Minimal 2-regular digraphs with given girth

By Mehdi BEHZAD

(Received July 13, 1971) (Revised Nov. 12, 1971)

§1. Abstract.

A digraph D is r-regular if degree v = r, $r \ge 1$, for every vertex v of D. The girth $n, n \ge 2$, of D containing directed cycles is the length of the smallest cycle in D. The minimum number of vertices of r-regular digraphs having girth n is denoted by g(r, n). In this note we prove that g(2, n) = 2n-1.

§2. Introduction and definitions.*

The smallest number of vertices that a regular graph of degree $r, r \ge 1$, and girth $n, n \ge 2$, may possess is denoted by f(r, n). The determination of the value of f(r, n) has been the subject of many investigations in recent years. (See, for example, [3], [4], and [5].) Yet, with few exceptions, the numbers f(r, n) are unknown for $r \ge 3$ and $n \ge 5$. In [2] the analogous problem for digraphs (directed graphs) was considered.

A digraph D is r-regular, $r \ge 1$, if id v = od v = r for every vertex v of D, where id v is the in-degree of v, while od v is the out-degree of the vertex v of D. For positive integers $n \ge 2$ and $r \ge 1$ the number g(r, n) is defined to be the minimum number of vertices r-regular digraphs having girth n(the length of the smallest cycle in the digraph) may possess. The upper bound r(n-1)+1 for g(r, n) was obtained in [2] and it was conjectured that g(r, n) = r(n-1)+1. Moreover, the values of g(r, n) for the elements of the subset S of the set of all lattice points of the r-n plane were obtained where:

$$S = \{(r, n) : n = 2, 3\} \cup \{(r, n) : r = 1\} \cup \{(2, 4), (3, 4), (4, 4), (3, 5)\}$$

In this article we propose to prove that the conjecture is true for the case r=2 as well.

^{*} Definitions not given here can be found in $\lceil 1 \rceil$.

§ 3. The function g(2, n).

First we show that g(2, n) is an increasing function of n. LEMMA 1. Let $n \ge 2$. Then g(2, n+1) > g(2, n).

PROOF. We use induction on *n*. For n = 2, and 3, the lemma is obviously true. Assume *D* is a 2-regular digraph of order f(2, n+1) whose girth is n+1, $n \ge 3$. Then *D* contains a cycle $C: v_1, v_2, \dots, v_{n+1}, v_1$ of length n+1. Each vertex v_i of *C* is adjacent to and adjacent from an element of V(D)-V(C), say u_j and u_k , $j \ne k$, respectively, where V(D) denotes the vertex set of *D*. There exists an integer i, $1 \le i \le n+1$, such that the edge $u_k u_j$ is not in *D*, for otherwise *D* contains at least 4n+4 edges, while $g(2, n+1) \le$ 2n+1 and the regularity of *D* show that *D* has at most 4n+2 edges. Now, we remove the vertex v_i together with its incident edges and add two new edges $v_{i-1}v_{i+1}$ and u_ku_j —if i=1, then i-1 is replaced by n+1 and if i=n+1, then i+1 is replaced by 1—to obtain a new 2-regular digraph of order g(2, n+1)-1 and girth *n*. Hence, g(2, n) < g(2, n+1) as was required to prove.

We say a vertex v of a digraph D having girth $n, n \ge 3$, is adjacent with a vertex u of D if either v is adjacent to or is adjacent from the vertex u. From now on the subscripts are computed in terms of the integers modulo n.

LEMMA 2. Assume there exists a 2-regular digraph D of order g(2, n) = 2n-2 having girth $n, n \ge 4$. If $C: v_1, v_2, \dots, v_n, v_1$ is a cycle of length n of D, then every vertex of V(D)-V(C) is adjacent with either 2 or 3 vertices of C.

PROOF. Let u be an element of the nonempty set V(D)-V(C). Suppose u is adjacent to v_i . Then u can be adjacent from no vertices of C other than v_{i-1} and v_{i-2} . Now it is clear that the vertex u can be adjacent to no other vertices of C. This proves that u is adjacent with at most 3 vertices of C.

