Minimal 2-regular digraphs with given girth

By Mehdi Behzad

(Received July 13, 1971)
(Revised Nov. 12, 1971)

§ 1. Abstract.

A digraph D is r-regular if degree $v=r, r \geqq 1$, for every vertex v of D. The girth $n, n \geqq 2$, of D containing directed cycles is the length of the smallest cycle in D. The minimum number of vertices of r-regular digraphs having girth n is denoted by $g(r, n)$. In this note we prove that $g(2, n)=$ $2 n-1$.

§ 2. Introduction and definitions.*

The smallest number of vertices that a regular graph of degree $r, r \geqq 1$, and girth $n, n \geqq 2$, may possess is denoted by $f(r, n)$. The determination of the value of $f(r, n)$ has been the subject of many investigations in recent years. (See, for example, [3], [4], and [5].) Yet, with few exceptions, the numbers $f(r, n)$ are unknown for $r \geqq 3$ and $n \geqq 5$. In [2] the analogous problem for digraphs (directed graphs) was considered.

A digraph D is r-regular, $r \geqq 1$, if id $v=o d v=r$ for every vertex v of D, where id v is the in-degree of v, while od v is the out-degree of the vertex v of D. For positive integers $n \geqq 2$ and $r \geqq 1$ the number $g(r, n)$ is defined to be the minimum number of vertices r-regular digraphs having girth n (the length of the smallest cycle in the digraph) may possess. The upper bound $r(n-1)+1$ for $g(r, n)$ was obtained in [2] and it was conjectured that $g(r, n)$ $=r(n-1)+1$. Moreover, the values of $g(r, n)$ for the elements of the subset S of the set of all lattice points of the $r-n$ plane were obtained where:

$$
S=\{(r, n): n=2,3\} \cup\{(r, n): r=1\} \cup\{(2,4),(3,4),(4,4),(3,5)\} .
$$

In this article we propose to prove that the conjecture is true for the case $r=2$ as well.

[^0]
§ 3. The function $g(2, n)$.

First we show that $g(2, n)$ is an increasing function of n.
Lemma 1. Let $n \geqq 2$. Then $g(2, n+1)>g(2, n)$.
Proof. We use induction on n. For $n=2$, and 3 , the lemma is obviously true. Assume D is a 2 -regular digraph of order $f(2, n+1)$ whose girth is $n+1, n \geqq 3$. Then D contains a cycle $C: v_{1}, v_{2}, \cdots, v_{n+1}, v_{1}$ of length $n+1$. Each vertex v_{i} of C is adjacent to and adjacent from an element of $V(D)-V(C)$, say u_{j} and $u_{k}, j \neq k$, respectively, where $V(D)$ denotes the vertex set of D. There exists an integer $i, 1 \leqq i \leqq n+1$, such that the edge $\overrightarrow{u_{k} u_{j}}$ is not in D, for otherwise D contains at least $4 n+4$ edges, while $g(2, n+1) \leqq$ $2 n+1$ and the regularity of D show that D has at most $4 n+2$ edges. Now, we remove the vertex v_{i} together with its incident edges and add two new
 then $i+1$ is replaced by 1 -to obtain a new 2 -regular digraph of order $g(2, n+1)-1$ and girth n. Hence, $g(2, n)<g(2, n+1)$ as was required to prove.

We say a vertex v of a digraph D having girth $n, n \geqq 3$, is adjacent with a vertex u of D if either v is adjacent to or is adjacent from the vertex u. From now on the subscripts are computed in terms of the integers modulo n.

Lemma 2. Assume there exists a 2-regular digraph D of order $g(2, n)=$ $2 n-2$ having girth $n, n \geqq 4$. If $C: v_{1}, v_{2}, \cdots, v_{n}, v_{1}$ is a cycle of length n of D, then every vertex of $V(D)-V(C)$ is adjacent with either 2 or 3 vertices of C.

Proof. Let u be an element of the nonempty set $V(D)-V(C)$. Suppose u is adjacent to v_{i}. Then u can be adjacent from no vertices of C other than v_{i-1} and v_{i-2}. Now it is clear that the vertex u can be adjacent to no other vertices of C. This proves that u is adjacent with at most 3 vertices of C.

Next, assume that u is an element of $V(D)-V(C)$ which is adjacent with at most one vertex of C. Suppose that u is adjacent from the vertices u_{1} and u_{3} and is adjacent to the vertices u_{2} and u_{4} of D. (In case u is adjacent with one vertex of C, then exactly one of the elements of the set $\left\{u_{1}, u_{2}, u_{3}\right.$, $\left.u_{4}\right\}$ is a vertex of C.) Now remove the edges of C from D and denote the resulting digraph by D^{*}. We show that D^{*} contains a cycle C_{2} of length n by considering the following cases.

