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0\circ Introduction.

It is well known that the space $F$ of the smooth functions of a compact
smooth manifold $M$ is a Frechet space and leads a Sobolev chain $\{F^{s}\}$ , namely,
$F^{s}$ is a Hilbert space obtained by the completion of $F$ in a norm involving
the integral of squares of all derivatives up to order $s$ , and $F$ is the inverse
limit of the system $\{F^{s}\}$ . Of course the addition $(a, b)\rightarrow a\pm b$ in $F$ can be
extended to the smooth mapping of $F^{s}\times F^{s}$ into $F^{s}$ for every $s$ .

Assume $M$ is closed (that is, compact without boundary). Then the con-
nected component $\mathcal{D}_{0}$ of the group of the diffeomorphisms of $M$ in $C^{\infty}$-topology
has similar properties as above, that is, (1) $\mathcal{D}_{0}$ is a Frechet Lie group [4]

and (2) there exists a system $\{\mathcal{D}_{0}^{s}\},$ $s\geqq\dim M+5$ , of smooth Hilbert manifolds
eeach of which is a topological group such that $\mathcal{D}_{0}$ is the inverse limit of the
system $\{\mathcal{D}_{0}^{s}\}$ [2, 7, 9]. Though the group operations of $\mathcal{D}_{0}^{s}$ is the extension
of that of $\mathcal{D}_{0}$ , the differentiability of these is not so simple. For example (a)
the multiplication $(g, h)\rightarrow gh$ of $\mathcal{D}_{0}$ can be extended to the $C^{\iota}$-map of $\mathcal{D}_{0}^{s+l}\times \mathcal{D}_{0}^{s}$

into $\mathcal{D}_{0}^{s}$ . On the other hand, (b) the right translation $R_{g}$ : $\mathcal{D}_{0}^{s}\rightarrow \mathcal{D}_{0}^{s}$ is smooth
for any $g\in \mathcal{D}_{0}^{s}[2,9]$ . As a matter of fact, these properties can be proven
in case that $M$ has a boundary and $s\geqq\dim M+1(c. f. [2])$ .

In this paper as well as the previous paper [9], the author restricted his
concern to the case that (a) $M$ has no boundary, (b) $s\geqq\dim M+5$ and (c) the
lconnected component $\mathcal{D}_{0}$ of the total group of the smooth diffeomorphisms.
The reason is the following:

(a) If one constructs an abstract group theory having the properties
mentioned above (and this is what he wants to do in the future),

then the boundary cases will come in it very naturally.
(b) If $s\geqq\dim M+5$ , then we have a nicer property with respect to the

composition of maps. Actually, we have a useful inequality in this
case (see Theorem A in [9]).

(c) If one concerns with only local properties, it is enough to treat a
neighbourhood of the identity. So as a group generated by a neigh-
borhood of the identity, we have only to consider the connected
component $\mathcal{D}_{0}$ .
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Anyway, in spite of these various properties of $\mathcal{D}_{0}^{s}$ , this seems to be still
far from Hilbert Lie groups. Since the tangent space $\Gamma^{S}(T_{H})$ of $\mathcal{D}_{0}^{s}$ at the
identity. $e$ is not closed under the bracket operation of Lie algebra, we cannot
replace the differential structure by some other one so that the group opera-
tions may become smooth. Moreover, the properties of $\{\ovalbox{\tt\small REJECT}_{0}\}$ mentioned above
imply that Frobenius theorem will be fairly difficult to prove on the group $\mathcal{D}_{0}$ .
Namely, letting $\mathfrak{G}$ be a subalgebra of $\Gamma(T_{M})$ $($the tangent space of $\mathcal{D}_{0}$ at $e)_{r}$

it seems difficult to prove the existence of a topological subgroup of $\mathcal{D}_{0}$ which
has $\mathfrak{G}$ as a Lie algebra in some sense. As a matter of course, Frobenius
theorem does not hold in the category of Frechet manifolds in general.

However, there is only one way to get a sort of Frobenius theorem on
$\mathcal{D}_{0}$ . Take the closure $\mathfrak{G}^{s}$ of $\mathfrak{G}$ in $\Gamma^{s}(T_{M})$ and consider the distribution
$\tilde{\mathfrak{G}}^{s}=\{dR_{g}\mathfrak{G}^{s} ; g\in \mathcal{D}_{0}^{s}\}$ , where $dR_{g}$ is the derivative of the right translation $R_{g}$ .
In general, this distribution is not differentiable. So suppose this distribution
happens to be smooth. Then $\tilde{\mathfrak{G}}^{s}$ is an involutive distribution of $\mathcal{D}_{0}^{s}$ (see Prop-
osition A), where of course $\mathfrak{G}$ is provided a subalgebra of $\Gamma(T_{M})$ . Therefore.
one can use the Frobenius theorem in Hilbert manifolds. The resulting mani-
fold $G^{s}$ is a smooth submanifold of $\mathcal{D}_{0}^{s}$ and a subgroup of it. Moreover, the
group operation $(g, h)\leftrightarrow gh$ is a $C^{l}$ -mapping of $G^{s+l}\times G^{s}$ into $G^{s}$ and the right
translation $R_{g}$ is a smooth mapping of $G^{s}$ onto $G^{s}$ for any $g\in G^{s}$ . (See also,

2 for precise statements.)

Therefore the essential thing we have to know is the condition under
which $\tilde{\mathfrak{G}}^{s}$ becomes differentiable, and the purpose of this paper is to give
such conditions which ensure the differentiability of $\mathfrak{G}^{s}$ . The main result in
this paper is the following: Assume $\mathfrak{G}$ is the kernel of a differential operator
with smooth coefficients and the image of this differential operator is closed.
Then $\mathfrak{G}^{s}$ is smooth. (See also $2^{o}$ for precise statements.)

As a matter of course, Frobenius theorem on $\mathcal{D}_{0}$ does not finish by the
above theorem, because the inverse limit $G$ of $\{G^{s}\}$ is not necessarily a
Frechet manifold. To make $G$ a Frechet manifold, we need much stronger
conditions on that differential operator. These will be given in next few
papers.

1\circ Review of local properties of groups of diffeomorphisms.

Before stating the main theorem, we have to establish our notations and
recall some results which will be used later. Specifically we discuss local
properties of groups of diffeomorphisms. All the proofs of the results in
this section may be found in 2 and 3 in [9].

Let $\Gamma(T_{M}),\hat{\Gamma}^{1}(T_{M}),\hat{\mathcal{D}}^{1}$ denote the space of smooth sections of $T_{M}$ (the
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tangent bundle of $M$), the space of $C^{1}$ -section of $T_{M}$ , the group of $C^{1}$ .
diffeomorphisms of $M$ with $C^{1}$ -topology respectively. Then, there is a homeo-
morphism $\xi$ of a bounded open neighbourhood $U$ of $0$ in $\hat{\Gamma}^{1}(T_{M})$ onto an open
neighbourhood $\tilde{U}$ of the identity in $\hat{\mathcal{D}}^{1}$ . Actually this homeomorphism $\xi$ is
given by $\xi(u)(x)=Exp_{x}u(x)$ , where $Exp$ is the exponential mapping defined
by a smooth riemannian metric on $M$. Since $\hat{\mathcal{D}}^{1}$ is a topological group, there
exists a bounded open neighbourhood $\hat{V}$ of $0$ in $\hat{\Gamma}^{1}(T_{M})$ such that $\xi(\hat{V})^{2}\subset\tilde{U}$ .
Put $U=0\cap\Gamma(T_{M}),$ $V=\hat{V}\cap\Gamma(T_{M})$ . Then, $\eta(u, v)=\xi^{-1}(\xi(u)\xi(v))$ can be regarded
as a mapping of $V\times V$ into $U$.

Let $\Gamma^{s}(T_{M})$ be the Hilbert space obtained by completion of $\Gamma(T_{M})$ in the
norm involving the integral of squares of all derivatives up to order $s$ . Then

the Sobolev embedding theorem shows that if $s\geqq[\frac{n}{2}]+2,$ $n=\dim M$, then

$\Gamma^{s}(T_{M})\subset\hat{\Gamma}^{1}(T_{M})$ and the inclusion is continuous. So, we put $U^{s}=U\cap\Gamma^{S}(T_{M})$ ,

$V^{s}=\hat{V}\cap\Gamma^{s}(T_{M})$ for $s\geqq[\frac{n}{2}]+2$ .
Using these notations, the properties of $\eta$ are as follows: $(\eta, 1)\eta:V\times V$

$\rightarrow U$ can be extended to the $C^{\iota}$ -mapping of $V^{s+l}\times V^{s}$ into $U^{s}$ , where $s\geqq n+5$

and this assumption will keep throughout this paper. $(\eta, 2)\eta_{y}$ : $V^{s}\rightarrow U^{s}$ is a
$C^{\infty}$-mapping where $\eta_{y}(x)=\eta(x, y)$ . $(\eta, 3)$ Put $\zeta(x, y)=(d\eta_{y})_{0}x$ , where $(d\eta_{y})_{0}$ is
the derivative of $\eta_{y}$ at $0$ . Then $\zeta:r(T_{M})\times V-r(T_{M})$ can be extended to the

$C^{\iota}$ -mapping of $\Gamma^{s+l}(T_{M})\times V^{s}$ into $\Gamma^{s}(T_{M})$ . $(\eta, 4)$ There is a neighborhood $\hat{W}$

of $0$ in $\hat{V}$ and a continuous map $\psi:\hat{W}\cap\Gamma^{s}(T_{M})\rightarrow V^{s}$ such that $\eta(\psi(x), x)\equiv 0$ .
\langle $\eta,$ $5$) For any $s\geqq n+5$ , there is a neighborhood $W^{s}$ of $0$ in $V^{s}$ such that for
$u,$ $v,$ $v^{\prime}\in W^{s},$ $\Vert\eta(v^{\prime}, u)-\eta(v, u)\Vert_{s}\leqq K_{s}\Vert v^{\prime}-v\Vert_{s}$ for some constant $K_{s}$ . So these
properties are regarded as local properties of $\mathcal{D}_{0}^{s}$ . Actually the group $\mathcal{D}_{0}^{s}$ is
defined as follows: Let $\mathfrak{N}^{s}$ be the basis of neighborhoods of $0$ in $\Gamma^{S}(T_{M})$ .
Then, $\{\xi(W\cap U);W\in \mathfrak{R}^{s}\}$ is a family of open neighborhoods of the identity

$\ovalbox{\tt\small REJECT} of\mathcal{D}_{0}$ and defines a new, weaker topology for $\mathcal{D}_{0}$ by which $\mathcal{D}_{0}$ becomes a
topological group. So $\mathcal{D}_{0}^{s}$ is the completion of $\mathcal{D}_{0}$ by the (right) uniform
topology defined by this new topology. Thus the space $\Gamma^{s}(T_{M})$ can be nat-
urally identified with the tangent space at the identity of $\mathcal{D}_{0}^{s}$ .

The properties of the system $\{\mathcal{D}_{0}, \mathcal{D}_{0}^{s}, s\geqq n+5\}$ is the following:

$t\langle \mathcal{D}_{0},1$) $\mathcal{D}_{0}^{s}$ is a smooth Hilbert manifold.

$(\mathcal{D}_{0},2)$ $\mathcal{D}_{0}^{s+1}\subset \mathcal{D}_{0}^{s}$ and the inclusion is smooth.

$(\mathcal{D}_{0},3)$ $\mathcal{D}_{0}=\cap \mathcal{D}_{0}^{s}$ and the original topology ( $C^{\infty}$-topology) of $\mathcal{D}_{0}$ is the same
as the inverse limit topology.

