On a bound for periods of solutions of a certain nonlinear differential equation (I)

Dedicated to Professor Shigeo Sasaki on his 60th birthday

By Tominosuke Otsuki

(Received July 8, 1972) (Revised June 11, 1973)

§ 0. Introduction.

As is shown in [6], the nonlinear differential equation

(E)
$$nx(1-x^2)\frac{d^2x}{dt^2} + \left(\frac{dx}{dt}\right)^2 + (1-x^2)(nx^2-1) = 0,$$

where n is an integer ≥ 2 , is the equation for the support function x(t) of a geodesic in the 2-dimensional Riemannian manifold O_n^2 with the metric:

(0.1)
$$ds^2 = (1 - u^2 - v^2)^{n-2} \{ (1 - v^2) du^2 + 2uv \, du \, dv + (1 - u^2) dv^2 \}$$

in the unit disk: $u^2+v^2<1$. Another geometric meaning of (E) is given in [4]. Any non constant solution x(t) of (E) such that

$$x^2 + \left(\frac{dx}{dt}\right)^2 < 1$$

is periodic and its period T is given by the improper integral:

(0.2)
$$T = 2 \int_{a_0}^{a_1} \frac{dx}{\sqrt{1 - x^2 - C\left(\frac{1}{x^2} - 1\right)^{\alpha}}},$$

where

(0.3)
$$C = (a_0^2)^{\alpha} (1 - a_0^2)^{1-\alpha} = (a_1^2)^{\alpha} (1 - a_1^2)^{1-\alpha}$$
$$(0 < a_0 < \sqrt{\alpha} < a_1 < 1, \ \alpha = 1/n)$$

is the integral constant of (E) and $0 < C < A = \alpha^{\alpha} (1-\alpha)^{1-\alpha}$.

Regarding T as a function of C, the following is known in [4]:

- (i) T is differentiable and $T > \pi$,
- (ii) $\lim_{c\to 0} T = \pi$ and $\lim_{c\to A} T = \sqrt{2}\pi$.

By means of a numerical analysis and observation about (E) in [5] and [7], M. Urabe conjectures the inequality

$$T < \sqrt{2}\pi.$$

The author however wanted originally to have the inequality

$$(0.4) T < 2\pi$$

from the standpoint of a geometrical problem related with the existence of compact minimal hypersurfaces of a certain type in the spheres. S. Furuya gave firstly an answer to it by proving the inequality

$$(0.5) T < \sqrt{1-\alpha} \cdot 2\pi$$

in [2] and the author proved a little sharper inequality

$$(0.6) T < \left(\frac{1}{\sqrt{2}} + \sqrt{1 - \alpha}\right) \cdot \pi$$

in [5]. (U) is true by (0.5) or (0.6) when n=2 and S. Furuya proved also that (U) is true when n=3.

The equation (E) however may be considered for any real number $n \ge 2$. In the present paper the author will prove (U) for any real number $n \ge 3$.

§ 1. Period function $T_n(x_0)$.

Replacing nx^2 and nC by x and C respectively, the period T given by (0.2) can be written as

(1.1)
$$T = T_n(x_0) := \int_{x_0}^{x_1} \frac{dx}{\sqrt{x(n-x) - Cx^{1-\alpha}(n-x)^{\alpha}}},$$

where

$$(1.2) C = x_0^{\alpha} (n - x_0)^{1 - \alpha} = x_1^{\alpha} (n - x_1)^{1 - \alpha}$$

and

$$(1.3) 0 < x_0 < 1 < x_1 < n.$$

LEMMA 1.1. The function $\varphi(x) := x^{\alpha}(n-x)^{1-\alpha}$ $(0 \le x \le n)$ is monotone increasing in [0,1] and decreasing in [1,n] and we have

$$\varphi'(x) = \frac{1-x}{x(n-x)}\varphi(x), \qquad \varphi''(x) = -\frac{n-1}{x^2(n-x)^2}\varphi(x),$$

$$\varphi'''(x) = \frac{(n-1)(2n-1-3x)}{x^3(n-x)^3} \varphi(x)$$

and

$$\varphi^{(4)}(x) = -\frac{(n-1)\{(3n-1)(2n-1) - 8(2n-1)x + 12x^2\}}{x^4(n-x)^4} \varphi(x) \ .$$

PROOF. We get easily $\varphi'(x)$, $\varphi''(x)$ and $\varphi'''(x)$, from which

$$\varphi^{(4)}(x) = (n-1) \left[\frac{-3}{x^3(n-x)^3} - \frac{3(2n-1-3x)(n-2x)}{x^4(n-x)^4} + \frac{(2n-1-3x)(1-x)}{x^4(n-x)^4} \right] \varphi(x)$$

$$= -\frac{(n-1)\{(3n-1)(2n-1) - 8(2n-1)x + 12x^2\}}{x^4(n-x)^4} \varphi(x).$$

Since $\varphi(x) > 0$ in (0, n), $\varphi(x)$ is monotone in [0, 1] and [1, n]. Q. E. D. Now, using $\varphi(x)$ and putting $B = \varphi(1) = nA$, we have

$$\int_{x_0}^{1} \frac{dx}{\sqrt{x(n-x)-Cx^{1-\alpha}(n-x)^{\alpha}}} \\
= \int_{x_0}^{1} \frac{x(n-x)d\varphi(x)}{(1-x)\varphi(x)\sqrt{x(n-x)\{1-C/\varphi(x)\}}} \\
= \int_{x_0}^{1} \frac{\sqrt{x(n-x)(B-\varphi(x))}}{(1-x)\sqrt{\varphi(x)}} \cdot \frac{d\varphi(x)}{\sqrt{(B-\varphi(x))(\varphi(x)-C)}}$$

and

$$\int_{1}^{x_{1}} \frac{dx}{\sqrt{x(n-x)-Cx^{1-\alpha}(n-x)^{\alpha}}}$$

$$= \int_{1}^{x_{1}} \frac{\sqrt{x(n-x)(B-\varphi(x))}}{(1-x)\sqrt{\varphi(x)}} \cdot \frac{d\varphi(x)}{\sqrt{(B-\varphi(x))(\varphi(x)-C)}}.$$

Now, define a function $X = X_n(x)$ $(0 \le x \le 1)$ by

(1.4)
$$x(n-x)^{n-1} = X(n-X)^{n-1}, \quad 1 \le X \le n,$$

then we have $\varphi(x) = \varphi(X)$. Hence, the last integral can be written as

$$\int_{x_0}^1 \frac{\sqrt{X(n-X)(B-\varphi(x))}}{(X-1)\sqrt{\varphi(x)}} \cdot \frac{d\varphi(x)}{\sqrt{(B-\varphi(x))(\varphi(x)-C)}} .$$

Thus, we get a formula for T as follows:

(1.5)
$$T_{n}(x_{0}) = \int_{x_{0}}^{1} \left\{ \frac{\sqrt{x(n-x)}}{1-x} + \frac{\sqrt{X_{n}(x)(n-X_{n}(x))}}{X_{n}(x)-1} \right\} \sqrt{\frac{B-\varphi(x)}{\varphi(x)}} \times \frac{d\varphi(x)}{\sqrt{(B-\varphi(x))(\varphi(x)-C)}}.$$

LEMMA 1.2.

$$\int_{x_0}^1 \frac{d\varphi(x)}{\sqrt{(B-\varphi(x))(\varphi(x)-C)}} = \pi .$$

PROOF. Since $\varphi(x)$ is monotone increasing in [0, 1], putting $u = \varphi(x)$, we have

$$\int_{x_0}^1 \frac{d\varphi(x)}{\sqrt{(B-\varphi(x))(\varphi(x)-C)}} = \int_c^B \frac{du}{\sqrt{(B-u)(u-C)}} = \pi. \qquad Q. \text{ E. D.}$$

Thus from (1.5) and Lemma 1.2 we shall have the inequality $T < \sqrt{2}\pi$,

if we have the inequality:

$$(1.6) \qquad \Big\{ \frac{\sqrt{x(n-x)}}{1-x} + \frac{\sqrt{X_n(x)(n-X_n(x))}}{X_n(x)-1} \Big\} \sqrt{\frac{B-\varphi(x)}{\varphi(x)}} < \sqrt{2} \qquad (0 < x < 1).$$

LEMMA 1.3. The function $F(x) := \frac{x(n-x)}{(1-x)^2} \cdot \frac{B-\varphi(x)}{\varphi(x)}$ $(0 \le x \le n, x \ne 1)$ and $(1-x)^2 \cdot \frac{B-\varphi(x)}{\varphi(x)}$ $(0 \le x \le n, x \ne 1)$ and $(1-x)^2 \cdot \frac{B-\varphi(x)}{\varphi(x)}$ $(1-x)^2 \cdot \frac{B-\varphi(x)}{\varphi(x)}$

PROOF. Since $\varphi(x)$ is analytic in (0, n) and

$$\varphi(1) = (n-1)^{1-\alpha} = B, \quad \varphi'(1) = 0, \quad \varphi''(1) = -\frac{1}{n-1}B, \quad \varphi'''(1) = \frac{2(n-2)}{(n-1)^2}B,$$

$$\varphi^{(4)}(1) = -\frac{3(2n^2 - 7n + 7)}{(n-1)^3}B$$

by Lemma 1.1, we have

$$\varphi(x) = B\left\{1 - \frac{1}{2(n-1)}(x-1)^2 + \frac{n-2}{3(n-1)^2}(x-1)^3 - \frac{2n^2 - 7n + 7}{8(n-1)^3}(x-1)^4 + \cdots\right\}.$$

Hence we have

(1.7)
$$B-\varphi(x) = B(x-1)^{2} \left\{ \frac{1}{2(n-1)} - \frac{n-2}{3(n-1)^{2}} (x-1) + \frac{2n^{2}-7n+7}{8(n-1)^{3}} (x-1)^{2} - \cdots \right\}$$

near x=1, which shows that F(x) is analytic in x near 1. Q. E. D. Using the function F(x), (1.6) can be written as

(1.8)
$$\sqrt{F(x)} + \sqrt{F(X_n(x))} < \sqrt{2} \quad (0 < x < 1).$$

$\S 2.$ Properties of F(x).

