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Introduction.

Let £ be a field and let G be a finite group. Let V be a (finite dimen-
sional) £G-module, i.e., a representation module of G over k. Then G acts
naturally on the quotient field F of the symmetric algebra S(V) of V as k-
automorphisms. We denote the field F with this action of G by k(V).

An extension L/k is said to be rational if L is finitely generated and
purely transcendental over k.

To simplify our notation, we say that a triple <k, G, V) has the property
(R) if k(V)%/k is rational. Especially, if V is the regular representation
module of G, i.e., if V==FG, then we use {&, G) instead of <&, G, V).

The following problem is the classical and basic one (e.g. [1L]).

Does {k, G, V) have the property (R)?

It is well known that the answer to the problem is affirmative in each
of the following cases:

(i) G is the symmetric group, % is any field and V=~kG.

(ii) G is an abelian group of exponent ¢ and k is a field whose charac-
teristic does not divide ¢ and which contains a primitive e-th root of unity.
(Fisher [5], etc.)

(iif) G is a p-group and k is a field of characteristic p. (Kuniyoshi [6]|
etc.)

(iv) % is a field of characteristic 0 and G is a finite group generated by
reflections of a k-module V (Chevalley [2]).

However the problem has been kept open even in the case where G is
abelian and % is an algebraic number field.

K. Masuda proved in and that <Q, G> has the property (R) when
G is a cyclic group of order n <7 or n=11, and reduced the problem to the
one on integral representations, in case G is a cyclic group of order p.
Recently R.G. Swan showed, using the Masuda’s result, that <{Q, G> does
not have the property (R) when G is a cyclic group of order p=47,113,
233, ---.

In this paper we will refine the Masuda-Swan’s method and will give
some further consequences on the problem in case G is abelian.
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Our main results in this paper are the following:
[I1 Let G be a finite abelian group of exponent
e = 2'23!35%574] 111] 3131 74171 91192312809 1203] la1371874] 114 3LesG] ter1G 7 e 7] it
Suppose that 1, is arbitrary, that each of l,, Is, I, is 0, 1 or 2 and that each of
Ly, Lisy Ligy -+, Ly 1s 0 or 1. Then {Q, G) has the property (R).

We denote <k, G> by <k, n) if G is a cyclic group of order n.

[II] There exist infinitely many primes, p, such that, for some l, =1, {Q, p*°>
does not have the property (R). For example, any of {Q, 2%, {Q, 112}, {Q, 132, ---
does not have the property (R). (For the more precise description, see §3.)

[III] Let G be a finite abelian group of exponent e and k be a field of
characteristic Q.

(i) Case where e is odd: If k contains {,+C;' for any prime p with ple,
then {k, G)> has the property (R).

(i) Case where e is even: If k contains {,+;* for any odd prime p with
ple and {,m+C5L for m such that 2™|e but 2™ ie (or i=+/—1), then <k, G)
has the property (R).

Here (€, denotes a primitive n-th root of unity.

H. Kuniyoshi conjectured ([9]) that, for any [ =1, <(k, p*> has the property
(R), if & contains {,. [IV] implies that this conjecture is valid if (and only
if) p is odd.

[IV] Let R, be the maximal real subfield of the maximal abelian extension
of Q and k be a field containing R, (e.g. the real number field R). Then, for
any finite abelian group G and any kG-module V, {k, G, V) has the property
(R).

We should remark that, in most of our results, the assumption that the
characteristic of a field %2 is 0 can be replaced by the weaker one that the
characteristic of 2 does not divide the order of a group G.

§1. Quasi-permutation modules and quasi-rational extensions.

The first proposition is only -a restatement of the well-known Hilbert’s

theorem 90 (cf. .
PROPOSITION 1.1. Let K/k be a finite Galois extension with group Il and

K(X,, X,, ---, X,) be the rational function field with n-variables X;, X,, -+, X,
over K. Suppose further that Il acts semi-linearly on the vector space :ElKXu
t.e., as follows:

olaX;)= a(a)]é a;;(0)X;, a, a;(0)e K.

Then II acts naturally on K(X,, X,, ---, X,) as k-automorphisms and K(X,, X,,
-, X)) is rational over k.
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PROOF. If we put X(¢)="[a;;(0)], then X(o) is a l-cocycle of the complex
{C*(I, GL(n, K))}. The Hilbert’s theorem 90 means H(II, GL(n, K))=1.
‘Hence there exists P GL(n, K) such that X(¢)=0¢(P)*-P. Now put [ Z,, Z,,
v, Z=[X,, X, -+, X,]-*P. Then it can easily be shown that K(Xi, X,, -,
XV =kZ, Z, -, Z).

COROLLARY 1.2. Let K, k, II, K(X,, X,, -+, X,) be as in (1.1) and let F=
K(Y,, Y, -, Y,) be a subfield of K(X,, X,, ---, X,) rational over K. Suppose
that Y, Y, -, Y,ek(X, X,, -, X,) and that the restrictions of II and
‘GL(n, K) on F induce the automorphisms of F. Then F" is rational over k.

Let II be a finite group. A finitely generated Z-free ZI/-module is called
briefly a II-module. A II-module is called a permutation //-module if it is
-expressible as a direct sum of some {ZII/Il,} where each II; is a subgroup
.of II. Further a II-module M is called a quasi-permutation //-module if
there exists an exact sequence:

0 M S N 0

‘where S and S’ are permutation I7-modules.

Let K/k be a finite Galois extension with group /1. Let M be a II-module
and {x, x,, ---, x,} be a Z-basis of M. Let K(X,, X,, ---, X,) be the rational
function field with n-variables X, X,, -+, X, and define the action of II on
K(X,, X,, ---, X,) as follows: for any oIl and 1=1=n,

kid n
GXl:HX;"lJ when o-x;,= Zlmijxj, WlijEZ.
j=1 j=

Then II can be regarded as a subgroup of the automorphism group of
K(X, X,, -, X,) and we denote K(X,, X,, ---, X,) with this action of /I by
K(M). 1t is easily seen that K(M) does not depend on the choice of Z-basis
of M.

