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Remarks on codimension one foliations of spheres
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\S 1. Introduction.

In [1], B. Lawson constructed codimension one foliations of $S^{2^{k}+3},$ $k=1$ ,
2, $\cdots$ Recently, I. Tamura succeeded in proving that every odd dimensional
homotopy sphere has a codimension one foliation [2]. In both cases, it was
important that $S^{6}$ has a codimension one foliation. In this article, we shall
show that Lawson’s examples are obtained by a reduction theorem of $S^{1}-$

bundles and that there exist other examples of foliations of $S^{5}$ . These ex-
amples of $S^{6}$ are $S^{1}$ -invariant, especially, $Z_{k}$-invariant for any positive integer
$k$ . Thus, we obtain also new types of foliations of five dimensional lens
spaces.

All foliations considered are differentiable codimension one foliations
tunless otherwise stated.

\S 2. Fibrations over a circle.

Let $\eta$ be the standard $S^{1}$ -principal bundle over $CP^{n}$ with total space $S^{2n+1}$

and projection map $\eta$ defined by $\eta(z_{0}, \cdots , z_{n})=[z_{0}$ , $\cdot$ .. , $z_{n}]$ , where $S^{2n+1}=\{(z_{0}$ ,
, $z_{n}$) $\in C^{n+1}$ ; $|z_{0}|^{2}+\cdots+|z_{n}|^{2}=1$ } and $[z_{0}$ , $\cdot$

., , $z_{n}]$ denotes the homogeneous
coordinate.

PROPOSITION 1. Let $d$ be a positive integer and let $M^{2n- 2}$ be a $(2n-2)-$

.dimensional connected closed differentiable submanifold of $CP^{n}$ such that the
fundamental class of $M^{2n-2}$ represents d-times the generat’ $r$ of $H_{2n-2}(CP‘‘, Z)$

$\cong Z$. Let $\nu(M)$ denote the closed tubular neighbourhood of $M^{zn- 2}$ in $CP^{n}$ . Then
$\eta$ restricted to $W^{2n}=CP^{n}$–int $\nu(M)$ has a $Z_{d}$-reduction.

PROOF. Let $\alpha$ be the canonical generator of $H^{2}(CP^{n}, Z)$ and let $i$ be the
inclusion map $W^{2n}\rightarrow CP^{n}$ . To prove the proposition, it is sufficient to show
that $d\cdot(i^{*}(\alpha))=0$ in $H^{2}(W^{2n}, Z)$ . This follows from the following observation.

Consider the exact sequence of groups; $Z_{d}\rightarrow S^{1}\rightarrow S^{1}$ , here the first map
is a natural injection and the second map is multiplication by $d$. Passing to
classifying spaces of bundles, we have a fibration; $BZ_{a}\rightarrow BS^{1}\rightarrow BS^{1}$ , or
$1C(Z_{d}, 1)\rightarrow K(Z, 2)\rightarrow K(Z, 2)$ . Hence, for a CW-complex $X$, we have an exact
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sequence [X, $K(Z_{a},$ $1)$] $\rightarrow[X, K(Z, 2)]\rightarrow[X, K(Z, 2)]$ , or $H^{1}(X, Z_{a})\rightarrow\delta H^{2}(X, Z)$

$\rightarrow dH^{2}(X, Z)$ , where $\delta$ is a Bockstein map associated to $0\rightarrow Z\rightarrow Z\rightarrow Z_{a}\rightarrow 0$ and
$d_{*}$ is a map such that $d_{*}(x)=dx$ for each element $x$ of $H^{2}(X, Z)$ . Therefore,

for an element of order $d$ , say $\tilde{\alpha}$ , in $H^{2}(X, Z)$ , there is an element $\tilde{\beta}$ in
$H^{1}(X, Z_{d})$ such that $\delta(\tilde{\beta})=\tilde{\alpha}$ . Clearly, $\beta$ represents a $Z_{d}$-bundle over $X$. Thus,

the $S^{1}$ -bundle corresponding to $\tilde{\alpha}$ has a $Z_{d}$-reduction.
Now, by the cohomology exact sequence of a pair with coefficient in $Z$,

we have the following exact sequence,
$\delta$ $1^{*}$ $i^{*}$

$\rightarrow H^{1}(W)\rightarrow H^{2}(CP^{n}, W)\rightarrow H^{2}(CP^{n})\rightarrow H^{2}(W)\rightarrow$ .
By excision isomorphism and Poincar\’e duality, we have isomorphisms,

$\varphi:H^{2}(CP^{n}, W)\rightarrow H_{2n- 2}(M)$ , $\psi:H^{2}(CP^{n})\rightarrow H_{2n- 2}(CP^{n})$ .
Thus, we have the following diagram which is commutative up to sign.