In (0, n), for $x \neq 1$ we have

$$\begin{split} \frac{F'(x)}{F(x)} &= \frac{1}{x} - \frac{1}{n-x} + \frac{2}{1-x} - \left\{ \frac{1}{B-\varphi(x)} + \frac{1}{\varphi(x)} \right\} \varphi'(x) \\ &= \frac{n + (n-2)x}{x(n-x)(1-x)} - \frac{B}{B-\varphi(x)} \cdot \frac{1-x}{x(n-x)} \; , \end{split}$$

that is

(2.1)
$$\frac{F'(x)}{F(x)} = \frac{\{n + (n-2)x\}\{B - \varphi(x)\} - B(1-x)^2}{x(n-x)(1-x)\{B - \varphi(x)\}}.$$

From (2.1), we have

$$(2.2) \qquad (\sqrt{F(x)})' = \frac{\{n + (n-2)x\}\{B - \varphi(x)\} - B(1-x)^2}{2(1-x)^2 \sqrt{x(n-x)\varphi(x)}\{B - \varphi(x)\}^{1/2}},$$

where $\{B-\varphi(x)\}^{1/2}$ denotes the function:

(2.3)
$$\{B - \varphi(x)\}^{1/2} = (1 - x)\sqrt{\frac{B - \varphi(x)}{(x - 1)^2}} .$$

LEMMA 2.1. Let $g_0(x)$ be the function:

$$g_0(x) := \frac{x(n-x)^{n-1}\{n+(n-2)x\}^n}{(n-1+nx-x^2)^n}.$$

 $g_0(x)$ is monotone increasing in [0, n/2] and decreasing in [n/2, n].

PROOF. We have $n-1+nx-x^2>0$ in [0, n], since $n \ge 2$. Therefore $g_0(x)>0$ in (0, n). In (0, n), we have

$$\frac{g_0'(x)}{g_0(x)} = \frac{1}{x} - \frac{n-1}{n-x} + \frac{n(n-2)}{n+(n-2)x} - \frac{n(n-2x)}{n-1+nx-x^2}$$

$$= \frac{n(n-1)(1-x)^2(n-2x)}{x(n-x)\{n+(n-2)x\}\{n-1+nx-x^2\}}.$$

Hence we have

$$(2.4) g_0'(x) = \frac{n(n-1)(1-x)^2(n-x)^{n-2}\{n+(n-2)x\}^{n-1}(n-2x)}{(n-1+nx-x^2)^{n+1}},$$

from which we see that $g_0(x)$ is monotone increasing in [0, n/2] and decreasing in [n/2, n].

Q. E. D.

We get easily $g_0(1) = (n-1)^{n-1}$. Let Λ be the unique value such that

(2.5)
$$g_0(\Lambda) = (n-1)^{n-1} \qquad 1 < \Lambda < n.$$

This is assured by Lemma 2.1 which implies furthermore $n/2 < \Lambda < n$.

LEMMA 2.2. $n/2 < \Lambda < n-1$ for $n \ge 3$.

PROOF. By Lemma 2.1, it is sufficient to prove that

$$g_0(n-1) < (n-1)^{n-1}$$
.

Since we have

$$g_0(n-1) = \frac{(n^2-2n+2)^n}{2^n(n-1)^{n-1}}$$
 ,

the above inequality is equivalent to

$$(2.6) 2 \cdot (n-1)^{-2/n} > \frac{1}{(n-1)^2} + 1.$$

For the function $L(n) := 2 \cdot (n-1)^{-2/n} - \frac{1}{(n-1)^2}$, we have

$$L'(n) = \frac{4}{n^2} (n-1)^{-2/n} \left[\log (n-1) - \frac{n}{n-1} + \frac{n^2}{2(n-1)^3} \cdot (n-1)^{2/n} \right].$$

For n > 2, we have

$$\log (n-1) - \frac{n}{n-1} + \frac{n^2}{2(n-1)^3} \cdot (n-1)^{2/n}$$

$$> \log (n-1) - \frac{n}{n-1} + \frac{n^2}{2(n-1)^3}$$

$$= \log (n-1) - \frac{n(n-2)(2n-1)}{2(n-1)^3}.$$

Denote the right-hand side by R(n), then putting $\tau = \frac{1}{n-1}$, we get easily

$$R'(n) = \frac{d}{dn} \left[\log (n-1) - (1+\tau) \left\{ 1 - \frac{1}{2} (\tau + \tau^2) \right\} \right]$$
$$= \frac{\tau}{2} (2 + \tau - 4\tau^2 - 3\tau^3).$$

Since we have

$$\frac{d}{d\tau}(2+\tau-4\tau^2-3\tau^3) = (1+\tau)(1-9\tau)$$

and $(2+\tau-4\tau^2-3\tau^3)_{\tau=0}=2>0$, $(2+\tau-4\tau^2-3\tau^3)_{\tau=1/2}=9/8>0$, it must be that $2+\tau-4\tau^2-3\tau^3>0 \qquad \text{for} \quad 0<\tau\leqq 1/2 \;,$

from which we have

$$R'(n) > 0$$
 for $n \ge 3$.

On the other hand, we have

$$R(2) = 0$$
, $R(3) = \log_e 2 - \frac{15}{16} = -0.24435 \cdots$,
$$R(4) = \log_e 3 - \frac{28}{27} = 0.06157 \cdots > 0$$
,

hence

$$R(n) > 0$$
 for $n \ge 4$.

Therefore we get

$$(2.7) L'(n) > 0 for n \ge 4.$$

Next, we have

$$\frac{d}{dn}(n-1)^{2/n} = \frac{2}{n^2}(n-1)^{2/n} \left[-\log(n-1) + \frac{n}{n-1} \right]$$

and

$$\frac{d}{dn}\left[-\log(n-1)+\frac{n}{n-1}\right] = -\tau(1+\tau) < 0 \quad \text{for } \tau > 0.$$

Hence the function $-\log{(n-1)} + \frac{n}{n-1}$ is monotone decreasing in $(1, \infty)$ and

$$\left(-\log (n-1) + \frac{n}{n-1}\right)_{n=1} = -\log 3 + \frac{4}{3} = -1.09861 + \cdots + \frac{4}{3} > 0.$$

Hence we have

$$\frac{d}{dn}(n-1)^{2/n} > 0$$
 for $1 < n \le 4$,

consequently we have

$$(n-1)^{2/n} > 2^{2/3} = 1.58740 \dots > \frac{3}{2}$$
 for $3 \le n \le 4$.

Therefore, in the interval $3 \le n \le 4$, we have

$$\log (n-1) - \frac{n}{n-1} + \frac{n^2}{2(n-1)^3} (n-1)^{2/n}$$

$$> \log (n-1) - \frac{n}{n-1} + \frac{3n^2}{4(n-1)^3}$$

$$= \log (n-1) - \frac{n(4n^2 - 11n + 4)}{4(n-1)^3}.$$

Denote the right-hand side by $R_1(n)$, then we obtain

$$R'_{1}(n) = \frac{d}{dn} \left[\log (n-1) - (1+\tau) \left\{ 1 - \frac{3}{4} (\tau + \tau^{2}) \right\} \right]$$
$$= \frac{\tau}{4} (4 + \tau - 12\tau^{2} - 9\tau^{3}).$$

Since we have

$$\frac{d}{d\tau}(4+\tau-12\tau^2-9\tau^3)=1-24\tau-27\tau^2$$

and the positive root of the equation: $27\tau^2+24\tau-1=0$ is less than 1/3 and $(4+\tau-12\tau^2-9\tau^3)_{\tau=\frac{1}{2}}=\frac{3}{8}>0$, it must be that

$$4+\tau-12\tau^2-9\tau^3>0$$
 for $\frac{1}{3} \le \tau \le \frac{1}{2}$,

from which

$$R'_1(n) > 0$$
 for $3 \le n \le 4$.

On the other hand we have

$$R_1(3) = \log 2 - \frac{21}{32} = 0.03689 \dots > 0$$
.

Hence, we get

$$R_1(n) > 0$$
 for $3 \le n \le 4$.

from which we get

(2.8)
$$L'(n) > 0$$
 for $3 \le n \le 4$.

By means of (2.7) and (2.8), L(n) is monotone increasing for $n \ge 3$. On the other hand we have

$$L(3) = 2 \cdot 2^{-2/3} - \frac{1}{4} = 2^{1/3} - \frac{1}{4} = 1.25992 \cdot \cdot \cdot - \frac{1}{4} > 1$$
.

Consequently we get

$$L(n) > 1$$
 for $n \ge 3$.

Thus (2.6) has been proved.

Q. E. D.

THEOREM 2.3. The function F(x) is monotone increasing in $(0, \Lambda]$ and decreasing in $[\Lambda, n)$, and

$$F(1) = \frac{1}{2}$$
, $F'(1) = \frac{n-2}{6(n-1)}$.

PROOF. Near x=1, from (1.7) we have

(2.9)
$$F(x) = \frac{Bx(n-x)}{\varphi(x)} \left\{ \frac{1}{2(n-1)} - \frac{n-2}{3(n-1)^2} (x-1) + \frac{2n^2 - 7n + 7}{8(n-1)^3} (x-1)^2 + \cdots \right\},$$

from which we get easily

$$F(1) = \frac{1}{2}$$

and

$$F'(1) = (n-2) \cdot \frac{1}{2(n-1)} - (n-1) \cdot \frac{n-2}{3(n-1)^2} = \frac{n-2}{6(n-1)} > 0.$$

Then, since F(x) > 0, (2.2) implies that F'(x) > 0 if and only if

$${n+(n-2)x}{B-\varphi(x)} > B(1-x)^2$$
 for $0 < x < 1$

and

$${n+(n-2)x} {B-\varphi(x)} < B(1-x)^2$$
 for $1 < x < n$.

