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Introduction.

It was shown by Shimura [3, \S 7.7], [5] that the eigen-values of Hecke
operators for the cusp forms of “ Neben ”-type (in Hecke’s sense) are closely
connected with the reciprocity law in certain abelian extensions of a real
quadratic field, and such extensions can be generated by the coordinates of
certain points of finite order on an abelian variety associated with the cusp
forms. Especially, in [5], some fundamental theorems about a class-field-
theoretical treatment of these extensions in the case of arbitrary levels, and
various detailed examples in the case of square-free levels were given. As
a continuation of this theory, we are naturally led to investigate the eigen-
values of Hecke operators for the cusp forms of an arbitrary level, especially,

the case in which the level is divisible by a prime power $p^{n}(n>1)$ . Recently,
H. Hijikata [1] has succeeded in extending the result of Eichler (the trace
formula for Hecke operators) to arbitrary levels including both “ Haupt “ and
“ Neben ”-types, and moreover, aPplying this Hijikata’s formula, in [7], one
of the authors of the present note has given an explicit trace formula for
a certain restricted part of the space of cusp forms of ” Haupt ”-type for
arbitrary levels. By means of these formulae, we can obtain some numerical
eigen-values of Hecke operators for the “ essential part ” (see T. Miyake [2]

and Shimura [5, p. 133]) of the spaces. Though Shimura [5] considered only
the cases of “ Neben ”-type, looking at [3, Prop. 3.64] and [5, \S 9] carefully,
we can also expect to develop the idea of [5] in the case of ” Haupt ”-type
if levels are divisible by a higher power of a prime. Actually, Shimura [6]

indicates this possibility by giving a twisting operator and an abelian variety
associated to the cusp forms of weight 2 of ” Haupt ”-type analogous to
“ Neben “-type (see text or [6]). Now one of the aims of the present note
(\S 1 and \S 2 below) is to investigate this abelian variety. More precisely, take
a cusp form $f(z)$ (which is a common eigen-function of Hecke operators) of
weight 2 with respect to $\Gamma_{0}(p^{n}),$ $n>1$ of ” Haupt ”-type. By applying the
result of [6] to the group
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$\Gamma=\{\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in\Gamma_{0}(p^{n})|a\equiv d\equiv 1(mod p)\}$ ,

we obtain an abelian variety $A$ associated to $f(z)$ as a factor of the jacobian
variety of $\mathfrak{H}^{*}/\Gamma$ , and the twisting endomorphism $\eta$ of $A$ . Here $\mathfrak{H}^{*}$ means the
union of the complex upper half plane

$\mathfrak{H}=\{z\in C|{\rm Im}(z)>0\}$

and the cusps of $\Gamma$ . It can be observed that under a certain condition on
$f(z)$ , we can obtain $A$ rational over $Q$ and $n$ rational over a quadratic ex-
tension $k$ of $Q$ , which form a system similar to the type of abelian varieties
discussed in [5, \S 9]. (Note that in the present case, the field $K$ generated
over $Q$ by the Fourier coefficients of $f(z)$ in question, is not a CM-field.) In
\S 2, by giving a few examples ( $N=p^{3},$ $p=5$ and 7), we shall discuss some
arithmetical properties of $A$ corresponding to $f(z)$ and show that the co-
ordinates of some specific points of finite order on such an $A$ can generate
an abelian extension of $k$ . (The field $k$ can be either real or imaginary.)

As an addition to the various examples in [5], we shall discuss in \S 3
more examples for which the level is divisible by the smallest prime power $2^{2}$ .
(As mentioned at the beginning, such a case is not included in the examples
of [5].) Namely, we shall consider the space $S_{2}(4M, (\underline{J1f}))$ for several primes
$M\equiv 1$ (mod4). Here we denote by $S_{2}(4M, (^{\underline{M}}))$ the space of all cusp forms
of “ Neben ”-type of weight 2 with respect to $\Gamma_{0}(4M)$ , and $(^{\underline{M}})$ the quadratic
residue symbol. Repeating the same procedure as in [5], here we also obtain
a certain abelian extension of the real quadratic field $Q(\sqrt{M})$ . One should
notice that, in these cases, the conductor of such an extension is divisible
by a prime factor of 2, and although the present observation deals with only
the cases of level $=4M$, it seems that these are typical enough in extending
the same investigation* for the levels containing a factor of another prime
power $p^{n}$ .

The authors would like to express their hearty thanks to Professor G.
Shimura who indicated them the explicit way how to construct the class
fields in the present paper by showing his manuscript of [6]; and to Dr. T.
Miyake for his valuable discussions during the preparation of the paper.

\S 1. A few facts of $A$ from [6] for $\Gamma_{0}(p^{n})$ .
For a positive integer $N$, put

$r$ One can find a few more examples of the characteristic polynomials of Hecke
operators for the level $=3^{2}\cdot M$ in H. Hijikata’s article on the ”Seminar on modern
methods in Number theory”, Tokyo, (1971).
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$\Gamma_{0}(N)=\{\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in SL_{2}(Z)|c\equiv 0(mod N)\}$ ,

$\Gamma_{1}(N)=\{\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in\Gamma_{0}(N)|a\equiv d\equiv 1(mod N)\}$ .

We consider any group $\Gamma$ such that $\Gamma_{1}(N)\subset\Gamma\subset\Gamma_{0}(N)$ , and call it a group
of level $N$. Let $J_{\Gamma}=J$ denote the jacobian variety of $\mathfrak{H}^{*}/\Gamma$ and $S_{2}(\Gamma)$ the
vector space of all holomorphic cusp forms on $\mathfrak{H}$ , of weight 2 with respect

to $\Gamma$ . Hereafter we restrict ourselves to the case where $N$ is a prime power
$p^{n},$ $n>1$ and

$\Gamma=\{\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in\Gamma_{0}(p^{n})|a\equiv d\equiv 1(mod p)\}$ .

