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§0. Introduction.
As is shown in [6], the nonlinear differential equation
2 2
(E) na(l—x?) L X dt2 ( =) +A—x%)(nx—1)=0

where 7 is an integer =2, is the equation for the support function x(f) of a
geodesic in the 2-dimensional Riemannian manifold O with the metric:

0.1) ds® = (1—u*—v®)" {1 —v*)du®+2uv du dv+(1—u?)dv?}

in the unit disk: #*4+v*<1. Another geometric meaning of (E) is given in
[4] Any non constant solution x(¢#) of (E) such that

x+( )<1

is periodic and its period T is given by the improper integral:

dx
"1t
where

0.3) =(a)*Q—ap) “=(a)*A—a)'“
0<a,<Va <a, <1, a=1/n)

(0.2) T=2 j

is the integral constant of (E) and 0<C< A=a*(1—a)'"~
Regarding T as a function of C, the following is known in [4]:
(i) T is differentiable and T >,

(ii) hmT—n and lim T=+27.

Cc—A4
By means of a numerical analysis and observation about (E) in [5] and
[7], M. Urabe conjectures the inequality
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L) T<V2r.
The author however wanted originally to have the inequality
(0.4) T< 2z

from the standpoint of a geometrical problem related with the existence of
compact minimal hypersurfaces of a certain type in the spheres. S. Furuya
gave firstly an answer to it by proving the inequality

(0.5) T<v1—a 2z

in [2] and the author proved a little sharper inequality
1 -
0.6) T<(ggt+vi-a)=

in [6] (U) is true by or when n=2 and S. Furuya proved also
that (U) is true when n=3.

The equation (E) however may be considered for any real number n=2.
In the present paper the author will prove (U) for any real number n=3.

§1. Period function T,(x,).

Replacing nx? and nC by x and C respectively, the period T given by
can be written as

(L.1) T=Ty(x): = = féf; —
where

1.2) C=xf(n—x) “=xfn—x)'*

and

1.3) ' 0<x, <1< <n.

LEMMA 1.1. The function ¢(x):=x(n—x)""* (0= x=n) is monotone in-
creasing in [0, 1] and decreasing in [1, n] and we have

¢’'(x) = x(n x) o(x), " (x)= “‘w@(x),
QD’”(X): (n_i)s((%ln:x]}g—gx) QD(X)

and

oP(x) = (n—=1{Bn— 1)@”4(”1) x>84(271 1)x+12x%} ().

PrOOF. We get easily ¢'(x), ¢”(x) and ¢”(x), from which
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o D(x) = (n—l)[ 3(;3@3 _ 3(2n—1-—-3x)(n—2x) + 2n—1—3x)1—x) ]ga(x)

x*(n—x)? x*(n—x)*
 (n=D{Br—1)2n—1)—8(2n—1)x+-12x2} o
- tin—x)" 1 al So(x)

Since ¢(x) >0 in (0, n), ¢(x) is monotone in [0, 1] and [1, n]. Q.E.D.
-Now, using ¢(x) and putting B=¢(1) =nA, we have :

f‘ dx
2 Vx(n—x)—Cx""*(n—x)*

Jl x(n—x)deo(x)
2o 1—=2)p(X)/x(n—x) {1—C/ (%)}

_ j‘ Va(n—x)(B—p(x) do(x)
o 1=0vVe(x) V(B—¢(0)(p(x)—C)

and

5 AV x(n—x)— Cx1 *(n—x)*

:jfl Va(n—x)(B—e(x) do(x)
I=2)vo(x) V(B—p(0))(p(x)—C) ~

Now, define a function X=X,(x) 0=<x<1) by
1.4) x(n—x)" = X(n—X)"1, 1=X=n,

then we have ¢(x) =¢(X). Hence, the last integral can be written as

[} XCoXE oG _de
(X—Dve(x) V(B—o(x)(p(x)—C) -

Thus, we get a formula for 7 as follows:

1 '\/_4—-——d '\/Xn —Xn B— (
(1.5) Tn(xo):fxo{ xl(iz_xx) + (;({)((7;)_1 (x)) }«/ (p(f)X)
do(x)
«/(B P())Np(0)—C) -~

LEMMA 1.2.
f __ do(x)
0 V(B—p(2))(p(x)—C)

PROOF. Since ¢(x) is monotone increasing in [0, 1], putting u = ¢(x), we
have

—-T7T.

f do(x) _ f
zo V(B—o(x))(p(x)—C) ¢ V(B—u)(u—C u)(u C)

=7, Q.E.D.

Thus from [1.5) and Cemma 1.2 we shall have the inequality 7< 42T,
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if we have the inequality:

Vin—x) | VX (0n—X,(x) B—op(x) 5
e {EER YAl ) [ Ve <<,

LEMMA 1.3. The function F(x):= ]Egn_—;;? . B;&gx) O<x<n, x+1) and
:=1/2 (x=1), s smooth and positive in (0, n).

PROOF. Since ¢(x) is analytic in (0, n) and

@(].):(n—l‘)‘"“-:B,, SD/(DZO’ SD”(D:— nl—l B, 90”'(1)——— 2(;71_-.—1%2 B,

oW (1) = — 3(2?;__17)1;*'% B

by Lemma 1.1, we have

gl 1 el M2 4
0(x) = B{l—g 5 (=10 g0 =5 (x—1)
2nt—Tn+-7
B S G
Hence we have

_ 1 n—2
(L7 B—¢(x) = B(x—1)* DS Ve sy G
2nt—Tn+7
+ g D=
near x=1, which shows that F(x) is analytic in x near 1. Q.E.D.
Using the function F(x), (1.6) can be written as
1.8) VFx) +VF(X,()) < V2 (0<x<]).