Next, assume that u is an element of V(D) - V(C) which is adjacent with at most one vertex of C. Suppose that u is adjacent from the vertices u_1 and u_3 and is adjacent to the vertices u_2 and u_4 of D. (In case u is adjacent with one vertex of C, then exactly one of the elements of the set $\{u_1, u_2, u_3, u_4\}$ is a vertex of C.) Now remove the edges of C from D and denote the resulting digraph by D^* . We show that D^* contains a cycle C_2 of length nby considering the following cases.

CASE 1. At least one of the two edges $\overrightarrow{u_1u_2}$ and $\overrightarrow{u_3u_4}$ is an edge of D. Then the edges $\overrightarrow{u_3u_2}$ and $\overrightarrow{u_1u_4}$ are not in D. If D^* has no cycle of length n, then we remove the vertex u together with its incident edges from the digraph D and add the new edges $\overrightarrow{u_3u_2}$ and $\overrightarrow{u_1u_4}$ to the resulting digraph to obtain a 2-regular digraph of order g(2, n)-1 having girth n. But this contradicts the minimality of g(2, n).

CASE 2. Neither u_1u_2 nor u_3u_4 is an edge of D. In this case, too, following the above argument and replacing u_3u_2 and u_1u_4 by u_1u_2 and u_3u_4 , we reach the conclusion that D^* contains a cycle of length n.

Now remove the edges of C_2 from D^* and denote the resulting digraph by D^{**} . Since D contains 4n-4 edges, D^{**} contains 2n-4 edges. Starting from a nonisolated vertex of D^{**} and traversing along the directed edges of D^{**} we obtain a cycle C_3 of length $\mu = 2n-4$. Clearly $\mu \ge n$. In case $\mu < 2n-4$ then D^{**} would necessarily contain a cycle of length less than nwhich is impossible. Thus, D is the sum of three edge-disjoint cycles C_1 , C_2 and C_3 such that the length of C_i , i=1, 2, is n and the length of C_3 is 2n-4. The vertex set of D consists of the 2n-4 vertices of C_3 and two additional vertices w_1 and w_2 . Both cycles C_1 and C_2 contain both vertices w_1 and w_2 ; moreover, the two cycles C_1 and C_2 have no other vertices in common. Since D has girth n the length of the directed path w_1-w_2 (resp. w_2-w_1) in C_1 is the same as the length of the directed path w_1-w_2 (resp. w_2-w_1) in C_2 . The length of each of these 4 paths is greater than one, and no vertex of each of the directed paths w_1-w_2 can be adjacent with either a vertex of the path w_2-w_1 in C_1 or a vertex of the path w_2-w_1 in C_2 . (See Figure 1.)

Hence D can contain no cycle of length 2n-4 which does not pass through w_1 and w_2 . This contradiction completes the proof of the lemma.

Our main result is:

For any integer $n \ge 2$, g(2, n) = 2n-1.

PROOF. We use induction on n. It is known that the theorem is true for n=2, 3, 4 and 5. Assume that the theorem is true for n-1 and consider a 2-regular digraph D having girth n, $n \ge 6$ and order g(2, n). Then g(2, n) $\le 2n-1$ and by the induction hypothesis g(2, n-1)=2n-3. These and Lemma M. Behzad

1 imply that g(2, n) is either 2n-2 or 2n-1. Assume g(2, n) = 2n-2 and let $C: v_1, v_2, \dots, v_n, v_1$ be a cycle of length n of D. By Lemma 2 each element of V(D)-V(C) is adjacent with 2 or 3 vertices of C. In fact, exactly 4 elements of V(D)-V(C), say u_1, u_2, u_3 and u_4 are adjacent with 3 vertices of C and each of the remaining n-6 elements of V(D)-V(C), say u_5, u_6, \dots, u_{n-2} , are adjacent with two vertices of C. To see this, we observe that the only partition of the even integer 2n with n-2 summands belonging to the set $\{2, 3\}$ is 3, 3, 3, 2, 2, \dots , 2. Next we show that such a situation is impossible.