These are equivalent to

$$(n-1+nx-x^2)B > \{n+(n-2)x\}\varphi(x)$$

and

$$(n-1+nx-x^2)B < \{n+(n-2)x\}\varphi(x)$$

respectively. Since $B=(n-1)^{1-1/n}$ and $\varphi(x)=x^{1/n}(n-x)^{1-1/n}$, the above inequalities become

$$(n-1)^{n-1} > \frac{x(n-x)^{n-1} \{n + (n-2)x\}^n}{(n-1+nx-x^2)^n}$$
 for $0 < x < 1$

and

$$(n-1)^{n-1} < \frac{x(n-x)^{n-1} \{n + (n-2)x\}^n}{(n-1+nx-x^2)^n} \quad \text{for} \quad 1 < x < n.$$

The right-hand sides of these inequalities are $g_0(x)$ in Lemma 2.1, which implies

$$\begin{split} g_{\rm 0}(x) &< g_{\rm 0}(1) = (n-1)^{n-1} \qquad \text{for} \quad 0 < x < 1 \text{ and } \Lambda < x < n \text{ ,} \\ g_{\rm 0}(x) &> (n-1)^{n-1} \qquad \qquad \text{for} \quad 1 < x < \Lambda \text{ .} \end{split}$$

214 Т. Отsuкі

Therefore, F(x) is monotone increasing in $(0, \Lambda)$ and decreasing in (Λ, n) .

Q. E. D.

Now, we shall give an estimation on the maximum of the function F(x) in the interval (0, n).

LEMMA 2.4. The function $\frac{x(n-x)}{n-1+nx-x^2}$ is monotone decreasing in $\lfloor n/2, n \rfloor$. PROOF. $n-1+nx-x^2>0$ in $\lfloor 0, n \rfloor$ and

$$\left\{\frac{x(n-x)}{n-1+nx-x^2}\right\}' = \frac{(n-1)(n-2x)}{(n-1+nx-x^2)^2}$$

which implies immediately this lemma.

Q. E. D.

THEOREM 2.5.

$$F(x) < \frac{n^2}{n^2 + 4n - 4}$$
 $(n \ge 3)$.

PROOF. By Theorem 2.3, the maximum value of F(x) in (0, n) is $F(\Lambda)$. Then, by (2.1) we have

$$(2.10) \{n + (n-2)\Lambda\} \{B - \varphi(\Lambda)\} - B(1-\Lambda)^2 = 0,$$

which implies

$$\frac{B-\varphi(\Lambda)}{\varphi(\Lambda)} = \frac{(\Lambda-1)^2}{n-1+n\Lambda-\Lambda^2} ,$$

hence

$$. \quad F(\varLambda) = \frac{\varLambda(n-\varLambda)}{(\varLambda-1)^2} \cdot \frac{B-\varphi(\varLambda)}{\varphi(\varLambda)} = \frac{\varLambda(n-\varLambda)}{n-1+n\varLambda-\varLambda^2} \ .$$

Then, by Lemma 2.2 and Lemma 2.4, we obtain

$$F(\Lambda) < \frac{x(n-x)}{n-1+nx-x^2}\Big|_{x=x/2} = \frac{n^2}{n^2+4n-4}$$
. Q. E. D.

REMARK. Since $\frac{n^2}{n^2+4n-4} < \frac{n-1}{n}$ for n>2, we get a more sharper inequality on the period T than (0.6) as follows:

$$(2.11) T < \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{1 + 4\alpha - 4\alpha^2}}\right) \cdot \pi (n \ge 3)$$

by means of (1.5), Theorem 2.3 and Theorem 2.5.

§ 3. Properties of f(x).

On the function $X = X_n(x)$ defined by (1.4), we have

(3.1)
$$\frac{dX}{dx} = \frac{1-x}{x(n-x)} \cdot \frac{X(n-X)}{1-X} .$$

From (2.2) we get in the interval (0.1)

$$\frac{d}{dx}\sqrt{F(x)} + \frac{d}{dx}\sqrt{F(X(x))}$$

$$= \frac{\{n + (n-2)x\}\{B - \varphi(x)\} - B(1-x)^2}{2(1-x)^2\sqrt{x(n-x)}\varphi(x)}\{B - \varphi(x)\}^{1/2}$$

$$+ \frac{\{n + (n-2)X\}\{B - \varphi(X)\} - B(1-X)^2}{2(1-X)^2\sqrt{X(n-X)}\varphi(X)}\{B - \varphi(X)\}^{1/2}} \cdot \frac{1-x}{x(n-x)} \cdot \frac{X(n-X)}{1-X}.$$

Since $\varphi(X)=\varphi(x)$ and $\{B-\varphi(X)\}^{1/2}=-\{B-\varphi(x)\}^{1/2}$ by (2.3), the above equality can be written as

(3.2)
$$\frac{d}{dx} \sqrt{F(x)} + \frac{d}{dx} \sqrt{F(X(x))}$$

$$= \frac{1-x}{2x(n-x)\sqrt{\varphi(x)}\{B-\varphi(x)\}}$$

$$\times \left[\frac{\sqrt{x(n-x)}M(x)}{(1-x)^3} - \frac{\sqrt{X(n-X)}M(X)}{(1-X)^3}\right] \quad (0 < x < 1),$$

where

(3.3)
$$M(x) := \{n + (n-2)x\} \{B - \varphi(x)\} - B(1-x)^2.$$

From (3.2), we have

LEMMA 3.1. $\sqrt{F(x)} + \sqrt{F(X(x))}$ is increasing at x (0 < x < 1), if and only if

$$\frac{\sqrt{x(n-x)}M(x)}{(1-x)^3} > \frac{\sqrt{X(n-X)}M(X)}{(1-X)^3}$$
, $X = X_n(x)$.

Let f(x) be the function defined by

(3.4)
$$f(x) := \frac{\sqrt{x(n-x)} M(x)}{(1-x)^3}$$
$$= \frac{\sqrt{x(n-x)}}{(1-x)^3} \left[\left\{ n + (n-2)x \right\} \left\{ B - \varphi(x) \right\} - B(1-x)^2 \right].$$

LEMMA 3.2. f(x) > 0 in $(0, \Lambda)$ and f(x) < 0 in (Λ, n) .

PROOF. As is shown in the proof of Theorem 2.3,

$$g_0(x) < g_0(1) = B^n$$
 in $(0, 1)$ and (Λ, n)

and

$$g_0(x) > B^n$$
 in $(1, \Lambda)$.

The first inequality implies

$$\frac{\varphi(x)\{n+(n-2)x\}}{n-1+nx-x^2} < B$$
, i.e. $M(x) > 0$.

The second one implies M(x) < 0. Now as is seen from (1.7), $f(1) = \frac{(n-2)B}{6\sqrt{n-1}}$.

216 T. Otsuki

Hence f(x) > 0 in $(0, \Lambda)$ and f(x) < 0 in (Λ, n) . Now, we compute f'(x) in $(0, \Lambda)$. We have Q. E. D.

$$\begin{split} &\frac{d}{dx}\log f(x) \\ &= \frac{1}{2} \Big(\frac{1}{x} - \frac{1}{n-x} \Big) + \frac{3}{1-x} \\ &\quad + \frac{1}{M(x)} \Big[(n-2)\{B-\varphi(x)\} + 2B(1-x) - \{n+(n-2)x\} \frac{1-x}{x(n-x)} \varphi(x) \Big] \\ &= \frac{6x(n-x)M(x) + (1-x)(n-2x)[M(x) + 2\{1+(n-2)x\}\{B-\varphi(x)\} - 2B(1-x)^2]}{2(1-x)x(n-x)M(x)} \,, \end{split}$$

from which we get

(3.5)
$$f'(x) = \frac{1}{2(1-x)^4 \sqrt{x(n-x)}} \times \left[\left\{ n(n+2) + 2(4n^2 - 5n - 2)x + (3n^2 - 16n + 16)x^2 \right\} \left\{ B - \varphi(x) \right\} - 3B(1-x)^2 \left\{ n + (n-2)x \right\} \right].$$

For simplicity, putting

(3.6)
$$P(x) := n(n+2) + 2(4n^2 - 5n - 2)x + (3n^2 - 16n + 16)x^2,$$

we obtain from (3.5) the following

LEMMA 3.3. f(x) is decreasing at x (0 < x < n), if and only if

$$[P(x)-3(1-x)^{2}\{n+(n-2)x\}]B < P(x)\varphi(x)$$
.

LEMMA 3.4. $P(x)-3(1-x)^2\{n+(n-2)x\}>0$ in [0, n].

PROOF. From (3.6) we get

$$P(x)-3(1-x)^{2}\{n+(n-2)x\}$$

$$= n(n-1)+(8n^{2}-7n+2)x+(3n^{2}-13n+4)x^{2}-3(n-2)x^{3}.$$

For n > 2, we have $8n^2 - 7n + 2 > 0$, -3(n-2) < 0 and

$$\{8n^2-7n+2+(3n^2-13n+4)x-3(n-2)x^2\}_{x=n}=(n-2)(n-1)>0$$
.

