Foliations of total spaces of sphere bundles over spheres

By Itiro TAMURA

(Received Feb. 8, 1972)

Recently it was shown that every odd dimensional homotopy sphere has a codimension-one foliation (Tamura [3]). The purpose of this paper is to construct foliations for various differentiable manifolds. The main tool is the following lemma which is a direct consequence of the existence of a codimension-one foliation of the (2n+1)-sphere S^{2n+1} .

LEMMA. $S^{2n-1} \times D^2$ has a codimension-one foliation having the boundary $S^{2n-1} \times S^1$ as a compact leaf.

PROOF. We may assume $n \ge 2$. Let γ be a closed smooth curve in S^{2n+1} which is transverse to leaves of a codimension-one foliation of S^{2n+1} and let N be a sufficiently small tubular neighborhood of γ in S^{2n+1} . Then, by modifying the foliation in the well known way, we have a codimension-one foliation of S^{2n+1} —Int $N = S^{2n-1} \times D^2$ having $\partial N = S^{2n-1} \times S^1$ as a compact leaf (cf. Lawson [1], Cor. 2).

Let (E, p, S^m, S^r) be a sphere bundle over *m*-sphere S^m having the total space *E*, the fibre S^r , the projection $p: E \to S^m$ and the structural group Diff (S^r) , where Diff (S^r) denotes the diffeomorphism group of S^r . Then *E* is an (m+r)-dimensional differentiable manifold whose differentiable structure is defined by the differentiable structures of S^m and S^r .

THEOREM 1. If m or r is odd, then E has a codimension-one foliation.

PROOF. Suppose that *m* is odd. Then S^m has a codimension-one foliation $\mathfrak{T} = \{F_{\lambda}\}$, where F_{λ} is a leaf (Tamura [3]). It is then obvious that $p^*\mathfrak{T} = \{p^{-1}(F_{\lambda})\}$ is a codimension-one foliation of *E*.

Now suppose that *m* is even and *r* is odd. We may assume $m \ge 2$. Let S^{m-2} be the (m-2)-sphere naturally imbedded in S^m and let $S^{m-2} \times D^2$ be a tubular neighborhood of S^{m-2} in S^m . Then S^m is decomposed as follows:

$$S^m = (S^{m-2} \times D^2) \cup (D^{m-1} \times S^1).$$

Since $S^{m-2} \times D^2$ and $D^{m-1} \times S^1$ are homotopic to a point in S^m , the sphere bundles restricted on $S^{m-2} \times D^2$ and on $D^{m-1} \times S^1$ are both trivial. Thus we have

$$p^{-1}(S^{m-2} \times D^2) = S^{m-2} \times D^2 \times S^r$$
, $p^{-1}(D^{m-1} \times S^1) = D^{m-1} \times S^1 \times S^r$.

According to Lemma, $S^r \times D^2$ has a codimension-one foliation $\mathcal{F}' = \{F'_{\lambda'}\}$ having the boundary $S^r \times S^1$ as a compact leaf. Thus $p^{-1}(S^{m-2} \times D^2)$ has a codimension-one foliation $p_1^* \mathcal{F}' = \{p_1^{-1}(F'_{\lambda'})\}$, where $p_1: S^{m-2} \times D^2 \times S^r \to D^2 \times S^r$ is the projection. On the other hand, it is well known that $D^{m-1} \times S^1$ has a codimension-one foliation $\mathcal{F}'' = \{F'_{\lambda'}\}$ having the boundary $S^{m-2} \times S^1$ as a compact leaf. Thus $p^{-1}(D^{m-1} \times S^1)$ has a codimension-one foliation $p^* \mathcal{F}'' = \{p^{-1}(F''_{\lambda'})\}$. Since $p^{-1}(S^{m-2} \times S^1)$ is a compact leaf for both of $p_1^* \mathcal{F}'$ and $p^* \mathcal{F}''$, the union of $p_1^* \mathcal{F}'$ and $p^* \mathcal{F}''$ defines a codimension-one foliation of E. This completes the proof.

REMARK. If m and r are even, the Euler number of E is 4. Thus E^{-} cannot have any codimension-one foliation in this case.

By slicing the leaves of $p_1^* \mathcal{F}'$, we have the following theorem.

THEOREM 2. If m is even and r is odd, then E has a codimension m-1 foliation.