CASE 1. At least one of the two edges $\overrightarrow{u_{1} u_{2}}$ and ${\overrightarrow{u_{3}}}_{4}$ is an edge of D. Then the edges $\overrightarrow{u_{3} u_{2}}$ and $\overrightarrow{u_{1} u_{4}}$ are not in D. If D^{*} has no cycle of length n, then we remove the vertex u together with its incident edges from the digraph D and add the new edges $\overrightarrow{u_{3} u_{2}}$ and $\overrightarrow{u_{1} u_{4}}$ to the resulting digraph to obtain a 2 -regular digraph of order $g(2, n)-1$ having girth n. But this con-
tradicts the minimality of $g(2, n)$.
CASE 2. Neither $\vec{u}_{1} u_{2}$ nor ${\overrightarrow{u_{3}} u_{4}}^{\text {is }}$ an edge of D. In this $\xrightarrow[\rightarrow]{\text { case, too, follow- }}$ ing the above argument and replacing $\overrightarrow{u_{3} u_{2}}$ and $\overrightarrow{u_{1} u_{4}}$ by ${\overrightarrow{u_{1}}}_{2}$ and ${\overrightarrow{u_{3}}}_{4}$, we reach the conclusion that D^{*} contains a cycle of length n.

Now remove the edges of C_{2} from D^{*} and denote the resulting digraph by $D^{* *}$. Since D contains $4 n-4$ edges, $D^{* *}$ contains $2 n-4$ edges. Starting from a nonisolated vertex of $D^{* *}$ and traversing along the directed edges of $D^{* *}$ we obtain a cycle C_{3} of length $\mu=2 n-4$. Clearly $\mu \geqq n$. In case $\mu<2 n-4$ then $D^{* *}$ would necessarily contain a cycle of length less than n which is impossible. Thus, D is the sum of three edge-disjoint cycles C_{1}, C_{2} and C_{3} such that the length of $C_{i}, i=1,2$, is n and the length of C_{3} is $2 n-4$. The vertex set of D consists of the $2 n-4$ vertices of C_{3} and two additional vertices w_{1} and w_{2}. Both cycles C_{1} and C_{2} contain both vertices w_{1} and w_{2}; moreover, the two cycles C_{1} and C_{2} have no other vertices in common. Since D has girth n the length of the directed path $w_{1}-w_{2}$ (resp. $w_{2}-w_{1}$) in C_{1} is the same as the length of the directed path $w_{1}-w_{2}$ (resp. $w_{2}-w_{1}$) in C_{2}. The length of each of these 4 paths is greater than one, and no vertex of each of the directed paths $w_{1}-w_{2}$ can be adjacent with either a vertex of the path $w_{2}-w_{1}$ in C_{1} or a vertex of the path $w_{2}-w_{1}$ in C_{2}. (See Figure 1.)

Fig. 1.
Hence D can contain no cycle of length $2 n-4$ which does not pass through w_{1} and w_{2}. This contradiction completes the proof of the lemma.

Our main result is:
For any integer $n \geqq 2, g(2, n)=2 n-1$.
Proof. We use induction on n. It is known that the theorem is true for $n=2,3,4$ and 5. Assume that the theorem is true for $n-1$ and consider a 2 -regular digraph D having girth $n, n \geqq 6$ and order $g(2, n)$. Then $g(2, n)$ $\leqq 2 n-1$ and by the induction hypothesis $g(2, n-1)=2 n-3$. These and Lemma

1 imply that $g(2, n)$ is either $2 n-2$ or $2 n-1$. Assume $g(2, n)=2 n-2$ and let: $C: v_{1}, v_{2}, \cdots, v_{n}, v_{1}$ be a cycle of length n of D. By Lemma 2 each element of $V(D)-V(C)$ is adjacent with 2 or 3 vertices of C. In fact, exactly 4 elements of $V(D)-V(C)$, say u_{1}, u_{2}, u_{3} and u_{4} are adjacent with 3 vertices of C and each of the remaining $n-6$ elements of $V(D)-V(C)$, say $u_{5}, u_{6}, \cdots, u_{n-2}$, are adjacent with two vertices of C. To see this, we observe that the only partition of the even integer $2 n$ with $n-2$ summands belonging to the set $\{2,3\}$ is $3,3,3,3,2,2, \cdots, 2$. Next we show that such a situation is impossible.