Here we shall recall a few facts in [6]. It is known that $J$ is defined over $Q$ .
Let $f(z)=\sum_{m=1}^{\infty}a_{m}e^{2\pi imz}$ , with $a_{1}=1$ , be an element of $S_{2}(\Gamma_{0}(p^{n}))$ , that is a common
eigen-function of Hecke operators $T_{m}$ for all $m$ . Then $f(z)$ is also an eigen-
function as an element of $S_{2}(\Gamma)$ (see [3, Prop. 3.36]). Let $K$ be the subfield
of $C$ generated over $Q$ by $a_{m}$ for all $m$ . (Note that $K$ is a totally real
algebraic number field.) Then we can aPply the argument of [6, \S 1] for
these $\Gamma,$ $J,$ $f$ and $K$. By [6, Th. 1], we know that

(1.1) There exists a triple $(A, \nu, \theta)$ formed by the objects satisfying the fol-
lowing conditions.

(i) $(A, \nu)$ is a quotient of ] by a $7l$ abelian subvariety rational over $Q$ .
( $\nu$ is a nalural map $J\rightarrow A.$)

(ii) $\theta$ is an isomorphism of $K$ into End $(A)\otimes Q$ such that $\nu\circ\xi_{m}=\theta(a_{m})\cdot\nu$

for all $m$ . ( $\xi_{m}$ is an element of End $(J)$ , associated with $T_{m}.$ )
(iii) dim $(A)=[K:Q]$ .

It is this abelian variety $A$ which we shall investigate in \S 2, in the
framework of [5, \S 9]. For this Purpose, we shall recall here a few more
properties of $A$ in [6, \S 4]. Let $\chi$ be a real primitive character of $(Z/pz)^{x}$

of order 2. Now we take $N(=M)=p^{n}(n>1),$ $r=p$ and $s=N$ in the notation
of [6, \S 4], then our $\Gamma$ (this is, of course, a group of level $N$ ) satisfies the
set of conditions (4.8) in [6, \S 4]. Therefore, as (4.9) in [6, \S 4], we suppose
that the following condition is satisfied:

$(*)$ There is an automorPhism $\rho$ of $K$, other than the identity map, such that
$\chi(m)\cdot a_{m}=a_{m}^{\rho}$ for all $m$ . (This implies esPecially that $\rho^{2}=1$ and $a_{m}=0$

if $(m, P)\neq 1.)$

Then, by [6, Prop. 8 and Prop. 9], we know that
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(1.2) Under the assumption $(*),$ $A$ has an endomorphism $\eta$ defined over the
quadratic extension $k$ of $Q$ corresp0nding to $\chi$ which satisfies

(i) $\eta^{\epsilon}=-\eta$ if $\epsilon$ is the generator of Gal $(k/Q)$ ,
(ii) $\eta^{2}=x(-1)p\cdot id_{A}$ ,
(iii) $\eta\circ\theta(a)=\theta(a^{\rho})\circ\eta$ for every $a\in K$.

Thus, if an eigen-function $f(z)$ in $S_{2}(\Gamma_{0}(p^{n}))$ , satisfying $(*)$ exists, we can
obtain the couple $(A, \theta)$ having the properties (1.1) and (1.2). Let $F$ be the
invariant subfield of $K$ under $\rho$ in $(*)$ . (Note that $[K:F]=2.$) Now we
observe that $F,$ $K$ and the couple $(A, \theta)$ thus obtained satisfy, under an
obvious modification, the conditions (9.1-5) in [5, \S 9]. (In the notation of
[5, \S 9], take as $\theta(d)=x(-1)\cdot p\cdot id_{A}$ and $\theta(h)=\eta$ . The field $K$ in the present
case is not a CM-field as assumed there.)

Let $\mathfrak{o}_{K}$ and $0_{F}$ denote the ring of all algebraic integers in $K$ and $F$,
respectively. Let $\mathfrak{b}_{0}$ denote the ideal of $\iota t_{K}$ generated by all $x$ in $0_{K}$ such that
$x^{o}=-x$ . Also define the ideals $\mathfrak{b}$ and $\mathfrak{c}$ , exactly in the same manner as in
[5, \S 2], for the present $F$ and $K$. We put

$\mathfrak{x}=\{t\in A|\theta(\mathfrak{b})t=0\}$ .

By means of the same reasoning as in [5, \S 9], X is $\mathfrak{o}_{K}$ -isomorphic to $(\mathfrak{o}_{K}/\mathfrak{b})^{2}$ ,

and $\eta$ acts on $\mathfrak{x}$ as an endomorphism. Now let us assume, as (9.8) in [5, \S 9];

$(**)$ $\chi(-1)\cdot p\equiv e^{2}$ mod $\mathfrak{c}$ for some element $e$ of $0_{F}$ prime to $\mathfrak{c}$ .

With such an $e$ , put

$\mathfrak{y}=\{t\in \mathfrak{x}|(\eta-\theta(e))t=0\}$ ,

$\mathfrak{z}=\{t\in \mathfrak{x}|(\eta+\theta(e))t=0\}r$

Then, as in [5, Prop. 9.2], we can easily verify

(1.3) The submodules $\mathfrak{y}$ and $\mathfrak{z}$ are $\mathfrak{o}_{F^{-}}isomorphic$ to $0_{F}/\mathfrak{c}$ , and $\mathfrak{x}=\mathfrak{y}\oplus \mathfrak{z}$ .
Let $k(\mathfrak{x})$ (resp. $k(\mathfrak{y})$ and $k(\mathfrak{z})$ ) denote the smallest extension of $k$ over which

the points of $\mathfrak{x}$ (resp. $\mathfrak{y}$ and $\partial$ ) are rational. For the same reason as in [3,

Th. 7.30], [5, \S 2], $k(\mathfrak{x})$ is an abelian extension of $k$ and letting Gal $(k(\mathfrak{x})/k)$

act on $\mathfrak{y}$ and 3, we obtain an injective homomorphism

Gal $(k(\mathfrak{x})/k)\rightarrow(\mathfrak{o}_{F}/c)^{\times}\times(\mathfrak{v}_{F}/\mathfrak{c})^{\times}$

The class-field-theoretical investigation for the $(\mathfrak{o}_{F}/\mathfrak{c})^{\times}$ -valued ” characters “ as
in [5, \S 2] for the abelian extension $k(\mathfrak{y})$ (resp. $k(\mathfrak{z})$ ) over $k$ , will be discussed
in the next \S 2.
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\S 2. The case $N=5^{3}$ and $7^{3}$ .
Firstly, as mentioned in the Introduction, let us recall the Property [3,

Prop. 3.64] for our case where $N=p^{n},$ $n>1$ .