$S\mathcal{D}_{0},4)$ The multiplication $\mathcal{D}_{0}\times \mathcal{D}_{0}\rightarrow \mathcal{D}_{0},$ $(g, h)\rightarrow gh$ , can be extended to the
$C^{\iota}$ -mapping of $\mathcal{D}_{0}^{s+l}\times \mathcal{D}_{0}^{s}$ into $\mathcal{D}_{0}^{s}$ .
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$(\mathcal{D}_{0},5)$ The mapping $\mathcal{D}_{0}\rightarrow \mathcal{D}_{0},$ $g\rightarrow g^{-1}$ , can be extended to the $C^{l}$ -mapping of
$\mathcal{D}_{0}^{s+l}$ into $\mathcal{D}_{0}^{s}$ .

$(\mathcal{D}_{0},6)$ For any $g\in \mathcal{D}_{0}^{s}$ , the right translation $R_{g}$ ; $\mathcal{D}_{0}^{s}\rightarrow \mathcal{D}_{0}^{s}$ is smooth.
$(\mathcal{D}_{0},7)$ The mapping $dR:\Gamma^{s+l}(T_{M})\times \mathcal{D}_{0}^{s}\rightarrow T\mathcal{D}_{0}^{\epsilon}$ defined by $dR(u, g)=dR_{g}u$ is a

$C^{\iota}$ -mapping, where $T\mathcal{D}_{0}^{s}$ is the tangent bundle of $\mathcal{D}_{0}^{s}$ .
Now, the property $(\mathcal{D}_{0},7)$ can be generalized in the following way: Let $E$

be a smooth riemannian vector bundle and $\Gamma_{g}(E)$ the space of smooth sections
of the pull back $g^{-1}E$ of $E$ by $g\in \mathcal{D}_{0}$ . For simplicity, $\Gamma(E)$ denotes the
space of smooth sections of $E$ instead of $\Gamma_{id}(E)$ . Consider the set $\gamma(E)=$

$\cup\{\Gamma_{g}(E);g\in \mathcal{D}_{0}\}$ . Then $\gamma(E)$ is a vector bundle over $\mathcal{D}_{0}$ in the sense of
Frechet manifolds. A local trivialization at the identity is given by the
following: Let $C(t),$ $t\in[0,1]$ be a curve in $M$ and $\tau^{\prime}(C)$ the parallel trans-
lation along the curve $C$. Of course, $\tau^{\prime}(C)$ is a linear isomorphism of $ T_{C(0)}\Lambda\Gamma$

(the tangent space of $M$ at $C(O)$) onto $T_{C(1)}M$. $\tau^{\prime}(\xi(u)(x))$ denotes the parallel
translation along the curve $Exp_{x}tu(x),$ $t\in[0,1]$ . Using this notation, we put
$\tau(u, v)(x)=\tau^{\prime}(\xi(u)(x))v(x)$ for every $u\in U$ and $v\in\Gamma(E)$ . As a matter of course..
$\tau^{\prime}(\xi(u)(x))v(x)$ can be regarded naturally as a smooth section of $\Gamma_{\xi(u)}(E)$ , if
you consider $x$ as a variable. So this $\tau$ makes sense and gives a local trivial-
ization $\tau;U\times\Gamma(E)\rightarrow\gamma(E)$ .

On the other hand, for every element $v\in\Gamma_{h}(E),$ $v(g(x))$ can be regarded
naturally as an element of $\Gamma_{hg}(E)$ for any $g\in \mathcal{D}_{0}$ . So $\mathcal{D}_{0}$ acts (from $right\rangle$

on $\gamma(E)$ . This action will be denoted by $R_{g}^{*}$ . Obviously $R_{g}^{*}R_{h}^{*}=R_{hg}^{*}$ . Putting
$\tau_{\xi(u)}v=\tau(u, v)$ , the local expression of $R_{g}^{*}$ is given by $\tau_{\xi(u)\xi(v)}^{-1}R\xi_{(v)}\tau_{\xi(u)}$ , where
of course $\tau_{\xi(u)\xi(v)}$ implies $\tau_{\xi\eta(u,v)}$ .

Let $R^{\prime}(w, u)=\tau_{\xi(u)}^{-1}R_{\xi(u)}^{*}w,$ $T^{\prime}(u, w, v)=\tau_{\overline{\xi}(u)\xi(v)}^{1}R_{\xi(v)}^{*}\tau_{\xi(u)}w$ . Then we have

$(\tau, 1)$ $R^{\prime}$ : $\Gamma(E)\times U\rightarrow\Gamma(E)$ can be extended to the $C^{l}$ -mapping of $\Gamma^{s+l}(E)\times U^{r}$

into $\Gamma^{S}(E)$ for any $t\geqq s\geqq n+5$ .
$(\tau, 2)$ $T^{\prime}$ : $V\times\Gamma(E)\times V\rightarrow\Gamma(E)$ can be extended to the $C^{\iota}$ -mapping of

$V^{t+l}\times\Gamma^{s+l}(E)\times V^{t}$ into $\Gamma^{s}(E)$ for any $t\geqq s\geqq n+5$ .

In the expression these properties are a little bit different from that of 2
in [9]. However, these are immediate conclusions of 2 $[9]$ . Because $(\tau, 1)_{l}$

$U^{t}\subset U^{s}$ and the inclusion is smooth and $(\tau, 2)$ there is a mapping $\tilde{\tau}_{\Delta}$ ; $v\times V$

$\rightarrow\Gamma(E^{*}\otimes E)$ which can be extended to the smooth mapping of $V^{s}\times V^{s}$ into
$\Gamma^{s}(E^{*}\otimes E)(c. f. 2^{o} [9])$ such that $T^{\prime}(u, w, v)=\tilde{\tau}_{\Delta}(v, \zeta(u, v))R^{\prime}(w, v)$ , where $\zeta$

is the same mapping as in $(r, 3)$ . So especially, if $v$ is fixed in $V^{s}$ , theru
$R_{\xi(v)}^{\prime\prime}(w, u)$ defined by $\tau_{\xi(u)\xi(v)}^{-1}R_{\xi(v)}^{*}\tau_{\xi(u)}w$ is a smooth map of $V^{s}\times\Gamma^{s}(E)$ and
continuous with respect to $v\in V^{s}$ .

Since $\mathcal{D}_{0}^{n+b}$ is a topological group, there exists an open neighbourhood $W$
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of $0$ in $\Gamma^{n+5}(T_{M})$ such that $\xi(W)\xi(W)^{-1}\subset\xi(V^{n+5})$ . Put $W=W\cap\Gamma(T_{M}),$ $W^{s}=$

$W\cap\Gamma^{s}(T_{M})$ . Consider the disjoint union $\cup\{\xi(W^{t})g\times\Gamma^{s}(E);g\in \mathcal{D}_{0}^{t}\}$ . We
define an equivalence relation\sim as follows: $(\xi(u)g, w)\sim(\xi(u^{\prime})g^{\prime}, w^{\prime})$ if and only
if $\xi(u)g=\xi(u^{\prime})g^{\prime}$ and $w=R_{g’ g^{-1}}^{\prime\prime}(w^{\prime}, u^{\prime})$ . Since $g^{\prime}g^{-1}\in\xi(V^{t})$ , this definition
makes sense. So we put $\gamma^{ts}(E)=\cup\{\xi(W^{t})g\times\Gamma^{s}(E);g\in \mathcal{D}_{0}^{t}\}/\sim$ . Then, the
properties of $\gamma^{ts}(E)$ are the following:

$(\gamma, 1)$ $\gamma^{ts}(E)$ is a smooth vector bundle over $\mathcal{D}_{0}^{t}$ with the fibre $\Gamma^{s}(E)$ .
$(\gamma, 2)$ $\gamma^{t+1s}(E)\subset\gamma^{ts}(E),$ $\gamma^{ts+1}(E)\subset\gamma^{ts}(E)$ (where $t\geqq s+1$) and the inclusions

are smooth.

$(\gamma, 3)$ $\gamma(E)=\cap\gamma^{s}(E)$ , where $\gamma^{s}(E)$ is a simplified notation of $\gamma^{s,s}(E)$ .
$(\gamma, 4)$ $\gamma^{ts}(E)$ is the pull back of $\gamma^{s}(E)$ by the inclusion $\mathcal{D}_{0}^{t}\subset \mathcal{D}_{0}^{*}$ .
$(\gamma, 5)$ The right translation $R_{g}^{*}$ can be defined for $g\in \mathcal{D}_{0}^{t}$ and is a smooth

map of $\gamma^{ts}(E)$ onto itself. Moreover, this is continuous with respect
to $g\in \mathcal{D}_{0}^{t}$ .

$(\gamma, 6)$ Put $R^{*}(w, g)=R_{g}^{*}w$ for $w\in\Gamma(E)$ , $g\in \mathcal{D}_{0}$ . Then this mapping
$R^{*}:$ $\Gamma(E)\times \mathcal{D}_{0}\rightarrow\gamma(E)$ can be defined to the $C^{\iota}$ -mapping of $\Gamma^{s+l}(E)\times \mathcal{D}_{0}^{s}$

into $\gamma^{s}(E)$ .
These properties are a little bit different from that of $2^{o},$ $[9]$ in expression,
but all of them are immediate conclusions. Anyway, the properties $(\eta, 1-5)$ ,
$(\mathcal{D}_{0},1-7),$ $(\tau, 1-2)$ and $(\gamma, 1-6)$ are all what we need as a background of this
paper.

2\circ Statements of main theorems and applications.

Let $E,$ $F$ be smooth finite dimensional riemannian vector bundles over
$M$. Consider a linear mapping $A:\Gamma(E)\rightarrow\Gamma(E)$ which can be extended to the
bounded linear map of $\Gamma^{S}(E)$ into $\Gamma^{s-r}(F)$ for every $s\geqq n+5+r$. Then by
using $(\gamma, 5-6)$ above, the right invariant bundle morphism $\tilde{A}:\gamma^{s}(E)\rightarrow\gamma^{s,s-r}(F)$

defined by $R_{g}^{*}AR_{g}^{*-1}$ is continuous. In general, we cannot expect the differen-
tiability of $\tilde{A}$ . Moreover, we cannot expect the continuity in operator norm
with respect to $g$ . Situation is the following:

Suppose $B_{1},$ $B_{2}$ be smooth Banach vector bundles over a smooth Banach
manifold $X$ with fibres $F_{1},$ $F_{2}$ respectively. Let $\tilde{A}$ be a $C^{k}$ -bundle morphism
of $B_{1}$ into $B_{2}$ . Then, taking local trivializations on some coordinate neigh-
borhood $W,\tilde{A}$ induces a $C^{k}$ -map $A^{\gamma}$ of $W\times F_{1}$ into $F_{2}$ . $A^{\prime}$ is linear with
respect to the second variable. So $A^{\prime}$ induces a mapping $A^{\prime\prime}$ of $W$ into
$L(F_{1}, F_{2})$ . In general, $A^{\prime\prime}$ is only a $C^{k-1}$ -mapping. If $A^{\prime}$ is continuous, then
for any point $u\in W$ , there is a neighborhood $V$ of $u$ and a constant $K$ such
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that $\Vert|A^{\nu}(v)\Vert|\leqq K$ for any $v\in V$ , that is, locally bounded, this is because $A^{\prime}$

is continuous at $(u, 0)$ , where $\Vert|\Vert|$ is the operator norm. We call $\tilde{A}$ a strong
bundle morphism, if $A^{t}$ is continuous.

If a bundle morphism $\tilde{A}$ is smooth, there is no confusion, because $A^{\gamma}$ and
$A^{\prime\prime}$ are smooth. However if $\tilde{A}$ is only continuous, we have to be careful about
continuity. We use the notion “ continuous” only for the continuity of $A^{\prime}$

as far as concerning bundle morphisms.
Now, we have the following:
THEOREM A (Smooth extension theorem). Suppose $A$ is a differential

operator of order $r$ with smooth coefficients. Then $\tilde{A}$ is a smooth right-invariant
bundle morphism of $\gamma^{ts}(E)$ into $\gamma^{ts-r}(F)$ .

This is a main theorem of this paper and a proof will be seen in $4^{o}$ ,
using rather known results about jet bundles which will be discussed in $3^{o}$ .
In this section several other simpler extension theorems will be proved, some
of which are proved by using this Theorem A.

