Uniformly hyperfinite algebras and locally compact transformation groups

By Yukimasa OKA

(Received March 10, 1971) (Revised Oct. 7, 1972)

§0. J. Glimm [4] and E. G. Effros-F. Hahn [2] introduced and studied the C^* -algebras associated with locally compact transformation groups. In this paper, we shall represent uniformly hyperfinite algebras and the C^* -algebras of completely continuous operators as transformation group C^* -algebras.

Let $G^{(k)}$ $(k=1, 2, \cdots)$ be cyclic groups of finite order q_k , and consider the product groups $G_n = \prod_{k=1}^n G^{(k)}$ $(n = 1, 2, \dots)$. By left multiplications, $G^{(k)}$ and G_n are transformation groups on themselves. We denote by $Z^{(k)}$ and Z_n the groups $G^{(k)}$ and G_n which are considered as the underlying spaces of transformation groups. Then $(G^{(k)}, Z^{(k)})$ and (G_n, Z_n) are discrete finite transformation groups. Let $Z = \prod_{k=1}^{\infty} Z^{(k)}$ and let G be the restricted direct product $\prod_{k=1}^{\infty} G^{(k)}$ of $G^{(k)}$. Then (G, Z) is a locally compact transformation group such that G is a discrete countable group and Z is a compact Hausdorff space. Let $\mathfrak{A}(G^{(k)}, Z^{(k)})$ $(k = 1, 2, \dots)$, $\mathfrak{A}(G_n, Z_n)$ $(n = 1, 2, \dots)$, and $\mathfrak{A}(G, Z)$ be transformation group C^* -algebras associated with the transformation groups $(G^{(k)}, Z^{(k)})$ $(k = 1, 2, \dots), (G_n, Z_n)$ $(n = 1, 2, \dots),$ and (G, Z), respectively ([2], [4]). Then we shall show that $\mathfrak{A}(G, Z)$ is a uniformly hyperfinite algebra of type $\{p_n\}$, where $p_n = q_1q_2 \cdots q_n$ $(n = 1, 2, \cdots)$, and $\mathfrak{A}(G, Z) = C^* - \lim_n \mathfrak{A}(G_n, Z_n) = C^* - \lim_n \mathfrak{A}(G_n, Z_n)$ $\otimes_k \mathfrak{A}(G^{(k)}, Z^{(k)})$ (Theorem 5). Conversely, let \mathfrak{A} be a uniformly hyperfinite algebra of type $\{p_n\}$. Then we shall show that there exists a transformation group (G, Z) such that \mathfrak{A} is *-isomorphic to $\mathfrak{A}(G, Z)$ where (G, Z) is as above (Corollary 6).

In §3, we shall show that if G is an infinite cyclic group, the C^* -algebra $\mathfrak{A}(G, G)$ associated with the transformation group (G, G) is *-isomorphic to the C^* -algebra $\mathfrak{LC}(H)$ of all completely continuous operators in a separable Hilbert space H (Theorem 9).

§1. Some lemmas.

Suppose that $Z^{(k)}$ $(k=1, 2, \cdots)$ are compact Hausdorff spaces. Let $Z_n = \prod_{k=1}^{n} Z^{(k)}$ $(n=1, 2, \cdots)$ and $Z = \prod_{k=1}^{\infty} Z^{(k)}$. If X is a compact Hausdorff space, C(X) denotes the commutative C*-algebra of all complex-valued continuous functions on X. Then it is easy to verify the following:

LEMMA 1. There exists the C*-inductive limit C*-lim $C(Z_n)$ of $C(Z_n)$ and C(Z) is principally *-isomorphic to C*-lim $C(Z_n)$.

Let $\mathfrak{A}(G, Z)$ be the transformation group C^* -algebra associated with a locally compact transformation group (G, Z) ([2], [4]). For each integer n > 0, let M_n be the C^* -algebra of all complex $n \times n$ -matrices. Then we have the following lemma:

LEMMA 2. Suppose that G is a cyclic group of order n. Then, the transformation group C*-algebra $\mathfrak{A}(G, G)$ is principally *-isomorphic to M_n .

