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Another characterization of the small Janko group
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Recently, considerable interest has arisen in primitive permutation groups
of small rank in which the stabiliser of a point has one or more multiply
transitive constituents. (See [1], [2], [4], and many other papers.) Living-
stone [6] constructed the small Janko simple group of order 175560 as a
permutation group of this type, with degree 266 and rank 5; the stabiliser
of a point has doubly transitive constituents of degree 11 and 12. It follows
from theorem 1 of [4] that a primitive group with two doubly transitive
suborbits of different sizes has rank at least 5; here, such a group of rank
5, in which the subdegrees differ by 1, is shown to be isomorphic to the
Janko group.

THEOREM. Let $G$ be a primitive rank 5 permutation group of degree $n$ on
$\Omega$ . SuPpose that, for $a\in\Omega,$ $G_{a}$ is doubly transitive on $\Gamma(a)$ and $\Delta(a)$ , where
$|\Gamma(a)|=v,$ $|\Delta(a)|=v+1$ . Then $v=11,$ $n=266$ , and $G\cong J_{1}$ (the simple group of
order 175560).

I use the notation and results of [2]. By Section 1 of [2] and Theorem
1 of [4], $\Gamma$ and $\Delta$ are self-paired. By Theorem 2.2 of [2], $\Gamma\circ\Gamma$ and $\Delta\circ\Delta$

are single suborbits with $|(\Gamma\circ\Gamma)(a)|=v(v-1)/k,$ $|(\Delta\circ\Delta)(a)|=v(v+1)/l$ , with
$k\leqq(1/2)(v-1),$ $1\leqq(1/2)v$ . If $\Gamma_{\circ}\Gamma=\Delta\circ\Delta$ , then $(v+1)k=(v-1)l$ , so $(1/2)(v+1)|l$ ,

which is impossible. So $\Gamma()\Gamma\neq\Delta\circ\Delta$ .
$(v, v+1)=1$ , so if $c\in\Gamma(a)$ then $G_{ac}$ is transitive on $\Delta(a)$ ([7], 17.3). This

means that $\Gamma\circ\Delta$ is a single suborbit, with $|(\Gamma\circ\Delta)(a)|=v(v+1)/m$ , where $m$

is the number of points in $\Gamma(a)\cap\Delta(b)$ for $b\in(\Gamma\circ\Delta)(a)$ . If $m>1$ , let $c,$
$d$ be

two points in this intersection. Then $a\in\Gamma(c)\cap\Gamma(d),$ $b\in\Delta(c)\cap\Delta(d)$ , and so
$(c, d)$ lies both in $\Gamma\circ\Gamma$ and $\Delta\circ\Delta$ . This contradicts the fact that these are
different suborbits; so $m=1$ . Since $G$ has rank 5, $\Gamma\circ\Delta$ must be equal to
one of $\Gamma,$ $\Delta,$ $\Gamma\circ\Gamma$ , or $\Delta\circ\Delta$ , and it is too large to be any of the first three.
So $\Gamma\circ\Delta=\Delta\circ\Delta$ , and $1=1$ .

Let $q$ and $r$ be rational numbers such that, for $e\in(\Delta\circ\Delta)(a),$ $|(\Gamma\circ\Gamma)(a)\cap$

$\Delta(e)|=q(v-1),$ $|(\Gamma\circ\Gamma)(a)\cap\Gamma(e)|=r(v-1)$ . All the intersection numbers [5]

involving $\Gamma$ and $\Delta$ can be expressed in terms of $v,$ $k,$ $q$ , and $r$ . (See Fig. 1.)