§2. Properties of F(x).

In (0, n), for x+1 we have

Friy _ 1 1 2 1, 1 N,
Fx) — x n—x T —-{ B—o(x) .T o(x) }@ ()

_ n+(n—2)x B o 1—x
T x(n—x)(1—x) B—op(x) x(n—x)’

that is

(2.1) F(x) _ {n+(n—2)x} {B—p(x)} —B(1—x)*
F(x) x(n—x0)(1—x){B—o(x)}

From [2.1), we have

(2.2) | (VF®R) ) = {n+(n—2)x} {B—o(x)} —B1—2x)*

21 =2* v x(n—x)p(X) {B—e(n)}* ’
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where {B—¢@(x)}'? denotes the function:

(2.3) (B—g(0) "= (=0 " 5H- .

LEMMA 2.1. Let gix) be the function:

. x(n—=x)""{n4(n—2)x}"
gl)(x) . (n_1+nx_x2)n .
g.(x) is monotone increasing in [0, n/2] and decreasing in [n/2, n].
Proor. We have n—14+nx—x*>0 in [0,n], since n=2. Therefore
go(x)>0 in (0, n). In (0, n), we have

g(x) 1 n-1 n(n—2) n(n—2x)
go(x)_ n—x ' nt(m—2)x n—1+nx—x?

_ n(n—1)1—x)*(n—2x)
- x(n—x){n+n—2)x} {n—1+nx—x%

Hence we have

R C s G ey

from which we see that g,(x) is monotone increasing in [0, n/2] and decreasing
in [n/2, n]. Q.E.D.
We get easily g,(1)=(n—1)""1 Let A be the unique value such that

(2.5) g(A)=(n—1)"1 1<A<n.

This is assured by Lemma 2.1l which implies furthermore n/2< A< n.
LEMMA 2.2. n/2<A<n—1 for n=3. .
Proor. By [Lemma 2.1, it is sufficient to prove that

go(n—1) < (n—1)""1,
Since we have

2 n
gu(n—1) =G 2B

the above inequality is equivalent to

(2.6) 2-(n—1)"¥"> (TL}T)TH'

For the function L(n)::z-(n—l)‘z’"——(*n_llj, we have

L/(n)::-ﬁ—z(n—l)ﬂ/n[log (n—1)— nzl + 2(n7i1)3 -(n—l)z/n].

For n > 2, we have



Bound for periods of solutions of a certain nonlinear differential equation 211

2

nZ

1 t 2(n—1)*

S e

>log (n—1)—

Denote the right-hand side by R(n), then putting r:%_l, we get easily

Ri(n) =~ [log (v~ 1)—(1+ ) {1 (r+9} ]

=%(2+r—412—32'3) .
Since we have

—jr—(2+f—4z2—3f3) = (1+1)(1—97)

and 24+7t—47*—37%,.,=2>0, 2+7—47*—37%,-,,=9/8 >0, it must be that
24+7t—4:2—32*>0 for 0<c<1/2,
from which we have
R'(n)>0 for n=3.

On the other hand, we have

R@)=0, R(3)=log, 2—%% — —0.24435 ... |

R(4)=1log, 3—-28 —0.06157 - >0,

27
hence

R(n)>0 for n=4.
Therefore we get ‘
2.7 L'(n)>0 for n=4.

Next, we have

in(n—l)z/” 2—3—2—@—1)2/”[—

and

d

v =—z(14+7)<0 for z>0.

Hence the function —log (n——l)+—f_—1 is monotone decreasing in (1, o) and

(—log (n—1)+=")  =—log3+5 = 109861 - +-3->0.
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Hence we have
7‘%@-1)?/" >0 for l<n<4,

consequently we have

(n—1)¥" > 20 =1 58740 - > % for 3<n<d4.

Therefore, in the interval 3=n=4, we have

2
log (n—1)— nn—l + Z(nn—l)s (n—1)>"
n 3n?
A1 T dn—1)°

*_1ln+4
=log (n—1)— n(4z(n_1117)13+ )

>log (n—1)—

Denote the right-hand side by R,(n), then we obtain
, d |
Ri(m) = 5] log (1—1)~ (1 +2){1—Hc+7)}]

= (4+e—120"—9¢7).
Since we have
7"f~(4+r—1272—9z3) —1—24r—27¢?

and the positive root of the equation: 27z2+24r—1=0 is less than 1/3 and

(4+7-12°~9¢")_, =-3->0, it must be that
2

1 1

—19,2__Q,3 1 4
44+7—-1272—972 >0 for 3 =7 5

A
IIA

from which
Ri(n) >0 for 3=n<s4.

On the other hand we have

R.(3)=log 2—%:0.03689 >0,

Hence, we get

R,(n)>0 for 3=n=14,
from which we get
(2.8) L'(n)>0 for 3<n<4.

By means of (2.7) and [2.8), L(n) is monotone increasing for n=3. On
the other hand we have
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L(3) =224 =2 = 125092 - ——>1.

Consequently we get
L(n)>1 for n=3.