Now, we have already discussed about some sort of extension theorem,
Theorem $B[9]$ in the previous paper. First of all, we have to recollect this
theorem. Let $W$ be a relatively compact open subset of $E$ such that $W_{x}$ is
a non empty open subset of $E_{x}$ for each $x\in M$, where $E_{x}$ is the fibre of $E$

at $x$ and $W_{x}=W\cap E_{x}$ . For any $s\geqq[\frac{n}{2}]+1$ , we put

$W^{s}=$ { $u\in\Gamma^{s}(E);u(x)\in W_{x}$ for any $x\in M$ }.

Let $W=\cap W^{s}$ . Suppose $f$ is a smooth mapping of $W$ into $F$ such that
$f(W_{x})\subset F_{x}$ for each $x\in M$. Define a mapping $\Psi:W\rightarrow\Gamma(F)$ by $\Psi(u)(X)=$

$f(u(X))$ . Call such $\Psi$ a mapping defined from a smooth function $f$. Then, the
simplified Theorem $B$ in [9] shows the following:

$*$ $\Psi;W\rightarrow\Gamma(F)$ can be extended to the smooth map of $W^{s}$ into $\Gamma^{S}(F)$ .
Now let $1_{M}$ be the trivial vector bundle over $M$ of dimension 1. The

following is easy to prove, by using Sobolev embedding theorem:

LEMMA 1. Let $k_{0}=[n_{-]+1}2$ The mapping $\Phi$ defined by

$\Phi(w, v, f)=\int_{M}\langle w(x, ), v(x)\rangle_{x}f(x)\mu(x)$

is a bounded tri-linear mapping of $\Gamma^{0}(E)\times\Gamma^{0}(E)\times\Gamma^{k_{0}}(1_{M})$ into $R$ , where $\langle$ , $\rangle_{x}$

is the riemannian inner product of $E$ at $x$ and $\mu$ is a volume element of $M$.
The next lemma is not difficult, since we have the fact $*$, but an exact

proof will be given in 2, because we have to use higher order connections
for a precise proof.

LEMMA 2. Let $J(u)$ be the Jacobian of $\xi(u)$ . Then $J$ is a smooth mapping
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of $U^{k_{0}+1}$ into $\Gamma^{k_{0}}(1_{M})$ , where $k_{0}=[\frac{n}{2}]+1$ and $U^{k_{0}+1}$ is the same open set in
$\Gamma^{k_{0+1}}(E)$ which is defined in 1.

Suppose $e_{1},$ $\cdots,$ $e_{m}$ to be linearly independent elements of $\Gamma(E)$ . For any
$\gamma^{ts}(E),$ $t\geqq s\geqq n+5$ , we define a mapping $k$ of $\gamma^{ts}(E)$ into $R^{m}$ by the following:

$k=(k_{1}, \cdots k_{m})$ ,

$k_{j}(R_{g}^{*}w)=\int_{M}\langle w(x), e_{j}(x)\rangle_{x}\mu(x)$ .

THEOREM 1. Notations and assumptions being as above, $k$ is a right-
invariant smooth mapping of $\gamma^{tS}(E)$ onto $R^{m}$ .

PROOF. Surjectivity and right invariance are trivial. So we have only
to show the smoothness. By changing the variable $x$ , we see

$k_{j}(R_{g}^{*}w)=\int_{M}\langle w(gx), e_{j}(gx)\rangle_{gx}\mu(gx)$ (1)

To prove the differentiability, one has to use the local trivialization of $\gamma^{ts}(E)$

at the identity. So recall the definition of $\tau$ in 1. Put $R_{\xi(u)}^{*}w^{\prime}=\tau(u. w)$ and
we have

$k_{j}(\tau(u, w))=\int_{M}\langle w^{\prime}(\xi(u)(x)), e_{j}(\xi(u)(x))\rangle_{\xi(u)(x)}\mu(\xi(u)(x))$ ,

using (1). Since $w^{\prime}(\xi(u)(x))=\tau^{\prime}(\xi(u)(x))w(x)$ and $e_{j}(\xi(u)(x))=\tau^{\prime}(\xi(u)(x))R^{\prime}(e_{j}, u)(x)$ ,

replacing by these and using the fact that $\tau^{\prime}(\xi(u)(x))$ is an isometry, we get

$k_{j}(\tau(u, w))=\int_{M}\langle w(x), R^{\prime}(e_{j}, u)(x)\rangle_{x}\mu(\xi(u)(x))$ .

Therefore, $k_{j}(\tau(u, w))=\Phi(w, R^{\prime}(e_{j}, u), J(u))$ . Since $e_{j}\in\Gamma(E),$ $R^{\prime}(e_{j}, u)$ is smooth
with respect to $u(c. f. (\tau, 2))$ . So Lemma 2 implies the smoothness of $k$ .

The above mapping $k$ can be regarded as a smooth bundle morphism of
$\gamma^{ts}(E)$ onto the trivial bundle $\mathcal{D}_{0}^{t}\times R^{m}$ .

LEMMA 3. Let $\tilde{E},\tilde{F}$ and $\tilde{G}$ be vector bundles over a smooth Hilbert mani-
fold $X$ with the fibres $E,$ $F$ and $G$ of Hilbert spaces respectively. Suppose $\tilde{E}$

and fl are smooth bundles. Let $\tilde{A}$ : $\tilde{E}\rightarrow F$ be a smooth bundle morphism and
$\tilde{B};F\rightarrow\tilde{G}$ a strong bundle morphism such that ${\rm Im}\tilde{A}=Ker\tilde{B}$ and $\tilde{B}$ is surjective.
Then $Ker\tilde{A}$ is a smooth subbundle of $\tilde{E}$ .

PROOF. Fix an arbitrary point $x\in X$. There is a neighbourhood $W$ of
$x$ such that $E|W\cong W\times E,$ $fl|W\cong W\times F$ and $G|W\cong W\times G$ . Of course, $\tilde{E}|W$

etc. implies the restriction of $\tilde{E}$ on $W$ and $\cong$ does local trivialization. Thus, $\tilde{A}$

induces a smooth map $A^{\gamma}$ : $W\times E\rightarrow F$ and $\tilde{B}$ does a strong map $B^{\prime}$ : $W\times F\rightarrow G$ ,
each of which is linear with respect to the second variable. Let $E_{1}=KerA_{x}^{\prime}$ ,
$F_{1}={\rm Im} A_{x}^{\prime}=KerB_{x}^{\prime}$ , where $A_{y}^{\prime}v=A^{\prime}(y, v),$ $B_{y}^{\prime}v=B^{\prime}(y, v)$ . Let $E_{2}$ (resp. $F_{2}$) be
the orthogonal complement of $E_{1}$ (resp. $F_{1}$).
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Since $B_{x}^{\prime}$ : $F_{2}\rightarrow G$ and $A_{x}^{\prime}$ : $E_{2}\rightarrow F_{1}$ are isomorphisms, letting $\pi$ be the pro-
jection of $F$ onto $F_{1}$ , we can take $W$ so small that it may satisfy $B_{y}^{\prime}$ : $F_{2}\rightarrow G$ ,
$\pi A_{y}^{\prime}$ : $E_{2}\rightarrow F_{1}$ are still isomorphisms for any $y\in W$ . Take such $W$ . We make a
new smooth mapping $C:W\times E\oplus F_{2}\rightarrow F$ by $C_{y}(u+v)=A_{y}^{\prime}u+v$ . It is easy to
see that $C_{y}$ is surjective for any $y\in W$ . If $C_{y}(u+v)=0$ , then $\pi A_{y}^{\prime}u=0$ and
$(1-\pi)A_{y}^{\prime}u+v=0$ . Therefore $A_{y}^{\prime}u=0$ , because if not, then $A_{y}^{\prime}u\in F_{2}$ , hence
$B_{y}^{\prime}A_{y}^{\prime}u\neq 0$ , contradicting the assumptions. So, $C_{y}(u+v)=0$ yields $u\in KerA_{y}^{\prime}$

and $v=0$ . Consequently, we get $KerC_{y}=KerA_{y}^{\prime}$ . Thus, this lemma is
reduced to the case $\tilde{G}=\{0\}$ , that is, $\tilde{A}$ is surjective.

So put $F=F_{1},$ $F_{2}=\{0\}$ . We can find $W$ such that $A_{y}^{\prime}$ is an isomorphism
of $E^{2}$ onto $F$ for every $y\in W$ . Let $D_{y}$ be the inverse of $A_{y}$ : $E_{2}\rightarrow F$. $D_{y}$ is
smooth with respect to $y$ . Put $\Psi$ : $W\times E_{1}\rightarrow E$ by $\Psi(y, u)=u-D_{y}A_{y}^{\prime}u$ . Ob-
viously, $A_{y}^{\prime}\Psi(y, n)\equiv 0$ , and $\Psi$ is a smooth mapping. So this $\Psi$ can be regarded
as a local trivialization of $Ker\tilde{A}$ , because if $A_{\nu}^{\prime}u=0$ for some $(y, u)$ , then
letting $\pi^{\prime}$ : $E\rightarrow E_{1}$ be the projection, $u=\pi^{\prime}u-D_{y}A_{y}^{\prime}\pi^{\prime}u$ . This relation is gotten
by the following: $\pi^{\prime}u-D_{y}A_{y}^{\prime}\pi^{\prime}u$ is contained in $KerA_{y}^{\prime}$ . So if $D_{y}A_{y}^{\prime}\pi^{\prime}u=$

$(1-\pi^{\prime})u$ , then the difference $(1-\pi^{\prime})u-D_{y}A_{y}^{\prime}\pi^{\prime}u$ is contained in $E_{2}\cap KerA_{\nu}^{\prime}$ ,
which is $\{0\}$ by assumption.

THEOREM 2. Suppose $A:\Gamma(E)\rightarrow\Gamma(F)$ is a differential operator of order $r$

with smooth $coefl\overline{1}cients$ and assume the image $A\Gamma^{s}(E)$ is closed in $\Gamma^{s-r}(F)$ for
any $s\geqq n+5+r$. Then, for any $t\geqq s,$

$Ker\tilde{A}$ is a right invariant smooth sub-
bundle of $\gamma^{-,s}(E)$ .

PROOF. Suppose at first that the image $1m\tilde{A}$ is a continuous subbundle.
Then, the factor bundle $\gamma^{ts-r}(F)/1m\tilde{A}$ is a continuous vector bundle and

$\tilde{A}$ fi
$\gamma^{ts}(E)\rightarrow\gamma^{ts-r}(F)\rightarrow\gamma^{ts-r}(F)/{\rm Im} A\rightarrow 0$

is exact, where $\tilde{\tau_{\vee}}$ is the natural projection. Since the factor bundle is con-
tinuous, $\tilde{\pi}$ is a strong bundle morphism. Therefore, Theorem A together
with the above Lemma yields the desired result.

