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§1. Introduction.

In this paper we study smooth actions of the circle group S' on smooth
manifolds from the view point of bordism theory.

Let G be a fixed compact Lie group and ¥’ and & be families of sub-
groups of G such that 9'’C &. We assume that both families are closed
under inner automorphisms of G. An action of G on a manifold M will be
called (F, F’)-free provided that it is effective on each component of M and
the isotropy subgroup G, at each point x = M belongs to & and, if x=dM,
G, belongs to F’. When Z’=0 then necessarily oM =0. In this case we
<call the action F-free. The n-dimensional bordism group 2,.(G; F, F’) of all
orientation preserving (&F, F’)-free smooth G-actions on compact oriented
smooth n-manifolds is defined in the obvious way. See [3]V. If /=0 then
we denote £2,(G; &, 0) simply by 2.(G; F). These groups are connected by
an exact sequence

(™ Tx Ox
_—égn(G:g,)"‘_}Qn(G; E_F)'——>‘Qn(G: &, 3;'/)_—'>‘Qn—-1(G: EF,)'__>

In an entirely similar way the U-bordism group 2Y(G; &, ¢’) of all U-
structure preserving (&, F')-free smooth G-actions on compact n-dimensional
U-manifolds (weakly complex manifolds) are defined together with natural
‘homomorphisms induced by the inclusion F/C &. '

In this paper we consider the case in which G=S* and & = F; where
we set

F={Z|k= I}
and
F=gF,\J{S}.

Here Z, denotes the subgroup of S! consisting of k-th roots of unity. Thus
Fo=\JF; is the set of all finite subgroups of S' and FLi=\UZF} is the set
©of all closed subgroups of S?.

Our main results are the following.

1) In the assumption of effectiveness in the definition of (&, &’)-free action
was not imposed. We add that assumption to simplify the resulting bordism group.
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THEOREMS (2.22) and (2.29). For each integer [, 1 <lI, the sequences

Ik Tk
0 —> QU(S'; Fiy) —> QY(S'; Ff) — Q9(S'; Fi, Fir) —> 0
and

1 j
0 —> Qu(S'; Fiy) —> Qu(S*; FF) Lo Qu(S?; Ft, Fiy) —> 0

are split exact.
In Section 2 we shall construct splittings

P QU(ST; g, Fi) — QY(ST; F)
and
‘P 2,(SY; F, Fiy) — 2.5 F)

which we call “twisted complex projective space bundle construction”.
Setting

'PU(ST; 1) ="PRY(S*; Fi, Fi)
and

'Py(ST; ) ="PR.S*; Ft, F)

we have immediate corollaries.
COROLLARIES (2.24) and (2.30). There are canonical isomorphisms

QU(S*; TN =QY(S'; FND X 'PUSH; F)
QU(S*; T = QYS'; FD T PYUS'; )
1<k

Q.S F) = 2,(S;, FHDB D ‘P(ST; Fi)
1<k st
and
Q.S FE) = Q.(S*; FHD T "Pu(ST; Fi).
1<k

As was shown in the group £2,(S'; F{) is generated by complex projec-
tive space bundles. Analogous fact holds for £2Y(S'; ). We can say that
twisted complex projective space bundles are as simple as complex projective
space bundles. Thus these corollaries exhibit generators for 2Y¥(S?'; ¢) and
24(S*; F) which are geometrically very simple.

We note here that our methods are applicable to the case of stationary
point free actions, i.e. the case of Z,-free actions, with minor modifications
in the real case. However that case was already treated by Ossa and
indeed our methods are quite similar to his.

In Sections 3 and 4 we shall give an elementary proof of the Kosniowski
formula and the Atiyah-Singer formula [1, p. 594] in the framework of
bordism theory. These formulae were originally proved by using the Atiyah-
Singer G-signature theorem. In the case of semi-free actions proofs in the
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framework of bordism theory were given by Kawakubo and Uchida for
the Atiyah-Singer formula and by Takao Matumoto (unpublished) for the
Kosniowski formula. Another proof of Atiyah-Singer’s formula which uses
generalized manifolds was given by Kawakubo and Raymond [4].

Thanks are due to F. Uchida for stimulating conversations.

§2. Twisted complex projective space bundles.

Let V— X be a vector bundle (real or complex) and let
o: S'XV —V

be an effective continuous S'-action by vector bundle isomorphisms of V.
Then ¢ defines an injective homomorphism S!—Isom (V) which we shall also
denote by the same letter ¢ where Isom (V) denotes the group of all vector
bundle isomorphisms of V onto itself. Thus, by this convention, we write
(g for ¢(g, v) for any g€ S* and ve V. We always indentify X with the
Zzero cross-section image of the bundle V. Set

H={glge S, ¢(gx==x for all x= X}.

Then H is a closed subgroup of S'. H equals the whole group S!' if and
only if each ¢(g) is an automorphism of the bundle V. If H=+S! then H
equals Z;,, the [-th roots of unity, for some /=1 and it is easy to see that
there is a unique S'-action ¢ on X such that

P(2)x=p(8)'x

for all g S* and x< X. In this case we say that the action ¢ is of order I.

DEFINITION (2.1). Let ! be an integer, 1</. An S'-action ¢ on V is said
to be strictly & -free if the following three conditions are satisfied:

1) ¢ is of order |,

2) the action ¢ (defined as above) on X is semi-free, i.e. F{-free and

3) the action ¢ restricted on V—X is &,_,-free.

Note that if the action ¢ is strictly &/-free then the fixed point set of
¢ is contained in X as a proper subset. Here by the fixed point set of an
action we mean the set of points which are fixed by all elements of the
group.

Now let X be a compact U-manifold and V a smooth complex vector
bundle on X. Then V, regarded as a smooth manifold, has the obvious
induced U-structure. A smooth S'-action ¢: S'—Isom (V) is called to be
U-structure preserving if each ¢(g) preserves the U-structure on the base X.
Note that, in that case, each ¢(g) also preserves the induced U-structure on
V. Let [ be an integer, 1</, and let BY,(S'; F7) denote the totality of
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triples (X, V, ¢) where V—X is a smooth complex k-vector bundle on a
compact m-dimensional U-manifold without boundary X and ¢ is an effective
U-structure preserving smooth S'-action on V which is strictly F;-free. Two
triples (X, V, ¢) and (X', V', ¢’) in BY x(S*; F) are called bordant if there
is a compact (m-+1)-dimensional U-manifold Y, a smooth complex k-vector
bundle W on Y and a U-structure preserving, strictly <;-free, smooth S!'-
action ¥ on W such that ‘

oY =XU—-X

WiX=V, W X =V
and
Tiv=¢g, Tiv =¢’

where — X’ denotes the U-manifold X’ with the opposite U-structure as usual.
This is clearly an equivalence relation. The set of all equivalence classes of
BY (S*; Ft) will be denoted by BY.(S'; F;) and the class of (X, V, ¢) will
be denoted by [ X, V, ¢]. BY..(S'; F7) becomes an abelian group where the
addition is induced by disjoint union. The verification of the fact is quite
routine and is omitted.

Next let X be a compact smooth manifold and V a smooth real vector
bundle on X such that w,(X) equals the first Stiefel-Whitney class of the
vector bundle V—X. Then V, regarded as a manifold, is orientable. A
triple (X, V, ¢) in which V— X is a real vector bundle with the above pro-
perty and ¢: S'—Isom (V) is an effective smooth action will be called oriented
if V, regarded as a manifold, is oriented. For an integer [ greater than 1,
we shall denote by 2, ,(S!; F7) the totality of oriented triples (X, V, ¢) in
which dim X=m, fiber-dim V=% and ¢ is strictly F;-free. The bordism
relation between oriented triples and the resulting bordism group B,,(S'; FT)
are defined in a similar way as the unitary case.