An extension F/k is said to be quasi-rational if there exists a rational
-extension of F which is rational over k.

COROLLARY 1.3. Let K/k be a Galois extension with group II. Let M, N

be II-modules and S be a permutation II-module. Suppose that there is an
.exact sequence:

0 M N S—>0.

Then K(N)" is rational over K(M)". Especially K(M)" is quasi-rational over
k if and only if K(N) is quasi-rational over k.

COROLLARY 1.4. Let K/k be a Galois extension with group II and let I be
the augmentation ideal of ZII. Then both K(ZIIY' and K(I)" are rational
over k.

PROOF. The assertion for / can be proved by (1.2).
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Swan proved in the following important

THEOREM 1.5 ([15]). Let K/k be a Galois extension with group Il and let
F/K be a rational extension with the action of Il as k-automorphisms compati-
ble with the action on K. Let A be a K-subalgebra of F satisfying the follow-
g conditions:

(i) The quotient field of A is F.

(ii) A is finitely generated over K as algebra.

(iii) A is stable under II.

(iv) A is a unique factorization domain.

(v) U(A)/U(K) is a finitely generated abelian group.
If F"/k is quasi-rational, then U(A)/U(K) is a quasi-permutation II-module.
Here we denote the group of units of a ring R by U(R).

We should remark that the converse to (1.5) is not true. In fact, am
example which shows it will be given at the end of §3.

However, we have

THEOREM 1.6. Let K/k be a Galois extension with group II. Then, for
any Il-module M, the following conditions are equivalent:

(1) M is a quasi-permutation Il-module.

(2) K(M)" is quasi-rational over k.

PROOF. (1)=(2) is an immediate consequence of (1.3) and (2)=(1) is a
special case of (1.5).

COROLLARY 1.7. Let Il be a finite group. Let M, N be Il-modules and S
be a permutation Il-module. Suppose that there is an exact sequence:

0 M N N 0.

Then M is a quasi-permutation IT-module if and only if N is a quasi-permuta-
tion II-module.

PROPOSITION 1.8, Let Il be a finite group and P be a projective II-module..
Then P is a quasi-permutation II-module if and only if there exist permutation
II-modules S, S’ such that P®S’' = S. If Pis a quasi-permutation II-module,.
then the dual P*=Homy(P, Z) of P is also a quasi-permutation II-module.

PROOF. This is easy, therefore we omit it.

In Chevalley we can find an example of a quasi-permutation I/-module:
M such that M* is not a quasi-permutation module. Here we give a refine-
ment of the Chevalley’s result. (See also [16].)

PROPOSITION 1.9. Let Il be a finite nilpotent group and I be the aug-
mentation ideal of ZII. Let K/k be a Galois extension with group II. Then the
following conditions are equivalent:

(1) II is a cyclic group.

(2) K{I*)" is rational over k.

(3) I* is a quasi-permutation II-module.
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PrROOF, (1)=(2): If I is cyclic, then I=I* and hence, by (1.4), K(I*)"
is rational over k. (2)=(3) follows directly from (1.6). (3)=(1): Suppose
that /* is a quasi-permutation I7-module. Then there exists an exact
sequence:

0—> S —>S—>T—>0

where S’ and S are permutation I7-modules. For any subgroup II’ of II, we
have H*(II, ZIl /11"y = HYII’, Z). Therefore H*(Il, S)=0. Hence, considering
the exact sequence of cohomology groups, we obtain

0— HYII,I)—> H¥II, S") (exact).

Since I is the augmentation ideal of ZII, H'(/I, I) is a cyclic group of order
[II|. A nilpotent group /I is cyclic if and only if H*II, Z) contains an
element of order |II|. Therefore, if II is not cyclic, then H*I, S’) does not
contain any element of order ||, which contradicts the fact that H*I, I)
S H¥l, S). Thus II must be cyclic.

PROPOSITION 1.10 ([12]). Let Il be a finite group and let

0 M M M 0

an exact sequence of II-modules. Suppose that M” is a projective II/II"-
module, putting I1” = {o = Il |ou” =u” for any u” & M"}. Let K/k be a Galois
extension with group II. Then K(M)" is k-isomorphic to K(M' & M")".

PROOF. See [127], Proposition 1.2.2.

Let Il be a cyclic group of order n with generator 7 and let @,(X) be
the m-th cyclotomic polynomial. Let M be a IT-module and let min. We
put My, = M/®,(T)M and MO = {yc M|®,(T)u=0}. Then both M?%» and
Mp,, can be regarded as Z[{,]-modules. Especially, if M is II-projective,
then, clearly, My, =~ M=,

In case /7 is a cyclic group we give the following remarkable

THEOREM 1.11. Let II be a cyclic group of order n. Then, for any pro-
Jective Il-module P, the following conditions are equivalent:

(1) P is a quasi-permutation IT-module.

(2) For any m|n Py, is a free Z[{,]-module.

(3) For any Galois extension K/k with group I K(P)" is rational over k.

PROOF. We may suppose that P=9 is a projective ideal of ZII. If %
is a quasi-permutation //-module, then, by (1.8), AP S’ = S for some permuta-
tion /7-modules S/, S. For any m|n %0n@ S’@n = S®n and both S'9» and S»
are Z[{,]-free. Hence g, = A9m= Z[{,] which proves (1)=(2). 3)=1) is
a special case of (1.6).