Note that the diameter of the graph corresponding to $\Gamma$ is 4, and so is
maximal (as defined in [5]). If $B,$ $C,$ $D,$ $E$ denote the basis matrices corre-
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sponding to $\Gamma,$ $I^{7}\circ l^{\gamma},$ $\Delta\circ\Delta$ , and $\Delta$ respectively, we can read off from Fig. 1
the relations given below for the commuting symmetric matrices $B,$ $C,$ $D,$ $E$

$B^{2}=vI+kC$ ,

$BE=D$ ,

$E^{2}=(v+1)I+D$ ,

$ED=vE+(v-1)(1-q)D+qk(v+1)C+(v+1)B$ ,

$EC=q(v-1)D+(v+1)(1-qk)C$ .
Then

$E(E-B)=(v+1)I$ ,

$E^{2}-B^{2}=I+D-kC$ ,
so

$(v+1)(E+B)=E(I+D-kC)$

$=E+vE+(v-1)(1-q)D+qk(v+1)C+(v+1)B$

$-qk(v-1)D-k(v+1)(1-qk)C$ ,

$(1-q-qk)((v-1)D-k(v+1)C)=0$ .
So

$1-q-qk=0$ ,

$q=1/(1+k)$ .
Since $q(v-1)$ and $qk(v+1)$ are integers, we have $1+k|v-1$ and $1+k|v+1$ , so
$1+k|2,$ $k=1,$ $q=1/2$ , and $v$ is odd. Also, $r(v-1)$ and $r(v+1)$ are integers,
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and $0<r(v+1)<v+1$ ; so $r=1/2$ .
$(\Delta\circ\Delta)(a)$ is isomorphic, as $G_{a}$ -space, to the set of ordered pairs of dis-

tinct points of $\Delta(a)$ . (To the pair $(d_{1}, d_{2})$ corresponds the unique point in
$\Delta(d_{1})\cap\Gamma(d_{2}).)$ Let $N$ be the kernel of the action of $G_{a}$ on $\Delta(a)$ . $N$ act trivi-
ally on $(\Delta\circ\Delta)(a)$ , and hence on the whole of $\Omega$ (since the $\Delta$ -graph is con-
nected); that is, $N=1$ .

Put $G_{a}=H,$ $\Delta(a)=U,$ $\Gamma(a)=V$ , and $(1/2)(v-1)=t$ . I shall show that $H$,
$U,$ $V,$ $t$ satisfy the hypotheses of Theorem 2 of [3]; these are that $H$ is a
permutation group on $U\cup V$ with orbits $U$ and $V$ , with $|U|=2(t+1),$ $|V|=$

$2t+1$ , and
(i) $H$ is doubly transitive on $U$ ;
(ii) for $u_{1},$ $u_{2}\in U,$ $H_{u_{1}u_{2}}$ has two orbits of size $t$ in $U-\{u_{1}, u_{2}\}$ which

are isomorphic as $H_{u1u_{2}}$-spaces;
(iii) for $u\in U,$ $U-\{u\}$ and $V$ are isomorphic $H_{u}$-spaces.
The first hypothesis follows from our assumptions.
For $e\in(\Delta\circ\Delta)(a)$ , all $G_{ae}$-orbits in $(\Gamma\circ\Gamma)(a)$ have size divisible by $i$ ([7],

17.3). In particular, $G_{ae}$ is transitive on $\Gamma(e)\cap(\Gamma\circ\Gamma)(a)$ and $\Delta(e)\cap(\Gamma\circ\Gamma)(a)$ .
Equivalently, for $d_{1},$ $d_{2}\in\Delta(a),$ $G_{ad_{1}d_{2}}$ is transitive on $\Lambda_{1}=\Gamma(d_{1})\cap(\Gamma\circ\Gamma)(d_{2})$

and on $\Lambda_{2}=\Gamma(d_{1})\cap(\Gamma\circ\Delta)(d_{2})$ . Putting

$\Theta_{i}=\bigcup_{f_{i}cA_{i}}\Delta(f_{i})\cap\Delta(a)$ , $i=1,2$ ,

$\Theta_{1}$ and $\Theta_{2}$ are orbits of $G_{al_{1}d_{2}}$
( in $\Delta(a)-\{d_{1}, d_{2}\}$ , both of length $t$ ; and $\Theta_{1}\cap\Theta_{2}$

$=\emptyset$ , since if $f_{i}\in\Lambda_{t}(i=1,2)$ then $f_{2}\in(\Gamma\circ\Gamma)(f_{1})$ , and so $\Delta(f_{1})\cap\Delta(f_{2})=\emptyset$ . (See

Fig. 2.)