$\delta$ $j^{*}$ $i^{*}$

$\rightarrow H^{1}(W)\rightarrow H^{2}(CP^{n}, W)\rightarrow H^{2}(CP^{n})\rightarrow H^{2}(W)\rightarrow$

$||$ $\downarrow\varphi$ $\downarrow\psi$ $||$

$\rightarrow H^{1}(W)\rightarrow H_{2n-2}(M)$
$\rightarrow^{l_{*}}H_{2n- 2}(CP^{n})\rightarrow H^{2}(W)\rightarrow$

where $l_{*}$ is the map induced by the inclusion $l:M\rightarrow CP^{n}$ .
For the generator $\alpha$ of $H^{2}(CP^{n})$ , by the assumption, there exists an ele-

ment $\beta$ in $H_{2n-2}(M)$ such that $1_{*}(\beta)=d\cdot\psi(\alpha)$ . Hence, $d\cdot i^{*}(\alpha)=i^{*}\circ\psi^{-1}(d\cdot\psi\alpha)$

$=i^{*}\circ\psi^{-1}\circ l_{*}(\beta)=i^{*}\circ j^{*}\circ\varphi^{-1}(\beta)=0$ . This completes the proof of the Proposi-
tion 1.

PROPOSITION 2. Let $W^{2n}$ be as in Proposition 1, then $\eta^{-1}(W)$ is a fibration
over $S^{1}$ . The fibre is diffeomorphic to a covering space of $W$.

PROOF. Let $\eta^{-1}(W)=E$. By Proposition 1, $S^{1}$ -bundle $\eta|_{E}$ : $E\rightarrow W$ has a
$Z_{d}$-reduction. Let $\tilde{W}$ be the $Z_{cI}$-principal bundle associated to this bundle.
Then, $E$ is bundle equivalent to $S^{1}\times_{d}\tilde{W}=Z\{(t, w)\in S^{1}\times\tilde{W}\}/\sim,$ $where\sim denotes$

an equivalence relation such that $(t, w)\sim(t^{\prime}, w^{\prime})$ , if and only if, $t=t^{\prime}\cdot g$,
$w=w^{\prime}\cdot g$, for some $g$ in $Z_{d}$ . Let $\pi_{1}$ : $S^{1}\times\tilde{W}\rightarrow S^{1}$ be the projection to the
first factor. Passing to the quotient, we have a map $\pi;S^{1}\times\tilde{W}\rightarrow S^{1}/Z_{d}$ . It

$z_{d}$

can be easily checked that $\pi$ is a bundle projection over $S^{1}$ with fibre ffl.
This completes the proof.

\S 3. Construction of foliations.

We prove the following fundamental lemma.
LEMMA. Let $E$ be an orientable differentiable manifold with boundary and

let $p;E\rightarrow S^{1}$ be a differentiable fibration. Then $E$ has a foliation with each
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connected component of $\partial E$ as a leaf.
PROOF. By a collar, we identify $E\bigcup_{\partial E}\partial E\times[0,1]$ with $E$ , which is a union

of manifolds $E$ and $\partial E\times[0,1]$ identified $\partial E$ with $\partial E\times\{0\}$ . Define the fibration
$q=p|_{\partial E}\times id:\partial E\times[0,1]\rightarrow S^{1}\times[0,1]$ . There exists on $S^{1}\times[0,1]$ a non-zero
smooth vector field $\mathcal{F}$ with the following properties; (1) $S^{1}\times\{1\}$ is an orbit
of $\mathcal{F}$ . (2) The orbits of $\mathcal{F}$ intersect normally to $S^{1}\times\{0\}$ . (3) The natural
$S^{1}$ -action on $S^{1}\times[0,1]$ preserves the orbits of $\mathcal{F}$ .

Then, { $q^{-1}$ (orbits of $\mathcal{F}$ )} and {fibres of $p$ } give a differentiable foliation
of $E\bigcup_{\text{{\it \^{a}}} F_{\wedge}}\partial E\times[0,1]$ with $\partial E\times\{1\}$ as a union of leaves. This completes the

proof.

Let $M^{2n- 2}$ be a submanifold of $CP^{n}$ satisfying the conditions of Proposi-
tion 1, and let $L^{2n- 1}$ be a submanifold of $S^{2n+1}$ which is the total space of $\eta$

restricted over $M^{2n- 2}$ . The normal bundle of $L^{2n- 1}$ in $ S^{2n\cdot 1}\llcorner$ is always trivial,

so we have a decomposition:

$S^{2n\cdot\succ 1}=L^{2n- 1}\times D^{2}\cup E,$ $E=S^{2n\cdot 1}4$ –int $(L^{2n- 1}\times D^{2})$ .