PROOF. It is clear that the C^* -algebra $\mathfrak{A}(G, G)$, associated with a discrete finite transformation group (G, G), is equal to the set of all complex-valued functions on $G \times G$.

Let s be the generator of G. For any $f \in \mathfrak{A}(G, G)$, let

$$\alpha_{pq} = f(s^{q-p}, s^{1-p})$$
 (p, q = 1, 2, ..., n).

Define

$$T_f = (\alpha_{pq})_{p,q=1,2,\cdots,n}.$$

Then it is easy to verify that T is a principal *-isomorphism of $\mathfrak{A}(G, G)$ onto M_n .

This completes the proof.

Suppose that $G^{(k)}$ $(k = 1, 2, \cdots)$ are cyclic groups of finite orders q_k . Let $Z^{(k)} = G^{(k)}$, $G_n = \prod_{k=1}^n G^{(k)}$, and $Z_n = G_n$ as in the introduction. Then we have the following lemma:

LEMMA 3. $\mathfrak{A}(G_n, Z_n)$ is principally *-isomorphic to the tensor product C*algebra $\bigotimes_{1 \leq k \leq n} \mathfrak{A}(G^{(k)}, Z^{(k)})$ of $\mathfrak{A}(G^{(k)}, Z^{(k)})$.

PROOF. Let σ_n be a linear mapping of $\bigotimes_{1 \le k \le n} \mathfrak{A}(G^{(k)}, Z^{(k)})$ into $\mathfrak{A}(G_n, Z_n)$ such that

$$\sigma_n(\bigotimes_{1\leq k\leq n} f^{(k)})(s^{(1)}, \cdots, s^{(n)}; \zeta^{(1)}, \cdots, \zeta^{(n)}) = \prod_{k=1}^n f^{(k)}(s^{(k)}, \zeta^{(k)})$$

for any $\bigotimes_{1 \le k \le n} f^{(k)} \in \bigotimes_{1 \le k \le n} \mathfrak{A}(G^{(k)}, Z^{(k)})$. Then, it is easy to verify that σ_n is a principal *-isomorphism of $\bigotimes_{1 \le k \le n} \mathfrak{A}(G^{(k)}, Z^{(k)})$ onto $\mathfrak{A}(G_n, Z_n)$.

This completes the proof.

By Lemmas 2, 3, we have

COROLLARY 4. Suppose that $G^{(k)}$, $Z^{(k)}$, G_n , and Z_n are as in Lemma 3. Then $\mathfrak{A}(G_n, Z_n)$ is principally *-isomorphic to M_{p_n} , the C*-algebra of $p_n \times p_n$ -matrices, where $p_n = q_1q_2 \cdots q_n$.

By Corollary 4, it follows that for each integer n > 0, there exists a *-isomorphism ρ_n of $\mathfrak{A}(G_n, Z_n)$ onto $\bigotimes_{\substack{1 \le k \le n}} M_{q_k}$. For any integer m, n: 0 < m < n, define a *-isomorphism τ_{nm} of $\bigotimes_{\substack{1 \le k \le m}} M_{q_k}$ into $\bigotimes_{\substack{1 \le k \le n}} M_{q_k}$ by

$$\tau_{nm} = \rho_n \varphi_{nm} \rho_m^{-1},$$

where φ_{nm} is the canonical imbedding of $\mathfrak{A}(G_m, Z_m)$ into $\mathfrak{A}(G_n, Z_n)$ as in the proof of Theorem 5. Then we have

$$\tau_{nm}(\underset{1\leq k\leq m}{\otimes} M_{q_k}) = (\underset{1\leq k\leq m}{\otimes} M_{q_k}) \otimes (\underset{m+1\leq k\leq n}{\otimes} I_{q_k}).$$

From this follows that the *-isomorphism τ_{nm} is a canonical imbedding of $\bigotimes_{1 \le k \le m} M_{q_k}$ into $\bigotimes_{1 \le k \le n} M_{q_k}$.