Thus has been proved. Q.E.D.
THEOREM 2.3. The function F(x) is monotone increasing in (0, A7 and de-
creasing in [ A, n), and

_1 sy M—2
F(l)——z*, F(l)—-m.
PROOF. Near x=1, from we have
_ Bx(n—x) [ 1 n—2 oM —Tn+T o,

from which we get easily

F(1) =3
and

o 1 n—2 __n—=2
F)=0-2) 551y~ =1 36,07 = 6m=1y >0

Then, since F(x) >0, (2.2) implies that F’(x) >0 if and only if

{n4+-(n—2)x} {B—e(x)} > B1—x)* for 0<x<1
and ' ,
{n+(n—2)x} {B—¢(x)} < BQ—x)* for 1<x<n.

These are equivalent to

(n—14nx—x*B > {n+(n—2)x} p(x)
and
(n—1+nx—x*)B < {n+(n—2)x} p(x)

respectively. Since B=(n—1)"""" and ¢(x)=x""(n—x)"""", the above in-
equalities become

x(n—x)"{n+(n—2)x}"

=1+ nz—z7" for 0<x<1

(n__l)n—l >

and

x(n—x)" {n+(n—2)x}"
(n—14+nx—x®)"

The right-hand sides of these inequalities are g,(x) in Lemma 21, which

implies

(n—1"1< for 1<x<mn.

() < g =mn—1""' for 0<x<1land 4<x<mn,
&o(x) > (n—1)""" for 1<x<4.
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Therefore, F(x) is monotone increasing in (0, 4) and decreasing in (4, n).
Q.E.D.
Now, we shall give an estimation on the maximum of the function F(x)
in the interval (0, n).

. x(n—x)
LEMMA 2.4. The function P e

PrROOF. n—1+nx—x%>0 in [0, n] and

5 1s monotone decreasing in [n/2,n].

{ x(n—x) }'_ (n—1)(n—2x)

n—1+nx—x*J) = (n—1+nx—x*%?’

which implies immediately this lemma. Q.E.D.

THEOREM 2.5.
2

__n

n*+4n—4
PROOF. By the maximum value of F(x) in (0, n) is F(A).

Then, by we have

(2.10) {n+(n—2)A}{B—p(A)} —B(1—A4)*=0,

which implies

F(x) < (n=3).

B—o) _ _ (4=17
old) n—1+nA—A* "’

hence
Aln—A) B—oA) _ A(n—=4)
(A—1)2 od) T n—1+nd—A*

Then, by Lemma 2.2 and Lemma 2.4, we obtain

F(A) =

n2

x(n—x) N
F(4) < n—1+nx—x2 l,—,p n*+4n—4 ° Q.E.D.
n? n—1 .
REMARK. Since < for n > 2, we get a more sharper in-

n*+4n—4 n
equality on the period T than as follows:

(2.11)

1 1 ) -
T<(«/2< ] \/1+4a~4a2‘) = (23

by means of [(1.5), and

§3. Properties of f(x).

On the function X = X,(x) defined by [(1.4), we have

dX _ 1-x Xn—-X)
dx — x(n—x) 1I—X

From we get in the interval

(3.1)
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LR+ VG
_ _{n+(n—2)x}{B—op(x)}—B(1—x)*
2(1—x)*/ x(n— x)o(x) {B—@(x)}

{(nt(n=2) X} {B—o(X)}—BA—X)* 1—-x X(n—X)
1-X)VX(n—X)p(X) {B—p(X)}'* x(n—x) 1-X

Since ¢(X)=¢(x) and {B—¢(X)}2= —{B—¢(x)}'* by [2.3), the above equality .
can be written as =

T3

(32 V@ - VFG)

J— l—x
= 2x(n—2)/p(x) (B—o(x)}

Vx(n—x) M vV X(n—X) M(X
[ x(?l xx)s 0 (zzl 2 ( )] 0<x<1),
where
(3.3) M(x): = {n+(n—2)x} {B—o(x)} —B(1—x)%.

From (3.2), we have :
LEMMA 3.1. VF(x) +~vF(X(x)) is increasing at x (0< x<1), if and only
if

vV x(n—x) M(x) > VX(n—X) M(X)
(1—=2)° (1—X) ’

Let f(x) be the function defined by

X=X,(%).

(3.4) £ = Vx(éil—_a%ym

= XS Lt (-2 (B—p(9) — B~ 7] .

LEMMA 3.2. f(x) >0 in (0, A) and f(x) <0 in (4, n).
PROOF. As is shown in the proof of

go(x) < go(]-) =B" in (0, 1) and (/1, 7’1.)
and
go(x) > B"® in (1,4).

The first inequality implies

so(;){ili‘;’; ?J‘} <B, ie. M>x>0.

(n—2)B
6vn—1

The second one implies M(x) <0. Now as is seen from (1.7), f(1)=
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Hence f(x) >0 in (0, 4) and f(x) <0 in (4, n). Q.E.D.
Now, we compute f/(x) in (0, 4). We have

-(—gc— log f(x)

1,1 1 43
"‘_7<T— n—x/ " 1—x
G L (=2 (B—p(a) +2B1— ) (n+(n— 21} =0 ]

_ 6x(n—x) M(x)+(1—x)(n—2x)[ M(x)+2{1 +(n—2)x} {B—op(x)} —2B(1 —x)"]
2(1—x)x(n—x) M(x) ’

from which we get

35  f(0)= 2(1_x)4jm X[ {n(n+2)+2(4n* —5n—2)x

+(3n*—16n+16)x*} {B—¢(x)} —3B(1—x)*{n+(n—2)x}] .
For simplicity, putting
(3.6) P(x): =n(n+2)+2(4n*—5n—2)x+(3n*—16n-+16)x?,

we obtain from (3.5) the following
LEMMA 3.3. f(x) is decreasing at x (0< x<n), if and only if

LP(x)—3(1—x)*{n+(n—2)x}1B < P(x)¢(x) .