Hence

$$8n^2-7n+2+(3n^2-13n+4)x-3(n-2)x^2>0$$

for $0 \le x \le n$ and so $P(x) - 3(1-x)^2 \{n + (n-2)x\} > 0$ there. Q. E. D. By virtue of Lemma 3.4, we consider an auxiliary function:

(3.7)
$$g(x) := \frac{P(x)\varphi(x)}{P(x) - 3(1-x)^2 \{n + (n-2)x\}} \qquad (0 < x < n).$$

Next, we compute g'(x) in (0, n). We have

$$\begin{split} &\frac{d}{dx}\log g(x) \\ &= \frac{P'(x)}{P(x)} - \frac{P'(x) + 3(1-x)\{n+2+3(n-2)x\}}{P(x) - 3(1-x)^2\{n+(n-2)x\}} + \frac{1-x}{x(n-x)} \\ &= \frac{1-x}{x(n-x)P(x)[P(x) - 3(1-x)^2\{n+(n-2)x\}]} \\ &\times [-6x(n-x)(1-x)\{n+(n-2)x\}\{4n^2 - 5n - 2 + (3n^2 - 16n + 16)x\} \\ &+ P(x)\{P(x) - 3(1-x)^2(n+(n-2)x) - 3x(n-x)(n+2+3(n-2)x)\}]. \end{split}$$

The polynomial of x in the brackets of the above equality becomes

$$(n-1)(1-x)^2\{n^2(n+2)-n(9n^2-2n+8)x+4(3n^2-2n+2)x^2\}$$
.

Hence, we get

$$(3.8) g'(x) = \frac{(n-1)(1-x)^3 \{n^2(n+2) - n(9n^2 - 2n + 8)x + 4(3n^2 - 2n + 2)x^2\}}{x^{1-\alpha}(n-x)^{\alpha} \lceil P(x) - 3(1-x)^2 \{n + (n-2)x\} \rceil^2}.$$

LEMMA 3.5. g'(x) = 0 (0 < x < n) has unique roots γ in (0, 1) and $\overline{\gamma}$ in (1, n) and $n/2 < \overline{\gamma} < n$.

PROOF. For the quadratic polynomial of x:

$$y = n^2(n+2) - n(9n^2 - 2n + 8)x + 4(3n^2 - 2n + 2)x^2$$
.

we have

$$(y)_{x=0} = n^2(n+2) > 0$$
,
 $(y)_{x=1} = -8(n^3 - 2n^2 + 2n - 1) = -8(n-1)(n^2 - n + 1) < 0$,
 $(y)_{x=n/2} = -\frac{3}{2}n^4 < 0$,
 $(y)_{x=n} = n^2(3n^2 - 5n + 2) = n^2(3n - 2)(n - 1) > 0$.

These relations easily imply the lemma.

Q. E. D.

Using Lemma 3.5 and (3.8), we obtain immediately the following LEMMA 3.6. g(x) is monotone increasing in $(0, \gamma]$ and $[1, \overline{\gamma}]$ and decreasing in $[\gamma, 1]$ and $[\overline{\gamma}, n)$.

Since $g(1) = \varphi(1) = B$, g(x) = B has a unique solution in (0, 1) and (1, n) respectively by means of Lemma 3.6. We denote them by σ and $\bar{\sigma}$ respectively, i. e. they are solutions of the equation:

(3.9)
$$[P(x)-3(1-x)^2\{n+(n-2)x\}]B = P(x)\varphi(x), \quad 0 < x < n, \quad x \neq 1$$
 and

$$(3.10) 0 < \sigma < \gamma and \bar{\gamma} < \bar{\sigma} < n.$$

Now as is seen from (1.7) and (3.4)

$$f'(1) = -\frac{n^2 - n + 1}{12(n-1)^{3/2}}B < 0.$$

Hence, Lemma 3.3 and Lemma 3.6 imply the following

PROPOSITION 3.7. The function f(x) is monotone decreasing in $(\sigma, \bar{\sigma})$ and increasing in $(0, \sigma]$ and $[\bar{\sigma}, n)$ and

$$f(\sigma) \ge f(x) \ge f(\bar{\sigma})$$
.

THEOREM 3.8. The function $\sqrt{F(x)} + \sqrt{F(X(x))}$ is monotone increasing and less than $\sqrt{2}$ in $[\sigma, 1)$.

PROOF. By Lemma 3.2 and Proposition 3.7 we have

$$f(\Lambda) = 0 > f(\bar{\sigma})$$

and

$$f(x) > f(X(x))$$
 for $\sigma \le x < 1$.

Hence, by Lemma 3.1, $\sqrt{F(x)} + \sqrt{F(X(x))}$ is monotone increasing in $[\sigma, 1)$. Since $F(1) = \frac{1}{2}$ by Theorem 2.3, we obtain

$$\sqrt{F(x)} + \sqrt{F(X(x))} < \sqrt{2}$$
 for $\sigma \le x < 1$. Q. E. D.

§ 4. Proof of $T < \sqrt{2}$ for $3 \le n \le 14$.

LEMMA 4.1. $\gamma < 1/5$ for $n \ge 3$.

PROOF. γ is the smallest root of the equation of x:

$$n^{2}(n+2)-n(9n^{2}-2n+8)x+4(3n^{2}-2n+2)x^{2}=0$$

according to Lemma 3.5. Substituting x=1/5 in the left hand side and multiplying it by 25, we get

$$25n^{2}(n+2)-5n(9n^{2}-2n+8)+4(3n^{2}-2n+2)$$

$$=-20n^{3}+72n^{2}-48n+8$$

$$=-4\{n(n-3)(5n-3)+3n-2\} \le -4(3n-2) < 0,$$

which implies $\gamma < 1/5$.

Q. E. D.

(3.10) and Lemma 4.1 yield immediately the following:

Proposition 4.2. $\sigma < 1/5$ for $n \ge 3$.

LEMMA 4.3. When $n \ge 3$, for $0 < x \le \sigma$, we have

$$\sqrt{F(x)} + \sqrt{F(X(x))} < \frac{1}{4} \sqrt{5(n-1) \left(\frac{5n-1}{n-1}\right)^{1/n} - (5n-1)} + \frac{n}{\sqrt{n^2 + 4n - 4}}.$$

PROOF. By Theorem 2.5, we have

$$\sqrt{F(X(x))} < \frac{n}{\sqrt{n^2+4n-4}}$$
.

By Theorem 2.3 and Proposition 4.2, we have

$$\sqrt{F(x)} < \sqrt{F(\frac{1}{5})}$$
 for $0 < x \le \sigma$

in the present case of n. By the definition of F(x),

$$F\left(\frac{1}{5}\right) = \left[\frac{x(n-x)}{(1-x)^2} \cdot \frac{B-\varphi(x)}{\varphi(x)}\right]_{x=1/5}$$

$$= \frac{1}{16} \left\{ 5(n-1) \left(\frac{5n-1}{n-1}\right)^{1/n} - (5n-1) \right\}.$$

Thus we obtain the following:

(4.1)
$$\sqrt{F(x)} + \sqrt{F(X(x))}$$
 $< \frac{1}{4} \sqrt{5(n-1) \left(\frac{5n-1}{n-1}\right)^{1/n} - (5n-1)} + \frac{n}{\sqrt{n^2 + 4n - 4}}$. Q. E. D.

In the following, we shall estimate the right hand side of (4.1). Now, putting $n = \frac{1}{t}$, $x = \frac{1}{a}$ in $F(x) = \frac{x(n-x)}{(1-x)^2} \cdot \frac{B-\varphi(x)}{\varphi(x)}$, we get

(4.2)
$$F(x) = \frac{x}{(1-x)^2} \left[\left\{ \frac{n-x}{(n-1)x} \right\}^{1/n} (n-1) - (n-x) \right]$$
$$= \frac{a}{(a-1)^2} \left[\left(\frac{a-t}{1-t} \right)^t \left(\frac{1}{t} - 1 \right) - \frac{1}{t} + \frac{1}{a} \right].$$

We shall investigate the following auxiliary function of t:

(4.3)
$$G_a(t) := \left(\frac{a-t}{1-t}\right)^t \left(\frac{1}{t}-1\right) - \frac{1}{t} \qquad (0 < t < 1 < a).$$

Differentiating $G_a(t)$, we get easily

(4.4)
$$G'_{a}(t) = \frac{1}{t^{2}} + \left(-\frac{1}{t^{2}} + \frac{a-1}{a-t} + \frac{1-t}{t} \log \frac{a-t}{1-t}\right) \left(\frac{a-t}{1-t}\right)^{t}.$$

Putting

$$(4.5) u = \log \frac{a-t}{1-t} ,$$

(4.4) can be written as

$$G'_{a}(t) = \frac{1}{t^{2}} + \left(-\frac{1}{t^{2}} + \frac{a-1}{a-t} + \frac{1-t}{t}u\right)e^{tu}$$

$$= \frac{1}{t^{2}} + \left(-\frac{1}{t^{2}} + \frac{a-1}{a-t} + \frac{1-t}{t}u\right)\left(1 + tu + \frac{t^{2}u^{2}}{2} + \sum_{m>2} \frac{t^{m}}{m!}u^{m}\right),$$

that is

$$(4.6) G_a'(t) = -u + \left(\frac{1}{2} - t\right)u^2 + \frac{a-1}{a-t} + \frac{a-1}{a-t}tu + \frac{1}{2}tu^2\left\{(1-t)u + \frac{a-1}{a-t}t\right\}$$

$$+\sum_{m>2}\frac{u^mt^{m-2}}{m!}\left\{-1+t(1-t)u+\frac{a-1}{a-t}t^2\right\}.$$

LEMMA 4.4. $G_5(t)$ is monotone increasing in $\left(0, \frac{1}{3}\right]$. PROOF. For $G(t) = G_5(t)$, from (4.6) we obtain

$$(4.7) G'(t) = -u + \left(\frac{1}{2} - t\right)u^2 + \frac{4}{5 - t} + \frac{4}{5 - t}tu + \frac{1}{2}tu^2\left\{(1 - t)u + \frac{4t}{5 - t}\right\} + \sum_{m \ge 2} \frac{u^m t^{m-2}}{m!} \left\{-1 + t(1 - t)u + \frac{4}{5 - t}t^2\right\}.$$

We show G'(t) > 0 by dividing the interval $\left(0, \frac{1}{3}\right]$ into four subintervals

