C^{n}$ which gives a generator of $\mathcal{I}_{z}(N_{f})$ for any $z\in N_{f}$ . If we put

$E_{1}$ $:=\{z\in C^{n}-\{0\} ; g_{\epsilon}^{*}(u)\equiv 0\}$

in this case, $\tilde{\pi}(E_{1})$ is obviously the union of at most countably many locally
analytic sets in $P_{n-1}(C)$ , each of which has no interior point by the assump-
tion $f\not\equiv O$ . That is to say, $\tilde{\pi}(E_{1})$ is almost analytically thin. Now, assume
that the analytic set

$A:=N_{f}\cap\{z_{1}--+\partial z_{1}\partial g\ldots+z_{n_{Z_{n}}}^{g}\frac{\partial}{\partial}-=0\}\cap(C^{n}-E_{1})$

is of codimension one. There is a point $z^{0}$ in $A$ such that

$N_{f}\cap U\subset\{z_{1}\frac{\partial g}{\partial z_{1}}+\cdots+z_{n}\frac{\partial g}{\partial z_{n}}=0\}\cap U$

for a neighborhood $U$ of $z^{0}$ . Taking some $h\in O_{z^{0}}$ and shrinking $U$ if neces-
sary, we may describe

(2.8) $z_{1}\frac{\partial g}{\partial z_{1}}+\cdots+z_{n}\frac{\partial g}{\partial z_{n}}=h\cdot g$

on $U$. By substituting $z_{1}^{0_{\mathcal{U}}},$ $\cdots$ , $z_{n}^{0}u$ into $z_{1},$
$\cdots$ , $z_{n}$ in (2.8), we may rewrite

(2.8) as
$\frac{dg_{z^{0}}^{\#}}{du}=\frac{1}{u}h_{z^{0}}^{\#}(u)g_{z^{0}}^{\#}(u)$

in a neighborhood of $u=1$ . Therefore, since $[\frac{d}{du}(g_{z^{0}}^{\#}(u))]_{u=1}=h(z^{0})g(z^{0})=0$ ,

as in the proof of Proposition 2.4 we can show
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$[\frac{d^{l}}{du^{l}}(g_{z^{0}}^{\#}(u))]_{u=1}=0$

for any $l=1,2,$ $\cdots$ and so $z^{0}\in E_{1}$ . This is a contradiction. We have codim $A$

$\geqq 2$ . Then, $E^{*}:$ $=\tilde{\pi}(E_{1}\cup A\cup(N_{f})_{sing})$ is almost analytically thin. To complete
the proof, we have only to show $\tilde{\pi}(E)\subset E^{*}$ . Take a point $z\in N_{f}$ with $\tilde{\pi}(z)$

$\not\in E^{*}$ . Then

$[\frac{d}{du}g_{z}^{\#}(u)]_{u=u^{0}}=\frac{1}{u}0-(z_{1}u^{0}\frac{\partial g}{\partial z_{1}}+\cdots+z_{n}u^{0}\frac{\partial g}{\partial z_{n}})(zu^{0})\neq 0$

for any $u^{0}(\neq 0)$ with $zu^{0}\in N_{f}$ because $zu^{0}\not\in A\cup E_{1}$ . So, $g_{z}^{\#}(u)$ has no zeros
of multiplicity $\geqq 2$ . By the same reason as in the proof of Proposition 2.4,
we can easily conclude that the multiplicity of any zero $zu^{0}$ of $f$ equals that
of a zero $u^{0}$ of $f_{z}^{\#}(u)$ . Thus we have Proposition 2.7.

\S 3. Generalizations of a theorem of E. Borel I.

To generalize a classical theorem of E. Borel (cf., [12], Proposition 5.15),

we recall some results given by H. Cartan ([2]). Let $D$ be a domain in
the complex plane $C$ which includes $\{r_{0}\leqq|z|<+\infty\}(r_{0}\geqq 0)$ and $f=(f_{1},$ $f_{2}$ ,

$f_{p})$ a system of $p$ holomorphic functions on $D$ with no common zeros,
where we mean $D=C$ in the case $r_{0}=0$ . The characteristic function of $f$ is
defined as

$ T(r, f):=\frac{1}{2\pi}\int_{0}^{2\pi}u(re^{i\theta})d\theta-\frac{1}{2\pi}\int_{0}^{2\pi}u(r_{0}e^{i\theta})d\theta$ ,

by the function
$u(z):=\max_{1\leqq j\leqq p}$ log $|f_{j}(z)|$ .

As is easily shown (cf., [2], p. 10),

(3.1) If $f$ is transcendental, $i$ . $e.,$ $\frac{f_{i}}{f_{j}}$ has an essential singularity at $\infty$ for
some $i$ and $j(\neq)$ , then

$\lim_{r\rightarrow+\infty}\frac{T(r,f)}{\log r}=+\infty$ .

DEFINITION 3.2. Let $f(z)$ be a holomorphic function on $D$ such that $f(z)\neq 0$

on the set $\gamma_{\tau_{0}}$ $:=\{|z|=r_{0}\}$ . For a positive integer $p$ , we define

$N_{p}(r, f)=\sum_{a_{\mu}}$ min $(m_{\mu}, p)\log\frac{r}{|a_{\mu}|}$

where we sum up over all zeros $a_{\mu}$ of multiplicity $m_{\mu}$ of $f(z)$ in $\{r_{0}<|z|\leqq r\}$ .
H. Cartan gave the following fundamental inequality for the case $r_{0}=0$ ,

which can be proved by the same argument as in [2] for the case $r_{0}>0$ too
(cf., [1]).
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THEOREM 3.3. Let $f=$ $(f_{1}, f_{2}, \cdots , f_{p})$ be a system of holomorphic functions
on $D$ with no common zeros whose Wronskian