LEMMA 34. P(x)—3(1—x)*{n+(n—2)x} >0 n [0, n].
PROOF. From we get

P(x)—3(1—x)*{n+(n—2)x}
=n(n—1)+8n*—Tn-+2)x+(3n*—13n+4)x*—3(n—2)x*.
For n>2, we have 81 —~7n+2>0, —3(n—2) <0 and

{8n*—7n+24(3n*—13n+4)x—3(n—2)x%} o, = (n—2)(n—1) > 0.
Hence
8n*—7n+2+(3n*—13n+4)x—3(n—2)x% >0
for 0<x=<n and so P(x)—3(1—x)*{n+(n—2)x} >0 there. Q.E.D.
By virtue of we consider an auxiliary function:

. P(x)o(x)
(3.7) g(x): = P(x)—3(1—§)§in T 0<a<n).

Next, we compute g’(x) in (0, n). We have
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d
I 10g g(x)

_ P(x) Px+30—x){n+2+3(n—2)x} i 1—x
- P(x) P(x)—3(1—x)?2{n+n—2)x} x(n—x)

1—x
= x(n—x) P)[ P(x)—3(1— x)*{n+(n—2)x} ]

X[—6x(n—x)(1—x){n+(n—2)x} {4n*—5n—2+(3n*—16n+16)x}
+ P(x){ P(x)—3(1—x)*(n+(n—2)x) —3x(n—x)(n+2+3(n—2)x)}].

The polynomial of x in the brackets of the above equality becomes
(n—1)(1—x)*{n*(n+2)—n(9n®*—2n+8)x+4(3n*—2n+2)x2} .
Hence, we get

3.8) (1) = (n—1)1—x)*{n*(n+2)—n(9n*—2n-+8) x+4(3n* —2n-l—2)x2}
8 x4 (n— )L P(x)— 31— 2)* {n+(n—2)x} I

LEMMA 35. g'(x)=0 (0< x<n) has unique roots y in (0,1) and 7 in (1, n)
and n/2<y<n.

PrROOF. For the quadratic polynomial of x:

y=n*(n+2)—n(9On*—2n+8)x+4(3n*—2n+2)x %,

we have
(Mz=o=n*(n+2)>0,
(3)z=1 = —8(n*—2n*+2n—1) = —8(n—1)(n*—n+1) <0,
(Nz=nr= _%"4 <0,
(¥)z=n=n*(3n*—5n-+2) =n*(3n—2)(n—1) > 0.
These relations easily imply the lemma. Q.E.D.

Using and (3.8), we obtain immediately the following

LEMMA 3.6. g(x)is monotone increasing in (0,y] and [1, 7] and decreasing
in [, 1] and [7, n).

Since g(1)=¢(1)=B, g(x)=DB has a unique solution in (0,1) and (1, n)
respectively by means of We denote them by ¢ and & respec-
tively, i. e. they are solutions of the equation:

(3.9 [P(x)—3(1—x)*{n+(n—2)x} 1B = P(x)p(x) , 0<x<n, x+1

and
(3.10) 0<o<y and F<a<n.
Now as is seen from [1.7) and [3.4)
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__ n*—n+l
f/(l) - 12(”-"1)3/2 B.< 0 .

Hence, Lemma 3.3 and Lemma 3.6/ imply the following
PROPOSITION 3.7. The function f(x) is monotone decreasing in (¢,d) and
increasing in (0, o] and [a, n) and

f(o) 2 /(%) 2 f(3).

THEOREM 3.8. The function VF(x) +~F(X(x)) is monotone increasing and
less than V2 in [, 1).
ProoF. By [Lemma 3.2 and [Proposition 3.7 we have

H(A)=0>f(5)

f(x) > f(X(%) for e=x<1.
Hencé, by Lemma 3.1, VF(x) +vF(X(x)) is monotone increasing in [a, 1).
Since F(l)— by Theorem 2.3, we obtain

VF(x) +VF(X(x)) <2  for o=x<1. Q.E.D.

and

§4. Proof of T<+2 for 3=<n<14.

LEMMA 4.1, y<1/5 for n=3.
PROOF. 7 is the smallest root of the equation of x:

n*(n+2)—n(9n®*—2n+8)x+4(3n*—2n+2)x2=0
according to Substituting x=1/5 in the left hand side and mul-
tiplying it by 25, we get
25n*(n+2)—5n(9n®*—2n+8)+-4(3n*—2n+2)
= —20n*+4-72n*—48n-+8
= —4{n(n—3)(5n—3)+3n—2} < —4(3n—2) <0,

which implies y <1/5. Q.E.D.

and yield immediately the following:
PROPOSITION 4.2. ¢<1/5 for n=3.
LEMMA 4.3. When n=3, for 0< x=< 0, we have

VG + VIR < 5= D( 2= = GnD) 4l

ProoFr. By we have

VI < iy
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By and Proposition-4.2, we have

VFG < A[F(4) for 0<x=o

in the present case of n. By the definition of F(x),
1\ _rx(n—x) B—e(x)
&)=l a0 e

=16 {50—0(51) "~}

Thus we obtain the following:

