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\S 0. J. Glimm [4] and E. G. Effros-F. Hahn [2] introduced and studied
the $c*$ -algebras associated with locally compact transformation groups. In
this paper, we shall represent uniformly hyperfinite algebras and the $C^{*}-$

algebras of completely continuous operators as transformation group $C^{*}-$

algebras.
Let $G^{(k)}(k=1, 2, )$ be cyclic groups of finite order $q_{k}$ , and consider the

product groups $G_{n}=\prod_{\kappa=1}^{n}G^{(k)}(n=1,2, \cdots)$ . By left multiplications, $G^{(k)}$ and $G_{n}$

are transformation groups on themselves. We denote by $Z^{(k)}$ and $Z_{n}$ the
groups $G^{(k)}$ and $G_{n}$ which are considered as the underlying spaces of trans-
formation groups. Then $(G^{(k)}, Z^{(k)})$ and $(G_{n}, Z_{n})$ are discrete finite trans-

formation groups. Let $Z=\prod_{k=1}^{\infty}Z^{(k)}$ and let $G$ be the restricted direct product

$\coprod_{k=1}^{\infty}G^{(k)}$ of $G^{(k)}$ . Then $(G, Z)$ is a locally compact transformation group such

that $G$ is a discrete countable group and $Z$ is a compact Hausdorff space.
Let $\mathfrak{U}(G^{(k)}, Z^{(k)})(k=1,2, \cdots),$ $\mathfrak{U}(G_{n}, Z_{n})(n=1, 2, )$ , and $\mathfrak{U}(G, Z)$ be trans-
formation group $c*$ -algebras associated with the transformation groups
$(G^{(k)}, Z^{(k)})(k=1,2, \cdots),$ $(G_{n}, Z_{n})(n=1,2, \cdots)$ , and $(G, Z)$ , respectively ([2], [4]).

Then we shall show that $\mathfrak{A}(G, Z)$ is a uniformly hyperfinite algebra of
type $\{p_{n}\}$ , where $p_{n}=q_{1}q_{2}\cdots q_{n}(n=1,2, \cdots)$ , and $\mathfrak{A}(G, Z)=C^{*}-\lim_{n}\mathfrak{A}(G_{n}, Z_{n})=$

$\otimes_{k}\mathfrak{A}(G^{(k)}, Z^{(k)})$ (Theorem 5). Conversely, let $\mathfrak{A}$ be a uniformly hyperfinite
algebra of type $\{p_{n}\}$ . Then we shall show that there exists a transformation
group $(G, Z)$ such that $\mathfrak{U}$ is $*$ -isomorphic to $\mathfrak{A}(G, Z)$ where $(G, Z)$ is as above
(Corollary 6).

In \S 3, we shall show that if $G$ is an infinite cyclic group, the $c*$ -algebra
$\mathfrak{A}(G, G)$ associated with the transformation group $(G, G)$ is $*$ -isomorphic to the
$c*$ -algebra $\mathfrak{L}\mathfrak{C}(H)$ of all completely continuous operators in a separable Hilbert
space $H$ (Theorem 9).
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\S 1. Some lemmas.

Suppose that $Z^{(k)}(k=1,2, \cdots)$ are compact Hausdorff spaces. Let $Z_{n}=$

$\prod_{k=1}^{n}Z^{(k)}(n=1,2, \cdots)$ and $Z=\prod_{k=1}^{\infty}Z^{(k)}$ . If $X$ is a compact Hausdorff space, $C(X)$

denotes the commutative $c*$ -algebra of all complex-valued continuous func-
tions on $X$. Then it is easy to verify the following:

LEMMA 1. There exists the $c*$ -inductive limit $C^{*}-\lim_{n}C(Z_{n})$ of $C(Z_{n})$ and
$C(Z)$ is principally $*_{- isomorphic}$ to $C^{*}-\lim_{n}C(Z_{n})$ .

Let $\mathfrak{U}(G, Z)$ be the transformation group $c*$-algebra associated with a
locally compact transformation group $(G, Z)$ ([2], [4]). For each integer $n>0$ ,
let $M_{n}$ be the $c*$ -algebra of all complex $n\times n$ -matrices. Then we have the
following lemma:

LEMMA 2. SuppOse that $G$ is a cyclic group of order $n$ . Then, the trans-
formation group $c*$ -algebra $\mathfrak{U}(G, G)$ is Principally $*_{-}isomorphic$ to $M_{n}$ .