§2. Main theorem.

Let \mathfrak{A} be a C^* -algebra with identity. \mathfrak{A} is called uniformly hyperfinite of type $\{p_n\}$ if there exists a sequence of $p_n \times p_n$ -matrix algebras M_{p_n} such that (i) $p_n \uparrow \infty$ as $n \to \infty$ and (ii) $\mathfrak{A} = C^*$ -lim M_{p_n} (Glimm [3]).

Suppose that $G^{(k)}$, $Z^{(k)}$, G_n , Z_n , G, and Z are as in the introduction. Then we have the following theorem:

THEOREM 5. The transformation group C*-algebra $\mathfrak{A}(G, Z)$ is the C*inductive limit C*-lim $\mathfrak{A}(G_n, Z_n)$ of $\mathfrak{A}(G_n, Z_n)$ and is *-isomorphic to the infinite tensor product C*-algebra $\bigotimes_k \mathfrak{A}(G^{(k)}, Z^{(k)})$ of $\mathfrak{A}(G^{(k)}, Z^{(k)})$. Furthermore, these C*-algebras are uniformly hyperfinite algebras of type $\{p_n\}$, where $p_n = q_1q_2 \cdots q_n$ $(n = 1, 2, \cdots)$.

PROOF. Let $\mathfrak{A}_m = \mathfrak{A}(G_m, Z_m)$ $(m = 1, 2, \cdots)$. Let δ_s be the unit mass at s and $e^{(k)}$ the unit element in $G^{(k)}$. For each integers m, n: 0 < m < n, let φ_{nm} be the canonical imbedding of \mathfrak{A}_m into \mathfrak{A}_n defined by

$$\begin{split} \varphi_{nm}(f)(s^{(1)}, \cdots, s^{(n)}; \zeta^{(1)}, \cdots, \zeta^{(n)}) \\ = f(s^{(1)}, \cdots, s^{(m)}; \zeta^{(1)}, \cdots, \zeta^{(m)}) \prod_{k=m+1}^{n} \delta_{e^{(k)}}(s^{(k)}), \end{split}$$

where $f \in \mathfrak{A}_m$, $s^{(k)} \in G^{(k)}$, and $\zeta^{(k)} \in Z^{(k)}$ $(k = 1, 2, \dots, n)$. Then it is obvious that φ_{nm} is a principal *-isomorphism and we have

$$\varphi_{nk} = \varphi_{nm} \varphi_{mk} \qquad (k < m < n).$$

Thus $\{\mathfrak{A}_m, \varphi_{nm}\}$ is an inductive system, hence there exists a C*-inductive

limit C^* -lim \mathfrak{A}_n of \mathfrak{A}_n .

We shall now show that $\mathfrak{A}(G, Z) = C^* - \lim_n \mathfrak{A}(G_n, Z_n)$. For each integer m > 0, let φ_m be the canonical imbedding of \mathfrak{A}_m into $C_0(G \times Z) \subseteq \mathfrak{A}(G, Z)$ defined by

$$\varphi_m(f)(s^{(1)}, s^{(2)}, \cdots; \zeta^{(1)}, \zeta^{(2)}, \cdots) = f(s^{(1)}, \cdots, s^{(m)}; \zeta^{(1)}, \cdots, \zeta^{(m)}) \prod_{k=m+1}^{\infty} \delta_{e^{(k)}}(s^{(k)}),$$

where $f \in \mathfrak{A}_m$, $s^{(k)} \in G^{(k)}$, and $\zeta^{(k)} \in Z^{(k)}$ $(k = 1, 2, \dots)$. Then it is obvious that φ_m is a principal *-isomorphism and we have

$$\varphi_m = \varphi_n \varphi_{nm} \qquad (m < n)$$
,

hence it follows that $\varphi_m(\mathfrak{A}_m) \subseteq \varphi_n(\mathfrak{A}_n)$. If we have the inclusion