@1  VE® +VEX(x)

5n 1 n :
vy W) —Gn—1) e .E.D.
< x/S(n 1(® (5n—1) + YR ) QE
In the following, we shall estimate the right hand side of (4.1).
Now, putting 7= 1 _ xn—=x) B—o¢(x)

- *=— in F(x)=
(4.2) Foy =i [} r=D—(—]

== L= > (+ 1)‘71‘+—<11‘]-

We shall investigate the following auxiliary function of ¢:

A=z pln -V E

43 Gl =(1ZHY (1) -2 o<i<i<a).

Differentiating G.(t), we get easily

s 1 1, a1, 1-¢ a—tN\ysa—t\*
@) Gult) =g+ (o= +log =) (=) -
Putting
. a—t
(45) u—log—l_—t,

can be written as

Guty =t (— A+ 2L 1y

a—t t
1 1, a-1 . 1 122
—tT+<—72— a—t © 2 wéz )’
that is
b —1, a—1 1 a—1
4.6) Git)= ——u+(— t) 2+ t+ ttu+7tu2{<1—t)u+a tt}
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mtm 2

a—1

LEMMA 4.4. Gy(t) is monotone increasing in (0, 3
PrROOF. For G(t) = G4(t), from (4.6) we obtain

’ 4 1 4t
@n o= —u+( 5 —1) Wt et ttu—l—Ttu"’{(l——t)u—l—W}
T i 1+t<1—t>u+~‘-1~t2}
m>2
We show G’(t) >0 by dividing the interval (O, —é—] into four subintervals
as follows.
L ~}l—§t§-%—. For such ¢, we have
9
1—3?§ ?_ =7, loge—lg—<u<loge7
4 18, 3 19

—_— —— 2 ——— —_— ——— T ——

and
2 ut o u't /55— t) < u s

22— < ¢ =76 I

m>2

Hence, from (4.7) we obtain

16 4 1 1
G'(t) > u+—6—u +3g g% —I——u (16 utg) — g 7 but
i.e.
48) /(1) > A8 B (gt (g — 1 7 b )
€1 19 32
Since we have
19 3 19 18 .
log, -+ 184583, < log. 55034609, g = 094737,
and b, = 0.60128;
1 3

= 0.09375

7% =1.91293 , -1g71/3b1 = 0.06390 ,

32

and §32— 118 71, = 0.02985 > 0, we obtain from (4.8,)

3

/(1) > 20— 12 tog, 7+ 2L (1o )+ (ay— 1570, ) (loge

Since we have
16 . 11 1972 .
g 084211, & <loge ) = 065751,
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( 35— 7“3b )(loge

# 0.18772,

log, 7 = 1.94501 , }g log, 7 = 1.53624 ,

the right-hand side of the above inequality == 0.15109, hence

G'#)>0  for -i«gté_é..
1
IL. = t<

A

[

For such ¢, we have

A

39 _ 5—t _ 19 39 19
—'7— —]_—_TS—B—’ logg—7—<u_-10gg 3

—1H(A -tttz — T T log, 2 = —o,
and
umtm—2

z;m!<

m_>2

u’t

)= 5

3 s
1) ——4—ut} < cu t,

=5A(F) iy T}

On the constants b, and ¢,, we have

39

where

7 39 7 .
log. & 171765, Llog. 3 sour8r, 7L =o09871s
and b, = 0.79931 ;

1/4
(%9 = 158638, -0 39

£ log, o E =(.16103
and c¢,=0.23756. From (4.7) and these inequalities we obtain
, 4t
G/(t) > —ut (G —t)utt gy gty tut{ (Lt

—ft }-—bzcztu3
B L g L R ¢

2
Since -é—gté% and the function —t+—52_tT is decreasing in (—oo, —i—],
1 2t 1 1 1 21
Ve £

-5+ 38 = 76" by, = 0.18988,
H(1—1) 7 _

2
1

btz ?( b cz) 0.03095 > 0,
we obtain

221
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, 32 35 21 1,7 '
(4.8,) G'(t) > gg—u —gg—%u—?Glg——bzcz)uZ],
On the other hand, we have ‘
$_ 21
39 764 (16 bicy)u®

35 21 39 1 39\2
<35 76 log 7“—8‘(’16—”209 (loge %)

hence

0> B tog B[ 2 0g, L () o 2)').

Since we have

32 . 35 . 21 39

39 = 0.82051, 39 * 0.89744, 3 log, 7= =(0.47461 ,

A (E—be,) (10g. ) = 000132,

the right hand side of the above inequality == (0.20858, hence

, 1 1
G'(t)>0 for —8—§t§—4—.
I11. %_S_ é—é— For such ¢, we have
79 5—t _ 39 79 39
BS1—r=7 lgggsuslog.—.
4 2> _ 315 15 79 _
and
mtm 2 ust 3
mZ/)z {( 1= —4—ut} < cgut,
where
39\
=+{() —grlon 1z
On the constants b; and ¢;, we have
79 . 15 79 . 315 .
loge == 15 =1.66140, 256 log, - 5 =0.09735, 316 = (.99684
and b, =0.89949;
3 79 -
( ) +1.23950, 5 log. 1= % 0.07788

and ¢, =0.19360. From (4.7) and these inequalities, we obtain
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G'(t) > 5%;+[—1+—5%_t—t]u+[%—t+ 52_1‘_2 ]uz—i—[ t(1£-t)‘ —bac3t:|u3 .

t

Since ’1]6“5"—5-% and
1 .o 1 1 _ 19 .
ST 2 gt 156 37 = 0-38141,

bycy = 0.17414 | “12_ D btz %(%-—bscg) = 001841,

we obtain

o B r75 119
(4.8,) G'(t) > g —u| 753154 16 32 —bycs)u* ],

which yields

60> 10w 7 [ 75—y log. T5— 15 (55 —tie) tose £5)].