PROOF. It is clear that the $c*$ -algebra $\mathfrak{U}(G, G)$ , associated with a discrete
finite transformation group $(G, G)$ , is equal to the set of all complex-valued
functions on $G\times G$ .

Let $s$ be the generator of $G$ . For any $f\in \mathfrak{U}(G, G)$ , let

$\alpha_{pq}=f(s^{q-p}, s^{1-p})$

Define
$T_{f}=(\alpha_{pq})_{p,q=1,2,\cdots,n}$ .

$(p, q=1,2, \cdots n)$ .

Then it is easy to verify that $T$ is a principal $*$ -isomorphism of $\mathfrak{U}(G, G)$ onto
$M_{n}$ .

This completes the proof.
Suppose that $G^{(k)}(k=1, 2, )$ are cyclic groups of finite orders $q_{k}$ . Let

$Z^{(k)}=G^{(k)},$ $G_{n}=\prod_{k=1}^{n}G^{(k)}$ , and $Z_{n}=G_{n}$ as in the introduction. Then we have the

following lemma:
LEMMA 3. $\mathfrak{U}(G_{n}, Z_{n})$ is Principally $*,isomorphic$ to the tensor Product $C^{*}-$

algebra $\bigotimes_{1\leqq k\leqq n}\mathfrak{U}(G^{(k)}, Z^{(k)})$ of $\mathfrak{U}(G^{(k)}, Z^{(k)})$ .
PROOF. Let $\sigma_{n}$ be a linear maPping of $\bigotimes_{1\leqq k\leqq n}\mathfrak{U}(G^{(k)}, Z^{(k)})$ into $\mathfrak{U}(G_{n}, Z_{n})$

such that
$\sigma_{n}(\bigotimes_{1\leqq k\leqq n}f^{(k)})(s^{(1)}, \cdots\prime s^{(n)} ; \zeta^{(1)}, \cdots \zeta^{(n)})=\prod_{k=1}^{n}f^{(k)}(s^{(k)}, \zeta^{(k)})$

for any $\bigotimes_{1\leqq k\leqq n}f^{(k)}\in\bigotimes_{1\leqq k\leqq n}\mathfrak{U}(G^{(k)}, Z^{(k)})$ . Then, it is easy to verify that $\sigma_{n}$ is a

principal $*$ -isomorphism of $\bigotimes_{1\leqq k\leqq n}\mathfrak{U}(G^{(k)}, Z^{(k)})$ onto $\mathfrak{U}(G_{n}, Z_{n})$ .
This completes the proof.
By Lemmas 2, 3, we have
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COROLLARY 4. SuppOse that $G^{(k)},$ $Z^{(k)},$ $G_{n}$ , and $Z_{n}$ are as in Lemma 3.
Then $\mathfrak{U}(G_{n}, Z_{n})$ is Principally $*_{- isomorphic}$ to $M_{p_{n}}$ , the $c*$ -algebra of $p_{n}\times p_{n^{-}}$

matrices, where $p_{n}=q_{1}q_{2}\cdots q_{n}$ .
By Corollary 4, it follows that for each integer $n>0$ , there exists a

$*$ -isomorphism $\rho_{n}$ of $\mathfrak{U}(G_{n}, Z_{n})$ onto $\bigotimes_{1\leqq k\leqq n}M_{q_{k}}$ . For any integer $m,$ $n:0<m<n$ ,

define a $*$ -isomorphism $\tau_{nm}$ of $\bigotimes_{1\leqq k\leqq m}M_{q_{k}}$ into $\bigotimes_{1\leqq k\leqq n}M_{q_{k}}$ by

$\tau_{nm}=\rho_{n}\varphi_{nm}\rho_{m}^{-1}$

where $\varphi_{nm}$ is the canonical imbedding of $\mathfrak{U}(G_{m}, Z_{m})$ into $\mathfrak{U}(G_{n}, Z_{n})$ as in the
proof of Theorem 5. Then we have

$\tau_{nm}(\bigotimes_{1\leqq k\leqq m}M_{q_{k}})=(\bigotimes_{1\leqq k\leqq m}M_{q_{k}})\otimes(\bigotimes_{m+1\leqq k\leqq n}I_{q_{k}})$ .