$W^{f}(z):=\left|\begin{array}{llll}f_{1} & f_{2} & \cdots & f_{p}\\f_{1} & f_{2} & \cdots & f_{p}\\\cdots & \cdots & \cdots & \cdots\\ f_{1}^{(p-1)}f_{2}^{(p-1)} & \cdots & \cdots & f_{p}^{(p-1)}\end{array}\right|\neq 0$

on $\gamma_{r_{0}}$ and consider $q(>P)$ linear combinations

$F_{j}$ $:=a_{j}^{1}f_{1}+a_{j}^{2}f_{2}+\cdots+a?f_{p}$ $(1\leqq j\leqq q)$

such that any minor of order $p$ of the matrix $((a_{j}^{i}))$ does not vanish and $F_{j}(z)$

$\neq 0$ on $\gamma_{r_{0}}$ for any $j$ . Then

$(q-P)T(r, f)\leqq\sum_{j=1}^{q}N_{p- 1}(r, F_{f})+S(r)$ ,

where
$S(r)=O(\log r)+O(\log T(r, f))$

as $ r\rightarrow+\infty$ outside a set of finite linear measure.
REMARK. In Theorem 3.3, if $r_{0}=0$ and $f$ is not transcendental, we have

$S(r)=O(1)$ .
In fact, in the original proof of Theorem 3.3, the evaluation of $S(r)$ is essen-
tially reduced to the evaluations of $m(r,$ $\frac{F^{\prime}}{F})$ for some meromorphic func-

tions $F$. As is easily seen, we have always

$m(r,$ $\frac{F^{\prime}}{F})=O(1)$

for any rational function $F(\not\equiv 0)$ , which concludes $S(r)=O(1)$ in our case.
As an immediate consequence of Theorem 3.3, putting

$\delta_{p- 1}(f, F_{i}):=1-\underline{\varlimsup_{r+\infty}}\frac{N_{p- 1}(r,F_{i})}{T(r,f)}$

we have the following defect relation (cf., [2], p. 20).

COROLLARY 3.4. Let $f$ and $F_{j}$ satisfy the same conditions as in Theorem
3.3 and, for the particular case $r_{0}>0$ , suppOse furthermore that $f$ is transcen-
dental. Then,

$\sum_{t=1}^{q}\delta_{p- 1}(f, F_{i})\leqq p$ .

With the help of these H. Cartan’s results, we can prove the following
generalization of the theorem of E. Borel.

THEOREM 3.5. Let $f_{0},$ $f_{1},$ $\cdots$ , $f_{p}(p\geqq 2)$ be not identically zero holomorphic
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functions on $C^{n}$ satisfying the following condifions;
a) each $f_{i}$ has no zeros of multiplicity $<m_{i}$ for a fixed Positive integer $m_{i}$ ,

b) $\sum_{i}\frac{1}{m_{i}}<\frac{1}{p-1}$ ,

c) if $f_{i_{0}},$ $\cdots$ , $f_{i_{k}}(1\leqq k\leqq P)$ have a common zero $z_{0}$ of multiplicities $n_{i_{0}},$ $n_{i_{1}}$ ,
... , $n_{t_{k}}$ respectively, then

$n_{l}^{\prime}$

$:=n_{i_{l}}-$ min $(n_{i_{0}}, n_{i_{1}}, \cdots , n_{i_{k}})\geqq m_{il}$

for any 1 with $n_{l}^{\prime}>0$ and

d) $\frac{f_{i}}{f_{j}}\not\equiv const$ . for any $i$ and $j(\neq)$ . Then $f_{0},$ $f_{1},$ $\cdots$ , $f_{p}$ are linearly inde-

pendent over $C$.
PROOF. It suffices to show that for any given relation

\langle 3.6) $c^{0}f_{0}+\cdots+c^{p}f_{p}=0$

\langle $c^{i}\in C,$ $0\leqq i\leqq p$) at least one $c^{i}$ vanishes, under the assumption that Theorem
3.5 is true for the case $\leqq P-1$ . In fact, from this we can easily conclude
Theorem 3.5 by the induction on $p$ , because any $f_{i}$ and $f_{j}(i\neq j)$ are trivially
linearly independent and for any $f_{i_{0}},$ $f_{i_{1}},$ $\cdots$ , $f_{i_{k}}(0\leqq i_{0}<i_{1}<\ldots<i_{k}\leqq p)$ the
system $(f_{i_{0}}, f_{i_{1}}, \cdots , f_{i_{k}})$ satisPes also the conditions $a$) $\sim d$). On the other
hand, by Proposition 2.7 we can find a point $z\in C^{n}-\{0\}$ such that for any $i$

$(f_{i})_{\epsilon}^{\#}\underline{\neq}0$ and the multiplicity of any zero $u^{0}$ of $(f_{i})_{z}^{*}(u)$ equals that of a zero
$zu^{0}$ of $f_{i}$ , where we may assume $\frac{(f_{i})_{z}^{\#}}{(f_{j})_{z}^{*}}\not\equiv const$ . for any $i$ and $j(\neq)$ because

the $\tilde{\pi}$ -image of the set

$\{z;\frac{f_{i}(z_{1}u,\cdots,z_{n}u)}{f_{j}(z_{1}u,\cdots,z_{n}u)}\equiv\frac{f_{i}(0,\cdot.\cdot..\cdot,0)}{f_{j}(0,,0)}$ as a function of $u\}$

is almost analytically thin in $P_{n-1}(C)$ . Then, $(f_{0})_{z}^{*},$ $(f_{1})_{t}^{\#},$ $\cdots$ , $(f_{p})_{z}^{*}$ satisfy all
assumptions of Theorem 3.5. This shows that there is no harm in assuming
$n=1$ for our purpose. The variable $z_{1}$ is replaced by $z$ in the following.
Assume that $c^{0}\neq 0,$ $c^{1}\neq 0,$ $\cdots$ , $c^{p}\neq 0$ . We put $n_{f}(z)=m$ if $z$ is a zero of
multiplicity $m$ of a holomorphic function $f$ and $n_{f}(z)=0$ if $f(z)\neq 0$ . Take a
holomorphic function $g$ on $C$ such that $n_{g}(z)=\min(n_{f_{0}}(z), \cdots , n_{f_{p-1}}(z))$ for any