REMARK (2.2). We shall show later that $,,,(S*; ¢{)=0 and consequently
B (S*; F)=0 for odd k.

Now suppose that a pair (M, ¢) of a compact smooth manifold M and an
(Ft, Ft,)-free smooth S'-action ¢ on M is given. A connected component X
of the fix:>d point set of ¢(Z,) will be called to be of the first kind if it con-
tains a point x whose isotropy subgroup equals precisely Z,.

LEMMA (2.3). Let ¢ be an (Fi, Fi,)-free smooth action on a compact
smooth manifold M. If X is a connected component of the first kind of the
fixed point set of ¢(Z)), then X is contained in the interior of M. Consequently
X has no boundary. Moreover if V is the normal bundle of X in M then the
induced action ¢ on V is strictly Ff-free.

PROOF. Assume that X \0M +#8. Then, by the equivariant collar neigh-
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‘borhood theorem, XN\0M=0X and the fixed point set F of ¢(S*) in X con-
tains a neighborbood of 0.X in X. But F—0X is a manifold without boundary.
‘Therefore F must coincide with the whole X which is a contradiction. Thus
XNOM=0. The rest of the statement is clear.

LEMMA (2.4). Let ¢ be an (Ff, Fi,)-free smooth S'-action on a compact
smooth n-manifold M. Let {X;} be the totality of connected components of the
Jirst kind of the fixed point set of ¢(Z,)) and let D; be the ¢-invariant closed
tubular neighborhood of X, with respect to a ¢-invariant Riemannian metric
.on M. Then we have

2Dy, ¢1=[M, ¢]
an 2.8 Ft, FiL).

PROOF. Since the action ¢ restricted on M—\U D, is Fi ,-free, the state-
‘ment follows from [3, (5.2)]. Similarly we have

LEMMA (2.5). Let ¢ be a U-structure preserving (Fi, Fi,)-free smooth S'-
«action on a compact U-manifold M and let X, and V; have similar meanings
«as in (24). Then '

X [D, §1=[M, ¢]
an QU(ST; FF, Fth)).

We consider the homomorphisms

v: QNS Ff, Fh) ——> 3 BLa(SY; )

m-+2k=n
-and
vi QS I, Fi) — X Bau(Sh; )
.defined by Tk

”[Mr ¢] = 2 [X’Ly Viy ¢]

‘where the summation is taken over the connected components of the first
'kind of the fixed point set of ¢(Z;) and V; is the normal bundle of X; in M.
In the real case we orient V,; concordantly with M. In the complex case X;
‘has the natural U-structure and V,; becomes a complex vector bundle on
which ¢ acts by U-structure preserving isomorphisms of complex vector
‘bundle. By (2.3) [X;, V,, ¢] belongs to B, ..(S'; Ff) or B,,(S*; F) as the
.case may be.
PROPOSITION (2.6). The homomorphisms
vi QIS Ff, Fh) —> 3 BY (S F)
m+2k=n

-and

v: Q.(S'; g, Fiy) —> B, (ST Fi)

m-k=n

are 1somorphisms.
PROOF. Given a triple (X, V, ¢) in BY4(S'; F¥) or B, (S*; FT), let D(V)
ibe the disk bundle of V with respect to a ¢-invariant metric on the vector
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bundle V. Then it is a routine matter to verify that the assignment

[X, V,¢l—>[D(V), ¢]
gives a well-defined homomorphism

0: BY (St Ff) —> QY .(Sh; F, Fio)
or
0: Bm,k(sl s FH) —> (St F, Fil) .

Then clearly we have
v o 0 = identity.

By (2.5) and (2.4) we also have
0 o v = identity.

This proves that v is an isomorphism and v~'=29.

To define twisted complex projective space bundle we need some pre-
liminaries. First we consider the complex case. If (X, V, ¢) is a triple in
BY (S*; F}) then the subgroup Z,C S! acts on V by automorphisms. We-
assume that X is connected. This will not destroy the generality of argu-
ments which follow. Then, as is well known, there is a unique eigen-value:
decomposition of V into a direct sum
(2.7) V= 32 V)

o< ly<l
such that, for all g Z, and v € V(l,),
(2.8) P(gu=_ghv.

Note that the eigen-values of ¢(g) on V are of the form g%, 0=/, <[l. But
by the condition 3) of (2.1), 1=g° does not occur in our case. To avoid
confusion we denote by ¢’(g) the scalar multiplication by g€ S'C C in the.
complex vector bundle V. Thus

P (Qu=gv
for g= S! and v= V. With this notation we have, for g Z,,
(2.8) P(g)=¢' (gt on V().

Let F be the fixed point set of the action ¢ on X (see (2.1)). F is a.
proper submanifold of X. Let {F,;} be the totality of connected components.
of F. Then the group S! acts on V|F; by automorphisms via ¢ and each
V()| F; is clearly S’-invariant. Therefore we have eigen-value decomposition.

V()| Fj :1§z Vi, r)

where
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P(e=¢'(g" on V({,7).
"Note that the integers » must satisfy the relation
r=1, mod /.

"Moreover the isotropy subgroup at any point v+0 in V(l;, 7) is Z,.. There-
-fore, in view of the condition 3) in (2.1), the possible ones for which V{, »)
#0 are [; and [;—1. (Recall that 0</,; <) Setting

Vi) =V, L),
V;U)y=v{, -1,
‘we have a ¢-invariant decomposition
(2.9) VU F;=V3il)D Vi)
‘where ¢(g)=¢’(g)% on V() and ¢(g)=¢'(g)* on V().
Next consider the S!-action on V{(l;) defined by
g— (P’ ("

‘Since ¢ and ¢’ commute with each other this defines an action of S!. More-
-over since ¢(g)¢'(g) =1 for g Z, on V(I;) by [2.8), there exists a unique
.St-action ¢7 on V(l;) such that

+(2.10) P1(g)=¢(g)P'(g)".

“Then ¢f is an action which covers ¢. Thus we can form the direct sum
:action

(g =X PI(g)

on V=73 V({;). Itis clear that ¢” commutes with ¢ and ¢’. Furthermore
from and (2.10) it follows that

1 on Vi),

(2.11) (g =1
d(g)? on Vi(l).

Finally we define ¢, by
(2.12) $.(8)=¢"(8)%¢'(g) .

‘Since ¢” commutes with ¢’ this defines an S*-action ¢,: S*—Isom (V) which
commutes with ¢, ¢/, and ¢”. Note that the action ¢, restricted on X equals
«p®. The behavior of ¢, on V() is given by

¢'(8) on V3,
¢'(g)”t  on Vi,

@as is easily seen from and (2.11).
We extend the actions ¢ and ¢, over VX C, Whitney sum of V and the

12.13) (@)=
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trivial complex’line bundle, by putting

(2.14) P(2)(v, a) = (¢(Qv, a)
and
(2.15) (&), a)= (.(gv, ga) .