Therefore, we have only to show that ${\rm Im}\tilde{A}$ is a continuous subbundle of
$\gamma^{ts-r}(F)$ . Take local trivializations $\tau;U^{t}\times\Gamma^{s}(E)\rightarrow\gamma^{ts}(E)$ and $\tau;U^{t}\times\Gamma^{s-r}(F)$

$\rightarrow\gamma^{ts- r}(F)$ as in 1. Then, $\tilde{A}$ induces a smooth map $A^{\prime}$ : $U^{t}\times\Gamma^{s}(E)\rightarrow\Gamma^{s-r}(F)$ .
$A^{\prime}$ is linear with respect to the second variable. Let $ E_{1}=Ker\{A:\Gamma^{s}(E)\rightarrow$

$\Gamma^{s-r}(F)\},$ $F_{1}=A\Gamma^{S}(E)$ and $E_{2},$ $F_{2}$ orthogonal complements of $E_{1},$ $F_{1}$ respectively.
Then, $A:E_{2}\rightarrow F_{1}$ is an isomorphism. Let $G$ be its inverse, and the map
$\varphi:U^{t}\times F_{1}\rightarrow F_{1}\oplus F_{2}$ defined by $\varphi(u, v)=A^{\prime}(u, Gv)$ is smooth and satisfies
$\varphi(0, v)\equiv v$ . Let $\pi$ be the projection of $F_{1}\oplus F_{2}$ onto $F_{1}$ . Then, there is a neigh-
borhood $W$ of $0$ in $U^{t}$ such that $\pi\varphi_{u}$ defined by $\pi\varphi_{u}v=\pi\varphi(u, v)$ is an iso-
morphism for any $u\in W$ . Therefore the image $\cup\{\varphi_{u}F_{1} ; u\in W\}$ defines a
smooth subbundle of $W\times F_{1}\oplus F_{2}$ , where $\varphi_{u}v=\varphi(u, v)$ . Thus, we have only to
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show $\varphi_{u}F_{1}=A_{u}^{\prime}\Gamma^{s}(E)$ if $u$ is sufficiently near to $0$ , where $A_{u}^{\prime}v=A^{\prime}(u, v)$ .
So assume there were a sequence $\{x_{n}\}$ converging to $0$ in $U^{t}$ such that

$A_{x_{n}}^{\prime}\Gamma^{s}(E)\supsetneqq A_{xn}^{\prime}E_{2}$ . Then, there exist $u_{n}$ such that $A_{x_{n}}^{\prime}u_{n}\in F_{2}$ and $\Vert A_{xn}^{\prime}u_{n}\Vert_{s-r}$

$=1$ for sufficiently large $n$ . We may assume $u_{n}\in\tau_{\xi()}^{-t_{xn}}R_{\xi(x)}^{*}E_{2}n$ Let $y_{n}=$

$\xi^{-1}(\xi(x_{n})^{-1})$ . $\{y_{n}\}$ converges to $0$ in $U^{t}(c. f. (\eta, 4))$ . Since $R^{\prime}(v, x)(=\tau_{\overline{\xi}(x)}^{1}R_{\xi(x)}^{*}v)$

is a continuous mapping of $\Gamma^{s}(E)\times U^{t}$ into $\Gamma^{s}(E)$ , there are a neighbourhood
$W$ of $0$ in $U^{t}$ and $K$ such that $\Vert|\tau_{\xi(x)}^{-1}R_{\xi(x)}^{*}\Vert|\leqq K$ for any $x\in W$ . Namely,
$\Vert\tau_{\xi(x)}^{-1}R_{\xi(x)}^{*}v\Vert_{s}\leqq K\Vert v\Vert_{s}$ for any $x\in W$ . Since $\tau^{-1}(n)R_{\xi n}^{*_{()}}\tau_{\xi(x)}^{-1}R_{\xi n}^{*_{(x)}}=id.$ , we have

$K^{-1}\Vert v\Vert_{s}\leqq\Vert_{T_{\xi(xn)}^{-1}}R_{\xi n}^{*_{(x)}}v\Vert_{s}\leqq K\Vert v\Vert_{s}$ , $v\in\Gamma^{s}(E)$ ,

for sufficiently large $n$ , and similarly we have

$K^{-1}\Vert v\Vert_{s- r}\leqq\Vert_{T_{\overline{\xi}(xn)}^{1}}R_{\xi(xn)}^{*}v\Vert_{s-r}\leqq K\Vert v\Vert_{s- r}$ , $v\in\Gamma^{s-r}(F)$ .
Since $A_{x_{n}}^{\prime}=\tau_{\xi xn}^{-1}()\tilde{A}\tau_{\xi(xn)}$ , we have

$A_{xn}^{\prime})xn$

Therefore, there is a constant $C$ such that $\Vert A_{xn}^{\prime}u_{n}\Vert_{s-r}\geqq C\Vert u_{n}\Vert_{s}$ , namely $\{u_{n}\}$

is bounded. Notice that Iim $A_{x_{n}}^{\prime}=A_{0}^{\prime}$ in operator norm of $L(\Gamma^{s}(E), \Gamma^{s-r}(F))$ .
Put $u_{n}=v_{n}+w_{n},$ $v_{n}\in E_{1},$ $w_{n}\in E_{2}$ . Then $\{v_{n}\},$ $\{w_{n}\}$ are also bounded. Therefore,

$1\equiv\lim\Vert A_{x_{n}}^{\prime}u_{n}\Vert_{s-r}\leqq\lim\Vert A_{xn}^{\prime}w_{n}\Vert_{s-r}+\lim\Vert(A_{x_{n}}^{\prime}-A_{0}^{\prime})_{l1_{n}}\Vert_{s- r}$

$=\lim\Vert A_{x_{n}}^{\prime}w_{n}\Vert_{s-r}\leqq\lim\Vert A_{0}^{\prime}w_{n}\Vert_{s-r}+\lim\Vert(A_{x_{\mathcal{R}}}^{\prime}-A_{0}^{\prime})w_{n}\Vert_{s-r}$

$=\lim\Vert A_{0}^{\prime}w_{n}\Vert_{s-r}\leqq\lim\Vert\pi A_{xn}^{\prime}w_{n}\Vert_{s-r}+\lim\Vert\pi(A_{xn}^{\prime}-A_{0}^{\prime})w_{n}\Vert_{s-r}$

$=\lim\Vert\pi A_{xn}^{\prime}w_{n}\Vert_{s-r}\leqq\lim\Vert\pi A_{x_{n}}^{\prime}u_{n}\Vert_{s-r}+\lim\Vert\pi(A_{xn}^{\prime}-A_{0}^{\prime})v_{n}\Vert_{s- r}$

$=\lim\Vert\pi A_{x_{n}}u_{n}\Vert_{s-r}\equiv 0$ .
This is contradiction, hence there exists a neighborhood $W$ of $0$ in $U^{t}$ such
that $\varphi_{x}F_{1}=A_{x}^{\prime}E_{2}=A_{x}^{\prime}\Gamma^{s}(E)$ for any $x\in W$ .

$NoWlet\mathfrak{G}$ beasubalgebra of $\Gamma(T_{M})$ . $Let\mathfrak{G}^{s}betheclosur\underline{eof}-\underline{\mathfrak{G}i}\underline{n}\Gamma^{s}(T_{M})$ .
Put $\tilde{\mathfrak{G}}^{s}=\{dR_{g}\mathfrak{G}^{s} ; g\in \mathcal{D}_{0}^{s}\}$ . In general, this is not a $C0ntinu\overline{ouS}_{-dist}^{-}$

( $i$ . $e$ . continuous subbundle).

PROPOSITION A. Notations being as above, suppose $\tilde{\mathfrak{G}}^{s}$ is smooth. Then $\tilde{\mathfrak{G}}^{s}$

is involutive. (This condition is satisfied, if $\mathfrak{G}$ is defined by a kernel of a
differential operator satisfying the assumption of Theorem 2 or by a kernel of
$k$ in Theorem 1.) More generally, if $\tilde{\mathfrak{G}}^{s}$ is a $C^{k(s)}$ -distribution for some $k(s)\geqq 1$

depending on $s$ , then $\tilde{\mathfrak{G}}^{s}$ is involutive.
PROOF. First of all, we fix $s$ arbitrarily. Since $\tilde{\mathfrak{G}}^{s}$ is a $C^{k(s)}$-distribution

on a smooth Hilbert manifold $\mathcal{D}_{0}$, there is so called $\tilde{\mathfrak{G}}^{s}$ -connection $\nabla$ on $\mathcal{D}_{0}^{s}$ ,
namely, (i) $\nabla$ is of class $C^{k(s)}$ , (ii) $\nabla_{u}\sim\tilde{v}\in\tilde{\mathfrak{G}}^{s}$ for any $C^{1}$ -vector fields $\tilde{u},\tilde{v}$ on $\mathcal{D}_{\alpha}^{s}$
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contained in $\tilde{\mathfrak{G}}^{s}$ . The existence of such connection is not hard to prove, if
one uses a partition of unity. Moreover, in this case, we need such a con-
nection defined only on a neighborhood of the identity. So in fact, one can
use a local coordinate and a local trivialization for the definition of $\nabla$ .

Put $T(\tilde{u},\tilde{v})=\nabla_{u}\sim\tilde{v}-\nabla_{\tilde{v}}\tilde{u}-[\tilde{u},\tilde{v}]$ . Then, $T$ is called a torsion tensor and a
tensor field on the neighborhood of the identity. Put $\tilde{u}(g)=dR_{g}u$ for $u\in \mathfrak{G}$ .
Then, $\tilde{u}$ is a smooth vector field on $\mathcal{D}_{0}$ contained in $\tilde{\mathfrak{G}}^{s}$ and $[\tilde{u},\tilde{v}](g)=dR_{g}[u, v]$

for any $u,$ $v\in \mathfrak{G}$ . Therefore, $T(dR_{g}u, dR_{g}v)\in dR_{g}\mathfrak{G}^{s}$ for any $u,$
$v\in \mathfrak{G}$ . This

implies $T(dR_{g}\mathfrak{G}^{s}, dR_{g}\mathfrak{G}^{s})\subset dR_{g}\mathfrak{G}^{s}$ because $T$ is a bounded bilinear map at each
point. Thus, we have the torsion tensor satisfies $T(\tilde{\mathfrak{G}}^{s},\tilde{\mathfrak{G}}^{s})\subset\tilde{\mathfrak{G}}^{s}$ . This implies

$\tilde{\mathfrak{G}}^{s}$ is involutive.
Now suppose $\tilde{\mathfrak{G}}^{s}=\{dR_{g}\mathfrak{G}^{s} ; g\in \mathcal{D}_{0}^{s}\}$ is a smooth distribution of $\mathcal{D}_{0}^{s}$ for $s\geqq s_{0}$ ,

where $s_{0}$ is some positive integer $\geqq n+5$ . By using Frobenius theorem on
Hilbert manifolds, there exists the maximal integral submanifold $G^{s}$ through
the identity. Put $G=\cap G^{s}$ . Then $\{G, G^{s}\}$ satisfies the following properties:

$(G, 1)$ $G^{s}$ is a smooth Hilbert manifold (trivial).

$(G, 2)$ $G^{S+1}\subset G^{S}$ and the inclusion is smooth. (See below.)

$\langle G,$ $3$) $G=\cap G^{s}$ (by definition). We give the inverse limit topology on $G$ .
$1(G, 4)$ $G$ is a topological group by the inverse limit topology and the group

multiplication $G\times G\rightarrow G,$ $(g, h)\rightarrow gh$ , can be extended to the $C^{\iota}$ -map-
ping of $G^{s+l}\times G^{s}$ into $G^{s}$ . (See below.)

\langle$G,$ $5$) The mapping $G\rightarrow G,$ $g\rightarrow g^{-1}$ , can be extended to the $C^{\iota}$ -mapping of
$G^{s+l}$ into $G^{s}$ . (See below.)

$(G, 6)$ For any $g\in G^{S}$ , the right translation $R_{g}$ : $G^{s}\rightarrow G^{s}$ is smooth. (This is
because $\tilde{\mathfrak{G}}^{s}$ is right invariant and $R_{g}$ ; $\mathcal{D}_{0}^{s}\rightarrow \mathcal{D}_{0}^{s}$ is smooth.)

$(G, 7)$ The mapping $dR:\mathfrak{G}^{s\cdot\vdash\iota}\times G^{s}\rightarrow TG^{s}$ defined by $dR(u, g)=dR_{g}u$ is $C^{\iota}-$

mapping, where $TG^{s}$ is the tangent bundle of $G^{s}$ . (See below.)

To prove these properties $G$ , 2.4.5.7, we need a lemma.
LEMMA 4. $G^{s}$ is a topological group for any $s\geqq s_{0}$ .
PROOF. Since $\tilde{\mathfrak{G}}^{s}$ is invariant, we have $R_{g}G^{s}=G^{s}$ for any $g\in G^{s}$ . This

shows $G^{s}$ is a subgroup. So $G^{s}$ is a topological group by the relative topology.
However, the manifold structure might be given by a stronger topology, be-
cause $G^{s}$ might not be closed in $\mathcal{D}_{0}^{\epsilon}$ .