I.
$$\frac{1}{4} \le t \le \frac{1}{3}$$
. For such t , we have
$$\frac{19}{3} \le \frac{5-t}{1-t} \le 7, \qquad \log_e \frac{19}{3} \le u \le \log_e 7,$$

$$-1+t(1-t)u+\frac{4}{5-t}t^2 \ge -\frac{18}{19}+\frac{3}{16}\log_e \frac{19}{3}=-b_1$$
and
$$\sum_{m>2} \frac{u^m t^{m-2}}{m!} < \frac{u^3 t}{6}e^{ut} = \frac{u^3 t}{6} \left(\frac{5-t}{1-t}\right)^t \le \frac{u^3 t}{6} 7^{1/3}.$$

Hence, from (4.7) we obtain

$$G'(t)>-u+\frac{1}{6}u^2+\frac{16}{19}+\frac{4}{19}u+\frac{1}{2}u^2\Big(\frac{3}{16}u+\frac{1}{19}\Big)-\frac{1}{18}7^{1/3}b_1u^3\;,$$

i.e.

$$(4.8_1) G'(t) > \frac{16}{19} - \frac{15}{19}u + \left(\frac{1}{6} + \frac{1}{38}\right)u^2 + \left(\frac{3}{32} - \frac{1}{18}7^{1/3}b_1\right)u^3.$$

Since we have

$$\log_e \frac{19}{3} \doteq 1.84583$$
, $\frac{3}{16} \log_e \frac{19}{3} \doteq 0.34609$, $\frac{18}{19} \doteq 0.94737$,

and $b_1 = 0.60128$;

$$7^{1/3} \doteqdot 1.91293$$
, $\frac{1}{18}7^{1/3}b_1 \doteqdot 0.06390$, $\frac{3}{32} \doteqdot 0.09375$

and $\frac{3}{32} - \frac{1}{18} 7^{1/3} b_1 = 0.02985 > 0$, we obtain from (4.8_1)

$$G'(t) > \frac{16}{19} - \frac{15}{19} \log_e 7 + \frac{11}{57} \left(\log_e \frac{19}{3}\right)^2 + \left(\frac{3}{32} - \frac{1}{18}7^{1/3}b_1\right) \left(\log_e \frac{19}{3}\right)^3$$
.

Since we have

$$\frac{16}{19} \doteq 0.84211$$
, $\frac{11}{57} \left(\log_e \frac{19}{3}\right)^2 \doteq 0.65751$,

$$\left(\frac{3}{32} - \frac{1}{18} 7^{1/3} b_1\right) \left(\log_e \frac{19}{3}\right)^3 \doteq 0.18772,$$

$$\log_e 7 \doteq 1.94591, \qquad \frac{15}{10} \log_e 7 \doteq 1.53624,$$

the right-hand side of the above inequality \(\ddot\) 0.15109, hence

$$G'(t) > 0$$
 for $\frac{1}{4} \le t \le \frac{1}{3}$.

II. $\frac{1}{8} \le t \le \frac{1}{4}$. For such t, we have

$$\frac{39}{7} \le \frac{5-t}{1-t} \le \frac{19}{3}, \qquad \log_e \frac{39}{7} \le u \le \log_e \frac{19}{3},$$
$$-1+t(1-t)u + \frac{4}{5-t}t^2 \ge -\frac{77}{78} + \frac{7}{64}\log_e \frac{39}{7} = -b_2$$

and

$$\sum_{m>2} \frac{u^m t^{m-2}}{m\,!} < \frac{u^3 t}{6} \left(e^{ut} - \frac{3}{4} ut \right) = \frac{u^3 t}{6} \left\{ \left(\frac{5-t}{1-t} \right)^t - \frac{3}{4} ut \right\} < c_2 u^3 t ,$$

where

$$c_2 = \frac{1}{6} \left\{ \left(\frac{19}{3} \right)^{1/4} - \frac{3}{32} \log_e \frac{39}{7} \right\}.$$

On the constants b_2 and c_2 , we have

$$\log_e \frac{39}{7} \doteqdot 1.71765$$
, $\frac{7}{64} \log_e \frac{39}{7} \doteqdot 0.18787$, $\frac{77}{78} \doteqdot 0.98718$

and $b_2 = 0.79931$;

$$\left(\frac{19}{3}\right)^{1/4} \doteq 1.58638$$
, $\frac{3}{32} \log_e \frac{39}{7} \doteq 0.16103$

and $c_2 = 0.23756$. From (4.7) and these inequalities we obtain

$$G'(t) > -u + \left(\frac{1}{2} - t\right)u^2 + \frac{4}{5 - t} + \frac{4t}{5 - t}u + \frac{1}{2}tu^2\left\{(1 - t)u + \frac{4t}{5 - t}\right\} - b_2c_2tu^3$$

$$= \frac{4}{5 - t} + \left[-1 + \frac{4t}{5 - t}\right]u + \left[\frac{1}{2} - t + \frac{2t^2}{5 - t}\right]u^2 + \left[\frac{t(1 - t)}{2} - b_2c_2t\right]u^3.$$

Since $\frac{1}{8} \le t \le \frac{1}{4}$ and the function $-t + \frac{2t^2}{5-t}$ is decreasing in $\left(-\infty, \frac{1}{4}\right]$, $\frac{1}{2} - t + \frac{2t^2}{5-t} \ge \frac{1}{2} - \frac{1}{4} + \frac{1}{38} = \frac{21}{76}$, $b_2 c_2 = 0.18988$,

$$\frac{t(1-t)}{2} - b_2 c_2 t \ge \frac{1}{8} \left(\frac{7}{16} - b_2 c_2 \right) = 0.03095 > 0,$$

we obtain

$$(4.8_2) G'(t) > \frac{32}{39} - u \left[\frac{35}{39} - \frac{21}{76} u - \frac{1}{8} \left(\frac{7}{16} - b_2 c_2 \right) u^2 \right].$$

On the other hand, we have

$$\frac{35}{39} - \frac{21}{76}u - \frac{1}{8} \left(\frac{7}{16} - b_2 c_2\right) u^2
< \frac{35}{39} - \frac{21}{76} \log_e \frac{39}{7} - \frac{1}{8} \left(\frac{7}{16} - b_2 c_2\right) \left(\log_e \frac{39}{7}\right)^2,$$

hence

$$G'(t) > \frac{32}{39} - \log_e \frac{19}{3} \left[\frac{35}{39} \right]^{\frac{1}{2}} \frac{21}{76} \log_e \frac{39}{7} - \frac{1}{8} \left(\frac{7}{16} - b_2 c_2 \right) \left(\log_e \frac{39}{7} \right)^2 \right].$$

Since we have

$$\frac{32}{39} \doteq 0.82051, \quad \frac{35}{39} \doteq 0.89744, \quad \frac{21}{76} \log_e \frac{39}{7} \doteq 0.47461,$$
$$\frac{1}{8} \left(\frac{7}{16} - b_2 c_2\right) \left(\log_e \frac{39}{7}\right)^2 \doteq 0.09132,$$

$$G'(t) > 0$$
 for $\frac{1}{8} \leq t \leq \frac{1}{4}$.

III. $\frac{1}{16} \le t \le \frac{1}{8}$. For such t, we have

$$\frac{79}{15} \le \frac{5-t}{1-t} \le \frac{39}{7}, \qquad \log_e \frac{79}{15} \le u \le \log_e \frac{39}{7}.$$

$$-1+t(1-t)u + \frac{4}{5-t}t^2 \ge -\frac{315}{316} + \frac{15}{256}\log_e \frac{79}{15} = -b_3,$$

and

$$\sum_{m=2} \frac{u^m t^{m-2}}{m!} < \frac{u^3 t}{6} \left\{ \left(\frac{5-t}{1-t} \right)^t - \frac{3}{4} ut \right\} < c_3 u^3 t ,$$

where

$$c_{s} = \frac{1}{6} \left\{ \left(\frac{39}{7} \right)^{1/8} - \frac{3}{64} \log_{e} \frac{79}{15} \right\}.$$

On the constants b_3 and c_3 , we have

$$\log_e \frac{79}{15} \doteqdot 1.66140$$
, $\frac{15}{256} \log_e \frac{79}{15} \doteqdot 0.09735$, $\frac{315}{316} \doteqdot 0.99684$

and $b_3 = 0.89949$;

$$\left(\frac{39}{7}\right)^{1/8} \doteq 1.23950$$
, $\frac{3}{64} \log_e \frac{79}{15} \doteq 0.07788$

and $c_3
div 0.19360$. From (4.7) and these inequalities, we obtain

$$G'(t) > \frac{4}{5-t} + \left[-1 + \frac{4t}{5-t}\right] u + \left[\frac{1}{2} - t + \frac{2t^2}{5-t}\right] u^2 + \left[\frac{t(1-t)}{2} - b_3 c_3 t\right] u^3.$$

Since $\frac{1}{16} \le t \le \frac{1}{8}$ and

$$\frac{1}{2} - t + \frac{2t^2}{5-t} \ge \frac{1}{2} - \frac{1}{8} + \frac{1}{156} = \frac{119}{312} = 0.38141$$

$$b_3c_3 = 0.17414$$
, $\frac{t(1-t)}{2} - b_3c_3t \ge \frac{1}{16} \left(\frac{15}{32} - b_3c_3\right) = 0.01841$,

we obtain

$$(4.8_3) G'(t) > \frac{64}{79} - u \left[\frac{75}{79} - \frac{119}{312} u - \frac{1}{16} \left(\frac{15}{32} - b_3 c_3 \right) u^2 \right],$$

which yields

$$G'(t) > \frac{64}{79} - \log_e \frac{39}{7} \left[\frac{75}{79} - \frac{119}{312} \log_e \frac{79}{15} - \frac{1}{16} \left(\frac{15}{32} - b_s c_s \right) \left(\log_e \frac{79}{15} \right)^2 \right].$$

Since we have

$$\frac{64}{79} \doteq 0.81013 , \qquad \frac{75}{79} \doteq 0.94937 , \qquad \frac{119}{312} \log_e \frac{79}{15} \doteq 0.63367 ,$$

$$\frac{1}{16} \left(\frac{15}{32} - b_3 c_3\right) \left(\log_e \frac{79}{15}\right)^2 \doteq 0.05082 ,$$

the right-hand side of the above inequality ± 0.35517 , hence

$$G'(t) > 0$$
 for $\frac{1}{16} \le t \le \frac{1}{8}$.