By Proposition 2, $E$ is a fibre bundle over $S^{1}$ , hence, by the above lemma, $E$

has a foliation with $\partial E$ as a compact leaf.
Thus, we have,
PROPOSITION 3. In the above notation, if $L^{2n- 1}\times D^{2}$ has a foliation with

boundary as a compact leaf, then $S^{2n+1}$ has a foliation.
PROOF. Since both $L^{2n- 1}\times D^{2}$ and $E$ have foliations with boundaries as

leaves, glueing them along the boundaries we have a foliation on $S^{2n+1}$ .
Using this proposition, we are now going to construct foliations on

spheres.
Let $M^{2}(d)$ be the non-singular curve (real dimension $=2$) in $CP^{2}$ of de-

gree $d$ . The genus of $M(d)$ is given by $g=(d-1)(d-2)/2$ . Thus $M(3)$ is
diffeomorphic to $T^{2}=S^{1}\times S^{1}$ and the fundamental cycle $[T^{2}]$ is homologous
to 3-times of $[CP^{1}]$ which is a generator of $H_{2}(CP^{2}, Z)$ (because the inter-
section $[T^{2}]\cdot[CP^{1}]=3$). Corresponding submanifold $L(3)$ of $S^{6}$ (see above
proposition) is a fibre bundle over $T^{2}$ , in particular, is a fibre bundle over
$S^{1}$ . Hence, according to preceding lemma, $L(3)\times D^{2}$ has a foliation with
boundary as a compact leaf. Therefore, by Proposition 3, $S^{5}$ has a foliation.
This is just the example of Lawson [1].

For $d=1,$ $M(1)$ is diffeomorphic to $CP^{1}=S^{2}$ . Imbed a torus $T^{2}$ into a
small disc $D^{4}$ contained in $CP^{2}$ so that $T^{2}$ and $S^{2}$ do not intersect. Connect-
ing $T^{2}$ and $S^{2}$ by a small tube, we can make a connected sum of $T^{2}$ and $S^{2}$

in $CP^{2}$ . It is apparent that the obtained submanifold of $CP^{2}$ is diffeomorphic
to $T^{2}$ and homologous to $M(1)$ . Then the similar argument as above shows
that we have another foliation of $S^{5}$ . Since $M(2)$ is also diffeomorphic to $S^{2}$ ,
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the same argument as in the case $d=1$ holds for $d=2$ . These are new types
of foliations of $S^{5}$ . We can easily check that all these example of foliations
are $S^{1}$ -invariant with respect to the natural $S^{1}$ -action on $S^{6}$ . That is for
any $g\in S^{1},$ $g\cdot F_{1}$ is contained in some $F_{2}$ , where $F_{1},$ $F_{2}$ are leaves. This shows
that we have foliations on each five dimensional lens spaces.

We can now prove Lawson’s result without using Milnor’s fibration
theorem.

THEOREM (Lawson [1]). $(2^{k}+3)$ -dimensional spheres have codimension one
foliations, for $k=1,2,$ $\cdots$ .

PROOF. First we remark that if $S^{n+2}$ has a foliation, then $S^{n}\times D^{2}$ has a
foliation with boundary as a compact leaf. This can be proved as follows.
Take a closed curve transversal to the leaves of $S^{n+2}$ (such a curve always

exists since $S^{n+2}$ is compact). Taking away small tubular neighbourhood of
this curve, we have a manifold diffeomorphic to $S^{n}\times D^{2}$ . The leaves of $S^{n_{i^{2}}}$

restricted to $S^{n}\times D^{2}$ are transversal to the boundary. As in lemma, we can
modify the leaves in $S^{n}\times D^{2}$ so that the boundary is a leaf.

Let $M^{2n-2}(2)$ be a non-singular complex hypersurface in $CP^{n}$ of degree 2.
Then $M^{2n-2}(2)$ satisfies the conditions of Proposition 1. The corresponding
$S^{1}$ -bundle $L^{2n-1}(2)$ is known to be diffeomorphic to the tangent sphere bundle
of $S^{n}$ . Let $\pi$ be the projection of this bundle. We have a fibration, $\pi\times id$ :
$L^{2n-1}\times D^{2}\rightarrow S^{n}\times D^{2}$ . By the above remark, if $S^{n+2}$ has a foliation, then
$L^{an-1}(2)\times D^{2}$ has a foliation with boundary as a leaf which is the pull-back

of the foliation on $S^{n}\times D^{2}$ by $\pi\times id$ . Thus, by Proposition 3, we have a folia-
tion on $S^{2n+1}$ . But we have already constructed foliations on $S^{5}$ . So, starting
from $n=3$ , we can inductively obtain foliations on $2^{k}+3$ dimensional spheres,
$k=1,2,$ $\cdots$ This completes the proof.
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