From the above data we readily obtain the following
PROPOSITION (2.16). Let (X, V, ¢) e BY u(St; F}) where X is connected..
The action ¢, on V and VXC is strictly F§-free. In particular it is free (i.e.,
F.,-free) on V—X and VXC—X.
Now choose a ¢-invariant hermitian metric on V and extend it in the:
" obvious way over VXC. Note that the metric is also ¢”- and ¢;-invariant..
Let S(V) and S(VXC) be the corresponding unit sphere bundles. The action.
¢, keeps S(V) and S(VxC) invariant and it acts freely on them by (2.16)..
Hence the quotient spaces
Py(V)=S(V)/¢,
and

P,V xC)=S(VxC)/¢,

are smooth manifolds. We shall call them twisted projective space bundles of
the pairs (V, ¢) and (VXC, ¢) respectively, although they are by no means.
bundles in the usual sense. We denote by [v] & Py(V) and [v, a]l & Py(VxC)
the images of v & S(V) and (v, a) € S(V XC) respectively. Since the action ¢»
keeps S(V) and S(VxC) invariant and it commutes with ¢,, it induces an
action on Py(V) and P,V XC) which we shall denote by the same letter ¢.

Let W,=WyV) denote the 2-disk bundle associated to the S'-fibering
S(VY—Py,V). W, is identified with the quotient space of S(V)xD? by the:
S'-action ¢, defined by the same formula as [2.15). The class of (v, @) im
W, is denoted by [v, «]. We define the map

f: W¢. —_—> P¢(VXC)
by
flv, ad=[v/V1+|al? a/v1+|al®].
We also define the map
g: D(V) — Py(VxC)
by
gw)=[v/~2, VI-|v|?}/2].

Then the following lemma is immediate.

LEMMA (2.17). f and g are ¢-equivariant smooth embeddings. f and g
coincide on S(V). Moreover we have
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g(D(V)\Jf(Wy) = Py(VXC)
and

gEDVNNfWy)=2g(S(V)).

(2.17) shows that Py(V xC) is diffeomorphic to the smooth mani-
fold D(V)\U W, obtained by glueing together D(V) and W, along their com-
mon boundary S(V) by the identity automorphism. Henceforth we shall
identify Py,(VxC) with D(V)\U W,. Then, since the S'-action ¢, preserves
the U-structure on V and hence on S(V), it is easy to see that the U-struc-
ture can be extended over W, giving a U-structure on Py(V X C). The action
¢ clearly preserves this U-structure on Py(VXC).

The manifold Py(V) is contained in the U-manifold Wy as a U-submani-
fold. Namely its normal bundle has the obvious structure of complex line
bundle, the one associated to the S'-bundle S(V)—PyV). Thus Py(V) is
also a U-manifold.

PROPOSITION (2.18). Let (X, V, ¢) be in BY (S'; F), 1 <I. Suppose that
X is connected. Then the action ¢ on Py(V) is Fi,-free. The action ¢ on
Py(VXC) is Ff-free and the fixed point set of the first kind of ((Z,) equals
precisely X. The normal bundle of X in Py(V XC) is ¢-equivariantly equivalent
to V.

PROOF. Let ve S(V) and [v] be the image of v in Py(V). Then we have

dHlvl=[v]
if and only if

(2.19) d(gyv=¢,(hv for some he S*.

Let ve V,, the fiber of V over x< X, and suppose first that x<& F, where F
denote the fixed point set of the action ¢ on X. Write v as

v= 3 Uy, v, =0 V()

according to the decomposition (2.7). Then

i

Y= ¢"(2'P'(g) “vi;, by (2.10)
and

(b =2 ¢"(W2*P'(Wvs, by [2.12).
Since ¢” covers ¢ which is free on X—F and ¢’ preserves V,, the condition
is equivalent to

gi=h and g®=h.

Such an element & exists if and only if

I--2l,':s

(2.20) =1 for all s.
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Let H be the subgroup of S' consisting of all elements satisfying [2.20). H
is equal to S' if we have only one s and [;,=1[/2. Otherwise H=Z, where
d is the greatest common divisor of {|/—2/;|}. Since 0</,, <[, we have
|i—2l;,|<I. Hence d <Il. Thus we have proved that the isotropy subgroup
at v belongs to i, and P,V (l/2)) is a component of the fixed point set of ¢.
Next suppose that x & F;, a component of F, and ve V,. Write v as

v= 2 vi+ D v,

where vi, € V3i(l,,) and vy, € Vj(l,). Then the same reasoning as above using
(2.11) and (2.13) shows that (2.19) is equivalent to

g¥=h and g M=h

for all s and t. Hence the isotropy subgroup H of ¢ at [v] is Z; when
different values occur among /;;, and [—/,, in which case d is the greatest
common divisor of |l;,—{;, |, [l;;—U—Ik,)) and |l,,—I,|. Since 0<I; <I, these
numbers are smaller than . Hence d <!/ and He ¥,_,.

If there is only one value among /;; and /—/;, then H equals S'. This
implies that Py(V/(l;)) is a component of the fixed point set of ¢, where
Vilyy=Vil)d Vii-L).

Thus we have proved that ¢ is F{ ,-free on P,(V). Since the open sub-
manifold Py(VXC)—Py(V) is ¢-equivariantly diffeomorphic to V the rest of
the statement is clear.

REMARK (2.21). In the above proof we have shown that the fixed point
set of the action ¢ on Py(V) is the disjoint union of Py V(/2))=S(V(/2))/¢:
(when [ is even) and Py(V'(1;))=S(V'(1;))/¢, for l;+1/2. In particular, if |=2
then any element in Py(V) is fixed by ¢. Indeed in this case the actions ¢ and
¢, coincide, whence ¢ is trivial on PyV).

It is again a routine matter to verify that the assignment

BLauw(S*; FI)D(X, V, §)—— [Py(V XC), 1< 2%.:(S*; F1)
induces a well-defined homomorphism
‘P: BY,o(S'; Fi) —> 2%.(S*; FT) .
THEOREM (2.22). Let | be an integer, 1 <l. The homomorphism
‘Poy: QU(S'; Ff, Fl,) — QY(S*; F)
is a splitting for
Jx: QU(ST; FF) —> QU(ST; Fi, F) .
PROOF. Consider the composition vojxo'P. Then, for any (X, V, ¢) with
connected X, we have

yoj*OtP[X, V, Sb]:[Xv Vv ¢]
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by (2.18). Since such [ X, V, ¢] generate > BY.(S'; ), we have

m-Czk=n
yoJyo P =identity.

By (2.6), v is an isomorphism. Hence it follows that
jxoPoy =identity .

REMARK (2.23). It can be shown easily that, for any [M, ¢] = QY(S*; ).

the element
[M, ¢]—"Povoj*[M, 1< ix29(S*; Fiy)

is represented by [M,, ¢ where
M,=(M— }{J int D(V,)) U }j~W¢(Vi)
i A
glued along EYJ_S(V,;).

Here {X;} 1is the totality of the connected components of the first kind of
the fixed point set of (¢(Z,) and V,; is the normal bundle of X; in M. —W,
denotes the U-manifold Wy with the opposite structure. We may call M,
twisted blowing up of M along U X,.

COROLLARY (2.24). There are canonical isomorphisms
QUS*; FH=27(S; FHD X 'PI(SH; Fi)
1<k =l
and
QUSH; FH=QY(S; FHD b2 'PY(SY; ),
1<k
where

TPEI(SY; g ="P( Py BLa(S'; F1)) .
m+2k=n

PrOOF. For &} it is immediate from (2.23). Since
QS g = %@QZ(SI; =5

the case for 4 follows from the former.