(2.1) If $f(z)=\sum_{m=1}^{\infty}a_{m}e^{2imz}\ulcorner\in S_{2}(\Gamma_{0}(p^{n}))$ , then $f_{\chi}(z)=\sum_{m=1}^{\infty}\chi(m)a_{m}e^{2\pi imz}\in S_{2}(\Gamma_{0}(p^{n}))$

for a primitive character $\chi$ of $(Z/pz)^{\times}$ of order 2.

Let $S_{2}^{0}(\Gamma_{0}(p^{n}))$ denote the “ essential part “ (see [2, p. 176] or [5, \S 1]) of
$S_{2}(\Gamma_{0}(p^{n}))$ . For an obvious reason, it is necessary and natural to investigate

the common eigen-functions $f(z)=\sum_{m=1}^{\varpi}a_{m}e^{2\pi imz}$ of Hecke operators $T_{m}$ (for all m)

in $S_{2}^{0}(\Gamma_{0}(p^{n}))$ . In the following tables we shall give the characteristic polyno-
mials of $T_{m}$ for a several primes $m$ in $S_{2}^{0}(\Gamma_{0}(p^{n}))$ , with $N=p^{3},$ $p=5$ and 7.
(Of course each of the characteristic roots of these polynomials gives the
m-th Fourier coefficients $a_{m}$ for some $f(z).)$ Let $K$ denote, for a fixed $f$, the
subfield of $C$ generated over $Q$ by the coefficients $a_{m}$ for all $m$ .

(a) $N=5^{3}$

$(b_{1})$ $N=7^{3}$
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$(b_{2})$ $N=7^{3}$ (continued)

For an explanation of the table, let us introduce the group $\Gamma^{*}(N)$ which is

generated by all the elements of $\Gamma_{0}(N)$ and $\left(\begin{array}{ll}0 & -1\\N & 0\end{array}\right)$ .
Let us now consider the special case $N=5^{3}$ . We have dim $S_{2}(\Gamma_{0}(5^{3}))$

$=\dim S_{2}^{0}(\Gamma_{0}(5^{3}))=8$, dim $S_{2}(\Gamma^{*}(5^{3}))=\dim S_{2}^{0}(\Gamma^{*}(5^{3}))=2$ in this case. $(S_{2}^{0}(\Gamma^{*}(N))$

denotes also the “ essential part “ of $S_{2}(\Gamma^{*}(N)).)$ In the table (a), the columns
I and $I_{\chi}$ contain the characteristic polynomials of $T_{m}$ corresponding to a basis
$\{f\}$ of $S_{2}^{0}(\Gamma^{*}(5^{3}))$ and $\{f_{\chi}\}$ on account of (2.1). The remaining 4-dimensional
part II is most interesting because, as the table shows, the field $K$ and the
$eigen\cdot functionsf(z)$ corresponding to this part satisfy the assumption $(*)$ in
\S 1. Therefore, hereafter we restrict our discussion to the part II. To be

more precise, let us fix an eigen-function $f(z)=\sum_{m=1}^{\infty}a_{m}e^{2\pi imz}$ corresponding

to the part II, $i$ . $e$ . fix the field $K$ generated over $Q$ by one of the roots
$X^{4}-8X^{2}+11=0,$ $e$ . $g.$ , we take $K=Q(\sqrt{4+\sqrt{5}})$ . Let $\Im$ denote the set of all
isomorphisms of $K$ into $C$. Then by [5, Prop. 1.2], $f$ and all its “ companions ”

$f_{\sigma}=\sum_{m=1}^{\infty}a_{m}^{\sigma}e^{2\pi imz}(\sigma\in \mathfrak{J})$ form a basis for the 4-dimensional part II. The table

(a) tells us that $K$ has a non-trivial automorphism $\rho$ of order 2 and the fixed
subfield $F$ under $\rho$ is $F=Q(\sqrt{5})$ . Moreover, considering $f$ as an element in
$S_{2}(\Gamma)$ in \S 1, the condition $(*)$ is satisfied. Thus we obtain a system $\{(A, \theta)$ ,

$\eta,$
$k,$ $K/F$ } in \S 1, with $k=Q(\sqrt{5})$ corresponding to $\chi$ . Let $0_{k}$ denote the ring

of all algebraic integers in $k$ . In the present case we see that $b_{0}=b=$

$(\sqrt{4+\sqrt{5}}),$ $\mathfrak{c}=(4+\sqrt{5})$ . Therefore the condition $(**)$ in \S 1

$\chi(-1)\cdot 5\equiv e^{2}(mod (4+\sqrt{5})$
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is satisfied with $e$ . $g$ . $e=4$ .
REMARK 2.1. It was indicated by Shimura [3, \S 7.7], [5, p. 148] that in

the “ Neben “-type case, $N(\mathfrak{c})$ and $Tr_{k/Q}(u)$ have a non-trivial common factor,
where $k$ is a corresponding real quadratic field and $u$ the fundamental unit
of $k$ . Here we remark that in the present case there is still some relation

among these, namely, take the fundamental unit $u=\frac{1+\sqrt{5}}{2}$ in $k=Q(\sqrt{5})$ ,

then the table of part II shows that $N(\mathfrak{c})$ and $Tr_{k/Q}(u^{5})$ consist of the same
prime factor 11. This fact will be used in the later discussion.

