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§0. J. Glimm and E.G. Effros-F. Hahn [2] introduced and studied
the C*-algebras associated with locally compact transformation groups. In
this paper, we shall represent uniformly hyperfinite algebras and the C*-
algebras of completely continuous operators as transformation group C*-
algebras.

Let G® (k=1, 2, ---) be cyclic groups of finite order ¢;, and consider the

product groups Gn:ﬁGc’” (n=1,2,---). By left multiplications, G* and G,
k=1

are transformation groups on themselves. We denote by Z and Z, the
groups G® and G, which are considered as the underlying spaces of trans-
formation groups. Then (G®, Z®) and (G,, Z,) are discrete finite trans-

formation groups. Let Z=TIZ and let G be the restricted direct product

k=1

II G® of G®. Then (G, Z) is a locally compact transformation group such
k=1

that G is a discrete countable group and Z is a compact Hausdorff space.
Let A(G®, Z®) (k=1,2,-), WGC,, Z,) (n=1,2,--), and WG, Z) be trans-
formation group C*-algebras associated with the transformation groups
(G®, Z®) (k=1,2,+), (Gn, Z,) (n=1,2,---), and (G, Z), respectively (2], [4).
Then we shall show that (G, Z) is a uniformly hyperfinite algebra of
type {p,}, where p,=q.q, " ¢, (n=1,2,--), and WG, Z)=C*-lim WG, Z,) =

R AG®, Z®) (Theorem 5). Conversely, let A be a uniformly hyperfinite
algebra of type {p.}. Then we shall show that there exists a transformation
group (G, Z) such that % is *-isomorphic to A(G, Z) where (G, Z) is as above
(Corollary 6).

In §3, we shall show that if G is an infinite cyclic group, the C*-algebra
N(G, G) associated with the transformation group (G, G) is *-isomorphic to the
C*-algebra LE€(H) of all completely continuous operators in a separable Hilbert

space H (Theorem 9).
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§1. Some lemmas.

Suppose that Z* (k=1,2,--) are compact Hausdorff spaces. Let Z,=
kﬁlZ"“’ (n=1,2,--) and Z:lf[Z"". If X is a compact Hausdorff space, C(X)
= =1
denotes the commutative C*-algebra of all complex-valued continuous func-
tions on X. Then it is easy to verify the following:

LEMMA 1. There exists the C*-inductive limit C*-lim C(Z,) of C(Z,) and

n
C(Z) is principally *-isomorphic to C*-lim C(Z,).
n

Let UG, Z) be the transformation group C*-algebra associated with a
locally compact transformation group (G, Z) (2], [4]). For each integer n>0,
let M, be the C*-algebra of all complex nXn-matrices. Then we have the
following lemma:

LEMMA 2. Suppose that G is a cyclic group of order n. Then, the trans-
formation group C*-algebra (G, G) is principally *-isomorphic to M,.

PROOF. It is clear that the C*-algebra U(G, G), associated with a discrete

finite transformation group (G, G), is equal to the set of all complex-valued
functions on GXG.

Let s be the generator of G. For any fe UG, G), let

Qpg =f(sq-p’ sl-p) (p’ q= 1: 2; Ty n) .
Define

Tf = (an)P,q=1:2:“':Tlr *

Then it is easy to verify that T is a principal *-isomorphism of (G, G) onto
M,.

This completes the proof.

Suppose that G® (k=1, 2, ---) are cyclic groups of finite orders g,. Let

n
Z®=G® G,=TIG®, and Z,=G, as in the introduction. Then we have the
k=1

following lemma:

LEMMA 3. U(G,, Z,) is principally *-isomorphic to the tensor product C*-
algebra @ W(G®, Z®) of WGP, Z®),
1Sk=n

PROOF. Let o, be a linear mapping of & WG™, Z®) into (G, Z,)
1=k=n
such that

7
1

n
f(k))(s(l)’ e, s C(D, e, £ :kI_Ilf(k)(s(k)’ C(k))

k=n

lA
IIA

for any ® fPe ® WG®,Z™®), Then, it is easy to verify that o, is a

1sk=n 1Sk=n

principal *-isomorphism of & A(G®, Z®) onto W(G,, Z,).
1

=k=n
This completes the proof.
By Lemmas 2, 3, we have
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COROLLARY 4. Suppose that G, Z®, G,, and Z, are as in Lemma 3.
Then WG, Z,) is principally *-isomorphic to M,,, the C*-algebra of p,XPn-
matrices, where p,=q.q; ** qp.

By it follows that for each integer n >0, there exists a
*-isomorphism p, of (G, Z,) onto lgiank. For any integer m, n: 0 <m <mn,

define a *-isomorphism 7, of & M,, into ® M, by
1

=k=m 1=k=n

J— -1
Tam = PaPrmPm” »

where ¢,, is the canonical imbedding of W(G,, Z,) into W(G,, Z,) as in the
proof of Then we have

Tanl @ Mp)=( & M®( ® 1.

=k=m =n

A

From this follows that the *-isomorphism z,, is a canonical imbedding of
Mg, into & M,,.

1=Kk=m 1=k=n

§2. Main theorem.

Let A be a C*-algebra with identity. U is called uniformly hyperfinite of
type {p.} if there exists a sequence of p,Xp,-matrix algebras M,, such that
(i) p, 1 oo as n—oo and (ii) QIZC*-li;n M,, (Glimm [3].

Suppose that G*®, Z®, G,, Z,, G, and Z are as in the introduction. Then
we have the following theorem:

THEOREM 5. The transformation group C*-algebra WG, Z) is the C*-
inductive limit C*-liqxln WG, Z,) of WGy, Z,) and is *-isomorphic to the infinite
tensor product C*-algebra Qi WG™®, Z®) of WGP, Z®). Furthermore, these
C*-algebras are uniformly hyperfinite algebras of type {p,}, where p,=q.q, - qn
(n=1,2,-).