From this follows that the $*$ -isomorphism $\tau_{nm}$ is a canonical imbedding of
$\bigotimes_{1\leqq k\leqq m}M_{q_{k}}$ into $\bigotimes_{1\leqq k\leqq n}M_{q_{k}}$ .

\S 2. Main theorem.

Let $\mathfrak{U}$ be a $c*$ -algebra with identity. $\mathfrak{U}$ is called uniformly hyperfinite of
$tyPe\{p_{n}\}$ if there exists a sequence of $p_{n}\times p_{n}$-matrix algebras $M_{p_{n}}$ such that
(i) $ p_{n}\uparrow\infty$ as $ n\rightarrow\infty$ and (ii) $\mathfrak{U}=C^{*}-\lim_{n}M_{p_{n}}$ (Glimm [3]).

Suppose that $G^{(k)},$ $Z^{(k)},$ $G_{n},$ $Z_{n},$ $G$ , and $Z$ are as in the introduction. Then
we have the following theorem:

THEOREM 5. The transformation group $c*$ -algebra $\mathfrak{U}(G, Z)$ is the $C^{*}-$

inductive limit $c*$ -
$\lim_{n}\mathfrak{U}(G_{n}, Z_{n})$ of $\mathfrak{U}(G_{n}, Z_{n})$ and is $*$ -isomorphic to the infinite

tensor pr0duct $c*$ -algebra $\otimes_{k}\mathfrak{U}(G^{(k)}, Z^{(k)})$ of $\mathfrak{U}(G^{(k)}, Z^{(k)})$ . Furthermore, these
$c*$ -algebras are uniformly hyperfinite algebras of type $\{p_{n}\}$ , where $p_{n}=q_{1}q_{2}\cdots q_{n}$

$(n=1,2, \cdots)$ .
PROOF. Let $\mathfrak{U}_{m}=\mathfrak{U}(G_{m}, Z_{m})(m=1,2, \cdots)$ . Let $\delta_{s}$ be the unit mass at $s$

and $e^{(k)}$ the unit element in $G^{(k)}$ . For each integers $m,$ $n:0<m<n$ , let $\varphi_{nm}$

be the canonical imbedding of $\mathfrak{U}_{m}$ into $\mathfrak{U}_{n}$ defined by

$\varphi_{nm}(f)(s^{(1)}, \cdots s^{(n)} ; \zeta^{(1)}, \cdots \zeta^{(n)})$

$=f(s^{(1)}, \cdots\prime s^{(m)} ; \zeta^{(1)}, \cdots \zeta^{(m)})\prod_{k=m+1}^{n}\delta_{e^{(k)}}(s^{(k)})$ ,

where $f\in \mathfrak{U}_{m},$ $s^{(k)}\in G^{(k)}$ , and $\zeta^{(k)}\in Z^{(k)}$ $(k=1,2, \cdots , n)$ . Then it is obvious
that $\varphi_{nm}$ is a principal $*.isomorphism$ and we have

$\varphi_{nk}=\varphi_{nm}\varphi_{mk}$ $(k<m<n)$ .
Thus $\{\mathfrak{U}_{m}, \varphi_{nm}\}$ is an inductive system, hence there exists a $c*$ -inductive
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limit $c*$ -
$\lim_{n}\mathfrak{U}_{n}$ of $\mathfrak{U}_{n\circ}$

We shall now show that $\mathfrak{U}(G, Z)=C^{*}-\lim_{n}\mathfrak{U}(G_{n}, Z_{n})$ . For each integer

$m>0$ , let $\varphi_{m}$ be the canonical imbedding of $\mathfrak{U}_{m}$ into $C_{0}(G\times Z)\subseteqq \mathfrak{U}(G, Z)$ defined
by