IV. $0 < t \le \frac{1}{16}$. For such t, we have

$$\begin{split} &5 < \frac{5-t}{1-t} \leq \frac{79}{15} \,, \qquad \log_e 5 < u \leq \log_e \frac{79}{15} \,, \\ &-1 + t(1-t)u + \frac{4}{5-t} \, t^2 > -1 \,, \qquad \sum_{m \geq 2} \frac{u^m t^{m-2}}{m \,!} < c_4 u^3 t \,, \end{split}$$

where

$$c_4 = \frac{1}{6} \left(\frac{79}{15}\right)^{1/16} \doteq 0.18490$$
.

From (4.7) and these inequalities, we obtain analogously as before

$$(4.84) G'(t) > \frac{4}{5} - u + \frac{555}{1264}u^{2}.$$

Since $\log_e 5 \doteq 1.60944 > \frac{632}{555} \doteq 1.13874$, we have

$$G'(t) > \frac{4}{5} - \log_e 5 + \frac{555}{1264} (\log_e 5)^2 = 0.32791 > 0$$
 for $0 < t \le \frac{1}{16}$.

224 T. Otsuki

Thus, putting together the above arguments we obtain

$$G'(t) > 0$$
 for $0 < t \le \frac{1}{3}$.

Therefore G(t) must be monotone increasing in this interval. Q. E. D. THEOREM 4.5. When $3 \le n \le 14$, we have

$$\sqrt{F(x)} + \sqrt{F(X(x))} < \sqrt{2}$$
 for $0 < x < 1$.

PROOF. By Theorem 3.8, it suffices to prove the above inequality for $0 < x \le \sigma$. By Lemma 4.3, we have

$$\sqrt{F(x)} + \sqrt{F(X(x))} < \frac{1}{4} \sqrt{5(n-1) \left(\frac{5n-1}{n-1}\right)^{1/n} - (5n-1)} + \frac{n}{\sqrt{n^2 + 4n - 4}}$$
for $0 < x \le \sigma$, $n \ge 3$.

When $3 \le n \le 4$, by Lemma 4.4 we have

$$\frac{1}{4}\sqrt{5(n-1)\left(\frac{5n-1}{n-1}\right)^{1/n}-(5n-1)} \le \frac{1}{4}\sqrt{5\cdot2\cdot7^{1/3}-14} \doteq 0.56620,$$

$$\frac{n}{\sqrt{n^2+4n-4}} \le \frac{4}{\sqrt{28}} = \frac{2}{\sqrt{7}} \doteq 0.75593$$

and

$$\frac{1}{4}\sqrt{5(n-1)\left(\frac{5n-1}{n-1}\right)^{1/n}-(5n-1)}+\frac{n}{\sqrt{n^2+4n-4}}<1.32213<\sqrt{2}.$$

When $4 \le n \le 10$, by Lemma 4.4 we have

$$\frac{1}{4}\sqrt{5(n-1)\left(\frac{5n-1}{n-1}\right)^{1/n}-(5n-1)} \leq \frac{1}{4}\sqrt{5\cdot3\cdot\left(\frac{19}{3}\right)^{1/4}-19} \doteq 0.54748,$$

$$\frac{n}{\sqrt{n^2+4n-4}} \leq \frac{10}{\sqrt{136}} = \frac{5}{\sqrt{34}} \doteq 0.85749$$

and

$$\frac{1}{4}\sqrt{5(n-1)\left(\frac{5n-1}{n-1}\right)^{1/n}-(5n-1)}+\frac{n}{\sqrt{n^2+4n-4}}<1.40498<\sqrt{2}.$$

When $8 \le n \le 14$, we have analogously

$$\frac{1}{4}\sqrt{5(n-1)\left(\frac{5n-1}{n-1}\right)^{1/n}-(5n-1)} \le \frac{1}{4}\sqrt{5\cdot7\cdot\left(\frac{39}{7}\right)^{1/8}-39} = 0.52336$$

$$\frac{n}{\sqrt{n^2+4n-4}} \le \frac{14}{\sqrt{248}} = \frac{7}{\sqrt{62}} = 0.88900$$

and

$$\frac{1}{4}\sqrt{5(n-1)\left(\frac{5n-1}{n-1}\right)^{1/n}-(5n-1)}+\frac{n}{\sqrt{n^2+4n-4}}<1.41236<\sqrt{2}.$$

Thus we have proved the inequality:

$$\sqrt{F(x)} + \sqrt{F(X(x))} < \sqrt{2}$$
 for $0 < x \le \sigma$. Q. E. D.

Theorem 4.5, Lemma 1.2 and (1.5) imply the inequality:

(U)
$$T < \sqrt{2}\pi$$
 for $3 \le n \le 14$.

§ 5. An estimation of σ for $n \ge 14$.

In this section, we shall show that $\sigma < \frac{1}{11}$ for $n \ge 14$.

By Lemma 3.6 and (3.7), $\sigma < \frac{1}{11}$ is equivalent to $g(\frac{1}{11}) > B = (n-1)^{1-1/n}$ By (3.6) and (3.7), we have

$$\begin{split} P\Big(\frac{1}{11}\Big) &= \frac{4}{121}(53n^2 + 29n - 7) \;, \\ P\Big(\frac{1}{11}\Big) - 3\Big(1 - \frac{1}{11}\Big)^2\Big(n + \frac{n - 2}{11}\Big) &= \frac{4}{1331}(583n^2 - 581n + 73) \;, \\ \varphi\Big(\frac{1}{11}\Big) &= \frac{1}{11}(11n - 1)^{1 - 1/n} \;, \end{split}$$

hence

(5.1)
$$g\left(\frac{1}{11}\right) = \frac{(53n^2 + 29n - 7)(11n - 1)^{1-1/n}}{583n^2 - 581n + 73}.$$

Therefore $g(\frac{1}{11}) > B$ is equivalent to

(5.2)
$$\left(\frac{11n-1}{n-1}\right)^{1-1/n} > \frac{583n^2 - 581n + 73}{53n^2 + 29n - 7}.$$

Putting $\frac{1}{n} = t$, the above inequality can be written as follows:

$$\left(\frac{11-t}{1-t}\right)^{1-t} > \frac{583-581t+73t^2}{53+29t-7t^2}$$

which is also equivalent to

(5.3)
$$(1-t)\log\frac{11-t}{1-t} > \log\frac{583-581t+73t^2}{53+29t-7t^2}.$$

On the other hand, we have

$$\frac{11-t}{1-t} = 11\left\{1 + \frac{10t}{11(1-t)}\right\}$$

and

(5.4)
$$0 < \frac{10t}{11(1-t)} \le \frac{1}{11}$$
 for $0 < t \le \frac{1}{11}$.

Using these relations, we obtain

(5.5)
$$(1-t)\log\frac{11-t}{1-t}$$

$$= (1-t)\log 11 + \frac{10}{11}t - \frac{1}{2}\left(\frac{10}{11}\right)^2 \frac{t^2}{1-t} + \frac{1}{3}\left(\frac{10}{11}\right)^3 \frac{t^3}{(1-t)^2} - \cdots$$

$$+ (-1)^{m-1} \frac{1}{m}\left(\frac{10}{11}\right)^m \frac{t^m}{(1-t)^{m-1}} + \cdots .$$

Next, we have

$$\frac{583 - 581t + 73t^2}{53 + 29t - 7t^2} = 11(1 - Q),$$

where

(5.6)
$$Q:=\frac{150t(6-t)}{11(53+29t-7t^2)}.$$

Since for $0 < t \le \frac{1}{11}$ we have

$$0 < Q < \frac{150}{11 \cdot 53} \cdot \frac{1}{11} \cdot \left(6 - \frac{1}{11}\right) = \frac{150 \cdot 65}{11^3 \cdot 53} < 1$$
,

we obtain

(5.7)
$$\log \frac{583 - 581t + 73t^2}{53 + 29t - 7t^2} = \log 11 - Q - \frac{1}{2}Q^2 - \frac{1}{3}Q^3 - \cdots - \frac{1}{n}Q^n - \cdots$$

From (5.5) and (5.7), we obtain the following:

$$(5.8) \qquad (1-t)\log\frac{11-t}{1-t}-\log\frac{583-581t+73t^2}{53+29t-7t^2}$$

$$=-t\log 11+\frac{10}{11}t-\frac{1}{2}\left(\frac{10}{11}\right)^2\frac{t^2}{1-t}+\frac{1}{3}\left(\frac{10}{11}\right)^3\frac{t^3}{(1-t)^2}-\cdots$$

$$+(-1)^{m-1}\frac{1}{m}\left(\frac{10}{11}\right)^m\frac{t^m}{(1-t)^{m-1}}+\cdots$$

$$+Q+\frac{1}{2}Q^2+\frac{1}{3}Q^3+\cdots+\frac{1}{m}Q^m+\cdots.$$

LEMMA 5.1. $Q^m > \left(\frac{10}{11}\right)^m \frac{t^m}{(1-t)^{m-1}}$ for $0 < t \le \frac{1}{11}$ $(m = 1, 2, 3, \cdots)$.

PROOF. This inequality is equivalent to

$$\frac{150t(6-t)}{11(53+29t-7t^2)} > \frac{10}{11} \frac{t}{(1-t)^{1-1/m}},$$

that is

(5.9)
$$\frac{15(1-t)(6-t)}{53+29t-7t^2} > (1-t)^{1/m}.$$

Since the left-hand side of (5.9) is monotone decreasing in $\left[0, \frac{1}{11}\right]$ and

$$\frac{15(1-t)(6-t)}{53+29t-t^2}\Big|_{t=1/11} = \frac{390}{269} > 1 > (1-t)^{1/m}$$
,

(5.9) is true.