$z\in C$. By (3.6) $n_{f_{p}}(z)\geqq n_{g}(z)$ for any $z\in C$. Each $g_{i}=\frac{c^{i}f_{i}}{g}(0\leqq i\leqq P)$ is a

well-defined holomorphic function on $C$ . Consider the system $g=(g_{0},$ $g_{1},$ $\cdots$ ,
$g_{p-1})$ which has no common zeros. Then, the Wronskian $W^{g}$ of $g$ does not
vanish identically, because $f_{0},$ $f_{1},$ $f_{p-1}$ are linearly independent over $C$ by

the: induction hypothesis. Let $F_{i}$ $:=g_{i}(0\leqq i\leqq p-1)$ and $F_{p}$ $:=g_{0}+g_{1}+\cdots$

$+g_{p-1}$ . Each $F_{i}(0\leqq i\leqq p)$ has no zeros of mulitiplicity $<m_{i}$ by the assump-
tions a) and c) and, moreover, may be assumed not to vanish at the origin.
Therefore,
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$N_{p-1}(r, F_{i})\leqq(p-1)N_{1}(r, F_{i})=\frac{p-1}{m_{i}}m_{i}N_{1}(r, F_{f})$

$\leqq\frac{p-1}{m_{i}}N(r, F_{i})$ .
On the other hand, we know

$N(r, F_{i})\leqq T(r, f)+O(1)$

(cf., [2], p. 11). From these facts, we can easily conclude

$\delta_{p-1}(f, F_{i})\geqq 1-\frac{p-1}{m_{i}}$ $(0\leqq i\leqq P)$ .
By Corollary 3.4, we have

$\sum_{i=0}^{p}(1-\frac{p-1}{m_{i}})\leqq\sum_{i=0}^{p}\delta_{p-1}(f, F_{i})\leqq p$ ,

which contradicts the assumption b). The proof is complete.
REMARK 3.7. (i) In Theorem 3.5, if $f_{i}$ has no zeros, we can take $ m_{i}=\infty$

and then the assumptions a), b) and c) are satisfied. So, Theorem 3.5 deduces
Proposition 5.15 in [12] as a special case.

(ii) If for any zero $z$ of $f_{i}n_{J_{i}}(z)$ is a common multiple of all $m_{j}’ s$ for $j$

with $f_{j}(z)=0$, then $\{f_{\mathfrak{i}}\}$ satisfies the conditions a) and c) of Theorem 3.5.
The author does not know if Theorem 3.5 remains valid without the

assumption c). In this connection, we can show only the following theorem,
which is essentially the same as Theorem 1 in [11].

THEOREM 3.8. Let $f_{0},$ $f_{1},$ $\cdots$ , $f_{p-1}(p\geqq 2)$ be holomorPhic functions on $C^{n}$

satisfying the conditions a) and b) of Theorem 3.5, where we put $ m_{p}=\infty$ . If
(3.9) $f_{0}+f_{1}+\cdots+f_{p-1}=1$ ,

then at least one $f_{i}$ is of constant.
PROOF. As in the proof of Theorem 3.5, there is a point $z\in C^{n}-\{0\}$

such that $(f_{i})_{z}^{\#}(u):=f_{i}(zu)$ is not of constant and satisfies the condition a)

for any $f_{i}$ with $f_{i}\not\equiv const$ . Therefore, we may assume $n=1$ in Theorem 3.8
from the beginning. Consider the system $f=$ $(f_{0}, f_{1}, \cdots , f_{p-1})$ , which has
obviously no common zeros. By Corollary 3.4 and assumptions a) and b),

$f_{0},$ $f_{1},$ $\cdots$ , $f_{p-1}$ are necessarily linearly dependent. So,

(3.10) $c^{0}f_{0}+c^{1}f_{1}+$ $+c^{p- 1}f_{p-1}=0$

with some $(c^{0}, c^{1}, \cdots , c^{p- 1})\neq(0,0, \cdots , 0)$ , where we assume $c^{p- 1}=1$ . By sub-
tracting (3.10) from the both sides of (3.9), we obtain

$d^{0}f_{0}+d^{1}f_{1}+$ $+d^{p- 2}f_{p-2}=1$ .
Thus, the proof is reduced to the case $\leqq P-1$ . By the induction on $p$ , we
have easily Theorem 3.8.
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\S 4. Generalizations of a theorem of E. Borel II.

The purpose of this section is to prove
THEOREM 4.1. Consider the domains $D:=\{|z_{1}|<1, \cdots , |z_{n}|<1\}$ and

$D^{*}:$ $=\{0<|z_{1}|<1, |z_{2}|<1, \cdots , |z_{n}|<1\}$ in $C^{n}$ and not identically zero holo-
morphic functions $f_{0},$ $f_{1},$ $\cdots$ , $f_{p}$ on $D^{*}$ satisfying the conditions a), b), c) of
Theorem 3.5 and

$d^{\prime})$ each $\frac{f_{i}}{f_{j}}(i\neq j)$ can not be extended to the totality of $D$ as a mero-

morphic function.
Then, if

$\alpha^{0}f_{0}+\alpha^{1}f_{1}+\cdots+\alpha^{p}f_{p}\equiv 0$

for meromorPhic functions $\alpha^{0},$ $\alpha^{1},$ $\cdots$ , $\alpha^{p}$ on $D$ , then

$\alpha^{0}\equiv\alpha^{1}\equiv\ldots\equiv\alpha^{p}\equiv 0$ .
For the proof, we need
LEMMA 4.2. Let $D$ and $D^{*}$ be domains as in Theorem 4.1 and $f(z_{1}, \cdots , z_{n})$

a meromorphic function on $D^{*}$ . SuppOse that there is a subset $P$ of $\tilde{D}:=$

$\{|z_{2}|<1, \cdots , |z_{n}|<1\}$ of positive capacity in the sense of [3], p. 3 such that
for any fixed 2 in $P$ a meromorphic function $f_{z}^{*}(z_{1}):=f(z_{1}, Z)$ of $z_{1}$ is well-
defined and has a removable singularity at $z_{1}=0$ . Then, $f$ is extended to the
totality of $D$ as a meromorphjc function.