$\varphi_{m}(f)(s^{(1)}, s^{(2)}, \cdots ; \zeta^{(1)}, \zeta^{(2)}, )$

$=f(s^{(1)}, \cdots s^{(m)} ; \zeta^{(1)}, \cdots \zeta^{(m)})\prod_{k=m+1}^{\infty}\delta_{e^{(k)}}(s^{(k)})$ ,

where $f\in \mathfrak{U}_{m},$ $s^{(k)}\in G^{(k)}$ , and $\zeta^{(k)}\in Z^{(k)}(k=1,2, \cdots)$ . Then it is obvious that
$\varphi_{m}$ is a principal $*_{- isomorphism}$ and we have

$\varphi_{m}=\varphi_{n}\varphi_{nm}$ $(m<n)$ ,

hence it follows that $\varphi_{m}(\mathfrak{U}_{m})\subseteqq\varphi_{n}(\mathfrak{U}_{n})$ . If we have the inclusion

$(^{*})$ $C_{0}(G\times Z)\subseteqq\bigcup_{m=1}^{\infty}\varphi_{m}(\mathfrak{U}_{m})$ ,

where the closure of $ m=1U\varphi_{m}(\mathfrak{U}_{m})\infty$ is in $\mathfrak{U}(G, Z)$ , then we have

$\mathfrak{U}(G, Z)=_{m}U_{=1}\varphi_{m}(\mathfrak{U}_{m})\infty$ ,

that is,

$\mathfrak{U}(G, Z)=C^{*}-\lim_{n}\mathfrak{U}(G_{n}, Z_{n})$ .

Thus it suffices to show that the inclusion $(^{*})$ holds. Since every element

of $C_{0}(G\times Z)$ is of the form $\sum_{i=1}^{k}\delta_{s_{i}}\cdot h_{i},$ $s_{i}\in G,$ $h_{i}\in C(Z)$ , it suffices to show that

for arbitrary $s\in G,$ $h\in C(Z),$ $\delta_{s}\cdot h\in\bigcup_{m=1}^{\infty}\varphi_{m}(\mathfrak{U}_{m})$ . For arbitrary $\epsilon>0$ , there

exists a positive integer $n$ and $g\in C(Z_{n})$ such that

$\Vert\psi_{n}(g)-h\Vert_{\infty}<\epsilon$ , $s^{(p)}=e^{(p)}$ $(P\geqq n+1)$ ,

where $\psi_{n}$ is the canonical imbedding of $C(Z_{n})$ into $C(Z)$ . Define a function
$f\in \mathfrak{U}(G_{n}, Z_{n})$ by

$f(t^{(1)}, \cdots t^{(n)} ; \zeta^{(1)}, \cdots \zeta^{(n)})=g(\zeta^{(1)}, \cdots \zeta^{(n)})\prod_{k=1}^{n}\delta_{s^{(k)}}(t^{(k)})$ .

Then we have $\varphi_{n}(f)\in\varphi_{n}(\mathfrak{U}_{n})$ and

$\Vert\varphi_{n}(f)-\delta_{s}\cdot h\Vert<\epsilon$ ,

that is, $\delta_{s}\cdot h\in\bigcup_{m=1}^{\infty}\varphi_{m}(\mathfrak{U}_{m})$ . From this follows that

$\mathfrak{U}(G, Z)=C^{*}-\lim_{n}\mathfrak{U}(G_{n}, Z_{n})$ .
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By Corollary 4, $\mathfrak{U}(G, Z)$ is a uniformly hyperfinite algebra of type $\{p_{n}\}$ .
By Lemma 3, we have

$\mathfrak{U}(G, Z)=\otimes_{k}\mathfrak{U}(G^{(k)}, Z^{(k)})$ .
This completes the proof.
Now, it is easy to verify a converse of Theorem 5, that is, every $uni$ .

formly hyperfinite algebra $\mathfrak{U}$ is a transformation group $c*$ -algebra $\mathfrak{U}(G, Z)$ .
COROLLARY 6. Let $\mathfrak{U}$ be a uniformly hyperfinite algebra of $tyPe$ $\{p_{n}\}$ .

Then, there exists a locally compact transformation group $(G, Z)$ such that $\mathfrak{U}$ is
$*_{- isomorphic}$ to $\mathfrak{U}(G, Z)$ , where $(G, Z)$ is as in Theorem 5.