Now let us consider the structure of the extension $k(\mathfrak{x})/k,$ especially, $k(t))/k$

in \S 1, for the present $(A, \theta),$ $\mathfrak{b}=(\sqrt{4+\sqrt{5}}),$ $\mathfrak{c}=(4+\sqrt{5})$ and

$\mathfrak{x}=\{t\in A|\theta(\mathfrak{b})t=0\}$

$\mathfrak{y}=\{t\in \mathfrak{x}|(\eta-\theta(e))t=0\}$ .
We use the same notation as that of [5] in the following discussion, except
for a minor obvious change. As mentioned at the end of \S 1, from the action
of Gal $(k(\mathfrak{y})/k)$ on $y$ we obtain an injective homomorphism

$r^{\prime}$ : Gal $(k(\mathfrak{y})/k)\rightarrow(0_{F}/\mathfrak{c})^{\times}\cong(Z/11Z)^{\times}$

and put $r(\mathfrak{a})=r^{\prime}((\frac{k(t))/k}{\mathfrak{a}}))$ .
PROPOSITION 2.2. The field $k(\mathfrak{y})$ is the maximal ray class field over $k$ of

$co$nductor 5 $\cdot q\mathfrak{p}_{\infty}$ with a prime factor $q$ of 11 in $k$ . The archimedean prime $\mathfrak{p}_{\infty}$

of $k$ is uniquely determined for $q$ by the condition that $v<0$ at $\mathfrak{p}_{\infty}$ for every
$v\in 0_{k}^{\times}$ such that $N_{k/Q}(\iota)=-1$ and $v\equiv 1$ (mod q). Moreover, one has

$ r((\alpha))=(\frac{\alpha}{\mathfrak{p}_{\infty}})\cdot\varphi(\alpha)\cdot\mu$( $\alpha$ mod q) ,

for every $\alpha$ in $k$ prime to 5 $\cdot$

$q$ where $\mu$ is the isomorphism of $0_{k}/(q)$ onto $0_{F}/\mathfrak{c}$

and $\varphi$ is a homomorphism (character) of $(\mathfrak{o}_{k}/(5))^{\times}$ onto $(0_{F}/\mathfrak{c})^{\times}$ of order 10 such
that

$\varphi(m)=x(m)$

for $m\in Z$.
It should be noted that in the present case, the invariant subfield $F$ under

$\rho$ coincides with the field $k$ corresponding to $\chi$ .
PROOF. It is known that every finite prime factor $\mathfrak{p}$ of the conductor $\mathfrak{f}$

of $k(\mathfrak{y})/k$ divides $N(\mathfrak{c})\cdot N$ (see [3, \S 7.5, p. 181 and Prop. 7.23]). Put $\mathfrak{f}$ in the
following form

$\mathfrak{f}=\mathfrak{p}_{\infty}^{a}\mathfrak{p}_{\infty}^{\epsilon b}\cdot\prod_{\mathfrak{p}}\mathfrak{p}^{f_{\mathfrak{p}}}$ , $0\leqq a,$ $b\leqq 1$ ,

with the prime factors $\mathfrak{p}$ of 5 $\cdot 11$ in $k$ . APplying [3, (7.5.1)] for the present
$\Gamma$ and by the same argument as in the proof of [5, Th. 2.3], we first obtain
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(2.2) $ r((m))=(\frac{m}{p_{\infty}})\chi(m)\cdot$ ( $m$ mod q) for every $m\in Z$ prime to 5 $\cdot q$ , where $p_{\infty}$

is the archimedean prime of $Q$ .
Therefore $[k(\mathfrak{y}):k]=5$ or 10, and so q-exponent $f_{q}$ (in $t$) $=1$ by [3, Lemma
7.32]. For the determination of $f_{\mathfrak{q}^{\epsilon}}$ , we can use the following fact which is
nothing but [5, Th. 2.8] for the present case.

(2.3) Let $\mathfrak{f}_{0}$ be the finite part of $f$ . Let $q$ be a rational prime which divides
$N(\mathfrak{f}_{0})$ but not $N=5^{3}$ . Supp0se that $\chi(q)=1$ , and $a_{q}$ is prime to $\mathfrak{c}=$

$(4+\sqrt{5})$ . Then $t_{0}$ is divisible by only one of the two prime factors of
$q$ in $k$ . Moreover, if $q$ denotes that factor of $q$ , then

$r(q^{\epsilon})\equiv a_{q}$ (mod c).

Take $q=11$ . From the table (a), $a_{11}=2$ . Therefore one has $f_{q^{\epsilon}}=0$ . Hence
$\mathfrak{f}_{0}$ is of the form $\sqrt{5}mq$ . By means of Hasse’s conductor ramification theorem
and (2.2) we know that $1\leqq m\leqq 2$ . On the other hand, we can easily check
that the smallest exponent $n$ which satisPes $u^{n}\equiv 1$ mod $C${ is a multiple of 5,

where $u=(1+\sqrt{5})/2$ is the fundamental unit of $k=Q(\sqrt{5})$ . Then if one
consider the degree of the maximal ray class field over $k$ mod $t$ (as mentioned
before, this must be divisible by 5), one can not have $m=1$ . Hence $\mathfrak{f}_{0}=5\cdot q$ .
By the same argument as in [5, Prop. 2.5], we know that $\mathfrak{f}$ is divisible by
exactly one of the two archimedean primes of $k$ , say $\mathfrak{p}_{\infty}$ . Thus $t=5q\cdot \mathfrak{p}_{\infty}$ .
Therefore one has