(*)
$$C_0(G \times Z) \subseteq \bigcup_{m=1}^{\infty} \varphi_m(\mathfrak{A}_m)$$
,

where the closure of $\bigcup_{m=1}^{\infty} \varphi_m(\mathfrak{A}_m)$ is in $\mathfrak{A}(G, Z)$, then we have

$$\mathfrak{A}(G, Z) = \overline{\bigcup_{m=1}^{\infty} \varphi_m(\mathfrak{A}_m)},$$

that is,

$$\mathfrak{A}(G, Z) = C^* - \lim_n \mathfrak{A}(G_n, Z_n).$$

Thus it suffices to show that the inclusion (*) holds. Since every element of $C_0(G \times Z)$ is of the form $\sum_{i=1}^k \delta_{s_i} \cdot h_i$, $s_i \in G$, $h_i \in C(Z)$, it suffices to show that for arbitrary $s \in G$, $h \in C(Z)$, $\delta_s \cdot h \in \bigcup_{m=1}^{\infty} \varphi_m(\mathfrak{A}_m)$. For arbitrary $\varepsilon > 0$, there exists a positive integer n and $g \in C(Z_n)$ such that

$$\| \phi_n(g) - h \|_{\infty} < \varepsilon , \qquad s^{(p)} = e^{(p)} \qquad (p \ge n+1) ,$$

where ϕ_n is the canonical imbedding of $C(Z_n)$ into C(Z). Define a function $f \in \mathfrak{A}(G_n, Z_n)$ by

$$f(t^{(1)}, \cdots, t^{(n)}; \zeta^{(1)}, \cdots, \zeta^{(n)}) = g(\zeta^{(1)}, \cdots, \zeta^{(n)}) \prod_{k=1}^{n} \delta_{s^{(k)}}(t^{(k)}).$$

Then we have $\varphi_n(f) \in \varphi_n(\mathfrak{A}_n)$ and

$$\|\varphi_n(f) - \delta_s \cdot h\| < \varepsilon$$
,

that is, $\delta_s \cdot h \in \overline{\bigcup_{m=1}^{\infty} \varphi_m(\mathfrak{A}_m)}$. From this follows that $\mathfrak{A}(G, Z) = C^* - \lim_n \mathfrak{A}(G_n, Z_n)$. By Corollary 4, $\mathfrak{A}(G, Z)$ is a uniformly hyperfinite algebra of type $\{p_n\}$. By Lemma 3, we have

$$\mathfrak{A}(G, Z) = \bigotimes_k \mathfrak{A}(G^{(k)}, Z^{(k)}).$$

This completes the proof.

Now, it is easy to verify a converse of Theorem 5, that is, every uniformly hyperfinite algebra \mathfrak{A} is a transformation group C^* -algebra $\mathfrak{A}(G, Z)$.

COROLLARY 6. Let \mathfrak{A} be a uniformly hyperfinite algebra of type $\{p_n\}$. Then, there exists a locally compact transformation group (G, Z) such that \mathfrak{A} is *-isomorphic to $\mathfrak{A}(G, Z)$, where (G, Z) is as in Theorem 5.

Also, the following is obvious:

COROLLARY 7. Let \mathfrak{A} , $(G^{(k)}, Z^{(k)})$ be as above. Then

$$\mathfrak{A} = \bigotimes_k \mathfrak{A}(G^{(k)}, Z^{(k)}) = \bigotimes_k M_{q_k}$$

\S 3. The C*-algebra of all completely continuous operators.