PROOF. We may assume $f\not\equiv O$ . Let $N^{0}$ and $N^{\infty}$ be the set of all zeros
and all poles of $f$ respectively. And, consider the set

$E:=$ { $\tilde{z}\in\tilde{D};(z_{1},\tilde{z})\in N^{0}\cup N^{\infty}$ for any $z_{1}(0<|z_{1}|<1)$ },

which is evidently of capacity zero. Moreover, $\pi(N^{0}\cap N^{\infty})$ is also of capacity
zero because codim $(N^{0}\cap N^{\infty})\geqq 2$ , where $\pi$ denotes the canonical projection
map of $D$ onto $\tilde{D}$ . It may be assumed that $ P\cap(E\cup\pi(N^{0}\cap N^{\infty}))=\emptyset$ . For
the Proof of Lemma 4.2, it suffices to show that $f$ is meromorphically extended
to a neighborhood of at least one point $z^{0}=(0,\tilde{z}^{0})$ by virtue of the well-
known theorem of E. E. Levi. We can easily take a point $\tilde{z}^{0}$ in $P$ such that
$P\cap U$ is of positive capacity for any neighborhood $U$ of $\tilde{z}^{0}$ . Choosing such
$U$ and a real number $r(0<r<1)$ suitably, we have

$(\{|z_{1}|=r\}\times U)\cap(N^{0}\cup N^{\infty})=\emptyset$ ,

where $U$ is chosen as $ U\cap E=\emptyset$ . Then the analytic set $(N^{0}\cup N^{\infty})\cap(\{0<|z_{1}|$

$<r\}\times U)$ can be extended to an analytic set in $\{|z_{1}|<r\}\times U$. In fact, in this
situation, we can apply a result in [3]. In Theorem III of [3], put $D_{1}$ $:=U$,
$D_{2}$ $:=\{|z_{1}|<r\},$ $D:=\{|z_{1}|<r\}\times U$, $S:=\{z_{1}=0\}\times U,$ $\sim A:=$ an irreducible
component of $(N^{0}\cup N^{\infty})\cap(\{|z_{1}|<r\}\times U)$ and consider a plurisubharmonic
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function $u(z_{1},\tilde{z})=\log|z_{1}|$ on $A$ . Since $A\cap\{\tilde{z}=\tilde{z}^{*}\}$ isa finite set for any $\tilde{z}^{*}$

in $P\cap U$ , all assumptions of Theorem III of [3] are satisfied. We can con-
clude that $\overline{A}\cap(\{|z_{1}|<r\}\times U)$ is analytic. Moreover, it is not difficult to
show that $(N^{0}\cup N^{\infty})\cap(\{|z_{1}|<r\}\times U)$ has only finitely many irreducible com-
ponents. Thus $(\overline{N}^{0}\cup\overline{N}^{\infty})\cap(\{|z_{1}|<r\}\times U)$ itself is analytic. Then, if $U$ is
chosen as a polydisc, we can easily take a not identically zero meromorphic
function $h$ on $\{|z_{1}|\leqq r\}\times U$ such that $h\cdot f$ has no zeros and no poles on
$\{0<|z_{1}|\leqq r\}\times U$ . For our purpose, $f$ itself may be assumed to be holomorphic
and vanish nowhere on $\{0<|z_{1}|\leqq r\}\times U$ from the beginning.

Now\dagger for the above $r,$ $U$ and an arbitrary $\tilde{z}\in U\cap P$,

$ n(\tilde{z}):=\frac{1}{2\pi i}\int_{|\zeta|=r}\frac{\frac{\partial f}{\partial z_{1}}(\zeta,2)}{f(\zeta,\tilde{z})}d\zeta$

gives the order of zero at $z_{1}=0$ or $-\overline{n}(z)$ gives the order of pole as a mero-
morphic function of $z_{1}$ . Since $n(\tilde{z})$ is a continuous function of $\tilde{z}$ on $U$, it is
bounded below by an integer $m_{0}$ not depending on each $\tilde{z}\in U$. This shows

that $g(z_{J},\tilde{z}):=\frac{1}{z_{1}^{m_{0}}}f(z_{1},\tilde{z})$ has a holomorphic extension to $\{|z_{1}|<1\}$ for

any fixed $\tilde{z}\in P\cap U$, which equals

(4.3) $\frac{1}{2\pi i}\int_{|\zeta|=r}\frac{g(\zeta,2)}{\zeta-z_{1}}d\zeta$ .

On the other hand, (4.3) defines a well-defined holomorphic function $g(z_{1},\tilde{z})$

on the totality of $\{|z_{1}|<r\}\times U$ . Then $f(z_{1},\tilde{z})=z_{1}^{m_{0}}g(z_{1},\tilde{z})$ on $\{0<|z_{1}|<r\}\times U$

because it holds on a set $\{0<|z_{1}|<r\}\times(P\cap U)$ of positive capacity. This
shows that $f(z_{1},\tilde{z})$ has a meromorphic extension $z_{1}^{m_{0}}g(z_{1},\tilde{z})$ to $\{|z_{1}|<r\}\times U$.
The proof is complete.

We shall prove next the following

LEMMA 4.4. Let $f_{0},$ $f_{1},$ $\cdots$ , $f_{p}(p\geqq 2)$ be not identically zero holomorphic

functions on a domain $\{r_{0}<|z|<+\infty\}(r_{0}\geqq 0)$ which satisfy the conditions a),
b), c) of Theorem 3.5 and

$d$“) $\frac{f_{\ell}}{f_{j}}$ has an essential singularity at $\infty$ for any $i,$ $j(\neq)$ .
If $\alpha^{0}f_{0}+\alpha^{1}f_{1}+\cdots+\alpha^{p}f_{p}\equiv 0$ for holomorphic functions $\alpha^{0},$ $\alpha^{1},$

$\cdots,$
$\alpha^{p}$ on $\{r_{0}<$

$|z|<+\infty\}$ with removable singularities at $\infty$ , then $\alpha^{0}\equiv\alpha^{1}\equiv\ldots\equiv\alpha^{p}\equiv 0$ .
PROOF. The proof is given by the same argument as in the proof for

the case $n=1$ of Theorem 3.5. We state here only the outline of it. It
suffices to prove that at least one $\alpha^{\ell}$ vanishes identically under the assump-
tion that Lemma 4.4 is valid for the case $\leqq P-1$ . Suppose that $\alpha^{i}\not\equiv 0$ for
any $i(0\leqq i\leqq P)$ . Replacing $r_{0}$ by a sufficiently large one, we may assume
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$\alpha^{i}\neq 0$ on $\{r_{0}<|z|<+\infty\}$ for any $i$ . Choose a holomorphic function $g$ on $\{r_{0}<$