Now we will show (2)=(3) by induction. This is trivial for n=1.
Therefore suppose that n >1 and that %, is Z[{,]-free for any m|n. Let
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T be "a generator of II. Using the Mobius inversion formula, we can con-
struct the following chain of exact sequences:

0 N, M, W/(T™M—1)A —0
0 N, M, —N/(T™—1)A —> 0

0 —> N, —> M,_, —> N/(T™2—1)% —> 0
0—> N, —> M, —>W/(T™= 1A —> 0

where N, =%y, = Z[{,], M;=U and every m, is a proper divisor of n. Since
A is IT-projective, each N/(T™—1)N is I /[T™]-projective. Hence, by (1.10),
KM)" = K(N;®A/(T™ =D and KM,)" = K(Ny, BN/(TT™*—1)A)" over
k. By induction K(N,;@A/(T™**—1)A)" is rational over K(N,)” and K(N;,
DUA/(T™ 1N is rational over K(N;;,)”. Therefore we get

K(M)" = K(Z[LD"(YP, Y0, -, Y3,
K(M)" = K(N)Y(Z", ZP, -+, Z'y)
K(M)" = K(N)WYP, YP, -, Y7,

..................

K<Ms—1)” = K(NQ”(Z{S“U’ Zés—n, - 761

mos—2

K" = KNY(YP, Y, e, Vi)

mos—1
where {Y{®} and {Z{®} are indeterminates. From these we get
K@)" = K(Z[L,D"(Xy, Xo, oy o)
where X,, X,, .-+, X,_,» are indeterminates. Especially we have
K(ZIN" = K(Z[CD"(Xy, X, ) Xnoon) s

hence K()" is k-isomorphic to K(ZII)". Since K(ZII)" is rational over k2 by
(1.4), this concludes that K()” is rational over k. Thus the proof of (2)=
(3) is completed.

LEMMA 1.12 ([15]). Let II be a cyclic group of order n. If M is a quasi-
permutation II-module, then M®» is a free Z[{,]-module.

PROPOSITION 1.13. Let II be a cyclic group of prime order p and let K/k

be a Galois extension with group II. Then for any II-module M, the following
conditions are equivalent:
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(1) M is a quasi-permutation IT-module.

(2) M9 is a free Z[{,]-module.

(3) K(M)" is rational over k.

Proor. (1)=(2) follows directly from (1.12) and (3)= (1) follows from
(1.6). Further (2)= (3) follows from (1.3), (1.4) and the Diederichsen-Reiner’s
theorem (e.g. [3]).

Generalizations of (1.11) and (1.13) will be given in [4].

§2. The properties (R) and (QR) and the Masuda’s modules.

Let G be a finite group and let # be a field. Let V be a (finite dimen-
sional) kG-module. We say that a triple (%, G, V) has the property (R) if
k(V)¢ is rational over k and that a triple (%, G, V) has the property (QR) if
k(V )¢ is quasi-rational over k. Especially, if V is a regular representation
module of G, we use {k, G) instead of <k, G, V). Further, if G is a cyclic
group of order n, we use <{k, n, V) (resp. <k, nD) instead of <k, G, V) (resp.
R, GY).

PROPOSITION 2.1. If <k, G, V) has the property (R) (resp. (QR)), then, for
any extension L of k, {L, G, L(%) V> has the property (R) (resp. (QR)).

PROOF. As this is easy, we omit it.

PROPOSITION 2.2. Let k be a field of characteristic 0. If a kG-module V
has a faithful kG-submodule W such that {k, G, W) has the property (R), then
(k, G, V) has the property (R). If there exists a faithful kG-module V, such
that <k, G, V> has the property (QR), then, for any faithful kG-module V,
<k, G, V) has the property (QR).

PrROOF. This follows immediately from (1.1).

THEOREM 2.3. Let G, G, -+, G be finite groups and let k be a field of

characteristic 0. If every (k, G,> has the property (R) (vesp. (QR)), then <k,
11Go> has the property (R) (resp. (QR).
' PrROOF. We will prove only the case of (R). Clearly it is sufficient to
prove this in the case of s=2. Let W,, W,, W be the regular representation
modules of G,, G,, G;XG,, respectively and let V, V, be the augmentation
ideals of kG,, kG,, respectively. Then V,; and W, can be regarded naturally
as k(G;XG,)-modules. Since %k is of characteristic 0 we have W,=V,BT,
1=1,2, where T denotes the one dimensional trivial representation module
of G. V@V, is a faithful £kG-module and V,RV,.T < W. Now suppose
that each <k, G;> has the property (R). Then, by (2.2), it suffices to show
that <k, G,XG,, VB V,LT)> has the property (R). We have

(Vi@ V,DT) %= k(V, D W,) 2= [k(V,P W,)%].
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Since G, acts trivially on k(V)), R(V,D W,)¢2=k(V,)(W,)° is rational over
k(V,) by (2.1). Here we can choose G,-invariant elements Y,, Y, -, Y,, of
k(V,EBW,)¢: algebraically independent over k(V,) such that A(V,P W, =
RV Y, Y, -+, Y,). Therefore we get

(Vi V,@T) @ =k(V,D W) 2=Rk(VI)NYy, Y, -+, V).

Further k(V)(Yy, Yy, -+, Vi) =R(VNT)NY,, Vi ooy Yi) 2 B((W)NY,, Yy, -+,
Y,). Since k(W,)% is rational over k, this implies that 2(V,P V,P T)%1x62 ig
rational over k, which completes the proof.

It is remarked that both (2.2) and (2.3) can be proved for any field %
using a slight generalization of (1.1) (cf. [10]).