Since we have

64 . 75 . 119, 79
75 F081013,  72=0.94937, 7o log, 1= = 0.63367,
16 32 —b c3><loge "+ 0.05082,

the right-hand side of the above inequality == 0.35517, hence

/ 1 1
G'(#)>0 for ﬁété g
IV. O<t§—1%. For such ¢, we have
5—t 79 79
5<“—1‘:§1—, 10g85<u_loge 15’
4 mtm -2

-—1-!-1‘(1—7f)u-|-—t2 >—-1, X

m>2

< cu’t,
where

. 1 79 1/16"—
Q-T(f = (.18490 .

From (4.7) and these inequalities, we obtain analogously as before

, 555
(4.8, G'(t) > 5 —ut9egr¥*.
. 632 .
Since log, 5=1.60944 > —= EEE < =1.13874, we have

555

G(t) > 5-—log, 5+-52 (log, 5" = 032791 >0 for 0<t< 1

16 *

225
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Thus, putting together the above arguments we obtain

G(H)>0  for 0<t=—.

Therefore G(t) must be monotone increasing in this interval. Q.E.D.
THEOREM 4.5. When 3= n=<14, we have
VFE(x) +VF(X(x) <2  for 0<x<1.

PROOF. By it suffices to prove the above inequality for
0<x=<o. By we have

5n—1

x/F(x)+«/F(X(x))<-—~/5( (=L n-) T
for 0<x=Z¢o, n=3.

When 3<n<4, by we have

L s =Ly (sn—1) =L vEr T Ia £ 056620,

4 _ 2 . 75503

< =
\/n2+4n 4 V28 T

and

S INCIC L B R e < 13213< V2.

When 4<1n <10, by Lemma 44 we have

\/5( —n(2= 1) —(5n—1) g%\/s-s-(%)m—w = 054748 ,

10 ___ 5 . 085m49

————:&:
Vnit+dn—4 = V136 V34

and

JS( =12 —5n-1) e < 140198 < VZ
When 8<n=<14, we have analogously
1 5n—1
*4—«/5(;1—1)( n—l) " (5n—1) <—-\/5 7. ( ) "—39 = 0,52336,

n < 14 _ 7
Vni+dn—4 T +/248 V62

= 0.88900

and

_1-\/ (=N gy
TAB-D(Z=1) —Gn D e <141236< V2.
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Thus we have proved the inequality:

VE® +VFX(D) <~2  for 0<x=<ga. Q.E.D.
[Theorem 415, Lemma 1.2 and imply the inequality:
(U) T< 2z for 3=nl4.

§5. An estimation of ¢ for n=14.

In this section, we shall show that 0<T11_ for n=14.

By and [3.7), ¢ <-1L1 is equivalent to g(—llf) >B=(n—-1)"""
By and [3.7), we have

1\ _ 4
P<ﬁ> = 4o (B3 +29n—7),

P()~3(1—40) (n 5 %) = oy (68302 —581n-+73)

o(3r) =4y (Aln—1y=m,

hence

1\ _ (53n®4-29n—7)(11n—1)' "
G.1) 2(57)= 583n7—581n+73 :

Therefore g(ﬁ) > B is equivalent to

11n—1\""Y" _ 583n2—581n-+73
(5.2) ( n—1 ) > 53171 20n—7

Putting ~7ll———-t, the above inequality can be written as follows:

11—¢\'"*  583—581t+73t*

1—t 53+29t—7t%2
which is also equivalent to
11—t 583—581¢+4-73t*
(5.3) (1—=0) log =5~ >log —5ao5 —7pe

On the other hand, we have

11—t 10t
=)
and
10t 1 1
(54) O<—1_1(1TZL)‘§71T for 0<t§ﬁ'

Using these relations, we obtain
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11—t

(5.5) (1—12) log 1=

— 2 tz

WU
=D 1m(u) A==t

Next, we have

583—581¢ 47312
53100 —7p  —111—Q),

where

1508(6—1)
(5.6) Q= Tim3tr2r—7m) -

Since for 0< t__<_11—1 we have

150 150-65 _
0<Q<7y53 1 (6 11) 153 <

we obtain

583—581¢+-73t* 1

— —o—Lto_ Lo . _1on_
6.7 logZggrogr—zp —l0g11—Q—5 Q=5 n @

From (5.5) and (5.7), we obtain the following:

11— t —581¢ 12
68 (~Dlog 7 —log g it

= —tlog Ll+ot—— (Y L L (10 )3“_(11302‘

0 (3r) (1—T)m-l +

1 1 1 n
+Q+ Q5@+ Qe

Lemma 5.1 Q"> (11)" N L for 0<t= -y (m=1,2,3,-).
PrOOF. This inequahty is equivalent to

1506 10t
1153429t —T7t%) ~ 11 (1—¢)-m?

that is

.9) 15(1—8)(6—1)

53 o7 > (=D

Since the left-hand side of is monotone decreasing in [0, %] and
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151—86—f) | _ 390 v
535201 |, — 269 1> (A=

is true. Q.E.D.
THEOREM 5.2. 0<T11— for n=14.