PROOF. $p^{-1}(S^{m-2} \times D^2) = S^{m-2} \times D^2 \times S^r$ has a codimension m-1 foliation $\hat{\mathcal{F}}'$ whose leaves are $\{x\} \times F'_{\lambda'}$ $(x \in S^{m-2}, F'_{\lambda'} \in \mathcal{F}')$. On the other hand, $p^{-1}(D^{m-1} \times S^1)$ $= D^{m-1} \times S^1 \times S^r$ has a codimension m-1 foliation $\hat{\mathcal{F}}''$ whose leaves are $\{y\} \times S^1 \times S^r$ $(y \in D^{m-1})$. Since $\{x\} \times S^1 \times S^r$ $(x \in S^{m-2})$ are leaves for both of $\hat{\mathcal{F}}'$ and $\hat{\mathcal{F}}''$, the union of $\hat{\mathcal{F}}'$ and $\hat{\mathcal{F}}''$ defines a codimension m-1 foliation of E. This completes the proof.

In case m = r+1, E is an (r-1)-connected (2r+1)-dimensional differentiable manifolds. In a subsequent paper (Tamura [4]), codimension-one foliations. of such manifolds will be dealt in generalities.

As an application of Theorem 1, we have the following.

THEOREM 3. Stiefel manifolds $V_{n,k} = O(n)/O(n-k)$, $W_{n,k} = U(n)/U(n-k)$, $X_{n,k} = Sp(n)/Sp(n-k)$ have codimension-one foliations, except $V_{n,1} = S^{n-1}$ (n odd).

PROOF. First suppose that *n* is even. Let $\bar{p}: V_{n,k} \to V_{n,1} = S^{n-1}$ be the natural projection. Then $\bar{p}^* \mathcal{F}$ is a codimension-one foliation of $V_{n,k}$, where \mathcal{F} denotes a codimension-one foliation of S^{n-1} . By the similar methods, we can construct codimension-one foliations of $W_{n,k}$ and of $X_{n,k}$.

Now suppose that n is odd and $k \neq n-1$. Let $(V_{n,2}, \hat{p}, S^{n-1}, S^{n-2})$ be the sphere bundle over S^{n-1} having the projection $\hat{p}: V_{n,2} \to V_{n,1} = S^{n-1}$ and the fibre $SO(n-1)/SO(n-2) = S^{n-2}$. Then, by Theorem 1, $V_{n,2}$ has a codimension-one foliation $\hat{\mathcal{F}}$. Therefore $V_{n,k}$ has a codimension-one foliation $\hat{p}^* \hat{\mathcal{F}}$, where $\hat{p}: V_{n,k} \to V_{n,2}$ is the natural projection. This completes the proof.

By applying Theorem 2 to the fibering $p: S^7 \to S^4$ (resp. $p: S^{15} \to S^8$), we have the following. (See Thomas [5], Problem 12.)

THEOREM 4. S^{τ} (resp. S^{15}) has a codimension 3 (resp. 7) foliation.

Let \tilde{S}^{τ} be an exotic 7-sphere with the Milnor invariant $\lambda'(\tilde{S}^{\tau}) = -m(m+1)/2 \mod 28$ for an integer *m*. Then there exists a fibering $(\tilde{S}^{\tau}, p, S^4, S^3)$,

(Tamura [2]). Thus Theorem 2 yields the following.

THEOREM 5. Exotic 7-sphere \tilde{S}^{τ} such that $\lambda'(\tilde{S}^{\tau}) = -m(m+1)/2$ has a codimension 3 foliation.

Department of Mathematics University of Tokyo

References

- [1] H.B. Lawson, Codimension-one foliations of spheres, Ann. of Math., 94 (1971), 494-503.
- [2] I. Tamura, Remarks on differentiable structures on spheres, J. Math. Soc. Japan, 13 (1961), 383-386.
- [3] I. Tamura, Every odd dimensional homotopy sphere has a foliation of codimension one, Comm. Math. Helv., 47 (1972) (to appear).
- [4] I. Tamura, Spinnable structures on differentiable manifolds, Proc. Japan Acad., 48 (1972), 293-296.
- [5] E. Thomas, Vector fields on manifolds, Bull. Amer. Math. Soc., 75 (1969), 643-683.