We now generalize the Masuda’s results in [8]. Let G be a finite abelian
group of exponent ¢ and let £ be a field of characteristic 0. Let {(=¢{,) be
a primitive e-th root of unity and put K=F~(). Then K/k is an abelian
extension and we denote the Galois group of K/k by II. Let V be a kG-
module.  Since K is the splitting field of G, K(kéb V can be decomposed to the

direct sum of one dimensional KG-modules W, W,, ---, W,. Here we can
choose a generator Y, of each W; such that II acts on Y,, Y,, ---, Y, as per-
mutations. Let S, be the free abelian group generated multiplicatively by
Y, Y, -, Y. Then Sy is a permutation //-module and K(V)=K(Y,, Y, -,
Y)=K(Sy). Let us put My ={x< Sy|g(x)==x for any g G}. Then M, is
the I1-submodule of S and (V) =[K"(V)I¢=[K(V )" = K(My)?. Thus we
get

THEOREM 24 ([8]). k(V)¢= K(My)". Especially, if My is a permutation
Il-module, then {k, G, V) has the property (R), and My is a quasi-permutation
Il-module if and only if <k, G, V) has the property (QR).

PROOF. The rest of the assertions follows from (1.3) and (1.6).

The II-module My is said to be the Masuda’s module of V. Especially
we suppose that G is a cyclic group of order n. Then there exists a faithful
irreducible kG-module V. We put K=£~({,) and Il,(n)=Gal (K/k). Then we
have Sy = ZII,(n) and hence M, can be regarded as an ideal of ZII,(n). In
this case we call M, the Masuda’s ideal belonging to <%, n> and denote it by
I.(n).

COROLLARY 2.5. Let G be a cyclic group of order n and W be the.regular
representation module of G. Then we have

kk(W)" = R(C)T(n)"*™( Xy, Xy, -+ Xocimeann) s

where X, X,, -+, Xooymy>, are indeterminates.
The action of I7,(n) on {, induces the natural monomorphism ¢: II,(n)—
U(Z/nZ). Let T, T, ---,Ts be the generators of Il,(n) and ¢, ¢, -+, t, be
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representatives of o(T,), ¢(T,), -+, ¢(Ts) in Z, respectively. Then we have
L(n)=(T,—t,, Ty—ty -+, To—1ts, n).
if p is an odd prime, then I1,(p") is a cyclic group for any /=1, hence
I(pHY=(T—t, pY).

On the other hand, I7,(2") is a cyclic group or a product of two cyclic groups,
hence :

L2H=(T—-t2YH or (Tl'__ilv Ty—1t5, 2.

PROPOSITION 2.6. If p is an odd prime, then I(p") is a projective II (p")-
module for any 1=1. For any (=2 [(2") is a projective I, (2")-module when
and only when —1& o(I1(2Y) in U(Z/2'Z).

PrOOF. We put M= ZII (p")/I(p"). Then M has projective dimension
<1 if and only if H*(JI’, M)=HII’, M)=0 for any Sylow subgroup II’ of
Il (e.g. [14]). The proof of the proposition can be given by computing
directly ﬁ“l(H’, M) and FIO(H’, M) for each Sylow subgroup I’ of II.(pY).

§3. Case where G is a cyclic p-group.

In this section we will consider only the case where G is a cyclic p-group.

Let p be a prime and let / be a positive integer. We denote by G, the
cyclic group of order p.

We suppose that p is odd. Let & be a field of characteristic 0 and put
[k, : B1=p™d, where 0=m=[—1and d,|p—1. Then II(p") = Gal (R( 1)/ k)
is a cyclic group of order p™d,. Let T be a generator of II,($"). Then the
Masuda’s ideal belonging to {k, ') has the following form:

I(PHY=(T—t, p") s ZII (P

where t is a primitive p™d,-th root of unity modulo p'. By virtue of (2.6),
L(pY) is a projective IT,(p")-module. Let us denote by @,(X) the n-th cyclo-
tomic polynomial. Then we easily see that

Pl yma®) and p4P . (1)  for any 0<m=m,;
P Do) 5

Pty @, (1)  when my>0;

DD (D) for any dld,, d<d, and 0=m=<m,.

From this it follows immediately that
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Comae—t D) € Z[Emg,] ~ When d=d, and 0<m=<m,
=1 (ao—t, p™) S Z[Cao] when d=d, and m=0 (%)
Z[{ ymal when d < d, and d|d,.

For any 0 =m=m, we put J{(p") = me—1 P). Then J{”(p') is a prime
ideal of Z[{,m4] and N(J{™(pH))=p. Further put

1P

mpmd

Jimo(ph when m, >0

Jm=|
C/2(pH]*  when my=0.

Now we give

THEOREM 3.1. Let p be an odd prime and let | be a positive integer. Let
k be a field of characteristic 0 and put [k({,): k]1=p™d,. Then the following
conditions are equivalent:

(1) For any faithful kG, -module V {k, p*, V) has the property (R).

(2) <k, p*> has the property (R).

(3) I(p") is a quasi-permutation Il (p*)-module.

4) Y is a principal ideal of Z[{ mogy]-

(5) There exists an element a of Z[{, moq,] such that

+p when my >0
NQ(Cmedo)/Q(a) =

+pt when my=0.
Further suppose that m,>0. Then the above conditions are equivalent to each
of the following conditions:

(1Y For any kG, -module V (&, p', V> has the property (R).

(2 For any 1 <" <1 Lk, p*> has the property (R).

PrOOF. The implication (1)= (2) is evident and the implications (2) & (3)
follow from (1.11) and (2.5). Since any faithful #G,-module contains at least
one of faithful irreducible %G,-modules, the implication (3)= (1) follows
from (2.2). The implication (3)= (4) follows from (1.12) (or (1.11)). Because
of N(J(p"))=p, (4) & (5) can be shown easily. Suppose that J,(p') is a
principal ideal of Z[{,mo]. In case m, >0, Ji(p") = ({ mog,—1 p) and there is
a € Z[{ mog,] such that Nec,mogpe(a) = £p. We put

Ay — NQ(cpmodo)/Q(cpmdo)(a) for any 0=m < m,.