$ r((\alpha))=(\frac{\alpha}{\mathfrak{p}_{\infty}})\varphi(\alpha)\cdot\mu$ ( $\alpha$ mod q)

for every $\alpha$ in $k$ prime to 5 $\cdot$

$q$ , with a homomorphism $\varphi$ of $(0_{k}/(5))^{\times}$ into $(0_{F}/\mathfrak{c})^{\times}$

and the isomorphism $\mu$ of $0_{k}/q$ onto $\mathfrak{o}_{F}/\mathfrak{c}$ . Our next task is to determine
the order of $\varphi$ . Let us take again $q=11$ . By (2.3), one has $r(q)^{\epsilon}\equiv a_{11}=2$

mod $(4+\sqrt{5})$ . Hence $\varphi(q^{\epsilon})\equiv 3$ mod $(4+\sqrt{5})$ . Hence $\varphi(q^{\epsilon})^{5}=1$ . On the other
hand, $\varphi(m)=\chi(m)$ for $m\in Z$. Therefore the order of $\varphi$ is 10. If $v\in \mathfrak{o}_{k}^{\times}$ ,
$N_{k/Q}(v)=-1$ and $v\equiv 1$ mod $q$ then $v=\pm u^{5n}$ with an odd integer $n$ . Obviously

one has $\varphi(v)=\varphi(\pm(\frac{11+5\sqrt{5}}{2}))^{n}=\varphi(\pm 3)^{n}=(-1)^{n}=-1$ . We have $\varphi(v)$ .

$(\frac{v}{\mathfrak{p}_{\infty}})=1$ , so that $v<0$ at $\mathfrak{p}_{\infty}$ . Note that $r(q^{\epsilon})\equiv a_{11}=2$ mod $(4+\sqrt{5})$ . There-

fore the order of $r$ is 10. Thus one sees that the extension $k(\mathfrak{y})/k$ is the
maximal ray class field of conductor $\mathfrak{f}=5\cdot q\cdot \mathfrak{p}_{\infty}$ by considering its degree.
This completes the proof.

REMARK 2.3. As a direct consequence of this proposition and [5, Th. 2.3],

we have the following fact. Let $p$ be a rational prime such that $\chi(p)=1$ ,
$i$ . $e.,$ $p$ decomposes into two distinct primes $\mathfrak{p}=\gamma 0_{k}$ and $\mathfrak{p}^{\epsilon}=\gamma^{\epsilon}0_{k}$ in $k=Q(\sqrt{5})$ .
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It is easily seen that $\gamma$ can be so chosen as $p=\gamma\cdot\gamma^{\epsilon},$
$\gamma$ is totally positive and

$\gamma\equiv\pm 1$ mod (5), if $p\equiv 1$ mod 5 or $\gamma\equiv\pm 2$ mod (5) if $p\equiv-1$ mod 5. Then
$a_{p}\equiv\gamma+\gamma^{\epsilon}$ mod $\mathfrak{c}$ , if $p\equiv 1$ mod 5 or $a_{p}\equiv-(\gamma+\gamma^{\epsilon})$ mod $\mathfrak{c}$ , if $p\equiv-1$ mod 5.

Now let us consider the endomorphism algebra $End_{Q}(A)$ of the abelian
variety $A$ . Define an abelian subvariety $B$ of $A$ by

$B=(\theta(\sqrt{5})+\eta)A$ .

Then $B$ is rational over $k,$ $A=B+B^{\epsilon},$ $B^{\epsilon}=(\theta(\sqrt 5^{-})-\eta)A$ , and $B\cap B^{S}$ is a
finite group annihilated by $\theta(2\sqrt{5})$ . Denote by $\theta_{F}(a)$ the restriction of $\theta(a)$

to $B$ for every $a\in F$. Then $\theta_{F}$ is an isomorphism of $F$ into $End_{Q}(B)$ . We
can also define an isomorphism $\theta_{F}^{\epsilon}$ of $F$ into $End_{Q}(B^{\epsilon})$ by $\theta_{F}^{\epsilon}(a)=\theta_{F}(a)^{\epsilon}$ .

PROPOSITION 2.4. The abelian variety $B$ is simple, and $End_{Q}(B)=\theta_{F}(F)$ .
PROOF. We consider the p-th power Frobenius endomorphism $\varphi_{p}$ of $B$

completes the proof by the same argument as that of [3, Th. 7.39].

As the second example, let us consider the case $N=7^{3}$ . We have
dim $S_{2}^{0}(\Gamma_{0}(7^{3}))=24$ and dim $S_{2}^{0}(\Gamma^{*}(7^{3}))=9$ . Each eigen-function which belongs
to the columns I in $(b_{1})$ and IV in $(b_{2})$ corresponds to the zeta-function of
$Q(\sqrt{-7})$ with a Gr\"ossen-character as was shown in [4]. The remaining
6-dimensional part III (in $(b_{2})$) also satisfies $(*)$ in \S 1 as the part II in the
case $N=5^{3}$ . We fix our attention to this part III. In the present case the
field $k$ which corresponds to $\chi$ is $Q(\sqrt{-7})$ . Let $F_{7}$ be the maximal real

subfield of $Q(e\frac{2\pi i}{7})$ . Put $\alpha_{0}=e\frac{2\pi i}{7}\frac{-2\pi i}{7}+e$ Let us fix an eigen-function $f(z)$

$=\sum_{m=1}^{\infty}a_{m}e^{2\gamma_{\vee}^{\sim}imz}$ , and fix the field $K$ generated over $Q$ by one of the roots

$X^{6}-20X^{4}+124X^{2}-232=0,$ $e$ . $g$ . we take $a_{3}=\sqrt{2(3-\alpha_{0})}$, and $K=F_{7}(\sqrt{2(3-\alpha_{0})})$ .
The field $K$ has the non-trivial automorphism $\rho$ of order 2 with the fixed
subfield $F=F_{7}$ . In the present case we have $\mathfrak{b}_{0}=(\sqrt{2(3-\alpha_{0})})$ , the “ odd part “

$\mathfrak{b}=(3-\alpha_{0}, \sqrt{2(3-\alpha_{0})})$ and $\mathfrak{c}=(3-\alpha_{0}),$ $N(\mathfrak{c})=29$ . The condition $(**)$ is satisfied
with $e$ . $g.,$ $e=14$ . As was shown in the examples of M. Yamauchi [7], we
can make the following observation, although we do not know to what extent
this is true in general. Observe that $\alpha_{0}$ is one of the fundamental unit of $F_{7}$ .
We have $N_{F_{7}/Q}(\alpha_{0}^{7}-1)=8\cdot 29$ . Therefore $N\mathfrak{c}$ and $N_{F_{7}/Q}(\alpha_{0}^{7}-1)$ have the common
prime factor 29.