$|z|<+\infty\}$ such that each $g_{i}$
$:=\frac{\alpha^{\mathfrak{t}}f_{i}}{g}(0\leqq i\leqq P)$ is holomorphic and the system

$g=$ $(g_{0}, g_{1}, \cdots , g_{p-1})$ satisfies all assumptions of Corollary 3.4 for $F_{i}$ $:=g_{i}$ and
$F_{p}$ $:=g_{0}+g_{1}+\cdots+g_{p-1}$ . By using the assumptions a) and c) we can obtain
an absurd conclusion

$\sum_{t=0}^{p}(1-\frac{p-1}{m_{i}})\leqq\sum_{j=0}^{p}\delta_{p-1}(g, F_{i})\leqq p$

in this case too. We have thus Lemma 4.4.
PROOF OF THEOREM 4.1. By multiplied by the denominator of each $\alpha^{i}$ if

necessary, $\alpha^{i}(0\leqq i\leqq P)$ may be assumed to be holomorphic. By Proposition
2.4, we can take an almost analytically thin set $E$ with the property that
for any $f_{i}(0\leqq i\leqq P)(f_{i})_{z}^{*}\not\equiv 0$ and the multiplicity of any zero $z:=(z_{1},\tilde{z})$ of

$f_{i}$ equals that of a zero $z_{1}$ of $(f_{i})_{z}^{*}$ whenever $\tilde{z}\not\in E$ . Then, for any $\tilde{z}\not\in E$,
$(f_{0})_{z}^{*},$ $\cdots$ , $(f_{p})_{z}^{*}$ satisfy the conditions a), b) and c) of Theorem 3.5 as func-
tions on $\{0<|z_{1}|<1\}$ . On the other hand, if for any $i,$ $j(\neq)$ we denote by
$E_{ij}$ the set of all $\tilde{z}$ in $\tilde{D}:=\{|z_{2}|<1, \cdots , |z_{n}|<1\}$ with $\tilde{z}\not\in E$ such that
$\frac{(f_{i})_{\dot{z}}^{*}(z_{1})}{(f_{j})_{\overline{z}}^{*}(z_{1})}$ has a removable singularity at $z_{1}=0$ , then $E_{ij}$ is not of positive

$capacitybytheassumptiond^{\prime})andLemma4.2$ . The unionE*: $=E\cup(\bigcup_{i<j}E_{ij})$ is

of capacity zero and for any $\tilde{z}\in\tilde{D}-E^{*}$ each $\frac{(f_{i})_{z}^{*}}{(f_{j})_{z}^{*}}$ is well-defined and has

an essential singularity at $z_{1}=0$. Then, we can aPply Lemma 4.4 after a
change of variable $z:=\frac{1}{z_{1}}$ . It follows that $\alpha^{0}\equiv\ldots\equiv\alpha^{p}\equiv 0$ on $\{|z_{1}|<1\}$

$\times(\tilde{D}-E^{*})$ . Since $\tilde{D}-E^{*}$ is of positive capacity, we have the desired con-
clusion $\alpha^{0}\equiv\ldots\equiv\alpha^{p}\equiv 0$ on the totality of $D$ .

\S 5. Extensions of meromorphic maps.

Let $f$ be a meromorphic map of a domain $D(\subset C^{n})$ into $P_{N}(C)$ . By
definition, outside an analytic set $A$ of codimension $\geqq 2,$ $f$ is a well-defined
holomorphic map into $P_{N}(C)$ and, for any point $z^{0}$ in $D$ , it can be written as

$f(z)=f_{0}(z):f_{1}(z):$ : $f_{N}(z)$

with holomorphic functions $f_{i}(z)$ on a neighborhood $U$ of $z^{0}$ such that

$\{z\in U_{i}f_{0}(z)=f_{1}(z)=\ldots=f_{N}(z)=0\}$ $(\subseteqq A\cap U)$

is of codimension $\geqq 2$ . In the following, such a representation of $f$ is referred
to as an admissible representation on $U$. If $D$ is a Cousin II domain, $f$ has
an admissible representation on the totality of $D$ .

DEFINITION 5.1. Let $H$ be a hyperplane in $P_{N}(C)$ defined as
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$H:a^{0}w_{0}+a^{1}w_{1}+$ $+a^{N}w_{N}=0$

such that $f(D)\not\leqq H$. For a point $z^{0}$ with $f(z^{0})\in H$ the image of $f$ is said to
intersect $H$ with multipljcity $m$ at $f(z^{0})$ if it has an admissible representation
$f=f_{0}$ : $f_{1}$ : $\ldots$ : $f_{N}$ on a neighborhood of $z^{0}$ such that $F:=a^{0}f_{0}+a^{1}f_{1}+\cdots+a^{N}f_{N}$

has a zero of multiplicity $m$ at $z^{0}$ .
As is easily seen, the intersection multiplicity of the image of $f$ with a

hyperplane is independent of any choice of an admissible representation.
Now, in $P_{N}(C)$ , let us take $q(\geqq N+2)$ hyperplanes $\{H_{i}\}$ in general posi-

tion. For convenience’ sake we label them as $H_{0},$ $H_{1},$ $\cdots$ , $H_{N+t}$ , where $t:=$

$q-N-1(\geqq 1)$ . With a suitable choice of a system of homogeneous coodinates,
we may write

$H_{i}$ : $w_{i}=0$ , $0\leqq i\leqq N$

(5.2)
$H_{N+s}$ : $a_{s}^{0}w_{0}+a_{S}^{1}w_{1}+\cdots+a_{s}^{N}w_{N}=0$ , $1\leqq s\leqq t$ .