In §1, Lemma 2, we showed that if G is a cyclic group of order n, the associated transformation group C^* -algebra $\mathfrak{A}(G, G)$ is *-isomorphic to M_n . We shall now show that if G is an infinite cyclic group, the associated transformation group C^* -algebra $\mathfrak{A}(G, G)$ is *-isomorphic to the C*-algebra $\mathfrak{L}(G, G)$ of all completely continuous operators in a separable Hilbert space H.

LEMMA 8 (Effros-Hahn [2]). Let (G, Z) be a transformation group with G, Z locally compact, Hausdorff, and second countable. If G is discrete, amenable, and acts freely on Z, then the primitive ideal space $\operatorname{pr} \mathfrak{A}(G, Z)$ is homeomorphic to the quasi-orbit space $(Z/G)^{\sim}$.

THEOREM 9. Let G be an infinite cyclic group, and Z = G. Then, the associated transformation group C*-algebra $\mathfrak{A}(G, Z)$ is *-isomorphic to $\mathfrak{SC}(H)$, the C*-algebra of all completely continuous operators in a separable Hilbert space H.

PROOF. We may assume that G = Z = I, where I is the integers. For $f \in C_0(I \times I)$, define an operator T_f of finite rank in $H = l^2(I)$ by

$$T_f e_m = \sum_{n=-\infty}^{+\infty} f(m-n, 1-n)e_n,$$

where $\{e_m : m \in I\}$ is the canonical orthonormal basis in H. It is clear that T is a linear mapping of $C_0(I \times I)$ into $\mathfrak{CC}(H)$. Furthermore, the mapping T is a *-homomorphism. In fact, we have

$$(T_{f*g}e_m | e_n) = f*g(m-n, 1-n)$$

= $\sum_{p=-\infty}^{+\infty} f(p-n, 1-n)g(m-p, 1-p)$
= $\sum_{p=-\infty}^{+\infty} (T_f e_p | e_n)(T_g e_m | e_p)$

and

$$(T_{f} \cdot e_{m} | e_{n}) = f^{*}(m-n, 1-n)$$
$$= \overline{f(n-m, 1-m)}$$
$$= (T_{f}^{*}e_{m} | e_{n}).$$

 $=(T_f T_g e_m | e_n)$

If $f \neq 0$, then there exist integers *m*, *n* such that $f(m-n, 1-n) \neq 0$. Hence we have

$$(T_f e_m | e_n) = f(m-n, 1-n) \neq 0$$
.

Thus the *-homomorphism T is one-to-one.

By definition of the norm ([2]), we have

 $\|T_f\| \leq \|f\|,$

for all $f \in C_0(I \times I)$, so the *-isomorphism T is extended uniquely to a *homomorphism of $\mathfrak{A}(I, I)$ into $\mathfrak{LG}(H)$. As the transformation group (I, I) is minimal, that is, the quasi-orbit space $(I/I)^{\sim}$ has only one-point, by Lemma 8, $\mathfrak{A}(I, I)$ is simple. Hence, the *-homomorphism T is a *-isomorphism of $\mathfrak{A}(I, I)$ into $\mathfrak{LG}(H)$. Since it is not difficult to verify that the representation T is irreducible, we have

$$\{T_f: f \in \mathfrak{A}(I, I)\} = \mathfrak{C}(H).$$

This completes the proof.

References

- J. Dixmier, Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 1964.
- [2] E.G. Effros and F. Hahn, Locally compact transformation groups and C*algebras, Mem. Amer. Math. Soc., 75 (1967).
- [3] J. Glimm, On a certain class of operator algebras, Trans. Amer. Math. Soc., 95 (1960), 318-340.
- [4] J. Glimm, Families of induced representations, Pacific J. Math., 12 (1962), 885-911.
- [5] Z. Takeda, Inductive limit and infinite direct product of operator algebras, Tôhoku Math. J., 7 (1955), 67-86.

Yukimasa OKA Department of Mathematics Kyushu University, Hakozaki-cho, Fukuoka, Japan

362