We turn to the real case. Let (X, V, ¢)e 8,,.(5'; ) and suppose that
X is connected. Z; acts on V and hence on V¢ the complexification of V,
by automorphisms. Decompose V¢ into the direct sum of eigensubbundles

Ve= 3 Vel

0Lyt
where ¢(Quv=g'iv for g Z, and ve V(). For 0<[;<1/2 we set
Ul)y=VnN(Vel)yeVvei-Ln).

U(l;) can be given a structure of ¢-invariant complex vector bundle with a
decomposition
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U(li) = V(li)@ V(l_li)
such that, for any g Z,, we have

d(gv=¢(glv for ve V()
and
Pgv=¢' (g  for ve V(I-L),
where ¢’(g) denotes the scalar multiplication in the complex vector bundle
U(l,). For example, the map p: V°(,)—U(l;) given by -

(2.25) o(v) = (v+2)/2
is a real isomorphism for [, #[/2 so that it transports the complex structure
of V() onto U(l;). With this structure we have U(/;)= V({;) and V(—I[;)=0.
If [ is even, we set
VU/2)=V \VEUI/2).
Z, acts on V(l/2) by

¢(gU:gl/2U, gEZla UEV(Z/2)7

where it should be noticed that g?= +1 for g€ Z,. V(l/2) does not have
complex vector bundle structure in general. Here we digress to give a proof
of Remark (2.2). It clearly suffices to prove that the fiber dimension of V(//2)
is even when [ is even. Consider the transformation ¢({) on V(I//2) where

¢ =e*-Y!  Since it is connected to the identity in ¢(S?), it preserves the
orientation. Since it keeps the base pointwise fixed, it acts on each fiber of
V(l/2) preserving orientation. But ¢({)= —1 on each fiber. This implies the
dimension of the fiber is even. This proves (2.2).

Now consider the St!-action on V(/;), 0</; <[, I; #+1/2, defined by

g— P('(g)te.

Since ¢(g)¢’(g)'i=1 for g= Z, on V(/;) there exists a unique action ¢/ on
V({;) such that

(2.26) Pre) =P(g)p'ig)t.
The action ¢/ covers ¢. Let ¢” be the S'-action on = ) V() given by
0Ll L 2
()= 2 ¢1(8).

We define the S'-action ¢, on > V() by

0l1g<t, lgFl/2

(2.27) O(&) = (8¢ ().

This action covers ¢® Next observe that, when [ is even, there is a unique
St-action ¢, on V(//2) such that
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(2.28) (@) =¢(g).

This also covers ¢?. Thus we can form the direct sum action ¢, on V from:
(2.26) and [2.27).

LEMMA (2.29). The St'-action ¢, on V is independent of the choice of ¢-
tnvariant complex vector bundle structures on U (L), I; = 1/2.

PrROOF. Let ¢’(g) be the scalar multiplication of a ¢-invariant complex:
vector bundle structure on U(/;) and let ¢’(g) be the one which is transported
by p from V() as in (2.25). It is not difficult to see that

P(Q=¢(g) on V()

and
P (@=¢(g)* on V(U-L).

According to we define ¢” by
¢"(8) =(g)¢' (9"t on Uly).

Then we have

(=) (g H=¢"(g)} on V(,),

and
97(8)' = (¢’ (g)"
=(g)¢'(g) o' (g)
=¢"()'¢(&) on V(—L)
where 0 </; <//2. Hence it follows that
I ¢ on V(l),
v = ¢"(¢'(g)  on V{I-L).
Then
$:(8) = 9"(8)*¢'(8)
_ | #® on V(1)

$7()>P (8¢ (8) ' =¢" (9 (g)=¢:(g) on V(I-L).
This proves ¢, =¢, on U(l;), 0<[;<1/2. Thus ¢,=¢, everywhere.

With this ¢, defined we can proceed in an entirely similar way as in the
complex case. Note that, in the complex case, ¢,(£) on V(I/2) satisfied [(2.28)
too. In particular (2.16) holds for B, .(S'; &) instead of B x(S'; F) and
we can form the smooth manifolds Py(V)=S(V)/¢, and Py(VXC)=S(VXC)/¢»
which we shall also call twisted complex projective space bundles. We orient.
Py(VxC) concordantly with D(V)CZ Py(VxC) as in the complex case. The
normal bundle of Py(V) in Py (VXC) is oriented by its complex line bundle
structure associated to S(V)— Py(V). Then the above orientations of Py(VXC)»



714 A. HaTtToRI and H. TANIGUCHI

and the normal bundle determine the orientation of Py(V). (2.18)
holds also for 8,,(S'; F). We define the homomorphism

‘P: Bm,k(sl s Fi) —> Qpai(ST; FF)
by
‘PLX, V, g1=[Py(VXC), ¢].
“Then we obtain
THEOREM (2.29). Let | be an integer, 1 <. The homomorphism

‘Poy: 2,(S°, Ft, Fir)) —> 2.(S; 1)
1s a splitting for
j*: ‘Qn(sl; gf) I Qn(Sl; 3'?’, gltl)-

COROLLARY (2.30). There are canonical isomorphisms
Q,(SY; FH=0,(S*; FHD X 'Pu(Sh; F)
1< ksl

and
Qa(S*; F2) = QST FND T 'Pul(S*; Fi)

‘where
EPL(SY; F) =P ; B, (ST ).
m+k=n

REMARK. Let (X, V, ¢)e BY.(S*; F) and suppose that the action ¢
induced on X (see (2.1)) is free which implies in particular that the action ¢
on V is &F,-free. Even under this assumption the fixed point set of the action
¢ on P,V XC) is not empty in general. For example when [=2 the submani-
Jold Py(V) is the fixed point set by (2.21). However in this case, i.e. when
the fixed point set F of the action ¢ on X is empty, the action ¢” is free so
that S(VXC)/¢” is a smooth manifold. Moreover the action ¢ on S(V < C)/P”
is F,_,-free. This can be used to give a splitting for

Ju: QST F) —> QS Fy, Fon) .

Similarly let (X, V, ¢) € 8,,,.(S'; F) and assume that the fixed point set F
of ¢ is empty and V has a structure of ¢-invariant complex vector bundle.
‘Then we can form ¢” and smooth manifold S(VXC)/¢” in this case too (but
not canonically). This can be used to show that

Je: 2u(ST; FNRZ[1/2] —> 24(S*; Fu, F,-.)Q® Z[1/2]

is onto. These constructions were used by Ossa [7].
Finally we remark that in the above constructions we may replace ¢”(g)
by ¢"(2)’(g) which will give another splitting for jx.
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§ 3. The Kosniowski Formula.

Let M be a closed U-manifold with a smooth S'-action ¢ preserving the
given U-structure. Then each component F; of the fixed point set F is a
U-manifold in a natural way. Moreover the normal bundle V; of F; in M
decomposes as a direct sum

V= g Vs

of complex vector bundles V;; on which the given S'-action ¢ is expressed by
Plew=g""v, kyeZ kj;+0,
for ve V,, where g“*v denotes the scalar multiplication in the complex
vector bundle V ;. We define the integers d™(F;) and d~(F;) by
d*(F;)= 2 dim¢ Vs,

s,k]-3>0
d"(FJ): 2 dlmc Vjs'
8,k 750
We shall call d*(F;) (d~(F))) positive (negative) type number of F;. With these
understood, the Kosniowski formula reads as follows.
THE KOSNIOWSKI FORMULA [6]. Let M be a closed U-manifold with a

smooth S'-action preserving the U-structure. Then the following relation be-
tween the T,-genera of M and the components of the fixed point set holds.