Then Ng«ymape(@n) = *p, hence Ji(p") is principal in Z[{,nq4]. Therefore,
by (*) and (1.11), we can conclude that I (p') is a quasi-permutation I7,(p")-
module. In case m,=0 we can similarly show that I(p") is a quasi-permuta-
tion I1,(p')-module. Thus the implication (4) = (3) is proved, which completes
the proof of the first part of the theorem.

Suppose further that m,>0. To prove the second part it suffices to
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prove that the condition (4) is equivalent to the following condition:

(4) For any 1=U'<I, J(p*) is a principal ideal of Z[{,mg4] where
[k(C,): k1= 1p™d,.

We suppose that Ji(p') is a principal ideal of Z[{,msJ)- It has been
shown in the proof of (4)= (3) that J{™(p") is principal in Z[{,m,] for any
0=m=m, However we easily see that

Jimo(ph when m’ >0

J(p") = ,
CT2(HT when m’=0.

Hence Ji(#") is also principal in Z[{ m4,]. This proves our assertion.

In Swan proved (2)=(3)= 4) < (5) in (3.1) when k=Q and [/=1.

It should be remarked that the second part of (3.1) does not hold always
without the assumption that m,>0. In fact, let k2, be the subfield of Q({,q:2)
such that [Q({2): ko] =46. Then k\(&,;) = ky(Csz) and [ky(&,): ko] =46, and
therefore [I = I1,,(47)= Il (47%) is a cyclic group of order 46. Hence we have
Jeo@7) = (Cy6—1, 47) and [ (47%) = (C4s—t, 47%) =[J1,(47)]* where ¢ is a primitive
46-th root of unity modulo 472. By a Swan’s result in [15], /i, (47) is not
principal in Z[{,], i.e., <k, 47) does not have the property (R). However
Jr(47%) is principal in Z[{,s] because the class number of Q({,s) is 2. Hence,
by (3.1), {ky, 47*) has the property (R).

PROPOSITION 3.2. Let p be an odd prime and let k be a field of charac-
teristic 0. If k contains {,4-C3', then <k, p*)> has the property (R) for any I=1.

PROOF. Since k contains {,+{;', we can put [k({,): k]=e=2p™ or p™
for some 0=m,=<[—1. Now put @ =1—{ n, Then Nycpla@)=2p, and there-
fore, by (3.1), <k, p*> has the property (R). This proves our assertion.

We conjecture that Q({,+¢;!) is the smallest algebraic number field such
that <k, p*> has the property (R) for any [=1. In fact this conjecture is
true if p satisfies one of the following conditions:

p—1

(i) R is -a prime =23 congruent to —1 modulo 4.

(ii) Any prime divisor of _?LEL is congruent to 1 modulo 4.

Let Q be the rational number field. To simplify our notation, we use
O, TI(pY), I(pY) and J(pY) instead of <Q, p*>, I o(p"), Io(p") and Jo(p") respec-
tively.

Putting p=3 in (3.2), we get

COROLLARY 3.3. For any 1=1 (3% has the property (R).

However for p=5 it is difficult to determine »‘' such that <{p'> has the
property (R). Here we give only the following

PROPOSITION 3.4, (1) Let p be one of the following primes: 5, 7, 11, 13,
17, 19, 23, 29, 31, 37, 41, 43, 61, 67, 71. Then {p) has the property (R).
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(2) For each of p=>5, 7, {(p*> has the property (R).

PROOF. By virtue of (3.1) it suffices to show the existence of a of
Z[{i-1p-1] such that Ngepioi, (@)= =xp. By direct computations (or by
[13]), we obtain the following table.

P a ‘ "o a (- a
S5 CH-l ) ®m| oerdl | 8| Ol
7 1 | o3 R g1

Rt C+e-1 |29 | O-CHL | 6L | g1
13| g1 Ca | e e | el

e A B

19 g4+l a1 -0+ Here {={,i-1p-1>-

If the class number ¢(Q({,i-1,-1)) is 1, {p*> has the property (R). For exam-
ple, it is known that ¢(Q({.))=1 for any m < 23, and hence, we can conclude
without using the above list that (»*) has the property (R) if p' is one of 5,
7,---,23, 25, 31, 43, 49. In fact, for any p' in the proposition, c(Q({,i-1p-15)
may be 1.

In and Masuda proved that I(p) is principal for p <11. One might
have a conjecture: I(p) is principal if {(p)> has the property (R). But this
conjecture is false. In fact the second named author proved in an unpublished
note that I(13) is not principal.

Next, by the Swan’s method, we will determine odd primes, p, such that
{p> or {p* does not have the property (R).

By virtue of (3.1), {p'> does not have the property (R) when there exists
a subfield F of Q({,i-1,-,,) containing no algebraic integer y with Ngo(y)
= 4p. Swan proved, using the imaginary quadratic subfields, that, for p=47,
113, 233, ---, {p> does not have the property (R).

We can find all quadratic subfields of Q({,) by the following

LEMMA 35 ([15]). Let d be a square-free integer. Then Q(~d)< Q) if
and only if d|n and, in addition, G) d=1 mod4 if n or n/2 is odd and (ii) d
is odd if 4|n but 8in.

As a little more general result containing the Swan’s examples, we have

PROPOSITION 3.6. Let p be an odd prime satisfying one of the following
conditions :

(i) p=2q+1 where ¢g=—1mod4, q is square-free, and any of 4p—q and
q-+1 is not square.

(ii) p=8q+1 where ¢q== —1mod 4, g is square-free, and any of p—q and
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Dp—4q 1is not square.
Then {p) does not have the property (R).

PROOF. This can be done by taking Q(~'—g) and Q(+v/—2¢) respectively.

For the purpose the imaginary quadratic subfields are the most useful,
hecause their class numbers are fairly big. However, for example, we can
show that <{317)> does not have the property (R), by using the real quadratic
field Q(+/79), and that <(241> does not have the property (R) by using the
biquadratic field Q(~/2, v/ —15).