PROOF. By means of (5.8), it suffices to prove that
(5.10) 10 *(“’—) *‘**)?'i‘—“ —> (1 t)“ + .-
1 1 1
+T<Q+TQ3+-5—Q5+ )
17Q° 10V ¢ 17Q" 10\ &
(D) = D) e
>log, 11 =2.39790.
By Lemma 5.1, every term in the left-hand side of (5.10) is positive.

When n=20, i.e. ts 210, we have

Q ___ 1506—1) __ 357000 .
hence
10, Q _ 10, 357000 .

which implies the following:

0
i1+ 9 > log, 11.

1

Consequently (5.10) is true for 0<t =< 20"

In the following, putting

1) FO: =g+ (1) (75 +5 (3 )(ﬁ) + -
+%~(Q+%Q%%QE+ )+%(%2__(_}_(1)_>2_1t__t>’
we shall prove that

¥(t) >log,11  for

First, we have
1+5 0D ) 5 GO () + -

+2 1+ oo+ )
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10 10¢ 2 . 10t 4
>ﬁ[1+( 114/3(1—10) ) +< 11v3(1—1) ) T ]

+ 9 1+( jg Q) +( \/137 Q) + -]

o1 Qe 1
11 1— 10022 o 1__Q_2 .
363(1—1)® 3
Hence we obtain the following:
\ 10 1 Q 3 1 7Q* 100t
G2 FO>3r e T r—1ma—s
- 363(1—1)*

In the interval [7210%11—4] of ¢, we have

100

10062 _ 1002
z=1/20_ 363-19°

363(1—1)* = 363(1—1)*

-and hence
10 1 119130 . )
363(1—1)*
Q _ 150(6—1) Q _150-83-2 _ 24900 .
- = TIG329—T8) = |oys— 11-1541 — 16951 — L46894.

Here we need the following

QZ

LEMMA 53. @ and ;- are monotone increasing in (0, 1).

PRrROOF. First we have

— / — 2
t(6—1) )__318 106¢4-13t >0 for 0<t<1

53429 —7t2/ T (534+29t—7t%)*
and
t6—0*  \'_ (6—1)(318—333t+97°—7¢)
( (53+29t—7t2)2 ) - (53+29t—T712)° >0 for 0<t<1,
because

318—333t+971*—7t* > 311—333t+97t* > 0 .

2 /
Hence it follows that @’ and (-%—) are positive in (0, 1). Consequently Q
0 .

2 —
,~ are monotone increasing there. Q.E.D.
Now, we go back to the proof of Using for

1 _ 1
20 :Etg—ﬁ- we have

taa

and
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220
1 100t 0? 100 /¢
2 { T121(1=D }> 216G )t e 121 __1—1‘),:1,14}
1
50-15? 25 (6=35) 50 1
AL 29 7 \¢* 11° 13
(33+25 100
_158119%10° 50
="1i%.21773  11*-13
3186225000 50 .
= 57361687009 1573  0-02376
and
t Q2 —< )t =1/14 Q )ﬁ =1/20
_ 24900 3
= 16951 (70
739508
| 3.249.239503%-10°
= {6051- 171766438527 ~ L-47166.
Using these inequalities, from (5.12) we obtain
119130 . 3-249-230503%-10° . 3186225000 50
(5.13) Y1) > 130043 T 16951 171766438527 T 57361687009 1573
= 240521 > log, 11 (= 2.39790) .
Consequently, (5.10) is true for 210 <t % Q.E.D.

REMARK. We have proved o<

Tll_ for any real number n=14. However

it may be also true for 6 =<n <14, because we can show that it is true for
the integers n=26,7,8,9,10,11,12 and 13 by means of the following inequality

equivalent to [5.2):

lln I\Y*  (A1ln—1)(53n%*+29n—7)
(5.14) ) < n—1)(583n"—581nL73) - = En-
In fact
v 1079
AG_< : ) =1.53341, Ey= e = 153485;
1/7
A7=(% = 143722 E7=J(7)—g%—¢1.43971;

BTN 314679 . .
Ag_( - ) = 1.37026, Ey= 33575 % L37319;

1/9
A= ﬁg} = 1.32100 , Egz»fgé%gg’#mzzuo;
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202849

/10
A= (12 ) =128327,  Ej=-{sogqs- = 1.28639;
Ay=() " 210535, E,= A8 = 1.25652;
Ap= (1) 5122030,  E,= 10003 oy pap0;
1/138
A= (E2) s 12003,  E,=-22189 ) 91093.
However
= 1/5
=(3) =683, B =300 168100,

1 _
Hence a>-lT for n=>5,

PROPOSITION 5.3. o<~11T for any integer n=6.

§6. Proof of T'<+/2rx for n=14.