Using the same notation as the preceding case, let us consider the ex-
tension $k(\mathfrak{y})/k$ .

PROPOSITION 2.5. The field $k(\mathfrak{y})$ is a ray class field over $k$ of conductor
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$7\cdot \mathfrak{q}$ with a prime factor $\mathfrak{q}$ of 29 in $k$ , and one has

$ r((\alpha))=\varphi(\alpha)\cdot\mu$( $\alpha$ mod q)

for every $\alpha$ in $k$ prime to 7 $\cdot$

$q$ where $\mu$ is the isomorphism of $0_{k}/q$ onto $0_{F}/(3-\alpha_{0})$

and $\varphi$ is a homomorphism of $(\mathfrak{o}_{k}/(7))^{\times}$ into $(0_{F}/(3-\alpha_{0}))^{\times}$ of order 14 such that

$\varphi(m)=x(m)$

for $m\in Z$.
PROOF. By the same reasoning as in the preceding case, we have

(2.4) $ r((m))=\chi(m)\cdot$ ( $m$ mod q) for every $m\in Z$ prime to 7 $\cdot$

$q$ .
From the table $(b_{2})$ and the numerical observation about several $a_{m}$ (not given

here), one has $a_{29}=\alpha_{0}(3-\beta_{0})$ with $\beta_{0}=e\frac{4\pi i}{7}\frac{-4\pi i}{7}+e$ Hence $(a_{29},3-\alpha_{0})=1$ .
Therefore the same assumption as in the preceding (2.3) is satisfied. Thus
the conductor $t$ is of the form $\sqrt{-7}mq$ . By (2.4), if we consider $r((10))$ , then
we know the order of $r$ is 28. Hence $m=2$ (by the same argument as in the
proof of Proposition 2.2). This proves the first assertion. Using the same
fact as (2.3) in the present case, one has $r(q^{\epsilon})\equiv a_{29}$ mod $(3-\alpha_{0})$ , hence $\varphi(q^{\epsilon})\equiv 23$

mod $(3-\alpha_{0})$ . Therefore $\varphi(q^{\epsilon})^{7}=1$ . Thus, on account of (2.4) we know that
the order of $\varphi$ is 14. This completes the proof of our proposition.

REMARK 2.6. Let $p$ be a rational prime such that $\chi(p)=1,$ $i$ . $e.,$ $p$ de-
composes into two distinct primes $\mathfrak{p}=\gamma \mathfrak{o}_{k}$ and $\mathfrak{p}^{\epsilon}=\gamma^{\epsilon}\mathfrak{o}_{k}$ in $k=Q(’-7)$ . $\gamma$ can
be so chosen as $p=\gamma\cdot\gamma^{\epsilon},$ $\chi(\gamma+\gamma^{\epsilon})=1$ . Observe that $\varphi(\gamma^{7})=x(\gamma+\gamma^{\epsilon})=1$ . Let
$\pi$ and $\pi^{\prime}$ be the solutions of $X^{2}-a_{p}X+p\equiv 0$ mod $\mathfrak{c}$ . Then again by [5, Th.
2.3] we have $\pi^{7}+\pi^{\prime 7}\equiv\gamma^{7}+\gamma^{\epsilon 7}$ mod $\mathfrak{c}$ .

Let us consider the endomorphism algebra $End_{Q}(A)$ in the present case
$N=7^{3}$ . Put $\delta=\sqrt{2(3-\alpha_{0})}$. It can easily verified that $\eta$ (where $\eta^{2}=(-7)\cdot id_{A}$ )

and $\theta(\delta)$ generate an indefinite quaternion subalgebra $\mathfrak{U}$ of $End_{Q}(A)$ over
$F=F_{7}$ . Observe that $\delta^{2}=2(3-\alpha_{0})\in N_{F(\prime-7)/F}(F(\sqrt{-7}))$ . Therefore $\mathfrak{U}$ is iso-
morphic to $M_{2}(F)$ . Denote by ’ the quaternion conjugation of $\mathfrak{U}$ . Then we can
find an element $\xi$ of $\mathfrak{U}$ such that $\xi\cdot\xi^{\prime}=0$ and $\xi^{2}=e\xi$ with $e\in\theta(\mathfrak{o}_{F})\cap End(A)$ .
Moreover we can put $\xi$ in the form $\xi=a+b\cdot\theta(\delta)+c\eta+d\theta(\delta)\cdot\eta$ with $a,$ $b,$ $c,$

$d$

$\in\theta(\mathfrak{o}_{F})\cap End(A)$ . Define an abelian subvariety $B$ of $A$ by

$B=\xi A$ .
Then $B$ is rational over $k,$ $A=B+B^{\epsilon},$ $B^{\epsilon}=\xi^{\epsilon}A$ . Applying (1.2) to $\xi^{\epsilon}$ , one
has $\xi^{\epsilon}=a+b\theta(\delta)-c\eta-d\theta(\delta)\eta$ and $\xi\cdot\xi^{\prime}=\xi^{\epsilon}\cdot\xi^{\prime\xi}=0$ . Take an element $\xi t=\xi^{\epsilon}t^{\prime}$