T,(M)= 2 (=) FPT(F))
=2 (=T FPTY(Fy),

where T, is the genus associated to the formal power series in it

{1+
’ et((1+y>3)_>1 -+,

cf. [2].

In this section we shall give an elementary proof of this formula. Im
view of (2.24) it is clearly sufficient to prove the formula for
[M, ¢]e Q9(S*; F1) and (M, ) = (Py(V X C), ¢) where (X, V, ¢) € BLa(S"; F7)-

I. Semi-free case. The proof given here is due to Takao Matumoto.

We thank him for communicating us his proof.
Let ¢, be the S'-action on S*P+®-! defined by

(/)p,q(g)(zb ttty Zp; Wy, ooy wq): (gzly ttty gzpr g#lwl’ Sty g—lwq)

where z;, w;&C. The action is free so that the quotient space CP,q =
Sxp+e-1/¢y - is a closed smooth manifold. CP,, is made almost complex
manifold by local charts
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V4 r4 w w
( 1 , e, <7p”’ ) _1" e, ,_?,_) where zi:}‘_-o
Zq Z; < <
and
V4 V4 w w
( 1o, fe 0 0 L e ) where w; # 0.
w] w; W; w;

LEMMA (3.1). With the above almost complex structure, we have
_ 1 V(P
TYCPp) = | _(_y (=30 —(=2)").
PROOF. Consider the diffeomorphism
f: CP,,—> CP?P*¢!
induced by f: S*P+0-1, G¥PrO-1 giyen by

f(z]v Tty Zp’ Wy, *2y wq): (zly ) zpy wl’ Tty wq) .
Let CP’ denote CP?*?! with the almost complex structure transported by f.
“Then it is not difficult to see that
(CP)D1=pEDgé*

‘where 7z, 1, £ and &* denote the complex tangent bundle, the trivial complex
‘line bundle, the canonical line bundle and its dual respectively. It is also
«clear that the orientation of CP’ is (—1)? times the usual orientation of
CPP+1-1 Tt follows that

T,CP,,)=T,CP’)=coefficient of (—1)x" in h(x)
‘where n=p+¢—1 and

h(x) = x(y+1) o ) (—x(y+1) x)“.

eTW ) —ZY+D

1]( PI’)Q) - ( .) ) § ( ) d

2m1 ekl

“The substitution u = e*¥*Y—1 gives

o g e b

Ty(CPp,q): o2ri y+1 n+1(1+u)—‘

—-du.

Hence
Ty(CPp,q) - (_y)q/(y+1)

X (coefficient of u™ in (14+u+y)?(14+u+1/9)4/(1+u)).
But 1+u+y)?A+u+1/y)? is of the form

:':2: a,(1+u)t
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with a¢,=y?/y? and a,,,=1. Therefore

coefficient of ™ in (1+u+y)?A+u+1/9)%/(1+u)=(—=1)"y?/y?+1.
Hence we obtain

TUCPa) == (=3 — (=27,

Now suppose that the S'-action ¢ is semi-free (i.e. Fi-free) on M. We
define the S'-actions ¢ and ¢, on V;XC by

H(9)w, a)= (g, a)

and

(), a) = (P(Q)v, ga) .

Choose a ¢-invariant hermitian metric on the complex vector bundle V; Let
D(V;xC) and D(V,) be the associated unit disk bundles and S(V;xC) and
S(V ;) the associated sphere bundles. Since the action ¢, is free on S(V,;xC),
the quotient space Py(V;xXC)=S(V;XC)/¢; and S(V;)/¢, are smooth mani-
folds. Just as in (2.17), Py(V,;XxC) is identified with D(V;)\U Wy(V ;) where
W4(V;) is the disk bundle associated to the S*-bundle S(V;)—PyxV,. In
particular Py(V ;X C) is endowed with a ¢-invariant U-structure which extends
that of D(V;). Moreover since ¢, acts on V; by automorphisms, Py(V;xC)
is fibered over F; with fiber CPd}uH,dj— where d =d=*(F;). Then the U-structure
of Py,(V;xC) given above is compatible in the sense of [2, (21.8)]. Similarly
PyV,;) has a ¢-invariant U-structure and is fibered over F; with fiber
CPd;,r,dj—. With these understood,

LEMMA (3.2). Let ¢ be a U-structure preserving semi-free S'-action on a
closed U-manifold M. Then we have '

§;[P¢(V,.><C), $1=[M, ¢] in QY(S*; F1)
and

2P,(V)1=0 in £2%.

PrROOF. Let M, be the manifold obtained by glueing together
M—\int D(V;) and \U—Wy(V,) along their common boundary US(V;). Then,
as in (2.23) we have
(3.3) S [P,V ;xC), $1+[M,, $1=[M, ¢]

in 2%(S'; #¢). But the action ¢ restricted on M,=M—\U int D(V,) is free
so that M,/¢ =Y is a U-manifold. Let N be the 2-disk bundle associated to
the S'-fibering M,— Y. Then clearly we have

ON=M, and 8Y=UPy,V),).
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Therefore
(M, ¢1J=0  in Q¥S*; F1)
and
SPAV)1=0 in Q4.

This together with proves [Lemmal
PROOF OF THE KOSNIOWSKI FORMULA FOR [M, ¢] Q2%(S*; F{). We first

remark that the bundle Py(V;xXC)—F; has U(d;+1), d;=dj+dj, as structure
group and the almost complex structure on the fiber CPd;H,d; is invariant

under the action of U(d;+41). Therefore, by the strictly multiplicative pro-
perty of the T,-genus [2, (22.8)] we get

Ty(P¢( Vj X C)) = Ty(Fj)Ty(Cde“H.d;) .
Then by (3.1)

TPV, XC) =

1j(:y)’ (—=» {‘(—y)

dj+1

)Ty(FJ) .

Combining this with (3.2) we obtain

+
d’j +1

(3.4) T, (M) = T—%ZE)'" S ()T =) TTYE).

Similarly from the second equality in (3.2) we get
(35) 0=+ oS (=NT—nTTF).
A—=(=) 5 v
Subtracting from yields
T,(M)= 5 (—)“T,(Fy).
This together with yields
Ty(M)= (=) Ty(F)).

II. Case of [PyVXC), ¢]c PYUS"; ). Given (X, V, ¢)c BZ%.(S; F),
let F be the fixed point set of ¢ in X and let {F,} be the connected com-
ponents of F. Let U; be the normal bundle of F; in X. The action ¢ de-
composes U; into the direct sum U;=3> U} so that

o(Qu=g"u for g St' and ue Uy,

where k;, € Z. Set
and

We also set
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=2 Vid),
123
Vi= tE Vi)
i

where V3;(l;) are as in [(2.9] Note that {F,} is a part of connected com-
ponents of the fixed point set of the action ¢ in Py(VXC) and we have

d¥(FH)=dim U}+dim V7},
d (F;,)=dim Uj-+dim Vj.
Here and throughout this Section dim means the complex dimension.

We consider the action ¢” defined in (2.10). Since ¢” commutes with ¢,
it can be extended to the S'-action ¢” on P4,V XxC) by the formula

¢"(Lv, al=1¢"(Qv, a].