In appendix we will give the table of odd primes p < 2000 such that {p)
does not have the property (R), which can be determined by using quadratic
subfields or biquadratic subfields.

For [=2, we have a much better result.

PROPOSITION 3.7. Let p>7 be an odd prime which does not satisfy any of
the following conditions:

(i) p=2-3*+1, s=2 where s#* —1 mod 4.

(i) p=2-11""+1, s=0.

(iii) p=2-¢**"*+1, s=1 where q is an odd prime such that = —1 mod 12,
q=23.

" Then {p*) does not have the property (R).

PrROOF. We can prove this by taking Q(v/—pm) for some square-free
positive divisor m of p—1.

For example, for 7<p<10° there exist only seven primes 19, 23, 163,
487, 1459, 2663, 39367, satisfying one of the conditions in (3.7). Further (3.7)
implies the existence of infinitely many primes, p, such that {p*) does not
have the property (R), because there exist infinitely many primes congruent
to 1 modulo 4. We conjecture that <{p>> does not have the property (R)
except p=3, 5, 7.

Finally we consider the case of p=2. Let us put R, =@, R,, = Q(cos (x/2™))
= Qms1 ) Sn=0Q@sin (x/2™), Qn=0Q(,n) for any m=2 and further
R, —URm’ Qo= S,=\ Q,. Then we see

mz2 mz2

‘These are all the subfields of Q..
Let & be a field of characteristic 0. By (2.6), for any [ =2, I(2") is Hk(Zl)
projective if and only if % contains i or i sin (x/2™) for some m=>2. If . con-
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tains ¢ or isin(x/2™) for some m =2, then I1,(2") is cyclic. Therefore, using
the same method as in (3.2) we can prove

PROPOSITION 3.8. If k contains i or isin(n/2™) for some m=2, i.e., if
ENQuw=0Qu, Qn or S, for some m=2, then {k, 2" has the property (R) for
any [ =1.

PROOF. We may assume that k=@, or that k=S, m=2. It is evident
that <(Q,, 2) has the property (R) for [<2. If [=3, I1,,2") is of order 2%
and [y,(2")=(T—5, 2. Then we easily see that, for any 1 </ <[-2,

I0)(2Y950 = (Lo —5, 2) =L —1).

According to (1.11) and (2.5) we can conclude that {Q,, 2"> has the property
(R). It is also clear that <{S,, 2> has the property (R) for /< m-+1 because:
IIs,(2") is of order 2. If (=m+2, Il5,(2Y) is of order 2™ and Is,(2")=
(T+5"%2Y). For any 1 <UI'<[—m,

IQ2(21)¢ZZ’ = <C21’+52m—2’ 2) - (Czl'”—l) .

Again by (1.11) and (2.5) we see that {S,, 2> has the property (R). Thus the
proof is completed.

We here remark that (3.2) and (3.8) include the Matsuda’s result in [9].

In the case where I,(2") is not II,(2")-projective, we need a different
method.

PROPOSITION 39. If ENQ..=R,, for some m=1, then, for any [ =m-+1,
(k, 2 has the property (R), but, for any [ =m—+2, {k, 2')> does not have the pro-
perty (QR). If kN\Q.=R., then, for any [ =1, {k, 2) has the property (R).

PrOOF. In any case it is clear that <k, 2) has the property (R). Hence
we have only to prove this for [=2. Now suppose that 2"\ Q.=R, for
some m=1. Then, for any 2=<[/=<m+1, [k(,): k]1=2, hence II,(2") is a.
cyclic group of order 2. Thus it follows from (2.5) and (1.13) that <k, 2> has
the property (R). Let [=m+2. Then II,(2") can be identified with Ilg,(2")
and, under this identification, I[;(2")=1Ig,(2"). Therefore we may assume
E=R,. If (R, 2" does not have the property (QR), then {(R,, 2*> does not
have the property (QR) ((2.1)). Hence it suffices to show that (R,_,, 2") does.
not have the property (QR). The group I/ =1l ,(2") is the direct product
of two cyclic groups of -order 2, and the Masuda’s ideal has the following:
form:

I=1Ig (2= (T,—2""—1, T,+1, 2Y.

Let [=(T,+1, T,+1, 2-2+1) and I' =(T,—2'"'—1, T,+1). Then I'=INI=1.T

and [ is Il-projective. As is easily seen, there exists an exact sequence:

0 —> ZI /(Ty+1) —> T —> ZII /[T,] —> 0,
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hence 7 is a quasi-permutation /7-module by (1.7). On the other hand, I’ =
(T,—1-2"¥T,—1), T,+1) and I'\(T,—1, T,—1)=(T,—1+2""%T,—1)), and hence
we get the exact sequence:

0 — (T,—14+2"%T,—1)) r VA 0.

However (T,—1+2"%T,—1))= ZI (T\T,+T,+T,+1)=(T:—1, T,—1)* and, by
virtue of (1.9), (T,—1, T,—1)* is not a quasi-permutation //-module. Again
by (1.7) I’ is also not a quasi-permutation I/-module. Since I'=["'-]—
T"ZGI?I, from (1.8) it follows that I is not a quasi-permutation /7-module.

Thus <(R,,-,, 2"> does not have the property (QR) by (1.6) and (2.5).

If kN Q.= R., again using (2.5) and (1.13) we can conclude that <k, 2%
‘has the property (R) for [=2.

COROLLARY 3.10. For 1<2 {(2') has the property (R), but, for any >3,
(2% does not have the property (QR).

Here we give an example which shows that the converse to (1.5) is not
true.