Also, the following is obvious:
COROLLARY 7. Let $\mathfrak{U},$ $(G^{(k)}. Z^{(k)})$ be as above. Then

$\mathfrak{U}=\otimes_{k}\mathfrak{U}(G^{(k)}, Z^{(k)})=\otimes_{k}M_{q_{k}}$ .

\S 3. The $C*$-algebra of all completely continuous operators.

In \S 1, Lemma 2, we showed that if $G$ is a cyclic group of order $n$ , the
associated transformation group $C*$ -algebra $\mathfrak{U}(G, G)$ is $*$ -isomorphic to $M_{n}$ .
We shall now show that if $G$ is an infinite cyclic group, the associated trans-
formation group $C*$ -algebra $\mathfrak{U}(G, G)$ is $*$ -isomorphic to the $C*$ -algebra $\mathfrak{L}\mathfrak{C}(H)$

of all completely continuous operators in a separable Hilbert space $H$

LEMMA 8 (Effros-Hahn [2]). Let $(G, Z)$ be a transformation group with
$G,$ $Z$ locally compact, Hausdorff, and second countable. If $G$ is discrete, amen-
able, and acts freely on $Z$, then the Primitive ideal space $pr\mathfrak{U}(G, Z)$ is homeo-
morphic to the quasi-orbit space $(Z/G)^{\sim}$.

THEOREM 9. Let $G$ be an infnite cyclic grouP, and $Z=G$ . Then, the asso-
ciated transformation group $C*$ -algebra $\mathfrak{U}(G, Z)$ is $*_{- isomorphic}$ to $\mathfrak{L}\mathfrak{C}(H)$ , the
$C*$ -algebra of all completely continuous operators in a seParable Hilbert $sPaceH$

PROOF. We may assume that $G=Z=I$, where $I$ is the integers. For
$f\in C_{0}(I\times I)$ , define an operator $T_{f}$ of finite rank in $H=l^{2}(I)$ by

$T_{f}e_{m}=\sum_{n=-\infty}^{+\infty}f(m-n, 1-n)e_{n}$ ,

where $\{e_{m} : m\in I\}$ is the canonical orthonormal basis in $H$ It is clear that
$T$ is a linear mapping of $C_{0}(I\times I)$ into $\mathfrak{L}\mathfrak{C}(H)$ . Furthermore, the mapping $T$

is a $*$ -homomorphism. In fact, we have

$(T_{f*g}e_{m}|e_{n})=f*g(m-n, 1-n)$

$=\sum_{p=-\infty}^{+\infty}f(P-n, 1-n)g(m-P, 1-p)$

$=\sum_{p=-\infty}^{+\infty}(T_{f}e_{p}|e_{n})(T_{g}e_{m}|e_{p})$
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$=(T_{f}T_{g}e_{m}|e_{n})$

and
$(T_{f^{*}}e_{m}|e_{n})=f^{*}(m-n, 1-n)$

$=\overline{f(n-m,1-m)}$

$=(T_{f}^{*}e_{m}|e_{n})$ .
If $f\neq 0$ , then there exist integers $m,$ $n$ such that $f(m-n, 1-n)\neq 0$ . Hence

we have
$(T_{f}e_{m}|e_{n})=f(m-n, 1-n)\neq 0$ .

Thus the $*$ -homomorphism $T$ is one-to-one.
By definition of the norm ([2]). we have

$|1T_{f}\Vert\leqq\Vert f\Vert$ ,

for all $f\in C_{0}(I\times I)$ , so the $*$ -isomorphism $T$ is extended uniquely to a $*-$

homomorphism of $\mathfrak{U}(I, I)$ into $\mathfrak{L}\mathfrak{C}(H)$ . As the transformation group (I, $I$ ) is
minimal, that is, the quasi-orbit space $(I/I)^{\sim}$ has only one-point, by Lemma 8,
$\mathfrak{U}(I, I)$ is simple. Hence, the *-homomorphism $T$ is a $*$ -isomorphism of $\mathfrak{U}(I, I)$

into $\mathfrak{L}\mathfrak{C}(H)$ . Since it is not difficult to verify that the representation $T$ is
irreducible, we have

$\{T_{f} : f\in \mathfrak{U}(I, I)\}=\mathfrak{L}\mathfrak{C}(H)$ .
This completes the proof.
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