Fig. 2.

We must show that the stabiliser (in $G_{ad_{1}d_{2}}$) of a point $g_{1}\in\Theta_{1}$ fixes a
point in $\Theta_{2}$ . Equivalently, we must show that $G_{ad_{1}d_{2}g1}$ fixes $d_{1}^{\prime},$ $d_{2}$

‘ and $g_{2}^{\prime}$ ,

where $g_{2}^{\prime}$ lies in the orbit $\Theta_{2}$ with respect to $d_{1}^{\prime}$ and $d_{2}^{\prime}$ .
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Fig. 3.

There is a unique point $h\in\Delta(j)\cap\Delta(a)$ , which is fixed by $G_{ad_{1}d_{2}g1}$ (Fig.
3); put $d_{1}^{\prime}=d_{1},$ $d_{2}^{\prime}=h,$ $g_{2}^{\prime}=g_{1}$ . So hypothesis (ii) holds.

Finally, for $d\in\Delta(a),$ $G_{ad}$ is transitive on $\Delta(a)-\{d\}$ and on $\Gamma(a)$ . We
must show that the stabiliser of a point in one of these sets Pxes a point in
the other. If $d^{\prime}\in\Delta(a)-\{d\}$ , there is a unique point $e\in\Delta(d)\cap\Gamma(d^{\prime})$ , and a
unique point $c\in\Gamma(a)\cap\Delta(e)$ ; then $G_{add^{\prime}}$ fixes $c$ .

Theorem 2 of [3] shows that only five groups satisfy the hypotheses
listed earlier. Of these Pve, two fail to satisfy the further condition that $H$ is
doubly transitive on $V$ . We conclude that $t=2,3$ , or 5, and $H\cong PSL(2,2t+1)$ .

The cases $t=2$ and $t=3$ can be eliminated by applying Sylow’s theorem
to the primes31 and 19 respectively, or by the methods of D. G. Higman [5].

For $t=5$ , the small Janko group $]_{1}$ satisfies the hypotheses of the theorem;

its uniqueness follows from Livingstone’s construction [6] or the character-
isation of $J_{1}$ by its order.

REMARKS 1. Some of these arguments can be applied in more general
situations. For example, if $G$ is a primitive rank 5 group in which $G_{a}$ is
doubly transitive on $\Gamma(a)$ and $\Delta(a)$ , where $|\Gamma(a)|=v$ , $|\Delta(a)|=w>v$ , and
$\Gamma\circ\Gamma\neq\Delta\circ\Delta$ , then $w=vl+1$ for some integer 1, the other subdegrees are $v(v-1)$

and $v(vl+1)$ , and all intersection numbers can be computed in terms of $v$

and 1.
2. The small Janko group is the only example known to the author of a

primitive rank 5 group with two self-paired doubly transitive constituents.
Two examples of primitive rank 5 groups with paired doubly transitive
constituents are a group of degree 27 with a regular normal subgroup and
a group of degree 144 isomorphic to the Mathieu group $M_{12}$ .

3. The proof given in this Paper is intended to show that results can
be obtained about groups of moderate rank, under suitable assumptions,
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without resorting to computation of the eigenvalues of the incidence matrices
and their multiplicities (as outlined in [5]). The referee, however, has pointed
out that the conclusion $v=11$ can be obtained by using these methods and
obtaining fairly precise estimates for the eigenvalues and multiplicities, as
was done by E. Bannai and T. Ito for Moore graphs (“ The non-existence of
certain Moore graphs ”, unpublished). This method (which, however, requires
quite lengthy calculations) should also be aPplicable to the cases mentioned
in remark 1, at least for small values of 1; but it is the author’s belief that
it must be combined with the combinatorial analysis of doubly transitive
groups as used in this paper and [3] to give the strongest results.
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