We wish to generalize some results in the previous papers [4] and [5]. As
in \S 5 of [5], we consider a partition ] $=$ $(J_{1}, J_{2}, \cdots , J_{p})$ of the set of indices
$I:=\{0,1, \cdots , N\},$ $i$ . $e.,$ $I=J_{1}\cup\cdots\cup J_{p},$ $ J_{l}\neq\emptyset$ and $J_{l}\cap J_{m}=\emptyset(l\neq m)$ and a map
$x;\{1, , \cdots , t\}\rightarrow\{1, , \cdots , p\}$ , where we assume $p\geqq 2$ . By $E_{J,\chi}$ we denote the
set of all points $w_{0}$ : $w_{1}$ : $\ldots$ : $w_{N}$ in $P_{N}(C)$ such that

$\sum_{i\in J_{l}}a_{s}^{i}w_{i}=0$

for any $l$ and $s$ with $1\leqq l\leqq p,$ $l\neq\chi(s)$ and $1\leqq s\leqq t$ .
By the same argument as in the proof of Lemma 2.2 in [5], we can prove

easily
(5.3) $E_{J,\chi}$ is a linear subvariety in $P_{N}(C)$ . If $E_{J,\chi}$ Si $\{w_{i}=0\}$ for any $i$

$(0\leqq i\leqq N)$ , then $E_{j\chi}$ is of dimension $\leqq N-(p-1)t$ and so of dimension $\leqq N-t$

by the assumption $p\geqq 2$ .
As a generalization of Theorem A in [4], we give
THEOREM 5.4. Let $f$ be a meromorphic map into $P_{N}(C)$ defined on a domain

$D$ excluding a thin analytic subset S. SuPpose that in $P_{N}(C)$ there are hyper-
planes $\{H_{i} ; 0\leqq i\leqq N+t\}(t\geqq 1)$ in general pOsitiOn satisfying the following
conditions;

a) $f(D-S)\not\leqq H_{i}(0\leqq i\leqq N+t)$ and the image of $f$ intersects each $H_{i}$ with
multiplicity $<m_{i}$ nowhere,

b) $\sum_{i=0}^{N}\frac{1}{m_{i}}+\frac{1}{m_{N+t}}<\frac{1}{N}$ ,

c) if the image of $f$ intersects $H_{\ell_{0}},$ $H_{i_{1}},$ $\cdots$ , $H_{i_{k}}(0\leqq i_{0}<i_{1}<\ldots<i_{k}\leqq N+t$,
$1\leqq k\leqq p)$ with multiplicity $n_{i_{0}},$ $n_{i_{1}},$

$\cdots$ , $n_{i_{k}}$ resPectively at a point $f(z)$ for
$z\in D-S$, then
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$n_{l}^{\prime}$

$:=n_{i_{l}}-$ min $\{n_{i_{0}}, n_{i_{1}}, \cdots , n_{i_{k}}\}\geqq m_{il}$

for any 1 with $n_{l}^{\prime}>0$ , where $m_{i}(0\leqq i\leqq N+t)$ are arbitrarily fixed positive inte-
gers and assume that $m_{0}\geqq m_{1}\geqq\ldots\geqq m_{N+t}$ . Then (i) $f$ has a meromorphic ex-
tension to totality of $D$ or (ii) the image of $f$ is included in some $E_{J,\chi}$ .

PROOF. We may assume that $S$ is regular, because codim $S_{sing}\geqq 2$ . Since
the properties of (i) and (ii) are of local nature, it may be assumed that $D=$

$\{|z_{1}|<1, \cdots , |z_{n}|<1\}$ and $S=\{z_{1}=0\}\cap D$ . In this case, $f$ has an admissible
representation $f=f_{0}$ : $f_{1}$ : $\ldots$ : $f_{N}$ on the totality of $D-S$ because $D-S$ is a
Cousin II domain. On the other hand, $\{H_{i} ; 0\leqq i\leqq N+t\}$ can be written as
(5.2). Put

$F_{i}$ $:=f_{i}(\not\equiv 0)$ , $0\leqq i\leqq N$ ,
(5.5)

$F_{N+s}$ $:=a_{s}^{0}f_{0}+a_{S}^{1}f_{1}+\cdots+a_{s}^{N}f_{N}(\not\equiv 0)$ , $1\leqq s\leqq t$ .
By definition, the intersection multiplicity of the image of $f$ with $ H_{i}(0\leqq i\leqq$

$N+t)$ at a point $f(z^{0})$ is the multiplicity of a zero $z^{0}$ of $F_{i}$ . Now, assume
that $f$ cannot be extended to a meromorphic map of $D$ into $P_{N}(C)$ . Then,

there are some indices $i$ and $j(\neq)$ such that $\frac{f_{i}}{f_{j}}$ can not be extended to a
meromorphic function on $D$ . Now, consider the uniquely determined partition
$J=$ $(J_{1}, J_{2}, \cdots , J_{p})$ of $I=\{0,1, \cdots , N\}$ such that $i$ and $j$ are in the same class

if and only if $\frac{f_{i}}{f_{j}}$ can be meromorphically extended to $D$ , where $p\geqq 2$ by

the above assumption. We may assume $J_{1}=\{N_{1} : =0,1, \cdots , N_{2}-1\},$ $J_{2}=\{N_{2}$ ,

$N_{2}+1,$ $\cdots$ , $N_{3}-1$ }, $\cdots$ , $J_{p}=\{N_{p}, N_{p}+1, \cdots , N\}$ . Put $\beta_{i}$ $:=\frac{f_{i}}{f_{Nl}}$ for any $i$ with
$N_{l}\leqq i\leqq N_{l+1}-1$ , where $N_{p+1}$ $:=N+1$ . And, define

$\alpha_{s}^{l}$ $:=\sum_{i=N_{l}}^{\{=N_{l+1}-1}a_{s}^{i}\beta_{i}$ ,

which may be considered as meromorphic functions on $D$ . Then, (5.5) can
be rewritten as
(5.6) $F_{N+s}=\alpha_{s}^{1}f_{N_{1}}+\alpha_{s}^{2}f_{N_{2}}+\cdots+\alpha_{s}^{p}f_{N_{p}}$ $(1\leqq s\leqq t)$ .