LEMMA (3.7). Let (X, V, ¢) € 8L ,(S'; F1) and suppose that X is connected.
The action ¢” on P,V XC) is semi-free. lIts fixed point set consists of com-
ponents Py(VixC) and PyV 7). Their type numbers are given by

d*(Py(VixC)=dim U7y,
d-(PyVixC)=dim Uj;+dim Vy,
d*(Py(V;)=dim Uy,
d"(Py(V37)=dim Uj+dim Vj-+1.

PROOF. Since ¢” covers ¢, its fixed point set is contained in \UPy(V|F;XxC).
Then, using (2.11), we see that the fixed point set is as stated. As to the
type numbers of Py(VjxC), since it contains F; around which the action ¢”
is equivalent to the given action ¢” on V the statement follows from the
definition of U7 and V ;.

Next consider Py(V;). Let D(U;) be a small g-invariant open tubular
neighborhood of F; in X. Then the bundle V|D°(Uj) can be ¢-equivariantly
identified with the complex vector bundle V@ U;. With this in mind, given
a point (v,, 0) € S(V;)C S(V;xC) any point in S(V;xC) near (v, 0) can be
expressed in the form (vo+v, a), ve VPU;, a=C. Note that the normal
vectors to Py(V7) in Py(VXC) at [v, 0] are spanned by [v, al, [v,+v, 0]
with v& V7§ and [v,+u, 0] with ue U3. We compute the effect of ¢”(g) on
these generators.

(3.6)

P"(8)[ve, al=[¢"(Qv,, ]
=[¢(& vy, a] by (2.11)
=[¢:(Qv,, a] by (2.13)
=[v,, g7'a].
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"(Qvetv, 0]=[¢' (&) 'vy+v,0]  for v V7 by (2.11)
=[¢(Qvet+v,0] by (2.13)
= [vo+¢1r'(g)v, 0]
=[wvo+¢’(g) ', 0].
P"(@vo+u, 0]=[¢'(g) 've+e(gu, 0]  for ue U; by (2.11)
= [:(Dvo+(Qu, 0]
=[vot+ (&) *p(gu, 0]  since ¢,(g=¢*(g) on U;

=[vot+¢(g)'u, 0].
Therefore we have

d*(Py(V;)=dim U7y
d"(Py(V;)=dimUj+dim V}+1.

In an entirely similar way we obtain

LEMMA (3.8). Under the same assumption as in (3.7), the fixed point set of
¢” in Py(V) consists of components Py(V7}) and Py(V73) for which the type
numbers are given by

d*(Py(Vi)=dim U7,
d-(P4V )= dim Uj+dim V7,
d¥(Py(Vi)=dim Uy,
d"(PyVi)=dim Uj+dim V}.
The following (3.10) is a variant of the Kosniowski formula for
(Py(VXC), ¢).
PROPOSITION (3.9). Let (X, V, ¢) s BE (St; Fi). Let {F,} be the com-

ponents of the fixed point set of ¢ in X, and let U} and Vi be defined as
above. We have

im U, +dim Vv im U7 +dim v+
T,,(P¢(V><C))=~1———_(1_y) S R R TR
and

T (PyV)) = ‘1?(11_})_)_ ? {(_y)dim Uy +dim Vj“_(__y)dim U;_+dim V;* VT,(F)).

COROLLARY (3.10). Under the same assumption as in (3.9) the following
relations hold.

Ty (PLV X C) =Ty PV )+ S (=" vf rim Vi (F)

= ATV )+ 3 (—) iUtV TRy,
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0=S(»" U ()Y T(F) .

PROOF OF (3.9) AND (3.10). The action ¢ on X is semi-free so that we can
apply the Kosniowski formula proved in I to get the last relation of (3.10).
“The action ¢” on Py(V xC) is semi-free. Hence we can apply the Kosniowski
formula to this action. By the strictly multiplicative property of T,-genus
:and (3.1),

T 1 dim v +1
W(Py(VIxC))=- G 1—-(-» IT(Fy),

Ty PV ==y ()™ T —DT(F,).
1—(—y)
Using the data in (3.7) we obtain
dim V++1)

TYPAVXCN =" | - (s S~ (= (=p)*"

(=T (=TT D} T,(F)) .

'Using the last relation in (3.10) we obtain
im U +dim v im U} +dim v}
Ty PV XCON= (- S 7T (O

“The formula for T,(Py(V)) is proved similarly using (3.8). This proves (3.9).
“The rest of the statement in (3.10) is immediate from (3.9).

Now we shall deduce the Kosniowski formula for (Py(V xC), ¢) from (3.10).
‘We proceed by induction on ! where (X, V, ¢) € 8Z5,4(S*; F), 1<l Let {F;}
'be the components of the fixed point set of ¢ in X. First suppose [=2.
“Then by (2.21) the fixed point set of ¢ is the union of F; and Py(V). As in
‘the proof of (3.7) we see that the type number of Py(V) is given by

d*(Py(V) =0 and d(Py(V)=1.

“Thus with this and (3.6) the formulae in (3.10) are nothing but Kosniowski’s
‘one in this case.

Next suppose />2. Then the components of the fixed point set consists
-of {F;} and {Fg} where F;C Py(V). See (2.21). Let d*(F}) be the type num-
ibers of Fj, and let d’*(F}) denote the type numbers of F; with respect to the
-action ¢ restricted on Py(V). As in the proof of (3.7) we have

(3.11) d*(Fg) =d'*(F}) and d(Fp=d~(Fy-+1.

By (2.18) the action ¢ on Py(V) is F{~,-free. Hence by the induction assump-
tion we can apply the Kosniowski formula to this action to get
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’
d'+(i's)

Ty PV ) = S "TyF)

a—(FD

=2(=) Ty(F) .

Substitute this in the formula (3.10) and use (3.6) and (3.11). We obtain
+ ’
T, (PiVXC) = (—»" T (F)+ by (=) EPTY(F,)

d=(Fp

=2(=y) TT(F o+ ;jj (=) FPT(Fy).

This proves the Kosniowski formula in its full generality.

§4. The Atiyah-Singer Formula.

In the case of oriented manifold with a smooth S'-action, the normal
bundle V; of each component F; of the fixed point set has still an S*-invariant-
complex vector bundle structure with a direct sum decomposition

V=2V
such that ’
(g =grisv
for v V. Here the complex structure on V is determined up to sign of
k;. We fix it by requiring k,,>0. Then the normal bundle V; and the:
manifold F; are canonically oriented. We set d(F;) =dim¢ V,;. With the above-
orientation convention we have
THE ATIYAH-SINGER FORMULA [1, p. 594]. Let M be an oriented closed’
smooth manifold with a smooth S*-action. Then
sign M = > sign (F;),

Fj, d(l"j) even

0= > sign(F;).
Fj,d(Fj) odd
An elementary proof of this formula will be given in the sequel. By
(2.30) it is sufficient to prove it for [M, ¢]e 2.(S'; Fi), and [M, ¢]=
[PV XC), g1 P,(S*; F7), 1<I. As to the case of 2«(S'; F{) we refer to:
where a proof similar to that of I in Section 3 is given. Thus we confine:
our attention to the case of ‘P,(S!; F{). Given (X, V, ¢) € B,,.(S*; F) the:
real vector bundle V does not necessarily have a structure of complex vector
bundle. Consequently we can not in general use auxiliary action ¢” as in the:
complex case. To remedy this point we first make some cohomological con-
siderations for a special type of (X, V, ¢). Let {F;} be the components of
the fixed point set F of ¢ on X as before.
I. We first assume that each F; has real codimension 2 in X.
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We shall prove

PROPOSITION (4.1). Suppose that (X, V, ) € B, .:(ST; Fi) and each F; has

real codimension 2 in X. Then
> sign F; if kisodd,
signPSb(VxC):‘ J
0 if kis even.