Now, let $E^{s}$ be the orthogonal complement of $\mathfrak{G}^{s}$ in $\Gamma^{\epsilon}(T_{M})$ . Therefore
there are open neighbourhoods $V^{s},$ $W^{S}$ of $0$ in $\mathfrak{G}^{s},$ $E^{s}$ respectively and a smooth
diffeomorphism $\xi_{s}^{\prime}$ of $V^{S}\times W^{S}$ onto an open neighbourhood of the identity such
that $\xi_{\epsilon}^{\prime}(V^{s}, u)$ is an integral manifold of $\tilde{\mathfrak{G}}^{s}$ for every $u\in W^{s}$ . Since $\mathcal{D}_{0}^{s}$ is a



Smooth extension theorems 415

topological group, there are neighbourhoods $\acute{V}^{s},\acute{W}^{s}$ of $0$ in $\mathfrak{G}^{s},$ $E^{s}$ respectively
such that $\xi_{s}^{\prime}(\acute{V}^{s},\acute{W}^{s})\xi_{s}^{\prime}(\acute{V}^{s},\acute{W}^{S})^{-1}\subset\xi_{s}^{\prime}(\acute{V}^{s},\acute{W}^{s})$ . This implies $\xi_{s}^{\prime}(\acute{V}^{s}, 0)\xi_{s}^{\prime}(\acute{V}^{s}, 0)^{-1}\subset$

$\xi_{s}^{\prime}(\acute{V}^{s}, 0)^{-1}\subset\xi_{s}^{\prime}(\acute{V}^{s}, 0)$ .
On the other hand, it is easy to see that $G^{s}$ is generated by any open

neighbourhood $\xi_{s}^{\prime}(V^{s}, 0)$ of the identity, because $G^{s}$ is connected. Let $\mathfrak{R}^{s}$ be
a basis of the neighbourhoods of the identity in $\mathfrak{G}^{s}$ . Then the system
$\{\xi_{s}^{\prime}(V^{s}, 0);V^{s}\in \mathfrak{R}^{s}\}$ satisfies the axiom of the neighbourhood of topological
groups. (As for the axioms, see [11] or [7] for example.) Thus, $G^{s}$ is a
topological group.

To prove $(G, 2)$ , we have to take two diffeomorphisms $\xi_{s+1}^{\prime},$ $\xi_{s}^{\prime}$ . Assume
$\xi_{s+1}^{\prime}(V^{s+1}\times W^{s+1})\subset\xi_{s}^{\prime}(V^{s}\times W^{s})$ . Since $\xi_{s+1}^{\prime}(V^{s+1},0)$ is an integral submanifold of
$\tilde{\mathfrak{G}}^{s+1}$ and $\tilde{\mathfrak{G}}^{s+1}\subset\tilde{\mathfrak{G}}^{s}$ , any curve $c(t)$ contained in $V^{s+1}$ satisfies $\overline{d}\overline{t}d\xi_{s+1}^{\prime}c(t)\in\tilde{\mathfrak{G}}^{s+\iota}$

$\subset\tilde{\mathfrak{G}}^{s}$ . Thus, $\xi_{s}^{\prime}c(t)$ is contained in the integral submanifold of $\tilde{\mathfrak{G}}^{s}$ . This
implies $\xi_{s+1}^{\prime}(V^{S+1},0)\subset\xi_{s}^{\prime}(V^{s}, 0)$ . Thus $G^{s+1}\subset G^{s}$ .

Together with Lemma 4, the property $(G, 2)$ implies that $G$ is a topo-
logical group by the inverse limit topology.

To get the property $(G, 4)$ , we take also $\xi_{s+l}^{\prime},$ $\xi_{s}^{\prime}$ such that

$\xi_{s+l}^{\prime}$ : $V^{s+l}\times W^{s+l}\rightarrow \mathcal{D}_{0}^{s+l}$ , $\xi_{s}^{\prime}$ : $V^{s}\times W^{s}\rightarrow \mathcal{D}_{0}^{s}$

give smooth charts. Since $\mathcal{D}_{0}^{s}$ is a topological group, there are neighborhoods
$\acute{V}^{s+l},\acute{V}^{s}$ such that $\xi_{s+l}^{\prime}(\acute{V}^{s+t}, 0)\xi_{s}^{\prime}(\acute{V}^{s}, 0)\subset\xi_{s}^{\prime}(V^{s}, W^{s})$ . It is easy to see that
$\xi_{s+l}^{\prime}(\acute{V}^{s+l}, 0)\xi_{s}^{\prime}(\acute{V}^{s}, 0)\subset\xi_{s}^{\prime}(V^{s}, 0)$ . So by the property $(\mathcal{D}_{0},4)$ , $\eta_{s,t}(u, v)=$

$\xi_{s}^{\prime- 1}\xi_{s+l}^{\prime}(u, 0)\xi_{s}^{\prime}(v, 0)$ is a $C^{1}$ -mapping.
By the similar method, we get $(G, 5.7)$ .
Now, the properties $(G1-7)$ is the same to $(\mathcal{D}_{0}1-7)$ . According to the

terminology in $[2, 7]$ , $G$ is called an I. L. H.-Lie subgroup of $\mathcal{D}_{0}$ . In fact, a
topological group $G$ is called an I. L. H.-Lie group, if $G$ leads a system $G^{s}$

which satisfy $(\mathcal{D}_{0}1-7)$ and an I. L. H.-Lie group $H$, leading a system $H^{s}$ , is
called an I. L. H.-Lie subgroup of $G$ , if $H\subset G,$ $H^{s}\subset G^{s}$ , the inclusion is smooth
and $\mathfrak{H}^{s}$ (the tangent space of $H^{s}$ at e) is a closed subspace of $\mathfrak{G}^{s}$ . Strictly
speaking, one should call $\{G, G^{s}\}$ an I. L. H.-Lie group or an I. L. H.-Lie sub-
group instead of $G$ , because there might exist many kinds of systems $\{G^{s}\}$

such that $G=\cap G^{s}$ . So the system $\{G^{s}\}$ can be regarded as a structure (that
is, an I. L. H.-structure) of $G$ . Therefore, when we say $G$ is an I. L. H.-Lie
group, we always consider a group $G$ with an I. L. H.-structure $\{G^{s}\}$ . It is
easy to see that if $G$ is an I. L. H.-Lie group, then $\mathfrak{G}=\cap \mathfrak{G}^{s}$ is a Lie algebra,
where $\mathfrak{G}^{s}$ is the tangent space of $G^{s}$ at $e$ (c. f. [2, 7]). This will be called
a Lie algebra of $G$ .

COROLLARY 1. Let $\mathfrak{G}$ be a subalgebra of $\Gamma(T_{M})$ defined by a kernel of a
differential operator of order $r$. Let $A:\Gamma(T_{M})\rightarrow\Gamma(E)$ denote the differentiaI
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operator. Suppose (i) the coeJficients of $A$ are smooth and (ii) the image $A\Gamma^{s}(T_{M})$

is closed in $\Gamma^{s-r}(E)$ for any $s\geqq n+5+r$. Then, there exists an l. L. H.-Lie
subgroup $G$ of $\mathcal{D}_{0}$ having $\mathfrak{G}$ as a Lie algebra.

This is an immediate conclusion of Proposition A and Theorem 2.
However, Theorem 2, itself is an immediate conclusion of Theorem A and
Lemma 3, and this is not only one conclusion. One can extend Theorem 2
variously. In the following part of this section, a sort of extension of
Theorem 2 will be discussed.

Suppose $M$ is oriented and let $E_{-1},$ $E_{0},$ $E_{1}$ be finite dimensional smooth
riemannian vector bundles over $M$. Suppose $A:\Gamma(E_{-1})\rightarrow\Gamma(E_{0})$ and $B:\Gamma(E_{0})$

$\rightarrow\Gamma(E_{1})$ be linear differential operators of order $r$ such that (i) $A$ and $B$ have
smooth coefficients, (ii) $BA=0$ and (iii) $AA^{*}+B^{*}B$ is elliptic, where $A^{*},$ $B^{*}$

are formal adjoint operators of $A,$ $B$ respectively. Let $\square $ denote the elliptic
operator $AA^{*}+B^{*}B$ . Let $H$ be the kernel of $\square $ : $\Gamma^{2r}(E_{0})\rightarrow\Gamma^{0}(E_{0})$ . Then, $H$

is finite dimensional and $H\subset\Gamma(E_{0})$ by the regularity of the solutions. Define
a subbundle $\tilde{H}^{s}$ by $\{R_{g}^{*}H;g\in \mathcal{D}_{0}^{?}\}$ . Then $\tilde{H}^{s}$ is a smooth subbundle of $\gamma^{s}(E_{0})$

by the property $(\gamma 5-6)$ . Moreover $\tilde{H}^{t}$ is a smooth subbundle of $\gamma^{ts}(E_{0})$ for
any $t\geqq s\geqq n+5$ .

Since $H$ is finite dimensional, we can define the right invariant smooth
mapping $K$ of $\gamma^{ts}(E_{0})$ onto $H$ by Theorem 1. Let $\gamma^{t_{\dot{\square }^{\$}}}(E_{0})$ be the kernel of $K$.
Then by Lemma 3, $\gamma^{t_{\dot{\square }^{S}}}(E_{0})$ is a smooth subbundle of $\gamma^{ts}(E_{0})$ and is right

invariant. Let $\square \sim=R_{g}^{*}\coprod R_{g}^{*-1}$ . Then by using Theorem $A,$
$\sim\square $ is a smooth

bundle morphism of $\gamma^{s}(E_{0})$ into $\gamma^{ss-2r}(E_{0})$ for any $s\geqq n+5+2r$ . Since $M$ is
closed, we have the following

LEMMA 5. $\sim\square $ is a smooth bundle isomorphism of $\gamma_{0}^{s}(E_{0})$ onto $\gamma_{\dot{o}^{s-2r}}^{s}(E_{0})$ .
Therefore $\sim\coprod^{-1}$ : $\gamma_{\square }^{s.s-2r}(E_{0})\rightarrow\gamma_{\square }^{s}(E_{0})$ is also smooth.

PROOF. Since $\sim\square $ : $\gamma_{0}^{l}(E_{0})\rightarrow\gamma^{s_{\dot{\square }}*-2r}(E_{0})$ is smooth and injective, we have only

to see that the image of $\sim\square $ is $\gamma_{\dot{o}^{s-2r}}^{\epsilon}(E_{0})$ , because if so, it is easy to prove the
smoothness of $\coprod^{-1}\sim$ .

Let $\Gamma_{o}^{t}(E_{0})=\{u\in\Gamma^{t}(E_{0});\int_{M}\langle u, e\rangle\mu=0$ for any $e\in H\}$ . Then $\Gamma_{\square }^{s}(E_{0})$ ,

$\Gamma_{o}^{s-2r}(E_{0})$ are the fibres at the identity of $\prime^{s}c(E_{0}),$ $\gamma_{\dot{o}^{s-2r}}^{s}(E_{0})$ respectively. Since
$\square $ is self-adjoint elliptic operator, we see $\square $ : $\Gamma_{\square }^{s}(E_{0})\rightarrow\Gamma_{o}^{s-2r}(E_{0})$ is isomorphic.
Thus, $\square \sim$ is an isomorphism of $\gamma_{0}^{s}(E_{0})$ onto $\gamma^{\iota_{\dot{\square }}s-2r}(E_{0})$ . The smoothness comes
from Theorem A.