$\frac{Nowf_{N_{l}}}{f_{N_{m}}}(l\neq m)cannotbemeromorphicallyextendedtoD,\frac{N_{lF_{N+s}}and}{f_{N\chi(s)}}foreachs,weapplyTheorem4.ltothefunctionsfisextendedF_{N+s}.Since$

to a meromorphic function $\gamma$ on $D$ for some $\chi(s)(1\leqq\chi(s)\leqq P)$ . Rewriting
(5.6) as

$\alpha_{s}^{1}f_{N_{1}}+\cdots+(\alpha_{s}^{\chi(S)}-\gamma)f_{N\chi(s)}+\cdots+\alpha_{s}^{p}f_{N_{p}}=0$

and using Theorem 4.1 again, we conclude that $\alpha_{s}^{l}\equiv 0$ for any $l$ but $\chi(s)$ .
This shows that, for the map $x;s-,\chi(s),$ $f(D-S)\subseteqq E_{J,\chi}$ . The proof is com-
plete.
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COROLLARY 5.7. Let $f$ be a meromorphic map of a domain $D$ excluding a
nowhere dense analytic set $S$ into $P_{N}(C),$ $\{H_{i} ; 0\leqq i\leqq N+t\}(t\geqq 1)$ be hyPerplanes
in general pOsitiOn and $m_{i}(0\leqq i\leqq N+t)$ be a Positive intpger associated with
each $H_{i}$ satisfying the condition b) of Theorem 5.4. If the intersection multi-
Plicity of the image of $f$ with each $H_{i}$ at a Point $w$ is always a common multiple
of all $m_{j}’ s$ for $j$ with $w\in H_{j}$ , then (i) $f$ is meromorPhically extended to $D$ or
(ii) $f(D-S)$ is included in some linear subvariety of dimension $N-t$ .

This is a direct result of Theorem 5.4 by virtue of Remark 3.7, (ii) and (5.3).
COROLLARY 5.8. Let $f$ be a meromorPhic map of $D-S$ into $P_{N+1}(C)$ whose

image is included in a special hypersurface

$V^{d}$ : $w_{0^{f}}(+w_{0}^{d}+\cdots+w_{N+1}^{d}=0$

and assume that $d>N(N+2)$ . Then (i) $f$ is meromorPhically extended to $D$ or
(ii) the image of $f$ is included in a ProPer subvariety of $V^{d}$ .

PROOF. Without loss of generality, we may assume $D=\{|z_{1}|<1,$ $\cdots$ , $|z_{n}|$

$<1\},$ $S=\{z_{1}=0\}\cap D$ . If we take an admissible representation $f=f_{0}$ : $f_{1}$ : $\ldots$ :
$f_{N+1}$ , then

$f_{0}^{d}+f_{1}^{d}+\cdots+f_{N+1}^{d}=0$

and codim $\{z;f_{0}(z)=f_{1}(z)=\ldots=f_{N+1}(z)=0\}\geqq 2$ , where we may assume $f_{i}\not\equiv 0$

$(0\leqq i\leqq N)$ . We define $g:=f_{0}^{d}$ : $f_{1}^{d}$ : : $f_{N}^{d}$ of $D-S$ into $P_{N}(C)$ . Since the
multiplicity of any zero of $f_{i}^{d}(0\leqq i\leqq N+1)$ is a multiple of $d$ , all assumptions
of Corollary 5.7 are satisfied for a meromorphic map $g$, hyperplanes

$H_{i}$ : $w_{i}=0$ , $0\leqq i\leqq N$

and
$H_{N+1}$ : $w_{0}+w_{1}+\cdots+w_{N}=0$

in $P_{N}(C)$ and $m_{0}=m_{1}=\cdots=m_{N+1}=d$ . As a result of Corollary 5.7, we have
easily Corollary 5.8.

\S 6. Degeneracy theorems of meromorphic maps.

Using Theorem 3.5, we can give some degeneracy theorems of mero-
morphic maps of $C^{n}$ into $P_{N}(C)$ . We shall show first the following generaliza-
tion of a result of M. L. Green in [6].

THEOREM 6.1. Let $f$ be a meromorphic map of $C^{n}$ into $P_{N}(C)$ and { $H_{i}$ ;
$0\leqq i\leqq N+1\}$ be $N+2$ distinct hyPerplanes in $P_{N}(C)$ satisfying the conditions
a), b) and c) of Theorem 5.4. Then $f$ is degenerate, $i$ . $e.$ , the image of $f$ is
included in some hyPerplane in $P_{N}(C)$ .

PROOF. Since $C^{n}$ is a Cousin II domain, we can take an admissible repre-
sentation $f=f_{0}$ : $f_{1}$ : $\ldots$ : $f_{N}$ on the totality of $C^{n}$ . Let each $H_{i}(0\leqq i\leqq N+1)$

be given as
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$H_{i}$ : $a_{i}^{0}w_{0}+a_{i}^{1}w_{1}+\cdots+a_{i}^{N}w_{N}=0$

and Put
$F_{i}$ $:=a_{i}^{0}f_{0}+a_{i}^{1}f_{1}+\cdots+ai^{V}f_{N}$ .

Evidently, $F_{0},$ $F_{1},$ $\cdots$ , $F_{N+1}$ are linearly dependent over $C$ and $satisfy_{\wedge}^{v}$-the con-
ditions a), b) and c) of Theorem 3.5. Therefore, some $\frac{F_{i}}{F_{j}}(i\neq j)$ is of con-
stant, say $c$ . Then $f(C^{n})$ is included in a hyperplane

$H:(a@-ca_{j}^{0})w_{0}+\cdots+(a_{l}^{N}-ca_{j}^{N})yf_{N}=Q$ .
The proof is complete.

Now, we give the following generalization of Theorem $B$ in [4].