0 if B is odd,
sign Py(V)= l ‘ .
?sign F; if k is even.

REMARK. In (4.1), assume moreover that the manifold X (and hence the
wector bundle V too) is orientable. Then the Atiyah-Singer formula applied to
.the semi-free action ¢ on X yields 2 sign F;=0. Therefore sign Py (VxC)=
sign Py(V)=0 in this case. ’ ‘

The proof of (4.1) is preceded by several lemmas. We shall only give
proof for P,(V), the case for Py, (VxXC) being entirely similar.

We use the following notations. P=PyV), P,=PyV|F)=S(V|F)/¢,,
Y=X/¢p. Leti: PL.CP, j: PC(P, Py, ": FCY and j/: YC(Y, F) be inclu-
'sjons. Since the projection S(V)— X is equivariant with respect to ¢, and
«@* it induces a map n: P—Y. Let n,: P,— F be the restriction of = and set
= (m, my): (P, Py)— (Y, F). It is easy to see that #: P—P,—Y—F is a fiber
.bundle which has (2k—1)-dimensional real projective space RP?*' as fiber and
7o: Py—F is a fiber bundle with fiber CP*™* associated to the vector bundle V
with the complex structure determined by our orientation convention. Moreover,
'since each F; has real codimension 2 in X, the quotient space Y= X/¢ is a
.compact manifold with boundary F. Take a collar neighborhood Fx[0, 1] of
F=0Y in Y and set Y,=Y—FXx[0,1), Qo=7""(FX[0,1]) and Q,==n"%Y),).
Note that @, is a tubular neighborhood of P, in P.

We shall consider the following commutative diagram.

5'* j* i 5% l
-« —> H(Y, F) — HY(Y) — HYF) — H"Y (Y, F) —>
¥ T* ¥ ¥
{4.2) o —> HYP, P)) —> HYP) —> HYP,) —> H"(P, P))
Ty T
ﬁq—@k—l)(y, F):ﬁq—CZk—l)(Y, F)

01 l o

O/ i

HYF)— H"YY, F) — H*Y(Y)
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Here H* denotes the usual rational cohomology and H* denotes the coho-
mology with coefficients in the rational orientation sheaf of the manifold Y.
7, and &, are Gysin homomorphisms; i.e. 7, =9 '743 where 4 denotes the-
Poincaré-Lefschetz duality and x,, is the transform (via excision) of 9 749 =
HYQ,, 6Q,)—+Iflq“(2k'”(Y1, 0Y,). The homomorphism p, is given by p,(¥)=y-%
where Zeﬁz"()’) is the rational characteristic class of RP?** !-bundle = :
Q:—Y, =Y, and p=j'*op,. '

Let 1,: H*(PQ—»H*(P) be the Gysin homomorphism of . As is well-
known, the element X =1*;,(1) of H2%* P, is the Euler class of the normal
bundle v; of the embedding i. Let e= H?* P,) denote the first Chern class of’
the canonical line bundle & of the complex projective space bundle P,. Let.
¢, € H*F) denote the first Chern class of the normal bundle ¢ of F in X with.
the complex structure determined by our orientation convention.

LEMMA (4.3). With the above notations, we have

X =2e+r¥(c,).
PROOF. We claim that
v, =8Qrf (),

which implies Lemma (4.3). For the additivity of the first Chern class with:
respect to the tensor product of complex line bundle yields

X =c,(vi) =2¢c,(§)+rge,(p)
=2e+tr¥c,.

o~

To prove the claim, note that the normal bundle ¥ of S(V|F) in S(V) is.
equivalent to #*y where #: S(V|F)—F is the projection. Moreover we can.
choose an equivalence equivariantly with respect to ¢,. Thus we may assume:
that ﬁ_—_S(VlF)>I§,u (fiber product) with the action given by

09w, w) = (¢’ (gv, p(L)w) .

S(V|F) is contained in the Hopf bundle &, the conjugate bundle of &, as the-
sphere bundle. With this understanding, it is easy to see that the assignment.

v, ul— 2R Ru
gives a well-defined equivalence
vi=0/¢; —> £ Qi (p)

where 7 is the conjugation of v & in & This proves (4.3).
To proceed further we recall some fundamental properties of the Gysim
homomorphism which we shall use later.

(4.4) H*(aFNX) =z for y € H¥(F).
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(4.5) 71'17:1 = ia*ﬂo] .
(4.6) 2 (7* () x) =y, (x) for y € H¥(Y) and x H*(P).

Now since P, is a complex projective space bundle, H*(P,) is a free H*(F)-
module (via z¥) on generators 1,e, -, ¢* ' In virtue of (43) 1, X, -+, xE-t
also form a system of free H*(F)-module generators.

LEMMA (4.7). The Gysin homomorphism

mo 2 H*(Py) —> H*(F)
is onto. Its kernel equals

A='"SS H*FI
J=0
PROOF. m, lowers degree by 2(k—1). Hence 7,(*’)=0 for j < k—1. Then
T (mF (X)) = ym(X7) =0 for j<k—1.

Thus 7,(A)=0. If we assume m,(X**)=0, then m, would be trivial. But the
Gysin homomorphism maps the top dimensional classes of P, into the top
dimensional classes of F non-trivially. Hence 7y(X*™*) # 0 and wo(H*(F)X*"*)
= H*(F).

LEMMA (4.8). Let A='3 H*(F)-X’ as above. Then i,|A and i*|i(A) are
injective. =

PROOF. This follows immediately from (4.4).

LEMMA (4.9). The rows of (4.2) are exact. The columns of (4.2) are exact

except for the part
7-:*

T
HYY) —> HYP) —> H-k-1(Y, F)

Proor. The rows are part of exact sequences of pairs and hence exact.
The first column is exact as part of the Gysin exact sequence in the rational
cohomology of the RP*~*-bundle =,: (Q,, 0Q,) —(Y,, 0Y)).

To prove the exactness of

TC A
(4.10) Ho(py > fo-ae-s(y, py 5 Hosy)
we consider the following commutative diagram
Vhy of iy
—> HYP, Q)—>  HYP) —>  HYQ,) —H"(P,Q,)—>
I I
H(Qy, 3Qs) | = | = HY(Qy, 3Q0)
I T 1 7o

s Hq—zk(F) — s ﬁq-(zk—l)(Y’ F) —> ﬁ'q—(Zk—l)(Y) —_— Hq+1—2k(F) -

Le e

H‘I+1(Y) — HQ+I(Y)
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where 7§, and = are Gysin homomorphisms and p’(y)=yX. Let
@ : H*(Py) —> H*(Q,, 9Q,)
be the Thom isomorphism. Then we have
Ty =m0 P! and Jfop=1.

Therefore from (4.7) and (4.8) it follows that xj, is surjective and oF(H%Q,))
NKernel 75, =0. Then the exactness of follows from a diagram chasing
using the exactness of the third column of the above diagram.

PROPOSITION (4.11). Let (X, V, )€ Bpoil(St; F) and assume that
codimg F; =2 for all F;. Then

Kernel of =,: HY(P) —> f!q'(z""’(Y, F)
=n*HYY)D1,(AT7?) (direct sum)
where
Av2 =S He (R
j=0

PROOF. Since =, lowers degree by 2k—1 we have m,(1)=0. Then, by

(4.6),
#*HY(Y)C Kernel of =,.