$\in B\cap B^{\epsilon}$ . Then

$0=(\xi^{\epsilon})^{\prime}\cdot(\xi^{\epsilon})t^{\prime}=(\xi^{\epsilon})^{\prime}\cdot\xi t=(\xi-2b\theta(\delta))\xi t=(e-2b\theta(\delta))\xi t$ .
Therefore $B\cap B^{\epsilon}$ is a finite group annihilated by $(e-2b\theta(\delta))$ . Here we can
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also define an isomorphism $\theta_{F}$ of $F$ into $End_{Q}(B)$ as in Proposition 2.4.
PROPOSITION 2.7. The notation being as above, the abelian variety $B$ is

simple and $End_{Q}(B)=\theta_{F}(F)$ .
PROOF. Here again, we consider the p-th power Frobenius endomorphism

$\varphi_{p}$ of $B$ modulo $\mathfrak{p}$ where $\mathfrak{p}$ is a prime ideal in $k=Q(\sqrt{-7})$ such that $N\mathfrak{p}=p$ ,
$\chi(p)=1$ . Take $p=2$ and 11. By the table $(b_{2})$ , we know that $F(\varphi_{2})\not\cong F(\varphi_{11})$

by considering each discriminant of $F(\varphi_{p})$ . Therefore, by the same argument
of Proposition 2.4, $End_{Q}(B)$ is isomorphic to $F$ , so that $B$ is simple.

\S 3. The case of “ Neben ”-type of level $4M,$ $M\equiv 1(mod 4)$ .
Throughout this section, we assume that $M$ is a prime and $\equiv 1(mod 4)$ .

We shall use freely the same notation and terminology in [5, \S 2]. Let
$S_{2}^{0}(4M, (^{\underline{M}}))$ denote the ” essential part ” of $S_{2}(4M, (^{\underline{Jf}}))$ (see [2], [5, \S 1]).
Now consider $(A, \theta),$ $B,$ $K,$ $F,$ $\mathfrak{b},$

$\mathfrak{c},$ $r$ , etc. in [5, \S 2] for a fixed eigen-function

$f(z)=\sum_{m=1}^{\infty}a_{m}e^{2\pi imz}$ of $S_{2}^{0}(4M, (^{\underline{M}}))$ . The table (c) (resp. $(d)$) gives the Fourier

coefficients $a_{p}$ for $M=29$ (resp. $M=53,61,101$). Let $k$ denote the quadratic

extension of $Q$ corresponding to $(^{\underline{M}})$ , namely $k=Q(\sqrt{M})$ . Then the funda-

mental unit $u$ of $k=Q(\sqrt{M})$ is given by $u=\frac{5+\sqrt{29}}{2},$ $\frac{7+\sqrt{53}}{2}\frac{39+5\sqrt{61}}{2}$ ,

$10+\sqrt{101}$ for $M=29,53,61,101$ , respectively. Here we can make an empirical
observation that $N(c)$ and $N_{k/Q}(u^{3}-1)$ consist of the same prime factors, if we
disregard 2 and 3 except for the case $M=101$ . (In the case $M=101,$ $N(\mathfrak{c})$ and
$N_{k/Q}(u-1)$ have the same prime factor 5). From these data, it seems that
$N(\mathfrak{c})$ and $N_{k/Q}(u^{l}-1)$ ( $l$ depends on the square factor of the level) have a non-
trivial common factor. Let $0_{k}$ and $\mathfrak{o}_{F}$ denote the rings of all algebraic integers
in $k$ and in $F$. Now we are interested in the field $k(\mathfrak{y})$ generated over $k$ by
the coordinates of the points of $\mathfrak{y}$ (see [5, (2.7), (2.8)]). Let us now discuss
a special case $M=29$ which seems to be typical.

(c) level $=4\cdot 29$
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(c) level $=4\cdot 29$ (continued)

In this case, we have $\dim S_{2}^{0}(4\cdot 29, (^{\underline{29}}))=2,$ $K=Q(\sqrt{-7}),$ $F=Q,$ $k=Q(\sqrt{29})$

and $\mathfrak{c}=(7)$ .
PROPOSITION 3.1. The field $k(\mathfrak{y})$ is the maximal ray class field over $k$ of

conductor $2q\mathfrak{p}_{\infty}$ with a prime factor $q$ of 7 in $k$ . The archimedean prime $\mathfrak{p}_{\infty}$ of
$k$ is uniquely determined for $q$ by the condition that $v>0$ at $\mathfrak{p}_{\infty}$ for every $v\in 0_{k}^{\times}$

such that $N_{k/Q}(v)=-1$ and $v\equiv 1$ (mod q). Moreover one has

$ r((\alpha))=(\frac{\alpha}{\mathfrak{p}_{\infty}})\cdot\lambda$ ( $\alpha$ mod (2)) $\cdot\mu$ ( $\alpha$ mod q)

for every $\alpha$ in $k$ prime to $2q$ , where $\lambda$ is a homomorphism of $(0_{k}/(2))^{\times}$ into
$(Z/(7))^{\times}$ , and $\mu$ is the isomorphism of $\mathfrak{o}_{k}/q$ onto $Z/(7)$ .

The following method of proof is the same as that of [5, Prop. 7.1].