THEOREM 6.2. Let $f$ be a meromorphic map of $C^{n}$ into $P_{N}(C)$ . SuPpose
that there exist hyperplanes $\{H_{i} ; 0\leqq i\leqq N+t\}(t\geqq 1)$ in general position satisfy-
ing the conditions a), b) and c) of Theorem 5.4. Then (i) $f$ is of constant or
(ii) the image of $f$ is included in some $E_{J,\chi}$ and, more Precisely, included in a
linear subvariety of dimension $\leqq P-1$ , where $p$ denotes the number of classes

of $J$ and always $\leqq[\frac{t+N+1}{t+1}]$ .
PROOF. The proof is similar to that of Theorem 5.4. Let { $H_{i}$ ; $ 0\leqq i\leqq$

$N+t\}$ be given as (5.2) and define holomorphic functions $F_{i}(0\leqq i\leqq N)$ by
(5.5) for an admissible representation $f=f_{0}$ : $f_{1}$ : $\ldots$ : $f_{N}$ . Consider a partition

$J=$ $(J_{1}, \cdots , J_{p})$ of $I=\{0,1, \cdots , N\}$ such that $\frac{f_{i}}{f_{j}}\equiv const$ . if $i$ and $j$ are in the

same class and $\frac{f_{i}}{f_{j}}\equiv const$ . otherwise. Here, it may be assumed $k\geqq 2$ because,

if not, $f\equiv const$ . As in the proof of Theorem 5.2, by setting $J_{l}=\{N_{l},$ $N_{l}+1$ ,

... , $N_{l+1}-1$ } $(1\leqq l\leqq P)$ and $c_{s}^{l}$ $:=\sum_{i=N_{l}}^{i=N_{l+1}-1}a_{s}^{i}\frac{f_{i}}{f_{N_{l}}}$ , we have

$F_{N+s}=c_{s}^{1}f_{N_{1}}+\cdots+c_{s}^{p}f_{N_{p}}$

for each $s(1\leqq s\leqq t)$ . In this situation, according to Theorem 3.5 and by the
same argument as in the proof of Theorem 5.4, we can conclude $c_{s}^{l}=0$ for
any $l$ except exactly one index, say $\chi(s)$ . It then follows easily that $f(C^{n})\subseteqq E_{J,\chi}$

for the above given $J$ and map $\chi$ : $S\leftrightarrow\chi(s)$ . Moreover, since $\frac{f_{i}}{f_{j}}\equiv const$ . for
any $i,$ $j\in J_{l}(1\leqq l\leqq P),$ $f(C^{n})$ is included in a linear subvariety of dimension
$\leqq P-1$ . The last assertion $p\leqq[\frac{N+t+1}{t+1}]$ is shown by the same argument

as in the proof of Theorem $B$ in [4].

By the same argument as in the proof of Corollary 5.7 and Corollary 5.8,
Theorem 6.2 implies

COROLLARY 6.3. Let $f$ be a meromorPhic maP of $C^{n}$ into $P_{N}(C)$ which
satisfies the same conditions as in Corollary 5.7 for hyPerplanes { $H_{i}$ ; $ 0\leqq i\leqq$

$N+t\}$ in general position and Positive integers $\{m_{i}\}$ . Then $f(C^{n})$ is included in
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some linear subvariety of dimension [$\frac{N}{t+1}]$ .
COROLLARY 6.4. Take a hypersurface

$V^{d}$ : $w_{0}^{d}+w_{1}^{a}+\cdots+w_{N+1}^{d}=0$

in $P_{N+1}(C)$ and assume $d>N(N+2)$ . Then any meromorphic map of $C^{n}$ into
$P_{N+1}(C)$ with values in $V^{d}$ is necessarily of the following tyPe after a suitable
change of indices $0,1,$ $\cdots$ , $N+1$ ;

$f=a_{0}f_{1}$ : $a_{1}f_{1}$ : $\cdots$ : $a_{N_{1}}f_{1}$ : $a_{N_{1}+1}f_{2}$ : : $a_{N_{2}}f_{2}$ : : $a_{N_{p}}f_{p}$ ,

where $0<N_{1}<N_{2}<\ldots<N_{p}$ $:=N+1(p\geqq 1),$ $a_{i}(0\leqq i\leqq N+1)$ are constants

with $\sum_{i=N_{l- 1}+1}^{i--N_{l}}a_{l}^{d}=0$
$((a_{0}, a_{1}, \cdots , a_{N+1})\neq(0,0, \cdots , 0))$ and $f_{i}(1\leqq i\leqq P)$ are not

identically zero holomorphic functions.
We give lastly another degeneracy theorem as follows.
THEOREM 6.5. In the same situation as in Theorem 6.2, suppose that $f$

satisfies the conditions a) and, instead of b) and c),

$b^{\prime})$ $\sum_{\iota=0}^{N+1}\frac{1}{m_{i_{l}}}<\frac{1}{N}$ for any $i_{0},$ $i_{1},$ $\cdots$ , $i_{N+1}(0\leqq i_{0}\leqq i_{1}\cdots\leqq i_{N+1}\leqq N+t)$ ,

$c^{\prime})$ there is some $i_{0}(0\leqq i_{0}\leqq N+t)$ such that $m_{i_{0}}=\infty,$
$i$ . $e.,$ $ f(C^{n})\cap H_{i_{0}}=\emptyset$ .

Then the image of $f$ is included in an $(N-t)$ -dimensional linear subspace of
$P_{N}(C)$ .

PROOF. Let $f=f_{0}$ : $f_{1}$ : $\ldots$ : $f_{N}$ be an admissible representation. We use
the same notations as in the proof of Theorem 6.2. It may be assumed that
$ f(C^{n})\cap H_{0}=\emptyset$ and so $f_{0}\equiv 1$ . Changing indices if necessary, we may assume
that $F_{i}\equiv const$ . $(0\leqq i\leqq k)$ and $F_{j}\not\equiv const$ . $(k+1\leqq i\leqq N+t)$ . We have only to
prove $h\geqq t$ . Assume that $k<t$ . Since $H_{0},$ $H_{t},$ $\cdots$ , $H_{N+t}$ are located in general
position, we can write

$1\equiv F_{0}=c^{0}F_{t}+c^{1}F_{t+1}+\cdots+c^{N}F_{N+t}$ ,

where $c^{i}\neq 0,0\leqq i\leqq N$. By Theorem 3.8, some $F_{i}(t\leqq i\leqq t+N)$ is of constant,

which is a contradiction. We have Theorem 6.5.
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