Case 1. Assume that two of the elements of the set $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ areadjacent. Without loss of generality, we may suppose that u_{1} is adjacent to the vertex u_{2}. Then u_{1} is adjacent to a vertex of C, say v_{1}, and is adjacent from 2 vertices of C. These two vertices are necessarily v_{n} and v_{n-1}. Then the only vertex of C to which the vertex u_{2} can be adjacent is v_{2}. But this. produces a contradiction because the vertex u_{2} must be adjacent to two vertices of C. For an illustration, see Figure 2.

Fig. 2.
CASE 2. The only alternative is that $n \geqq 8$ and that two elements of the set $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$, say u_{1} and u_{2}, are joined by a semipath P of length $t, 2 \leqq t$ $\leqq n-6$, all of whose vertices belong to $V(D)-V(C)$. Let $P: u_{1}, u_{5}, u_{6}, \cdots, u_{k}, u_{2}$, where $5 \leqq k \leqq n-3$. We denote u_{1} by w_{1}, u_{5} by w_{2}, u_{6} by w_{3}, \cdots, u_{k} by w_{k-3}, and u_{2} by w_{k-2}. Then $P: w_{1}, w_{2}, \cdots, w_{k-2}$.

Now we have two cases to consider.
i) The vertex w_{1} is adjacent to the vertex w_{2}. without loss of generality, we assume that w_{1} is adjacent to v_{1}. Then vertices v_{n} and v_{n-1} must be adjacent to w_{1}. The vertex w_{2} is adjacent to at least one vertex of C and that must be v_{2}. Hence, the vertex w_{2} must be adjacent to w_{3} as well. Continuing this process, we observe that the vertex w_{i} can be adjacent to only one vertex of C, namely v_{i}, for $1 \leqq i \leqq k-2$; therefore the vertex w_{i} must be
adjacent ${ }^{\mathbf{T}} \mathrm{to} w_{i+1}$, for $1 \leqq i \leqq k-3$. But then the adjacency of $w_{k-2}=u_{2}$ to two of the vertices of C is impossible. (Note that the semipath P turns out to be a (directed) path from u_{1} to u_{2}.)

Fig. 3.
Hence, the assumption $g(2, n)=2 n-2$ leads to a contradiction.
ii) The vertex w_{1} is adjacent from the vertex w_{2}. We may assume that the vertex v_{n-1} of C is also adjacent to w_{1}. Therefore, the two vertices of C to which the vertex w_{1} is adjacent are v_{1} and v_{n}. Next, at least one vertex of C must be adjacent to w_{2} and that without any other choice is v_{n-2}. Hence, the vertex w_{3} is adjacent to the vertex w_{2}. Continuing this process, we conclude that the only vertex of C adjacent to w_{i} is v_{n-i} for $i=1,2, \cdots, k-2$. Hence, the vertex w_{i} is also adjacent from the vertex w_{i+1}, for $1 \leqq i \leqq k-3$. But this contradicts the fact that the vertex $w_{k-2}=u_{2}$ is adjacent from two of the vertices of C. (In this case the semipath P is a directed path from u_{2} to u_{1}.) This contradicts the assumption that $g(2, n)=2 n-2$. For an illustration, see Figure 4. Hence, in any case $g(2, n)=2 n-1$ as was required to prove.

We conclude this article by mentioning that with some modifications, this method seems to work for the determination of the value of the function $g(3, n)$ and this result may appear elsewhere.

Fig. 4.

Department of Mathematics
 Arya-Mehr University of Technology
 P. O. Box 3406, Tehran, Iran

References

[1] M. Behzad and G. Chartrand, An Introduction to Theory of Graphs, Allyn and Bacon Inc., 1971.
[2] M. Behzad, G. Chartrand and C.E. Wall, On Minimal Regular Digraphs with Given Girth, Fund. Math., 69 (1970), 227-231.
[3] P. Erdös and H. Sachs, Regular Graphen Gegebener Tailleneites mit Minimaler Konetenzahl, Wiss. Z. Univ. Hulle. Math.-Nat., 12, No. 3 (1963), 251-258.
[4] A. J. Hoffman and R. R. Singleton, On Moore Graph with Diameters two and three, I. B. M. J. Res. Develop., 4 (1960), 497-504.
[5] W.T. Tutte, The Connectivity of Graphs, Toronto Univ. Press, Toronto, 1967.

[^0]: * Definitions not given here can be found in [1].