CASE 1. Assume that two of the elements of the set $\{u_1, u_2, u_3, u_4\}$ are adjacent. Without loss of generality, we may suppose that u_1 is adjacent to the vertex u_2 . Then u_1 is adjacent to a vertex of C, say v_1 , and is adjacent from 2 vertices of C. These two vertices are necessarily v_n and v_{n-1} . Then the only vertex of C to which the vertex u_2 can be adjacent is v_2 . But this produces a contradiction because the vertex u_2 must be adjacent to two vertices of C. For an illustration, see Figure 2.

Fig. 2.

CASE 2. The only alternative is that $n \ge 8$ and that two elements of the set $\{u_1, u_2, u_3, u_4\}$, say u_1 and u_2 , are joined by a semipath P of length t, $2 \le t$ $\le n-6$, all of whose vertices belong to V(D)-V(C). Let $P: u_1, u_5, u_6, \dots, u_k, u_{2r}$ where $5 \le k \le n-3$. We denote u_1 by w_1, u_5 by w_2, u_6 by w_3, \dots, u_k by w_{k-3r} , and u_2 by w_{k-2} . Then $P: w_1, w_2, \dots, w_{k-2}$.

Now we have two cases to consider.

i) The vertex w_1 is adjacent to the vertex w_2 . without loss of generality, we assume that w_1 is adjacent to v_1 . Then vertices v_n and v_{n-1} must be adjacent to w_1 . The vertex w_2 is adjacent to at least one vertex of C and that must be v_2 . Hence, the vertex w_2 must be adjacent to w_3 as well. Continuing this process, we observe that the vertex w_i can be adjacent to only one vertex of C, namely v_i , for $1 \leq i \leq k-2$; therefore the vertex w_i must be

4

adjacent to w_{i+1} , for $1 \le i \le k-3$. But then the adjacency of $w_{k-2} = u_2$ to two of the vertices of C is impossible. (Note that the semipath P turns out to be a (directed) path from u_1 to u_2 .)

Hence, the assumption g(2, n) = 2n-2 leads to a contradiction.

ii) The vertex w_1 is adjacent from the vertex w_2 . We may assume that the vertex v_{n-1} of C is also adjacent to w_1 . Therefore, the two vertices of C to which the vertex w_1 is adjacent are v_1 and v_n . Next, at least one vertex of C must be adjacent to w_2 and that without any other choice is v_{n-2} . Hence, the vertex w_3 is adjacent to the vertex w_2 . Continuing this process, we conclude that the only vertex of C adjacent to w_i is v_{n-i} for $i=1, 2, \dots, k-2$. Hence, the vertex w_i is also adjacent from the vertex w_{i+1} , for $1 \le i \le k-3$. But this contradicts the fact that the vertex $w_{k-2}=u_2$ is adjacent from two of the vertices of C. (In this case the semipath P is a directed path from u_2 to u_1 .) This contradicts the assumption that g(2, n)=2n-2. For an illustration, see Figure 4. Hence, in any case g(2, n)=2n-1 as was required to prove.

We conclude this article by mentioning that with some modifications, this method seems to work for the determination of the value of the function g(3, n) and this result may appear elsewhere.

M. Behzad

Fig. 4.

Department of Mathematics Arya-Mehr University of Technology P. O. Box 3406, Tehran, Iran

References

- [1] M. Behzad and G. Chartrand, An Introduction to Theory of Graphs, Allyn and Bacon Inc., 1971.
- [2] M. Behzad, G. Chartrand and C. E. Wall, On Minimal Regular Digraphs with Given Girth, Fund. Math., 69 (1970), 227-231.
- [3] P. Erdös and H. Sachs, Regular Graphen Gegebener Tailleneites mit Minimaler Konetenzahl, Wiss. Z. Univ. Hulle. Math.-Nat., 12, No. 3 (1963), 251-258.
- [4] A. J. Hoffman and R. R. Singleton, On Moore Graph with Diameters two and three, I. B. M. J. Res. Develop., 4 (1960), 497-504.
- [5] W.T. Tutte, The Connectivity of Graphs, Toronto Univ. Press, Toronto, 1967.