It is easy to see that $\square \gamma_{\square }^{\epsilon}(E_{0})\sim=\gamma_{\square }^{s.s-2r}(E_{0})=\coprod\gamma^{s}(E_{0})\sim$ . Let $ F_{1}=KerB\cap$

$\Gamma_{\square }(E_{0}),$ $F_{2}=KerA^{*}\cap\Gamma_{o}(E_{0}),$ $F_{1}^{s}=KerB\cap\Gamma_{\square }^{s}(E_{0})$ and $F_{2}^{s}=KerA^{*}\cap\Gamma^{s_{\square }}(E_{0})$ .
Then, $F_{1}^{s},$ $F_{2}^{s}$ are closed in $\Gamma_{\square }^{s}(E_{0})$ . Such $F_{i}^{s}$ is defined for $s\geqq r$ .

LEMMA 6. $\Gamma_{\square }(E_{0})=F_{1}\oplus F_{2},$ $\Gamma_{o}^{\epsilon}(E_{0})=F_{1}^{s}\oplus F_{2}^{s}$ for $s\geqq r$ and $F_{1}^{s}=A\Gamma^{s+r}(E_{-1})$ ,
$F_{2}^{s}=B^{*}\Gamma^{s+r}(E_{1})$ . Moreover, $B\Gamma^{s+r}(E_{0})$ is closed in $\Gamma^{s}(E_{1})$ and so is $A^{*}\Gamma^{s+r}(E_{0})$
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in $\Gamma^{s}(E_{-1})$ for $s\geqq 2r$ .
PROOF. Since $\{u\in\Gamma^{s}(E_{0});A^{*}u=Bu=0\}=H$ for $s\geqq r$, we see that

$F_{1}^{s}\cap F_{2}^{s}=\{0\}$ . Since $AA^{*}\square ^{-1}u\in F_{1}^{s},$ $B^{*}B\coprod^{-1}u\in F_{2}^{s}$ , the equality $u=AA^{*}\coprod^{-1}u$

$+B^{*}B\coprod^{-1}u$ implies $\Gamma_{\square }^{s}(E_{0})=F_{1}^{s}\oplus F_{2}^{s}$ for $s\geqq r$. Hence $\Gamma_{\square }(E_{0})=F_{1}\oplus F_{2}$ .
Since $\square $ : $F_{1}^{s+2r}\oplus F_{2}^{s+2r}\rightarrow F_{1}^{s}\oplus F_{2}^{s}$ is isomorphic and $\coprod F_{1}^{s+2r}\subset F_{1}^{s},$ $\coprod F_{2}^{s+2r}\subset F_{2}^{s}$ ,

we have $\square F_{i}^{s}=F_{i}^{s},$ $i=1,2$ . Moreover, $\coprod F_{1}^{s+2r}=AA^{*}F_{1}^{s+2r},$ $\coprod F_{2}^{s+2r}=B^{*}BF_{2}^{s+2r}$ .
Since $AA^{*}F_{1}^{s+2r}\subset A\Gamma^{s+r}(E_{-1})\subset F_{1}^{s}$ and $B^{*}BF_{2}^{s+2r}\subset B^{*}\Gamma^{s+r}(E_{1})\subset F_{2}^{s}$ , we have
$A\Gamma^{s+r}(E_{-1})=F_{1}^{s},$ $B^{*}\Gamma^{s+r}(E_{1})=F_{2}^{s}$ .

Since $AA^{*}:$ $F_{1}^{s+r}\rightarrow F_{1}^{s-r}$ is isomorphic for $s\geqq 2r$, we have that $A^{*}F_{1}^{s+r}$ is
closed in $\Gamma^{s}(E_{-1})$ . This is because

$\Vert|A\Vert|\Vert A^{*}u\Vert_{s}\geqq\Vert AA^{*}u\Vert_{s- r}\geqq C\Vert u\Vert_{s+r}$ ,

where $\Vert|A\Vert|$ is the operator norm of $A:\Gamma^{s}(E_{-1})\rightarrow\Gamma^{s-r}(E_{0})$ . By the same
method we get $BF_{2}^{s+r}$ is closed in $\Gamma^{s}(E_{1})$ .

COROLLARY 2. Let $\pi_{i}$ : $\Gamma_{\square }(E_{0})\rightarrow F_{i},$ $i=1,2$ be the projection. Then $\pi_{i}$ can
be extended to the projection $\Gamma_{\square }^{s}(E_{0})$ onto $F_{i}^{s}$ for $s\geqq 2r$ and $\pi_{1}=\coprod^{-1}AA^{*}$ ,
$\pi_{2}=\coprod^{-1}B^{*}B$ .

COROLLARY 3. Let $\tilde{\pi}_{i}$ be the right invariant bundle map of $\gamma_{0^{\prime}}^{ts}(E_{0})$ into
itself defined by $R_{g}^{*}\pi_{i}R_{g}^{*-1}$ for $t\geqq s\geqq n+5+2r$. Then $\tilde{\pi}_{i}$ is a smooth projection.

PROOF. Since $\tilde{\pi}_{1}=\coprod^{-1}AA^{*}\sim\sim$ , $\tilde{\pi}_{2}=\sim\sim\coprod^{-1}B^{*}B$ , Theorem A together with
Lemma 5 yields the desired results.

Let $P_{1}^{ts}=Ker\{\tilde{\pi}_{2} ; \gamma_{\square }^{t\epsilon}(E_{0})\rightarrow\gamma_{\dot{o}^{s}}^{t}(E_{0})\}$ and $F_{2}^{t.s}=Ker\{\tilde{\pi}_{1} ; \gamma_{\dot{o}^{s}}^{t}(E_{0})\rightarrow\gamma^{t_{\square ^{S}}}(E_{0})\}$ .
By Lemma 3, we see that $\tilde{F}_{i}^{ts},$ $i=1,2$ , are smooth subbundle of $\gamma_{\square ^{S}}^{t}(E_{0})$ for any
$t\geqq s\geqq n+5+2r$. Of course, $\tilde{\pi}_{i}\gamma^{t_{\square }s}(E_{0})=\tilde{F}_{i}^{t\cdot s}$ and $\gamma_{\square }^{ts}(E_{0})=F_{1}^{t\cdot s}\oplus\tilde{F}_{2}^{\iota.s}$ (Whitney
sum). Moreover, $F_{1}^{t}\cdot\oplus F_{2}^{ts}$

’ is a smooth vector bundle over $\mathcal{D}_{0}^{t}$ for any $s,$
$s^{\prime}$

such that $t\geqq s,$ $s^{\prime}\geqq n+5+2r$ . Since $\gamma^{ts}(E_{0})=\gamma_{\square ^{S}}^{t}(E_{0})\oplus\tilde{H}$, we can define the
projection $\tilde{\pi}$ of $\gamma^{ts}(E_{0})$ onto $\tilde{F}_{1}^{t.s}$ . Obviously, $\tilde{\pi}$ is smooth.

THEOREM 3. Notations and assumptions being as above, let $D,$ $D^{\gamma}$ be linear
differential operators of order $p,$ $q$ respectively, $p\geqq q,$ $D$ and $D^{\prime}$ have smooth
coeffcients and map $\Gamma(T_{M})$ into $\Gamma(E_{0})$ . Assume furthermore that $D\Gamma(T_{M})\subset F_{1}$

and $(D+D^{\prime})\Gamma^{s}(T_{M})$ is closed in $F_{1}^{s-p}\oplus F_{2}^{s-q}\oplus H$ for any $s\geqq n+5+2r+p$ . Then,
the kernel of $\tilde{D}+\tilde{D}^{\prime}$ is a smooth subbundle of $\gamma^{ts}(T_{M})$ , where $\tilde{D}+\tilde{D}^{\prime}$ is the
right invariant bundle morphism defined by $R_{g}^{*}(D+D^{\prime})R_{g}^{*-1}$ . (This is a mapping
of $\gamma^{ts}(T_{M})$ into $F_{1}^{ts-p}\oplus\tilde{F}_{2}^{t.s-q}\oplus\tilde{H}.$)

PROOF. Since the closedness of the image is assumed, we have only to
show the smoothness of $\tilde{D}+\tilde{D}^{\prime}$ . Obviously, $\tilde{D}+\tilde{D}^{\prime}=\tilde{D}+\tilde{\pi}\tilde{D}^{\prime}+(1-\tilde{\pi})\tilde{D}^{\prime}$ . Since
$D\Gamma(T_{M})\subset F_{1},\tilde{D}+\tilde{\pi}D$ ’ is a mapping of $\gamma^{ts}(T_{M})$ into $P_{1}^{t.s-p}$ . By Theorem A
and Lemma 5, this is smooth. Similarly, $(1-\tilde{\pi})\tilde{D}^{1}$ is smooth. So Lemma 3
shows that the kernel of $\tilde{D}+\tilde{D}^{\prime}$ is smooth.

This is an extension of Theorem 2, and these Theorems 2, 3 have several
non-trivial applications. In the remaining part of this section, we discuss
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about the applications. There will be given four examples A–D. $A,$ $B$ and
$C$ are applications of Theorems 2-3 and $D$ is an application of Theorem A
and Lemma 5.

(A) Let $\Gamma(\bigwedge_{M}^{k})$ be the space of smooth k-forms on $M,$ $\bigwedge_{H}^{k}$ the exterior
product of cotangent bundle $T_{M}^{*}$ . Suppose $M$ is odd dimensional ($ n=2m+1\rangle$

and has a smooth contact structure. A contact structure of $M$ is given by
a l-form $w$ such that $w\wedge(dw)^{m}\neq 0$ . We define a smooth vector field $\xi_{w}$

by $w\lrcorner\xi_{w}\equiv 1$ , $dw\lrcorner\xi_{w}\equiv 0$ and smooth subbundles $E_{w}=\{u\in T_{M} ; w\lrcorner u=0\}$ ,
$\hat{E}_{w}=\{u^{\prime}\in T_{M}^{*} ; u^{\prime}\lrcorner\xi_{w}=0\}$ , where $\lrcorner$ implies the inner product. Since $w\wedge(dw)^{m}$

$\neq 0$ , the mapping $dw:E_{w}\rightarrow E_{w}$ defined by $dw(u)=dw\lrcorner u$ is an isomorphism.
The Lie derivative of $w$ is given by

$\mathfrak{L}_{u}w=d(w\lrcorner u)+dw\lrcorner u$ .

Since $T_{M}=R\xi_{w}\oplus E_{w}$ ($R=the$ real numbers), any vector field $u$ of $M$ can
be expressed by $f\xi_{w}+\text{{\it \^{u}}}$ , where $f$ is a function on $M,$ \^u is a section of $E_{w}$ .
Using this expression, we have

$\mathfrak{L}_{u}w=df+dw\lrcorner\hat{\text{{\it \^{u}}}}$ .
Let $1_{M}$ be the trivial bundle $R\times M$. In the above argument, replace $E_{-1}$

by $1_{M},$ $E_{0}$ by $T_{M}^{*},$ $E_{1}$ by $\bigwedge_{M}^{2}$ and $A,$ $B$ by $d$ . Then, we have $F_{1}^{s}=d\Gamma^{S+1}(1_{M})$ ,
$F_{2}^{s}=\delta\Gamma^{s+1}(\bigwedge_{M}^{2})$ and $H=the$ space of harmonic l-forms. Let $\pi$ be the pro-
jection of $\Gamma(T_{M}^{*})$ onto $F_{1}$ . Then $\pi$ can be extended to the projection of $\Gamma^{\epsilon}(T_{M}^{*})$

onto $F_{1}^{s}$ .
LEMMA 7. Assume $(1-\pi)dw(\Gamma^{s}(E_{w}))$ is closed in $F_{2}^{s}\oplus H$. Then, the image

$\{d(w\lrcorner u)+dw\lrcorner u;u\in\Gamma^{s}(T_{M})\}$ is closed in $F_{1}^{\epsilon-1}\oplus F_{2}^{s}\oplus H$.
PROOF. It is not hard to verify that $\Gamma^{S}(T_{M})=\Gamma^{S}(1_{M})\xi_{w}\oplus\Gamma^{s}(E_{w})$ . Let

${\rm Im}^{s}=\{d(w\lrcorner u)+dw\lrcorner u;u\in\Gamma^{s}(T_{M})\}$ . Suppose $x+y$ is in the closure of ${\rm Im}^{\epsilon}$

and $x\in F_{1}^{s-1},$ $y\in F_{2}^{s}\oplus H$. Then $y$ is contained in the closure of $(1-\pi){\rm Im}^{s}$ .
By the assumption together with the fact $dw(\Gamma^{s}(E_{w}))=dw(\Gamma^{s}(T_{M}))$ , we see that
there is $u_{0}\in\Gamma^{s}(E_{w})$ such that $y=(1-\pi)dw\lrcorner u_{0}$ . Since $x\in F_{1}^{\epsilon-1}=d\Gamma^{s}(1_{M})$ and
$\pi dw\lrcorner u_{0}\in F_{1}^{s-1}$ , we can find $f\in\Gamma^{s}(1_{M})$ such that $df=x-\pi dw\lrcorner u_{0}$ . Therefore
$d(w\lrcorner(f\xi_{w}+u_{0}))+dw\lrcorner(f\xi_{w}+u_{0})=x+y$ . This implies $x+y\in 1m^{s}$ . Thus, ${\rm Im}^{s}$ is
closed in $F1^{\backslash -1}\oplus F_{2}^{s}\oplus H$.