Q. E. D.

THEOREM 5.2. $\sigma < \frac{1}{11}$ for $n \ge 14$.

PROOF. By means of (5.8), it suffices to prove that

(5.10)
$$\frac{10}{11} + \frac{1}{3} \left(\frac{10}{11}\right)^{3} \frac{t^{2}}{(1-t)^{2}} + \frac{1}{5} \left(\frac{10}{11}\right)^{5} \frac{t^{4}}{(1-t)^{4}} + \cdots + \frac{1}{t} \left(Q + \frac{1}{3}Q^{3} + \frac{1}{5}Q^{5} + \cdots\right) + \frac{1}{2} \left\{\frac{Q^{2}}{t} - \left(\frac{10}{11}\right)^{2} \frac{t}{1-t}\right\} + \frac{1}{4} \left\{\frac{Q^{4}}{t} - \left(\frac{10}{11}\right)^{4} \frac{t^{3}}{(1-t)^{3}}\right\} + \cdots > \log_{e} 11 \stackrel{.}{=} 2.39790.$$

By Lemma 5.1, every term in the left-hand side of (5.10) is positive. When $n \ge 20$, i. e. $t \le \frac{1}{20}$, we have

$$\frac{Q}{t} = \frac{150(6-t)}{11(53+29t-7t^2)} \ge \left(\frac{Q}{t}\right)_{t=1/20} = \frac{357000}{239503} \doteqdot 1.49059 \text{ ,}$$

hence

$$\frac{10}{11} + \frac{Q}{t} \ge \frac{10}{11} + \frac{357000}{239503} \doteqdot 2.39968$$
,

which implies the following:

$$\frac{10}{11} + \frac{Q}{t} > \log_e 11.$$

Consequently (5.10) is true for $0 < t \le \frac{1}{20}$. In the following, putting

$$(5.11) \qquad \Psi(t) := \frac{10}{11} + \frac{1}{3} \left(\frac{10}{11}\right)^3 \left(\frac{t}{1-t}\right)^2 + \frac{1}{5} \left(\frac{10}{11}\right)^5 \left(\frac{t}{1-t}\right)^4 + \cdots + \frac{1}{t} \left(Q + \frac{1}{3}Q^3 + \frac{1}{5}Q^5 + \cdots\right) + \frac{1}{2} \left(\frac{Q^2}{t} - \left(\frac{10}{11}\right)^2 \frac{t}{1-t}\right).$$

we shall prove that

$$\Psi(t) > \log_e 11$$
 for $\frac{1}{20} \le t \le \frac{1}{14}$.

First, we have

$$\frac{10}{11} + \frac{1}{3} \left(\frac{10}{11}\right)^3 \left(\frac{t}{1-t}\right)^2 + \frac{1}{5} \left(\frac{10}{11}\right)^5 \left(\frac{t}{1-t}\right)^4 + \cdots + \frac{Q}{t} \left(1 + \frac{1}{3} Q^2 + \frac{1}{5} Q^4 + \cdots\right)$$

$$> \frac{10}{11} \left[1 + \left(\frac{10t}{11\sqrt{3}(1-t)} \right)^2 + \left(\frac{10t}{11\sqrt{3}(1-t)} \right)^4 + \cdots \right]$$

$$+ \frac{Q}{t} \left[1 + \left(\frac{1}{\sqrt{3}} Q \right)^2 + \left(\frac{1}{\sqrt{3}} Q \right)^4 + \cdots \right]$$

$$= \frac{10}{11} \cdot \frac{1}{1 - \frac{100t^2}{363(1-t)^2}} + \frac{Q}{t} \cdot \frac{1}{1 - \frac{Q^2}{3}} .$$

Hence we obtain the following:

$$(5.12) \qquad \varPsi(t) > \frac{10}{11} \cdot \frac{1}{1 - \frac{100t^2}{363(1-t)^2}} + \frac{Q}{t} \cdot \frac{3}{3-Q^2} + \frac{1}{2} \left\{ \frac{Q^2}{t} - \frac{100t}{121(1-t)} \right\}.$$

In the interval $\left[\frac{1}{20}, \frac{1}{14}\right]$ of t, we have

$$\frac{100t^2}{363(1-t)^2} \ge \frac{100t^2}{363(1-t)^2} \bigg|_{t=1/20} = \frac{100}{363 \cdot 19^2}$$

and hence

$$\frac{10}{11} \cdot \frac{1}{1 - \frac{100t^2}{363(1 - t)^2}} \ge \frac{119130}{130943} = 0.90979;$$

$$\frac{Q}{t} = \frac{150(6 - t)}{11(53 + 29t - 7t^2)} \ge \frac{Q}{t} \Big|_{t = 1/14} = \frac{150 \cdot 83 \cdot 2}{11 \cdot 1541} = \frac{24900}{16951} = 1.46894.$$

Here we need the following

LEMMA 5.3. Q and $\frac{Q^2}{t}$ are monotone increasing in (0, 1).

PROOF. First we have

$$\left(\frac{t(6-t)}{53+29t-7t^2}\right)' = \frac{318-106t+13t^2}{(53+29t-7t^2)^2} > 0 \qquad \text{for } 0 < t < 1$$

and

$$\left(\frac{t(6-t)^2}{(53+29t-7t^2)^2} \right)' = \frac{(6-t)(318-333t+97t^2-7t^3)}{(53+29t-7t^2)^3} > 0 \qquad \text{for} \quad 0 < t < 1 \, ,$$

because

$$318 - 333t + 97t^2 - 7t^3 > 311 - 333t + 97t^2 > 0$$
.

Hence it follows that Q' and $\left(\frac{Q^2}{t}\right)'$ are positive in (0, 1). Consequently Q and $\frac{Q^2}{t}$ are monotone increasing there. Q. E. D.

Now, we go back to the proof of Theorem 5.2. Using Lemma 5.3, for $\frac{1}{20} \le t \le \frac{1}{14}$ we have

$$\frac{1}{2} \left\{ \frac{Q^2}{t} - \frac{100t}{121(1-t)} \right\} > \frac{1}{2} \left\{ \left(\frac{Q^2}{t} \right)_{t=1/20} - \frac{100}{121} \left(\frac{t}{1-t} \right)_{t=1/14} \right\}$$

$$= \frac{50 \cdot 15^2}{11^2} \cdot \frac{\frac{1}{20} \cdot \left(6 - \frac{1}{20} \right)^2}{\left(53 + \frac{29}{20} - \frac{7}{400} \right)^2} - \frac{50}{11^2} \cdot \frac{1}{13}$$

$$= \frac{15^2 \cdot 119^2 \cdot 10^3}{11^2 \cdot 21773^2} - \frac{50}{11^2 \cdot 13}$$

$$= \frac{3186225000}{57361687009} - \frac{50}{1573} \stackrel{.}{=} 0.02376$$

and

$$\begin{split} \frac{Q}{t} \cdot \frac{3}{3 - Q^2} &\ge \left(\frac{Q}{t}\right)_{t = 1/14} \cdot \frac{3}{3 - (Q^2)_{t = 1/20}} \\ &= \frac{24900}{16951} \cdot \frac{3}{3 - \left(\frac{17850}{239503}\right)^2} \\ &= \frac{3 \cdot 249 \cdot 239503^2 \cdot 10^2}{16951 \cdot 171766438527} &\doteqdot 1.47166 \, . \end{split}$$

Using these inequalities, from (5.12) we obtain

$$\Psi(t) > \frac{119130}{130943} + \frac{3 \cdot 249 \cdot 239503^2 \cdot 10^2}{16951 \cdot 171766438527} + \frac{3186225000}{57361687009} - \frac{50}{1573}$$

$$= 2.40521 > \log_e 11 \quad (= 2.39790).$$

Consequently, (5.10) is true for
$$\frac{1}{20} \le t \le \frac{1}{14}$$
. Q. E. D.

REMARK. We have proved $\sigma < \frac{1}{11}$ for any real number $n \ge 14$. However it may be also true for $6 \le n < 14$, because we can show that it is true for the integers n = 6, 7, 8, 9, 10, 11, 12 and 13 by means of the following inequality equivalent to (5.2):

(5.14)
$$A_n := \left(\frac{11n-1}{n-1}\right)^{1/n} < \frac{(11n-1)(53n^2+29n-7)}{(n-1)(583n^2-581n+73)} := E_n.$$
 In fact
$$A_6 = \left(\frac{65}{5}\right)^{1/6} \doteqdot 1.53341 \,, \qquad E_6 = \frac{1079}{703} \doteqdot 1.53485 \,;$$

$$A_7 = \left(\frac{76}{6}\right)^{1/7} \doteqdot 1.43722 \,, \qquad E_7 = \frac{106134}{73719} \doteqdot 1.43971 \,;$$

$$A_8 = \left(\frac{87}{7}\right)^{1/8} \doteqdot 1.37026 \,, \qquad E_8 = \frac{314679}{229159} \doteqdot 1.37319 \,;$$

$$A_9 = \left(\frac{98}{8}\right)^{1/9} \doteqdot 1.32100 \,, \qquad E_9 = \frac{222803}{168268} \doteqdot 1.32410 \,;$$

$$\begin{split} A_{10} &= \left(\frac{109}{9}\right)^{1/10} \doteqdot 1.28327 \;, \qquad E_{10} = \frac{202849}{157689} \doteqdot 1.28639 \;; \\ A_{11} &= \left(\frac{120}{10}\right)^{1/11} \doteqdot 1.25345 \;, \qquad E_{11} = \frac{3228}{2569} \doteqdot 1.25652 \;; \\ A_{12} &= \left(\frac{131}{11}\right)^{1/12} \doteqdot 1.22930 \;, \qquad E_{12} = \frac{1044463}{847583} \doteqdot 1.23228 \;; \\ A_{13} &= \left(\frac{142}{12}\right)^{1/13} \doteqdot 1.20934 \;, \qquad E_{13} = \frac{220739}{182094} \doteqdot 1.21223 \;. \end{split}$$

However

Hence $\sigma > \frac{1}{11}$ for n = 5.