In this section, we shall prove the inequality T'< +2r for any real number
n=14, by the same method used for the case 3=n=<14.
LEMMA 6.1. When n=14, for 0< x=< o0 we have

VF(x) +VF(X(x))

<o oD (D) =

PrOOF. By [Theorem 5.2 and [Theorem 2.3, for 0 < x=< ¢ we have

— B__
F(x) < F(—ll—l—) -[ ’é’f_ x;fz) , w(%x) ]

= = {e-n(A=) " -},

This inequality and imply this lemma. Q.E.D.
LEMMA 6.2. G (t) is monotone increasing in (0, %]
PRrROOF. For G(t)=G,(t), from (4.6) we obtain

6)  CO=—ut (et i it

z=1/11

+—%—tu2{(1—~t)u+ 1110 }

m-2
+ 2 O -t tt),
m>2
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where
(6.2) u=1log, 111
) 1
Since for 0<t< = 5in
11< 111 <12,  log,11<u<log,12;
—1+td—tu+ 1110 2>—1,
mim-2 3
m%zun:! <u6tem_ut/11 t)< Qo
(6.1) implies
10t 52
(6.3) G'(t) > i H 1 Ju [ty

+[ t(lé‘t) —-—%—--121/”]113 )

However for 0 <t =< 1 we have

11
10 10 10t
o1 e
1 52 1 5 1 1 __ 1099
A | B s | A= R VRS VR W ST
and
1(12_ ) J1ov1 — 5 (1__ 121/11__t> >0
since l———é—-lZ””#l—- 1'2%345 >T1f' From these and [6.3), we obtain the
following inequality :
onw 101099 ,
(6.4) G/(t) > 17—+ L
Since
11° -
099 = 1.21110 <log. 11 = 2.39790 ,
it is seen easily that
10 1099 10 1099
1 T >y lege L5 ye (log. 11)°

However

1099 10

5.11° 175 (log, 11)% = 2.37384 , i~ =0.90909,
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hence the right-hand side of the above inequality =0.88503. Consequently,

we obtain
G'(H) >0,

which implies that G,,(f)=G(#) is monotone increasing in (0, 7111—] Q.E.D.
THEOREM 6.3. When n=14, we have

VFE(x) +VF(X(x) <~V2  for 0<x<1.

PROOF. By it suffices to prove the above inequality for
0<x=<o0. By and Cemma 6.1, we have for 0 <x=< o the following:

(6.5) VF(x) +~vF(X(x))

L (BT, n
0 11(n l)< n—1 ) (1in 1)+\/n2+4n——4 :

The first term of the right-hand side of [6.5) is decreasing for n=14 by
Lemma 6.2 and [4.3] and the second term is 1ncreasmg for n=2. Making use
of these facts, we obtain:

i) When 14=n=<21,

153 21
< \/11 13- ()" -1+

Since we have

(153 '£1.10256 45 J11 13- (153 ‘153 = 041877,
o1 .
092003,

we get

153 21
v / 1113-(75)  —153 +— = < 13380< V2.

ii) When n=21,

1 \/ N2 A N n
5 A/ 11 1)( e ) —Qin D+ Vo=t

1 23\
<WJ220-(7) —230 +1.

Since we have

(B)"srnzme, 2 af220- ()" 230 = 01303,
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we get

1 23\
T(TN/ZZO’(”2‘> —230 +1<1.41393< V7 .

Thus we have proved the inequality
VF(x) +VF(X(x) <~2  for 0<x=Zg. Q.E.D.
Finally, by means of Lemma 1.2, (1.6), (1.8), [Theorem 4.5 and [Theorem 6.3,

we obtain the following

MAIN THEOREM. When n=3, the period function T, given by (1.1)
satisfies

(1) 7L Th(x) < V27w for 0< x,< 1,

(ii) }Ttg}) T.(x,) == and £101311 T (%) = 2.

REMARK. In this paper, all numerical calculations have been done to
sufficiently large number of decimal places and a seven figure table of loga-
rithms has been used if necessary.

References

[1] S.S. Chern, M. do Carmo and S. Kobayashi, Minimal submanifolds of a sphere
with second fundamental form of constant length, Functional Analysis and
Related Fields, Springer-Verlag, 1970, 60-75.

{2] S. Furuya, On periods of periodic solutions of a certain nonlinear differential
equation, Japan-United States Seminar on Ordinary Differential and Functional
Equations, Lecture Notes in Mathematics, Springer-Verlag, 243 (1971), 320-323.

[3] Wu-Yi Hsiang and H. B. Lawson, Jr., Minimal submanifolds of low cohomo-
geneity, J. Differential Geometry, 5 (1970), 1-38.

[4] T. Otsuki, Minimal hypersurfaces in a Riemannian manifold of constant curva-
ture, Amer. J. Math., 92 (1970), 145-173.

[57 T. Otsuki, On integral inequalities related with a certain nonlinear differential
equation, Proc. Japan Acad., 48 (1972), 9-12.

[6] T. Otsuki, On a 2-dimensional Riemannian manifold, Differential Geometry, in
honor of K. Yano, Kinokuniya, Tokyo, 1972, 401-414.

[7] M. Urabe, Computations of periods of a certain nonlinear autonomous oscil-
lations, Study of algorithms of numerical computations, Strikaiseki Kenky{isho
Kokyf-roku, 149 (1972), 111-129 (Japanese).

Tominosuke OTSUKI

Department of Mathematics
Tokyo Institute of Technology
O-okayama, Meguro-ku

Tokyo, Japan



	\S 0. Introduction.
	\S 1. Period function ...
	\S 2. Properties of $F(x)$ ...
	THEOREM 2.3. ...
	THEOREM 2.5.$F(x)<\frac{n^{2}}{n^{2}+4n-4}$ ...

	\S 3. Properties of $f(x)$ ...
	THEOREM 3.8. ...

	\S 4. Proof of $T<\sqrt{2}$ ...
	THEOREM 4.5. ...

	\S 5. An estimation of ...
	THEOREM 5.2. ...

	\S 6. Proof of $ T<\sqrt{2}\pi$ ...
	THEOREM 6.3. ...

	References

