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Recently it was shown that every odd dimensional homotopy sphere has
a codimension-one foliation (Tamura [3]). The purpose of this paper is to
construct foliations for various differentiable manifolds. The main tool is
the following lemma which is a direct consequence of the existence of a
codimension-one foliation of the $(2n+1)$-sphere $S^{2n+1}$ .

LEMMA. $S^{2n-1}\times D^{2}$ has a codimension-one foliation having the boundary
$S^{2n-1}\times S^{1}$ as a compact leaf.

PROOF. We may assume $n\geqq 2$ . Let $\gamma$ be a closed smooth curve in $S^{2n+1}$

which is transverse to leaves of a codimension-one foliation of $S^{2n+1}$ and let
$N$ be a sufficiently small tubular neighborhood of $\gamma$ in $S^{2n+1}$ . Then, by modi-
fying the foliation in the well known way, we have a codimension-one folia-
tion of $S^{2n+1}$ –Int $N=S^{2n-1}\times D^{2}$ having $\partial N=S^{2n- 1}\times S^{1}$ as a compact leaf (cf.

Lawson [1], Cor. 2).

Let $(E, p, S^{m}, S^{r})$ be a sphere bundle over m-sphere $S^{m}$ having the total
space $E$, the fibre $S^{r}$ , the projection $p;E\rightarrow S^{m}$ and the structural group
Diff $(S^{r})$ , where Diff $(S^{r})$ denotes the diffeomorphism group of $S^{r}$ . Then $E$ is
;an $(m+r)$ -dimensional differentiable manifold whose differentiable structure
is defined by the differentiable structures of $S^{m}$ and $S^{r}$ .

THEOREM 1. If $m$ or $r$ is odd, then $E$ has a codimension-one foliation.
PROOF. Suppose that $m$ is odd. Then $S^{m}$ has a codimension-one foliation

$\mathcal{F}=\{F_{\lambda}\}$ , where $F_{\lambda}$ is a leaf (Tamura [3]). It is then obvious that $p^{*}\mathcal{F}$

$=\{p^{-1}(F_{\lambda})\}$ is a codimension-one foliation of $E$ .
Now suppose that $m$ is even and $r$ is odd. We may assume $m\geqq 2$ . Let

$S^{m-2}$ be the $(m-2)$ -sphere naturally imbedded in $S^{m}$ and let $S^{m-2}\times D^{2}$ be a
tubular neighborhood of $S^{m-2}$ in $S^{m}$ . Then $S^{m}$ is decomposed as follows:

$S^{m}=(S^{m-2}\times D^{2})\cup(D^{m-1}\times S^{1})$ .
Since $S^{m-2}\times D^{2}$ and $D^{\pi\iota-1}\times S^{1}$ are homotopic to a point in $S^{m}$ , the sphere
bundles restricted on $S^{m-2}\times D^{2}$ and on $D^{m-1}\times S^{1}$ are both trivial. Thus we
have

$p^{-1}(S^{m- 2}\times D^{2})=S^{m- 2}\times D^{2}\times S^{r}$ , $p^{-1}(D^{m- 1}\times S^{1})=D^{m- 1}\times S^{1}\times S^{r}$ .
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According to Lemma, $S^{r}\times D^{2}$ has a codimension-one foliation $\mathcal{F}^{\prime}=\{F_{\lambda^{\prime}}^{\prime}\}$ hav-
ing the boundary $S^{r}\times S^{1}$ as a compact leaf. Thus $p^{-1}(S^{m- 2}\times D^{2})$ has a codi-
mension-one foliation $p_{1}^{*}\mathcal{F}^{\prime}=\{p_{1}^{-1}(F_{\lambda’}^{\prime})\}$ , where $p_{1}$ : $S^{m-2}\times D^{2}\times S^{r}\rightarrow D^{2}\times S^{r}$ is
the projection. On the other hand, it is well known that $D^{m- 1}\times S^{1}$ has a
codimension-one foliation $\mathcal{F}^{\prime\prime}=\{F_{\lambda^{\prime}}^{\prime\prime}\}$ having the boundary $S^{m- 2}\times S^{1}$ as a com-
pact leaf. Thus $p^{-1}(D^{m- 1}\times S^{1})$ has a codimension-one foliation $p^{*}\mathcal{F}^{\prime\prime}=\{p^{-1}(F_{\lambda^{\prime}}^{\prime\prime})\}$ .
Since $p^{-1}(S^{m- 2}\times S^{1})$ is a compact leaf for both of $p_{1}^{*}\mathcal{F}^{\prime}$ and $p^{*}\mathcal{F}^{\prime\prime}$ , the union
of $p_{1}^{*}\mathcal{F}^{\prime}$ and $p^{*}\mathcal{F}^{\prime\prime}$ defines a codimension-one foliation of $E$ . This completes..
the proof.