Proposition 5.3. $\sigma < \frac{1}{11}$ for any integer $n \ge 6$.

§ 6. Proof of $T < \sqrt{2}\pi$ for $n \ge 14$.

In this section, we shall prove the inequality $T < \sqrt{2\pi}$ for any real number $n \ge 14$, by the same method used for the case $3 \le n \le 14$.

LEMMA 6.1. When $n \ge 14$, for $0 < x \le \sigma$ we have

$$\sqrt{F(x)} + \sqrt{F(X(x))} < \frac{1}{10} \sqrt{11(n-1) \left(\frac{11n-1}{n-1}\right)^{1/n} - (11n-1)} + \frac{n}{\sqrt{n^2 + 4n - 4}}.$$

PROOF. By Theorem 5.2 and Theorem 2.3, for $0 < x \le \sigma$ we have

$$F(x) < F\left(\frac{1}{11}\right) = \left[\frac{x(n-x)}{(1-x)^2} \cdot \frac{B - \varphi(x)}{\varphi(x)}\right]_{x=1/11}$$
$$= \frac{1}{100} \left\{ 11(n-1) \left(\frac{11n-1}{n-1}\right)^{1/n} - (11n-1) \right\}.$$

This inequality and Theorem 2.5 imply this lemma.

Q. E. D.

LEMMA 6.2. $G_{11}(t)$ is monotone increasing in $\left(0, \frac{1}{11}\right]$.

PROOF. For $G(t) = G_{11}(t)$, from (4.6) we obtain

(6.1)
$$G'(t) = -u + \left(\frac{1}{2} - t\right)u^2 + \frac{10}{11 - t} + \frac{10}{11 - t}tu + \frac{1}{2}tu^2\left\{(1 - t)u + \frac{10}{11 - t}t\right\} + \sum_{m>2} \frac{u^m t^{m-2}}{m!} \left\{-1 + t(1 - t)u + \frac{10}{11 - t}t^2\right\},$$

where

(6.2)
$$u = \log_e \frac{11 - t}{1 - t}.$$

Since for $0 < t \le \frac{1}{11}$

$$\begin{aligned} &11 < \frac{11-t}{1-t} \leq 12, & \log_e 11 < u \leq \log_e 12; \\ &-1 + t(1-t)u + \frac{10}{11-t}t^2 > -1, \\ &\sum_{m \geq 2} \frac{u^m t^{m-2}}{m!} < \frac{u^3 t}{6} e^{ut} = \frac{u^3 t}{6} \left(\frac{11-t}{1-t}\right)^t < \frac{u^3 t}{6} \cdot 12^{1/11}, \end{aligned}$$

(6.1) implies

(6.3)
$$G'(t) > \frac{10}{11-t} + \left[-1 + \frac{10t}{11-t} \right] u + \left[\frac{1}{2} - t + \frac{5t^2}{11-t} \right] u^2 + \left[\frac{t(1-t)}{2} - \frac{t}{6} \cdot 12^{1/11} \right] u^3.$$

However for $0 < t \le \frac{1}{11}$ we have

$$\begin{split} &\frac{10}{11-t} > \frac{10}{11}\,, \qquad -1 + \frac{10t}{11-t} > -1\,, \\ &\frac{1}{2} - t + \frac{5t^2}{11-t} > \frac{1}{2} - t + \frac{5}{11}\,t^2 \geqq \frac{1}{2} - \frac{1}{11} + \frac{5}{11^3} = \frac{1099}{2 \cdot 11^3} \end{split}$$

and

$$\frac{t(1-t)}{2} - \frac{t}{6} \cdot 12^{1/11} = \frac{t}{2} \left(1 - \frac{1}{3} \cdot 12^{1/11} - t \right) > 0$$

since $1 - \frac{1}{3} \cdot 12^{1/11} \doteqdot 1 - \frac{1.25345}{3} > \frac{1}{11}$. From these and (6.3), we obtain the following inequality:

(6.4)
$$G'(t) > \frac{10}{11} - u + \frac{1099}{2 \cdot 11^3} u^2.$$

Since

$$\frac{11^3}{1099} \doteqdot 1.21110 < \log_e 11 \doteqdot 2.39790$$
,

it is seen easily that

$$\frac{10}{11} - u + \frac{1099}{2 \cdot 11^3} u^2 > \frac{10}{11} - \log_e 11 + \frac{1099}{2 \cdot 11^3} (\log_e 11)^2.$$

However

$$\frac{1099}{2 \cdot 11^3} (\log_e 11)^2 \doteq 2.37384, \qquad \frac{10}{11} \doteq 0.90909,$$

232 T. Otsuki

hence the right-hand side of the above inequality = 0.88503. Consequently, we obtain

$$G'(t) > 0$$
,

which implies that $G_{11}(t) = G(t)$ is monotone increasing in $\left(0, \frac{1}{11}\right]$. Q. E. D. THEOREM 6.3. When $n \ge 14$, we have

$$\sqrt{F(x)} + \sqrt{F(X(x))} < \sqrt{2}$$
 for $0 < x < 1$.

PROOF. By Theorem 3.8, it suffices to prove the above inequality for $0 < x \le \sigma$. By Theorem 5.2 and Lemma 6.1, we have for $0 < x \le \sigma$ the following:

(6.5)
$$\sqrt{F(x)} + \sqrt{F(X(x))} < \frac{1}{10} \sqrt{11(n-1) \left(\frac{11n-1}{n-1}\right)^{1/n} - (11n-1)} + \frac{n}{\sqrt{n^2 + 4n - 4}}.$$

The first term of the right-hand side of (6.5) is decreasing for $n \ge 14$ by Lemma 6.2 and (4.3) and the second term is increasing for $n \ge 2$. Making use of these facts, we obtain:

i) When $14 \le n \le 21$,

$$\frac{1}{10}\sqrt{11(n-1)\left(\frac{11n-1}{n-1}\right)^{1/n}} - (11n-1) + \frac{n}{\sqrt{n^2+4n-4}}$$

$$< \frac{1}{10}\sqrt{11\cdot13\cdot\left(\frac{153}{13}\right)^{1/14}} - 153 + \frac{21}{\sqrt{521}}.$$

Since we have

$$\left(\frac{153}{13}\right)^{1/14} \stackrel{?}{=} 1.19256, \qquad \frac{1}{10} \sqrt{11 \cdot 13 \cdot \left(\frac{153}{13}\right)^{1/14} - 153} \stackrel{?}{=} 0.41877,$$

$$\frac{21}{\sqrt{521}} \stackrel{?}{=} 0.92003,$$

we get

$$\frac{1}{10}\sqrt{11\cdot13\cdot\left(\frac{153}{13}\right)^{^{1/14}}-153}+\frac{21}{\sqrt{521}}<1.33880<\sqrt{2}.$$

ii) When $n \ge 21$,

$$\frac{1}{10}\sqrt{11(n-1)\left(\frac{11n-1}{n-1}\right)^{1/n}-(11n-1)} + \frac{n}{\sqrt{n^2+4n-4}} < \frac{1}{10}\sqrt{220\cdot\left(\frac{23}{2}\right)^{1/21}-230} + 1.$$

Since we have

$$\left(\frac{23}{2}\right)^{1/21} \doteqdot 1.12334$$
, $\frac{1}{10}\sqrt{220\cdot\left(\frac{23}{2}\right)^{1/21}-230} \doteqdot 0.41393$,

we get

$$\frac{1}{10}\sqrt{220\cdot\left(\frac{23}{2}\right)^{1/21}-230}+1<1.41393<\sqrt{2}$$
.

Thus we have proved the inequality

$$\sqrt{F(x)} + \sqrt{F(X(x))} < \sqrt{2}$$
 for $0 < x \le \sigma$. Q. E. D.

Finally, by means of Lemma 1.2, (1.6), (1.8), Theorem 4.5 and Theorem 6.3, we obtain the following

MAIN THEOREM. When $n \ge 3$, the period function T_n given by (1.1) satisfies

- (i) $\pi < T_n(x_0) < \sqrt{2}\pi \text{ for } 0 < x_0 < 1$,
- (ii) $\lim_{x_0 \to 0} T_n(x_0) = \pi$ and $\lim_{x_0 \to 1} T_n(x_0) = \sqrt{2}\pi$.

REMARK. In this paper, all numerical calculations have been done to sufficiently large number of decimal places and a seven figure table of logarithms has been used if necessary.

References

- [1] S. S. Chern, M. do Carmo and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields, Springer-Verlag, 1970, 60-75.
- [2] S. Furuya, On periods of periodic solutions of a certain nonlinear differential equation, Japan-United States Seminar on Ordinary Differential and Functional Equations, Lecture Notes in Mathematics, Springer-Verlag, 243 (1971), 320-323.
- [3] Wu-Yi Hsiang and H.B. Lawson, Jr., Minimal submanifolds of low cohomogeneity, J. Differential Geometry, 5 (1970), 1-38.
- [4] T. Otsuki, Minimal hypersurfaces in a Riemannian manifold of constant curvature, Amer. J. Math., 92 (1970), 145-173.
- [5] T. Otsuki, On integral inequalities related with a certain nonlinear differential equation, Proc. Japan Acad., 48 (1972), 9-12.
- [6] T. Otsuki, On a 2-dimensional Riemannian manifold, Differential Geometry, in honor of K. Yano, Kinokuniya, Tokyo, 1972, 401-414.
- [7] M. Urabe, Computations of periods of a certain nonlinear autonomous oscillations, Study of algorithms of numerical computations, Sûrikaiseki Kenkyûsho Kôkyû-roku, 149 (1972), 111-129 (Japanese).

Tominosuke OTSUKI
Department of Mathematics
Tokyo Institute of Technology
O-okayama, Meguro-ku
Tokyo, Japan