Let II’ be a cyclic group of order 8 and ¢’ be a generator of II’. Let
IT =11'/Te’*] and let V', V be the regular representation modules of 11/, IT
over Q, respectively. Let us put K=Q(V)and F' =Q(VP V)= K(V’). Then,
by (3.9), K™ = K" is rational over Q and, by (2.2) and (the proof of) (3.9), F/™
is not quasi-rational over Q. Therefore F’" is not quasi-rational over K7,
Let {Y,, Y,, .-, Y;} be the basis of V’ such that

o (Yp=Y,, d)=Y, -, 0 (Yy)=7,.

Further put Vl:Q(Y1+Y5)+Q(Y2+Y6)+Q(Y3+Y7)+Q(Y4+Y8) and Vi=
Q- (Y, —Y)+Q-(Y,—Ye)+Q-(YVs—Y,)+Q-(Y,—Ys). Then Vi=V and V'=
'@V and F'™ is rational over K(V)" by (2.2). We put Xlz—}};'z:}ny s
1 5
XZ:—%:-}—;;L, 3:%:))%— and F=K(X,, X,, X;). Since II’ acts naturally
on F and ¢%(X;)= X, for each i, Il acts on F. By virtue of [10], Lemma,
we can see that K(V’)" is rational over F”. Hence F” is not quasi-rational
over K”. On the other hand, A=K[X,, X7, X,, X;!, X,, X;'] satisfies the
.conditions in (1.5), and U(A)/U(K) is isomorphic to the augmentation ideal
of ZII, i.e., it is a quasi-permutation I7-module. Thus {K/K" II, F, A} is as
required.
In this example the group I7 is a cyclic group of order 4. It is noted

that, for any finite non-cyclic group II, such example can be constructed
aising (1.9).
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§4. General case.

By summarizing (2.3), (3.3), (3.4) and (3.10), we get

THEOREM 4.1. Let G be a finite abelian group of exponent e= 2'23'5'7!7
1141137181 70171 9119232300 2931 113708741 141431436 P16 67711, Suppose that I, is arbi-
trary, that l,, Iy, I; are 0, 1 or 2, respectively, and that lyy, lis, liq -+, [y are O
or 1, respectively. Then {Q, G) has the property (R). '

Also, from (2.3), (3.2) and (3.8), we get

THEOREM 4.2. Let G be a finite abelian group of exponent e and k be a
field of characteristic 0. .

(i) If e is odd and if k contains {,+;' for any prime p with ple, then
(k, G has the property (R).

(ii) If e is even and if k contains {,+{;' for any odd prime p with ple
and ,m+oL (or i=~/—1) where m is the integer such that 2™|e but 2™{e,
then <k, G) has the property (R).

We conjecture that, under the assumptions in (4.2), <k, G, V) has the
property (R) for any kG-module V. In fact it was shown in §3 that the
conjecture is true if G is a cyclic p-group. However we did not succeed in
proving this in the general case. Here, as an application of (2.4), we give
only

. THEOREM 4.3. Let R, be the maximal real subfield of the maximal abelian
extension of Q and let k be a field containing R,. Then, for any finite abelian
group G and any kG-module V, {k, G, V> has the property (R).

PrROOF. Let e be the exponent of G. Then [k(,):k]=1 or 2 by the
assumption. Hence this follows directly from (1.13) and (2.4).

As another application of (2.4) we will show

THEOREM 4.4. Let G be a finite abelian group of odd order and k be a
field of characteristic 0. Then there exists an integer m >0 such that {k, G
has the property (R).

PrROOF. By (2.1) and (2.3) it suffices to prove this in case G is a cyclic
p-group and k=Q. Hence we assume that G is a cyclic p-group of order p’
and that #=Q. Since p is odd, the Masuda’s ideal I(p") is [I(p')-projective.
It is well known that the Picard group Pic(ZII(p') is finite. Therefore
there exists an integer m >0 such that I(p")™ = ZII(p")™. Now the faithful
irreducible QG-module V can be considered as a QG“-module through the
projection of G on the i-th component, 1<i<m and we denote it by V,.

If we put VO::E"QEB V., then V, is a faithful QG -module which is a QG™-
i=
direct summand of the regular representation module W of G'™. We easily
see My, = ;{‘ D My, = I(pH)™ = ZIT(p")™, hence Q(Vo)*™ = QLN ZII (pHy™)y @D
=1
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by (2.4). Therefore Q(V,)¢™ is rational over Q. Consequently Q(W )™ must
be rational over @ by (2.2), which completes our proof.

The assertion in (4.4) is not always true for a finite abelian group of
even order. For example, if G is a cyclic group of order 8, (@, G™) does not
have the property (QR) for any m >0. (See the proofs of (1.9) and (3.9).)

It was shown in (4.4) that the converse to (2.3) is not always true. How-
ever, we have the following partial converse to (2.3).

For any prime p we put Qp——-LkEJl Q). Further, for any field & of
characteristic 0, we put P =%k N Q,.

PROPOSITION 4.5. Let p,, by, -+, Dy be primes different from each other. For
each 11 s let G; be a finite abelian p;-group. Let k be a field of characteristic
0 such that k=kPV.pP2. ... .pP9  [f (k, G;X Gy X -+ X Gsy has the property
(QR), then each <k, G;» has the property (QR).

PROOF. For each i put exp G; = p% and ki:k(ng:ipgj ). Further put W;=

kG, WP =F;G;, and G=G;XG,X - X G;. Each W, can be considered as a
kG-module and then W, W, --- @ W, is a faithful 2G-module. Now suppose
that <k, G) has the property (QR). By (2.2) <k, G, W, W,DH --- @ W,» has
the property (QR) and hence <k, G, WP P WE D --- BW P> has also the pro-
perty (QR). We see

R(WPD - DWPD - DWP)¢
= R(WEOPTOD - BWRB WD -~ DW=
Since expIIG; =119}/ and {p,ts € ky this shows that k(WPS - OWESD
- B WP is rational over k(W @)¢i. Therefore {(k;, G;) has the property
(QR). Since [ki(Cpgi) : ki]:[k(Cpéi): k] by the assumption on k, the Masuda’s
module Mw@® of W can be identified with the one Mw, of W;. Thus it
follows from (2.4) that each (%, G,> has the property (QR).