REMARK. If $m$ and $r$ are even, the Euler number of $E$ is 4. Thus $E$

cannot have any codimension-one foliation in this case.
By slicing the leaves of $p_{1}^{*}\mathcal{F}^{\prime}$ , we have the following theorem.
THEOREM 2. If $m$ is even and $r$ is odd, then $E$ has a codimension $m-1$

foliation.
PROOF. $p^{-1}(S^{m- 2}\times D^{2})=S^{m-2}\times D^{2}\times S^{r}$ has a codimension $m-1$ foliation $\hat{\mathcal{F}}^{\prime}$

whose leaves are $\{x\}\times F_{\lambda’}^{\prime}(x\in S^{m-2}, F_{\lambda’}^{\prime}\in \mathcal{F}^{\prime})$ . On the other hand, $p^{-1}(D^{m- 1}\times S^{1})$

$=D^{m- 1}\times S^{1}\times S^{r}$ has a codimension $m-1$ foliation $\hat{\mathcal{F}}^{\prime\prime}$ whose leaves are
$\{y\}\times S^{1}\times S^{r}(y\in D^{m- 1})$ . Since $\{x\}\times S^{1}\times S^{r}(x\in S^{m- 2})$ are leaves for both of
$\hat{\mathcal{F}}$

, and $\hat{\mathcal{F}}^{\prime\prime}$ , the union of $\hat{\mathcal{F}}^{\prime}$ and $\hat{\mathcal{F}}^{\prime\prime}$ defines a codimension $m-1$ foliation of
$E$. This completes the proof.

In case $m=r+1,$ $E$ is an $(r-1)$ -connected $(2r+1)$ -dimensional differentiable
manifolds. In a subsequent paper (Tamura [4]), codimension-one foliations.
of such manifolds will be dealt in generalities.

As an application of Theorem 1, we have the following.
THEOREM 3. Stiefel manifolds $V_{n,k}=O(n)/O(n-k)$ , $W_{n,k}=U(n)/U(n-k),$ .

$X_{n,k}=Sp(n)/Sp(n-k)$ have codimension-one foliations, except $V_{n,1}=S^{n-1}$ ( $n$ odd)..

PROOF. First suppose that $n$ is even. Let $\overline{p}:V_{n,k}\rightarrow V_{n,1}=S^{n-1}$ be the
natural projection. Then $\overline{p}*\mathcal{F}$ is a codimension-one foliation of $V_{n,k}$ , where
$\mathcal{F}$ denotes a codimension-one foliation of $S^{n- 1}$ . By the similar methods, we
can construct codimension-one foliations of $W_{n,k}$ and of $X_{n,k}$ .

Now suppose that $n$ is odd and $k\neq n-1$ . Let $(V_{n,2}, p, S^{n-1}, S^{n-2})$ be the
sphere bundle over $S^{n-1}$ having the projection $p;V_{n,2}\rightarrow V_{n,1}=S^{n- 1}$ and $the^{\sim}$

fibre $SO(n-1)/SO(n-2)=S^{n-2}$ . Then, by Theorem 1, $V_{n,2}$ has a codimension-
one foliation $\hat{\mathcal{F}}$ . Therefore $V_{n,k}$ has a codimension-one foliation $\hat{p}^{*}\hat{\mathcal{F}}$ , where
$\hat{p}$ : $V_{n,k}\rightarrow V_{n,2}$ is the natural projection. This completes the proof.

By applying Theorem 2 to the fibering $p;S^{7}\rightarrow S^{4}$ (resp. $p;S^{15}\rightarrow S^{8}$), we
have the following. (See Thomas [5], Problem 12.)

THEOREM 4. $S^{7}$ (resp. $S^{15}$ ) has a codimension 3 (resp. 7) foliation.
Let $\tilde{S}^{7}$ be an exotic 7-sphere with the Milnor invariant $\lambda^{\prime}(\tilde{S}^{7})=$

$-m(m+1)/2mod 28$ for an integer $m$ . Then there exists a fibering $(\tilde{s}^{7}, p, S^{4}, S^{3})$
}
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(Tamura [2]). Thus Theorem 2 yields the following.
THEOREM 5. Exotic 7-sphere $\tilde{S}^{7}$ such that $\lambda^{\prime}(\tilde{S}^{7})=-m(m+1)/2$ has a codi-

mension 3 foliation.
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