THEOREM 4. Let
$\mathfrak{G}=\{u\in\Gamma(T_{H});d(w\lrcorner u)+dw\lrcorner u=0\}$ .

Assume $(1-\pi)dw(\Gamma^{s}(E_{w}))$ is closed in $F_{2}^{s}\oplus H$ for any $s\geqq n+8$ . Then for the
subalgebra $\mathfrak{G}$ there is an 1. L. H.-Lie subgroup $G$ which has $\mathfrak{G}$ as the Lie algebra.

PROOF. In Theorem 3, put $Du=d(w\lrcorner u),$ $D^{\prime}u=dw\lrcorner u$ . Then Lemma 7
shows that $D+D^{\prime}$ satisfies the conditions of Theorem 3. By using Proposition
A and the properties $(G, 1-7)$ , we have the desired result.
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NOTE: Put $\mathcal{D}_{w}=\{\varphi\in \mathcal{D}_{0} ; \varphi^{*}w=w\},$ $\mathcal{D}_{w}^{s}=\{\varphi\in \mathcal{D}_{0}^{s} ; \varphi^{*}w=w\}$ . Then it is
easy to see that $G\subset \mathcal{D}_{w},$ $G^{s}\subset \mathcal{D}_{w}^{s}$ , because $G^{s}$ is given by the maximal integral

submanifold of $\mathfrak{G}^{s}$ . Moreover, if $c(t)$ is a C’-curve in $\mathcal{D}_{0}^{\epsilon}$ such that $c(t)\in \mathcal{D}_{w}^{s}$

for each $t$ , then $c(t)\in G^{S}$ . So, if we could prove $\mathcal{D}_{w}^{\epsilon}$ is locally C’-arcwise con-
nected, then $G^{s}$ and $\mathcal{D}_{w}^{s}$ coincide. However, the author could not prove that.
In this case, we cannot use the same method as in [2], because the image ${\rm Im}^{s}$

is closed in $F_{1}^{s-1}\oplus F_{2}^{s}\oplus H$, while $\varphi^{*}w$ moves in $F_{1}^{s-1}\oplus F_{2}^{s-1}\oplus H$. So the implicit
function theorem cannot be applied.

(B) Suppose $M$ is even dimensional $(n=2m)$ and have a smooth non-
degenerate 2-form $w$ , where non-degenerate means $w^{m}\neq 0$ . The Lie derivative
of $w$ is given by

$\mathfrak{L}_{u}w=d(w\lrcorner u)+dw\lrcorner u$ .
In the argument of Lemma 5, 6 and Theorem 3, replace $E_{-1}$ by $T_{M}^{*},$ $E_{0}$ by

$\bigwedge_{M}^{2},$ $E_{1}$ by A& and $A,$ $B$ by $d$ . Then, we have $F_{1}^{s}=d\Gamma^{s+1}(T_{M}^{*}),$ $F_{2}^{s}=\delta\Gamma^{s+1}(\bigwedge_{M}^{3})$

and $H=the$ space of harmonic 2-forms. Let $\pi$ be the projection of $\Gamma(\bigwedge_{H}^{2})$

onto $F_{1}$ . Then $\pi$ can be extended to the projection of $\Gamma^{s}(\bigwedge_{M}^{2})$ onto $F_{1}^{\iota}$ and
that of $F_{1}^{s-1}\oplus F_{2}^{\epsilon}\oplus H$ onto $F_{1}^{\epsilon-1}$ .

Assume the following two things:
(i) $\{(1-\pi)dw\lrcorner u;u\in\Gamma^{s}(T_{M})\}$ is closed in $F_{2}^{s}\oplus H$ for any $s\geqq n+8$ .
(ii) Let $E^{s}=\{u\in\Gamma^{s}(T_{M});dw\lrcorner u\in F_{1}^{s-1}\}$ . Then $F_{1}^{\epsilon-1}=\{d(w\lrcorner u);u\in E^{s}\}$ .

These assumptions are satisfied automatically, if $w$ is a symplectic 2-form,

that is, $dw=0$ .
LEMMA 8. Notations and assumptions being as above, the space ${\rm Im}^{s}=$

$\{d(w\lrcorner u)+dw\lrcorner u;u\in\Gamma^{s}(T_{M})\}$ is closed in $F_{1}^{s-1}\oplus F_{2}^{s}\oplus H$.
PROOF. Put $T_{1}u=d(w\lrcorner u),$ $T_{2}u=dw\lrcorner u$ . Since $T_{1}\Gamma^{s}(T_{M})\subset F_{1}^{s-1},$ $E^{s}$ is the

kernel of $(1-\pi)(T_{1}+T_{2}):\Gamma^{s}(T_{M})\rightarrow F_{2}^{s}\oplus H$. Obviously $(1-\pi)(T_{1}+T_{2})=(1-\pi)T_{2}$ .
Let $E_{0}^{s}$ be the kernel of $T_{1}$ : $E^{s}\rightarrow F_{1}^{s-1}$ and $E_{1}^{s}$ the orthogonal complement

of $E_{0}^{s}$ in $E^{s}$ . By the assumption (ii), $T_{1}$ is an isomorphism of $E_{1}^{s}$ onto $F_{1}^{s-1}$ .
Consider the mapping $T_{1}^{-1}(T_{1}+T_{2}):E_{1}^{s}\rightarrow E_{1}^{s}$ . Since $T_{2}E^{s}\subset F_{1}^{s-1}$ by definition,

this is well defined and has the form $I+compact$ operator. This is because
$T_{2}E^{s}\subset F_{1}^{s}$ and the inclusion $F_{1}^{s}\subset F_{1}^{s-1}$ is a compact operator by Rellich theorem.
Thus, $(I+T_{1}^{-1}T_{2})E_{1}^{s}$ is closed and finite codimensional and hence so does
$(T_{1}+T_{2})E_{1}^{s}$ in $F_{1}^{s-1}$ . Therefore $(T_{1}+T_{2})E^{s}$ is finite codimensional, because
$(T_{1}+T_{2})E^{s}\supset(T_{1}+T_{2})E_{1}^{s}$ and hence closed in $F_{1}^{s-1}$ .

Now, let $(T_{1}+T_{2})u_{n}$ be a Cauchy sequence in $F_{1}^{s-1}\oplus F_{2}^{s}\oplus H$. Then, so is
$(1-\pi)T_{2}u_{n}$ in $F_{2}^{s}\oplus H$. Let $E_{2}^{s}$ be the orthogonal complement of $E^{s}$ in $\Gamma^{S}(T_{M})$ .
Then $(1-\pi)T_{2}$ : $E_{2}^{s}\rightarrow F_{2}^{s}\oplus H$ is injective and has a closed image by the as-
sumption (i). Therefore, there exists a Cauchy sequence $v_{n}$ in $E_{2}^{s}$ such that

$(1-\pi)T_{2}v_{n}=(1-\pi)T_{2}u_{n}$ .
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Since $v_{n}$ is a Cauchy sequence in $E_{2}^{l},\lim_{n\rightarrow\infty}v_{n}=v_{0}$ exists in $E_{2}^{s}$ . Therefore

$(1-\pi)T_{2}n_{0}=\varliminf_{n}(1-\pi)T_{2}u_{n}$ . Obviously, $u_{n}-v_{n}\in E^{s}$ , and $(T_{1}+T_{2})(u_{n}-v_{n})$ is a

Cauchy sequence in $F_{1}^{s-1}$ . On the other hand, by the above argument we see
$(T_{1}+T_{2})E^{s}$ is closed in $F_{1}^{\epsilon-1}$ . Therefore, there is $x_{0}\in E^{s}$ such that $(T_{1}+T_{2})x_{0}$

$=\lim(T_{1}+T_{2})(u_{n}-v_{n})$ . Thus, $(T_{1}+T_{2})x_{0}=\lim(T_{1}+T_{2})u_{n}-(T_{1}+T_{2})v_{0}$ . This
$n-$ $n-$

implies that $\lim_{n-\infty}(T_{1}+T_{2})u_{n}$ is contained in the image, that is, ${\rm Im}^{S}$ is closed.

THEOREM 5. Let $\mathfrak{G}=\{u\in\Gamma(T_{M});d(w\lrcorner u)+dw\lrcorner u=0\}$ . Suppose $w$ satisfies
the property (i) (ii) above. Then for the subalgebra $\mathfrak{G}$ there is an I. L. H.-Lie
subgroup $G$ which has $\mathfrak{G}$ as the Lie algebra.

NOTE: Put $\mathcal{D}_{w}=\{\varphi\in \mathcal{D}_{0} ; \varphi^{*}w=w\},$ $\mathcal{D}_{w}^{\$}=\{\varphi\in \mathcal{D}_{0}^{s} ; \varphi^{*}w=w\}$ . Then $G\subset \mathcal{D}_{w}$

and $G^{s}\subset \mathcal{D}_{w}^{s}$ . However, by the same reason as in (A), the author could not
prove the equality. If $w$ is a symplectic two form, then we can use the
implicit function theorem and hence $G=\mathcal{D}_{w},$ $G^{s}=\mathcal{D}_{w}^{s}$ (see [2]).

(C) Let $E$ be a smooth finite dimensional vector bundle over $M$. Suppose
$ Ehasasmoothriemannianconnection\nabla$ . Letw beasmooth bundle morphism
of $T_{M}$ into $E$ such that

$\nabla_{X}w(Y)-\nabla_{Y}w(X)-w([X, Y])=0$ ,

for any $C^{1}$ -vector field of $M$. Remark that the image $w(T_{M})$ is not necessarily
closed or subbundle of $E$ . This mapping $w$ can be regarded as a mapping
of $\Gamma(T_{M})$ into $\Gamma(E)$ . By the assumption, $\mathfrak{G}=\{u\in\Gamma(T_{M});w(u)=0\}$ is a sub-
algebra of $\Gamma(T_{M})$ .

THEOREM 6. Notations and assumptions being as above, suppose $w\Gamma^{s}(T_{M})$

is closed in $\Gamma^{\epsilon}(E)$ for any $s\geqq n+5$ . Then, there is an I. L. H.-Lie subgroup $G$

of $\mathcal{D}_{0}$ which has $\mathfrak{G}$ as the Lie algebra.
PROOF. Since $w:\Gamma(T_{M})\rightarrow\Gamma(E)$ is a differential operator of order $0$ ,

Theorem A and Theorem 2 yield the desired results.
NOTE: Since $w(T_{M})$ might not be a subbundle, the kernel of $w:T_{M}\rightarrow E$

might not be a subbundle of $T_{M}$ .
The condition $\nabla_{X}w(Y)-\nabla_{Y}w(X)-w([X, Y])=0$ is used only to ensure

that $\mathfrak{G}$ is a subalgebra.
(D) Let $E$ be a smooth, riemannian and finite dimensional vector bundle

over $M$. Let $A:\Gamma(E)\rightarrow\Gamma(E)$ be a self-adjoint elliptic differential operator
of order $2r$ with smooth coefficients such that all of the eigenvalues are $\leqq 0$ .
Then the resolvent $(pI-A)^{-1}$ exists for $p$ in the complement of $\Sigma$ in the
complex plane and satisfies

$|11(pI-A)^{-1}Il1_{\epsilon}\leqq\frac{C_{s}}{|p|+1}$ ,

where $(pI-A)^{-1}$ is regarded as the operator of $\Gamma^{s}(E)$ into itself.
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Fig.