ProofF. Let U,=WGn,, Z,) (m=1,2,---). Let d, be the unit mass at s
and ¢® the unit element in G°. For each integers m,n: 0<m<n, let Qun
be the canonical imbedding of A, into A, defined by

Crm( ISP, ooy s 5 LD, e, L)
n
=, e, S5 ED, e E) T 0,00 (5,
k=m+1

where fed,, s®G®, and (®PeZ® (k=1,2,--,n). Then it is obvious
that ¢., is a principal *-isomorphism and we have

Dnk = PnmPmi (k <m< n) .

Thus {N,, ¢.m} is an inductive system, hence there exists a C*-inductive
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limit C*-lim A, of A,.
We shall now show that WG, Z)=C*-lim A(G,, Z,). For each integer

m >0, let ¢, be the canonical imbedding of WA, into Co(GXZ) S WG, Z) defined
by

Pu(SISP, 8D, w5 LB, L2, )
oo
:f(s(l)y R S(m); C(l)’ Ty C(m)) H Bg(k) (S(k)) »
k=m+1

where fe%,, s®=G®, and (P =Z® (k=1,2,---). Then it is obvious that
¢n is a principal *-isomorphism and we have

On=QnPpm  (M<n),

hence it follows that ¢,,(N,) S ¢,(A,). If we have the inclusion
Q) CUGXZ)E U onlOhn)

where the closure of Cj on(Wy) is in (G, Z), then we have
m=1

QKG' Z)zgl(/)m(sum) ,
that is,
WG, Z2)=C*-lim WG, Z,).
Thus it suffices to show that the inclusion (*) holds. Since every element

k
of C(GXZ) is of the form X d;,-h; s;=G, h;e C(Z), it suffices to show that
i=1

for arbitrary s=G, he(C(Z), d,-he Cj ©n(Nn). For arbitrary >0, there
m=1

exists a positive integer n and g= C(Z,) such that

[ fa(8)—ho<e, sP=eP (pz=n+l),

where ¢, is the canonical imbedding of C(Z,) into C(Z). Define a function
F€ UG, Z,) by

FAD, wee 45 LD, e L) =g (D, -, C‘"))kT:Il53<k> (t*).
Then we have ¢,(f) € ¢,(2,) and
l@al(f)—0s-h | <e,
that is, 8,-2 € \J ou(,). From this follows that
m=1

WG, Z)=C*-lim WGy, Z,,).
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By UG, Z) is a uniformly hyperfinite algebra of type {pa}.
By we have

WG, 2)=®:WG®, ZP).

This completes the proof.

Now, it is easy to verify a converse of that is, every uni-
formly hyperfinite algebra % is a transformation group C*-algebra A(G, Z).

COROLLARY 6. Let N be a uniformly hyperfinite algebra of type {p,}.
Then, there exists a locally compact transformation group (G, Z) such that U is
*.isomorphic to WG, Z), where (G, Z) is as in Theorem 5.

Also, the following is obvious:

COROLLARY 7. Let N, (G®, Z®) be as above. Then

A= @, AGCP, Z%) = ®, M,,.

§3. The C*-algebra of all completely continuous operators.

In §1, we showed that if G is a cyclic group of order n, the
associated transformation group C*-algebra (G, G) is *-isomorphic to M,.
We shall now show that if G is an infinite cyclic group, the associated trans-
formation group C*-algebra A(G, G) is *-isomorphic to the C*-algebra SC(H)
of all completely continuous operators in a separable Hilbert space H.

LEMMA 8 (Effros-Hahn [2]). Let (G, Z) be a transformation group with
G, Z locally compact, Hausdorff, and second countable. If G is discrete, amen-
able, and acts freely on Z, then the primitive ideal space pr WG, Z) is homeo-
morphic to the quasi-orbit space (Z/G)~.

THEOREM 9. Let G be an infinite cyclic group, and Z=G. Then, the asso-
ciated transformation group C*-algebra WG, Z) is *-isomorphic to RC(H), the
C*-algebra of all completely continuous operators in a separable Hilbert space H.

PrROOF. We may assume that G=Z=1, where I is the integers. For
fe C(IxI), define an operator 7T, of finite rank in H=1*1) by

Tren= g fim—n, 1—n)e,,

n=-—0co

where {e,:me I} is the canonical orthonormal basis in H. It is clear that
T is a linear mapping of C,(IxI) into 8&(H). Furthermore, the mapping T
is a *-homomorphism. In fact, we have

(Tr.gn) €2) = frg(m—n, 1—n)

= 8 fo—n,1-ngln—p, 1-p)

— p:zf’m(Tfep le)(Tyemley)
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- (Tngem I en)
and
(Tyeenle,) =f*(m—n, 1—n)

=f(n—m, 1—m)
=(Ttenlen).

If f+0, then there exist integers m, n such that f(m—n, 1—n) 0. Hence
we have

(Trenle,) =f(m—n,1—n)+#0.

Thus the *-homomorphism T is one-to-one.
By definition of the norm ([Z]), we have

ITA<1SI

for all feC(IXI), so the *-isomorphism 7T is extended uniquely to a *-
homomorphism of A/, I) into LE(H). As the transformation group (I, [) is
minimal, that is, the quasi-orbit space (I/I)~ has only one-point, by
A7, I) is simple. Hence, the *-homomorphism T is a *-isomorphism of A(Z, I)
into L€(H). Since it is not difficult to verify that the representation T is
irreducible, we have

{T;: feWl, I} =8C(H).

This completes the proof.
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