PROOF. First we observe that the finite part of $t(r)$ is divisible by the
prime factors of 2 $\cdot 7$. As the table (c) shows, $a_{7}=-2$ is prime to $\mathfrak{c}=7$.
Therefore, on account of [5, Th. 2.8, Prop. 2.4 and Prop. 2.5] $\mathfrak{f}(r)$ is of the
form $2^{c}\cdot q\cdot \mathfrak{p}_{\infty}$ where $q$ is a prime factor of 7 in $k$ , and one has

$ r((\alpha))=(\frac{\alpha}{\mathfrak{p}_{\infty}})\lambda$ ( $\alpha$ mod $2^{c}$) $\cdot\mu$ ( $\alpha$ mod q)

with characters $\lambda$ of $(0_{k}/(2)^{c})^{\times}$ and $\mu$ of $(\mathfrak{o}_{k}/q)^{\times}$ (both with values in $(Z/(7))^{\times}$ .
Let $U$ be the group of all (2)-units in the (2)-completion of $k$ , and let
$U_{n}=$ { $u\in U|u\equiv 1$ mod (2) } for every integer $n\geqq 0$ . Define a $(Z/(7))^{\times}$ -valued
character $\pi$ of $U$ by $\pi(\alpha)=\lambda$ ( $\alpha$ mod (2) ). Then $c$ is the smallest integer $n$

such that $U_{n}\subset Ker(\pi)$ . Since $(Z/(7))^{\times}$ is of order 6, we have $\pi^{6}=1$ . Now it
can easily be verified that

$U_{3}\subset\{u^{6}|u\in U\}$ .

Therefore $c\leqq 3$ . Observe that for any element $z\in U_{1}$ , $z^{4}\in U_{3}$ , so that
$\pi(z^{4})=1$ . Since $\pi(z^{6})=1$ , we have $\pi(z^{2})=1$ , so that $U_{1}^{2}=\{u^{2}|u\in U\}\subset Ker(\pi)$ ,
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Now $ U_{2}/U_{1}\lrcorner$

) is generated by a positive integer $m\equiv 5(mod 8)$ . Take $m$ so
that $m\equiv 1(mod 7)$ . By [5, Th. 2.2], we have $1=r((m))=\pi(m)$ . This proves
that $U_{2}\subset Ker(\pi)$ . Observe that $71=N_{k/Q}(\alpha_{0})$ with $\alpha_{0}=10\pm\sqrt{29}\in U_{1}$ . By
[5, Th. 2.2], $r((\alpha_{0}))$ satisfies the congruence

$X^{2}-a_{71}X+71\equiv 0(mod 7)$ .

Since $a_{71}=-8$ , we see easily that $r((\alpha_{0})^{\mathfrak{Z}})=1$ . On the other hand, we have
$\alpha_{0}^{8}\equiv 1$ mod $q$ with a suitable choice of $\alpha_{0}=10+\sqrt{2}$

$1=r((\alpha_{0})^{3})=\pi(\alpha_{0})$ . Now it can easily be verified that $U_{1}/U_{2}$ is generated by
$\alpha_{0}^{3}$ and a positive integer $m=3$ mod 4. Take $m$ so that $m\equiv 1$ mod 7. We
have $1=r((m))=\pi(m)$ , which shows that $U_{1}\subset Ker(\pi)$ . Now observe that $U/U_{1}$

is isomorphic to $(\mathfrak{o}_{k}/(2))$ Take $13=N_{k/Q}(\beta_{0})$ with $\beta_{0}=\frac{49\pm 9\cdot\sqrt{29}}{2}$ . Then
$r((\beta_{0}))$ satisfies

$X^{2}-a_{13}X+13\equiv 0$ mod 7.

Since $a_{13}=5$ , we see that the order of $r((\beta_{0}))$ is 3 or 6. We have, on

the other hand, $\beta_{0}\equiv 1$ mod $q$ with $\beta_{0}=\frac{49+9\sqrt{29}}{2}$ or $\frac{49-9\sqrt{29}}{2}$ Therefore
$\pi(\beta_{0})=r((\beta_{0}))\neq 1$ . Clearly, $\beta_{0}\not\equiv 1$ mod 2. Hence $U/U_{1}$ is generated by $\beta_{0}$ and
so $Uf$ Ker $(\pi)$ . Thus we have $c=1$ . If $v\in \mathfrak{o}_{k}^{\times},$ $N_{k/Q}(v)=-1$ and $v\equiv 1$ mod $q$ ,

then $v=\pm u^{3n}$ with an odd integer $n$ , where $u=\frac{5+\sqrt{29}}{2}$ is the fundamental

unit of $k$ . Obviously $v\equiv 1$ mod 2 so that $1=r(v)=(\frac{v}{\mathfrak{p}_{\infty}})$ . Let $E$ be the group

of all units of $\mathfrak{o}_{k}$ and $E_{0}$ the subgroup of $E$ consisting of all elements $u_{0}\in E$

such that $u_{0}\equiv 1$ mod 2 $\cdot q\cdot \mathfrak{p}_{\infty}$ . It can easily be verified that $[E:E_{0}]=6$ . Thus
one sees that the extension $k(\mathfrak{y})/k$ is the maximal ray class field of conductor
2 $\cdot$

$q\cdot \mathfrak{p}_{\infty}$ by considering its degree. This completes the proof of our proposition.
REMARK 3.2. As a direct consequence of Proposition 3.1, we have the

following fact. Let $p$ be a rational prime such that $(\frac{29}{p})=1,$ $P=N_{k/Q}(\gamma)$ ,

$\gamma\in \mathfrak{o}_{k}$ . It is easily seen that $\gamma$ can be so chosen as $\gamma\equiv 1$ mod (2) and $\gamma$ is
totally $p0sitive$ . Then $a_{p}\equiv\gamma+\gamma^{\epsilon}$ mod (7).

By the same argument as above and referring to the following table (d),

one can obtain the maximal ray class field $k(\mathfrak{y})$ over $k=Q(\prime M)$ for each
$M=53,61$ and 101, of conductor 2 $\cdot$

$q\cdot \mathfrak{p}_{\infty}$ with $N_{k/Q}(0)=13$ , 127 and 5, respectively.

The verification for these cases is left to the reader as an exercise. The
authors have also found a few more examples of the same nature for
$S_{2}(4M, \psi)$ with a positive prime integer $M\equiv 3$ mod (4) and a non-trivial real
character $\psi$ of $(Z/4M)^{\times}$ , which will not be discussed here.
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(d) The table for $S_{2}^{0}(4M, (^{\underline{M}}))$

$|$

$41014614534.\cdot.\cdot M$
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