The assertion in (4.5) is not always true without the assumption that
k= kPP P2, ... .9 [n fact, let p, =47 and p,=139 and let &, be a subfield
of Q(Cplpz) such that Q(Cpl) E k&, Q(sz) &k, and [Q(Cplpg): k,]=23. Then
Cky, D1,y has the property (R) but any of {k,, p,) and <k, p,> does not have
the property (QR).

THEOREM 4.6. For any finite abelian group G the following conditions are
equivalent :

1) <@, G) has the property (R).

(2) <@, G> has the property (QR).

(3) There is a faithful QG-module V such that the Masuda’s module My
is a quasi-permutation module.

PROOF. The implication (1)= (2) is obvious and the implications (2) & (3)
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follow from (2.2) and (2.4). Hence we have only to prove the implication
(2)=(1). By (45) and (2.3) it suffices to prove this in case G is a p-group.

Let G be a finite abelian p-group of exponent p' (I >0). We decompose
G as follows:

G= H@d X HE? X - X Ho

where n, >0, 1=, <[, < -+ <[,=[ and each H,; is a cyclic group of order
ph. Let V,; be a faithful irreducible QH,,-module for each i. Let us put
IT =Gal (Q(C,)/Q). By (2.4) we have

AVEPDVE D - B Vi) = QLU P BIH™ S - BIHN™).

Here it is remarked that each I(»'%) can be regarded as a I7-module because
II(p') is the factor group of II.

Now suppose that <@, G> has the property (QR). Then I(p')"P @ I( p'2)"?
D - PIPOH™ is a quasi-permutation /7-module by (2.2) and (2.4). If p is
odd, I is cyclic and each I(p%) is II(p")-projective. We see

LI ™ DI ™ D -+ DI o pi-1¢p> = J(H'O™.

By (1.11) J(p')"™ is ZIL =1, pp]-free. Hence it follows from the proof of
(3.1) that I(p')"® is a quasi-permutation I7-module. Then I(p")"PP I(p'2)"?
D - BI(ph—)™-0 is a quasi-permutation I7-module. It can be shown induc-
~ tively that, for each 1<i=<¢, I(p')" is a quasi-permutation II(p‘¢)-module.
Using (1.11) we can conclude that <Q, VPP VE2@P .- V) has the pro-
perty (R). On the other hand, if p=2, we have [, =<2 (See the proofs of
(1.9) and (3.9)), and therefore, by (1.13), we see also that <Q, V{i* QP VE2 -+
@ V) has the property (R). It is clear that VP V@D ---PV{HY can
be regarded as a @G-submodule of QG. Consequently <@, G) has the property
(R) which completes the proof of the theorem.

Appendix

The rest of primes p<2000

Primes p<2000 such that J(p) is not
(except p=2 and those in (3.4).)

principal, determined by using a
quadratic or biquadratic subfield of

Q (C p—l)

47 79

53 59 73 83 89 97

113 137 139 167 191

101 103 107 109 127 131 149 151 157
163 173 179 181 193 197 199

223 229 233 239 241 263 277 281 283

211 227 251 257 269 271 293

gll 313 317 331 337 349 359 367 373
33

307 347 353 379 389 397
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409 421 431 439 457 461 463 479 499 401 419 433 443 449 467 487 491

503 521 523 569 571 593 599 509 541 547 557 563 577 587

601 607 617 619 643 659 661 683 613 631 641 647 653 673 677 691

709 719 733 761 787 701 727 739 743 751 757 769 773 797

809 821 823 829 839 853 857 859 363 811 827 883

877 881 887

907 911 937 941 947 953 967 977 983 919 929 971

991 997

1009 1013 1021 1031 1033 1039 1049 1019 1051 1063

1061 1069 1087 1091 1093 1097

1103 1129 1163 1193 1109 1117 1123 1151 1153 1171 1181
1187

1201 1213 1217 1223 1231 1237 1249 1229 1259 1283 1297

1277 1279 1289 1291

1301 1303 1319 1321 1327 1361 1381 1307 1373

1399

1423 1427 1429 1433 1439 1447 1451 1409 1453 1459 1471 1493

1481 1483 1487 1489 1499

1511 1531 1543 1549 1553 1559 1571 1523 1567
1579 1583 1597

1609 1613 1627 1657 1663 1667 1669 1601 1607 1610 1621 1637
1693 1697 1699

1709 1721 1723 1741 1747 1753 1759 1733 1783
1777 1787 1789

1801 1811 1823 1831 1847 1861 1867
1871 1873 1877 1879 1889

1913 1933 1951 1973 1979 1987 1993 1901 1907 1931 1949
1997 1999

Added in proof (September 2, 1972). (1) The referee has pointed out to
-us that the similar result to (2.3) was given by W. Kuyk: Over het omkeer-
probleem van de Galoistheorie, Thesis, Amsterdam, 1960. However this paper
is not available.

(2) In the case where 2=Q and [=1, some of the results in §3 have
been shown independently by V.E. Voskresenskii: On the question of the
‘structure of the subfield of invariants of a cyclic group of automorphisms of
the field Q(xy, x,, -+, x,), 1zv. Akad. Nauk USSR, 34 (1970), 366-375; Rationality
-of certain algebraic tori, Izv. Akad. Nauk USSR, 35 (1971), 1037-1046.

(3) Recently J. Masley has determined all of the positive integers n such
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that ¢(Q({,)=1. From this it follows directly that A(Qpi-1p-»)) =1 if and
only if p is one of those in (3.4) (p+#2, 3).
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