By (4.5) and (4.7) we have, for j<k—2,
T (rF(X) = £0*mo(2F(3)X) =0.
Thus 1,(A) C Kernel of =x,.
Next, using (4.4) we obtain
*(*HU Y )YNG(AT ) CrFfHU(F)N\ AT X=0.
But i* is injective on ,(A?°%) by (4.8). Hence #*H¥(Y)N1,(A?7%)=0. We have
proved that
n*H(Y)YP1,(A?"?)C Kernel =,.
To prove the equality it is therefore sufficient to show that
dim 7*H%Y)+dim A? 2= dim Kernel =,,
or
dim #*HY(Y)+dim A *+dim =, HY(P) =dim HYP).

‘This follows from a diagram chasing of (4.2) using (4.9). We leave the details
to the reader. We only note that
i*HY(P)= A" X @ r§(8* (0,H4 (Y, F)))

as follows easily from (4.4).
LEMMA (4.12). Suppose that (X, V, ) € By, 0(S'; F) and codimg F; =2
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for all F;. Then the pairing

n*H™ =YY g, H™ = {(P) —> R
defined by

¥y -m(x) = (x*y - x)[P]

és a dual pairing. In particular

dim n*H™* YY) = dim 7, H™*"(P).

PROOF. If n*y.m(x)=0 for any x, then by Poincaré duality in P, z*y =0.

Suppose that z*y.m(x)=0 for any y € H™%*"(Y). Then

O=m(z*y-0)LY, Fl=(y -m(x)LY, F]

for all ¥ by (4.6). Hence m(x)=0. This proves (4.12).
We are now ready to prove Proposition (4.1). In the case of Py(V) we

may clearly assume that (X, V, ¢) € B,,,.,(S?; F7) and m+k—1 is even. We
set

B, = i,(A™¥E-3) B, = n*H™=1(Y)
and

B;=a complement of B,@® B, in H™*"(P).
‘Then by (4.6), (4.11) and (4.12) the matrix of the cup product
H™ =1 (Pyx H™*-1(P) —> R

with respect to the decomposition H™*-(P)= B,® B,® B, is of the following
form.

Bl Mll 0 *
BZ 0 0 M23
B3 * tM23 *

It follows easily that
sign Py(V)= sign M,, .
But using we get

(VX1 (7, X72) = 1,( 3,y X1+
:and hence

(Y )i (3 XD P ] =y, Y X1t eH [P ] .
“Therefore sign M,, is equal to the signature of the bilinear form @ on
k—2
AmrE-3 — S gHmrk-s-2i(FYY I defined by
J=0
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Q(¥1X74, y,X72) = 3, y, X2+ [Py ] .
We set
C;= H™* 321! .
Since the fundamental cohomology class of P, is #X*~! where g is that of F,
we get

Q<CJ'1’ Ciz):O for ]1+]2+1<k—1
and

Q¥ X7, y, X728y =y,y,[F] for j,+j,+1=k—1.

Therefore the matrix of @ with respect to the decomposition A™*-2=C,H
-« @B Ci_, is of the form

= No. ks

where Njy.,-; is the matrix of the cup product H™+¥-3-2/(F)x Hm - k+1+2(F)
— R. From this it follows easily that

sign Py(V)= sign M,,
0, if & is odd,
= sign Q =
sign F, if 2 is even.
This completes the proof of (4.1) for Py(V). The case of Py(VXC) is simi-
larly proved.
II. General case. First we shall prove the following proposition which
is a variant of the Atiyah-Singer formula. Cf. (3.9) and (3.10).
PROPOSITION (4.13). Let (X, V, ¢) € By (S*; Fi). Let {F;} be the com-
ponents of the fixed point set F of ¢ in X. Then
sign Py(VXC)= > sign F;,

codimc ¥; even
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sign Py(V )= » sign F;,

codim¢ Fj odd

where codim, means the complex codimension in V.

PROOF. First we shall decompose [ X, V, ¢] into a sum of elements with
certain simple properties. Take a ¢-invariant tubular neighborhood D(U )
around F; and let p,: D(U;)—F; be the projection of the normal bundle.
Then there is a ¢-equivariant bundle equivalence

g;: VIDWU,)) ~—>P*(V|F;~):D(UJ)F>§ VIF,;
where the action ¢ on p*(V|F;) is given by
&) u, v) = e, Ya)
= (p(&)'u, ¢(&).
We identify both bundles through #; and consider the S'-action ¢” defined by
¢7(g)(u, v) = (p(u, v).

Clearly ¢” commutes with ¢. Moreover it is semi-free outside of V|F;.
Therefore the mapping cylinder W; of the projection V|S(U,)— V|S(U,)/¢”
is a vector bundle over the mapping cylinder Y; of the projection S(U;)—
S(U;)/¢ where S(U;)=0D(U;). Thus we can form a vector bundle

on the complex projective space bundle X;=PU;xC)=DU;)JY;. The

orientation of the manifold V; is given concordantly with that of V|D(U,)-
The actions ¢ and ¢” are extended over V; in the obvious way. Define

Vi=(V—-Uint VIDWU;)J U W,
glued along U V|[S(V;), and
X =(X—Uint DU;HJUY;
glued along \US(U,). The action ¢ is also extended on V’. We have
[X, V, dl=[X, V', 1+-2[X; V; &].

It is therefore sufficient to prove (4.13) for (X, V’, ¢) and (X}, V;, ¢) separately..
The fixed point set of ¢ in X’ is the union of L;=P(U;). Since each L;
has real codimension 2 in X’ we can apply (4.1) which is a special case of
(4.13).

The fixed point set of ¢ in X; is the union of F; and —L;, where —L,
is P(Uj;) with the opposite orientation. The action ¢” on Py(VXC) is semi-
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free and its fixed point set is the union of P(V,|F;xC) and —P(V;|L;xC).
Applying the Atiyah-Singer formula in the semi-free case we obtain

sign P(V;|F;xC), if dim¢ U; is even,
sign P¢(VJXC): {
0, if dim¢ U, is odd,
l sign F;, if dim¢ U; and %k are both even,
- 0, otherwise .

When % is even this proves the formula in (4.13) for sign P,(Vx<C). When £k
is odd then

sign F;—sign L; =0

since L;= P(U;). Thus the formula holds in this case too.
The proof for sign Py(V') is entirely similar and is left to the reader.
Now the Atiyah-Singer formula for P,V xXC) takes the following form.
PROPOSITION (4.14). Let (X, V, ) € B, .1 (S'; Fi). Let {F;} be the com-
ponents of the fixed point set of ¢ in X and {F}} be the components of the
Jixed point set of ¢ in Py(VXC) which are contained in Py(V), cf. (2.21). We
orient F; and F; in accordance with the orientation convention with respect to
the action ¢ on Py(VXC). Then we have

sign Py(V <X C) :codim% o Sign F;,
0= > sign F;

codim F; even
and
> sign F;+4 > sign F,=0
codim F; odd codim F, odd
where codim means the complex codimension in Py(V XC).

The deduction of (4.14) from (4.13) is quite similar to that of the Kosniow-
ski formula from (3.10) and is left to the reader. This finishes our proof of
the Atiyah-Singer formula.

University of Tokyo
and
Sophia University
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