Therefore, by Theorem 5.2 in [10, p. 277], the operator $S_{t}$ of $\Gamma^{S}(E)$ into
itself defined by

$S_{t}x=\frac{1}{2\pi i}\int_{c}e^{pt}(pI-A)^{-1}xdp$ , $t>0$ , $S_{0}=id$

is the semi-group with the generator $A$ , where the route of the integral is
as in Fig. Obviously, $R_{g}^{*}S_{t}R_{g}^{*-1}$ is a semi-group of the fibre of $\gamma^{ts}(E)$ at $g$

with the generator $R_{g}^{*}AR_{g}^{*-1}$ for any $g\in \mathcal{D}_{0}^{t}$ , where $t\geqq s\geqq n+5+2r$. So define
a bundle morphism $\tilde{S}_{t}$ : $\gamma^{ts}(E)\rightarrow\gamma^{ts}(E)$ by $R_{g}^{*}S_{t}R_{g}^{*-1}$ . Then, we have

$\tilde{S}_{t}u=\frac{1}{2\pi i}\int_{c}e^{pt}(pI-\tilde{A})^{-1}udp$ , $t>0$ ,

where $\tilde{A}$ is the bundle morphism of $\gamma^{ts+2r}(E)$ into $\gamma^{t\epsilon}(E)$ and $(pI-\tilde{A})^{-1}$ is
regarded as the bundle morphism of $\gamma^{ts}(E)$ into itself. It is possible because
$\gamma^{ts+2r}(E)\subset\gamma^{ts}(E)$ .

By theorem A, $p1$–Aisasmooth bundle morphism of $\gamma^{ts+2r}(E)onto\gamma^{ts}(E)$ .
Therefore, Lemma 5 together with the fact that $\gamma^{ts+2r}(E)\subset\gamma^{ts}(E)$ is smooth
shows that $(pI-A)^{-1}$ is smooth.

Thus, we have the following
THEOREM 7. For any fixed $t\geqq 0,\tilde{S}_{t}$ : $\gamma^{ts}(E)\rightarrow\gamma^{ts}(E)$ is a smooth bundle

morphism.
NOTE: By this theorem, we see that the semi-group used in \S 13 of [2]

can be extended smoothly on the bundle $\gamma^{ts}(T_{M})$ .
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3\circ Jet bundles and higher order connections.

Before starting to prove Theorem A and Lemma 2, we have to establish
our notations and recall some facts which will be used in the next section-
Specifically, we discuss r-th jet bundle of local $C^{r}$-maps of $M$ into itself. Let
$I^{r}(M)$ be the jet bundle of local $C^{r}$-diffeomorphisms of $M$ into itself for $ r\geqq 1\leftarrow$

Let $E$ be a smooth finite dimensional vector bundle over $M$ and $J^{r}E$ the r-th
jet bundle of the local sections of $E$ . In 1, we made a vector bundle $\gamma(E)$ ,

over $\mathcal{D}_{0}$ with the fibre $\Gamma(E)$ . Correspondingly, in this section we will make $\cdot$

a finite dimensional vector bundle $K^{r}(M, E)$ over 1 $r(M)$ with the fibre $J_{x}^{r}E,$ .
where J., $E$ is the fibre of $J^{r}E$ at $x\in M$.

On the other hand, in [9], the author defined right invariant connections.
on $\gamma(T_{M})$ , which was called I. L. H.-connections. Correspondingly, we will.
define right invariant (in a sense) connections on $K^{r}(M, E)$ . This is called a
higher order connection or specifically r-th order connection. Such concepts.

will be used to prove Theorem $A$ , because we have to make a local triviali-
zation of $\gamma(J^{r}E)$ . Any differential operator $A$ of $\Gamma(E)$ into $\Gamma(F)$ with $smooth_{t}$

coefficients is expressed by $A=\alpha j^{r}$ for some $\alpha\in\Gamma((J^{r}E)^{*}\otimes F)$ . So to prove $\cdot$

$\tilde{A}$ is smooth, we have to show that (i) a : $\gamma(J^{r}E)\rightarrow\gamma(F)$ is smooth and (ii)
$i$ :$\gamma(E)\sim_{r}\rightarrow\gamma(J^{r}E)$ is smooth (see also next section for precise proof), where $\cdot$

$\tilde{\alpha},$

$j\sim_{r}$ are bundle morphisms defined by $R_{g}^{*}\alpha R_{g}^{*}-1,$ $R_{g}^{*}j^{r}R_{g}^{*}-1$ respectively. In
this section, we discuss about a local trivialization of $\gamma(J^{r}E)$ .

Now, let $J^{r}(M)$ be the space of the r-th jets of the local $C^{r}$-mappings of $M$

into itself. $J^{r}(M)$ is a smooth fibre bundle over $M\times M$. Let $\pi:J^{r}(M)\rightarrow M\times M$

be the projection. Let $J^{r}(\{x\}, M)$ denote the full inverse $\pi^{-1}(\{x\}\times M)$ . Sup-
pose $a$ be an element of $J^{r}(M)$ with $\pi a=(x, y)$ . Then, there is a $smooth|$

mapping $\varphi$ of a neighbourhood of $x$ into $M$ such that $\varphi(x)=y$ and $(j^{r}\varphi)(x)=a$ .
Let $E$ be a smooth finite dimensional vector bundle over $M$. For the

above $\varphi$ , let $\varphi^{-1}E$ be the pull back of $E$ by $\varphi$ . The local sections $v$ of $\varphi^{-1}E$

can be naturally identified with the mappings $v:M\rightarrow E$ such that $\pi^{\prime}v=\varphi$ ,

where $\pi^{\prime}$ is the projection of $E$. Let $J_{x^{r}}\varphi^{-1}E$ be the vector space of the r-th
jets at $x$ of the local sections of $\varphi^{-1}E$ . If you use coordinates $x^{1}$ . , $x^{n}$ of
a neighborhood of $x$ and $y^{1},$ $\cdots$ , $y^{n},$ $p^{1}$ , $\cdot$ .. , $p^{m}$ on an inverse image of $\pi^{\prime}$ of a
neighborhood of $y$ , then the mapping $v:M\rightarrow E$ can be expressed by

$(\varphi^{1}(x^{1}, \cdots x^{n}),$ $\cdots$ $\varphi^{n}(x^{1}, \cdots x^{n}),$ $p^{1}(x^{1}, \cdots, x^{n}),$ $\cdots$ $p^{m}(x^{1}, \cdots x^{n}))$ .
So $(j^{r}v)(x)=(derivatives$ of $\varphi^{i}$ at $x$ up to order $r$, derivatives of $p^{t}$ at $x$ up
to order $r$).

Therefore, we see $J_{x^{r}}\varphi^{-1}E$ depends only on $a\in J^{r}(M)$ . So we denote this
by $K_{a^{r}}(M, E)$ . The same expression by coordinates gives the following:

LEMMA 9. $K^{r}(M, E)=\cup\{K_{a^{r}}(M, E);a\in J^{r}(M)\}$ is a smooth vector bundle
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over $J^{r}(M)$ .
Let $p$ be the projection of $K^{r}(M, E)$ and $K^{r}(M, E)$ denote the restriction

of $K^{r}(M, E)$ on $I^{r}(M)$ for $r\geqq 1$ . Denote by $I^{r}(\{x\}, M),$ $K^{r}(\{x\}, E)$ the restric-
tions of $I^{r}(M),$ $K^{r}(M, E)$ on $\{x\}\times M,$ $I^{r}(\{x\}, M)$ respectively.

Let $a\in J^{r}(M)$ and $\pi a=(x, y)$ . Let $T_{a}J^{r}(M)$ denote the vector space of the
initial tangets of the curves $a(t)$ in $J^{r}(M)$ such that $a(O)=a,$ $\pi a(t)=(x, y(t))$ ,

that is, $a(t)$ fixes the point $x$ . Another word $T_{a}J^{r}(M)$ is the tangent space of
$J^{r}(\{x\}, M)$ at $a$ . So we see that $TJ^{r}(M)=\cup\{f_{a}J^{r}(M);a\in J^{\gamma}(M)\}$ is a smooth
vector bundle over $J^{r}(M)$ . Since $I^{r}(M)$ is an open subset of $J^{\gamma}(M)$ , we can
define $\hat{T}I^{r}(M)$ by $\cup\{T_{a}J^{r}(M);a\in I^{r}(M)\}$ . Of course $T_{a}J^{r}(M)$ is the tangent
space of $I^{r}(\{x\}, M)$ at $a$ .

LEMMA 10. $TJ^{r}(M)=K^{r}(M, T_{M})$ .
PROOF. Let $Exp_{z}$ : $T_{z}M\rightarrow M$ be the exponential mapping of $M$ with respect

to some smooth connection on $M$. Let $U$ be an element of $K_{a}^{r}(M, T_{M})$ . Put
$\pi a=(x, y)$ . There is a smooth mapping $\varphi$ of a neighbourhood of $x$ into $M$

such that $(j^{r}\varphi)(x)=a$ , and there is a smooth section $v$ of $\varphi^{-1}T_{M}$ such that
$(j^{r}v)(x)=U$ . Let $\varphi_{t}(z)=Exp_{z}tv(z)$ . Then, $(j^{r}\varphi_{t})(x)$ is an element of $J^{\gamma}(M)$

such that $(j^{r}\varphi_{0})(x)=a$ . Therefore $\frac{d}{dt}|_{t=0}(i^{r}\varphi_{t})(x)$ is an element of $TJ^{r}(M)$ .
It is easy to see that this does not depend on the choice of $\varphi,$

$v$ as long as
$(j^{\gamma}\varphi)(x)=a,$ $(j^{r}v)(x)=U$ .

Conversely, let $X$ be the initial tanget of a curve $a(t)$ in $J^{r}(M)$ such that
$a(O)=a,$ $\pi a(t)=(x, y(t))$ . Then, there is a smooth mapping $\varphi_{t}$ of a neigh-
bourhood of $x$ into $M$ depending smoothly on $t$ such that $(j^{r}\varphi_{t})(x)=a(t)$ .
For any $z$ in the neighborhood of $x$ , define $v(z)$ by $v(z)=\frac{d}{dt}|_{\iota=0}\varphi_{t}(z)$ . Then,
$v$ is identified with a smooth section of $\varphi_{0}^{-1}T_{M}$ . It is easy to see that
$X=\overline{d}dt-|_{t=0}(j^{r}\varphi_{t})(x)=(j^{r}v)(x)$ .

Let $U\in K^{r}(M, E)$ such that $pU=a,$ $\pi a=(x, y)$ . Let $\hat{T}_{U}K^{r}(M, E)$ denote
the tangent space of $K^{r}(\{x\}, E)$ at $U$ . Put $\prime TK^{r}(M, E)=\cup t^{\prime}T_{U}K^{r}(M, E);U\in$

$K^{r}(M, E)\}$ . Then ’ffK $(M, E)$ is a smooth vector bundle over $K^{r}(M, E)$ and
in fact the subbundle of the tangent bundle of $K^{r}(M, E)$ . Let $q:\prime pK^{r}(M, E)$

$\rightarrow K^{r}(M, E)$ be the projection.
Consider elements, $a,$ $b\in I^{r}(M),$ $v\in K^{r}(M, E),$ $U^{\prime}\in fK^{r}(M, E)$ such that

$\pi a=(x, y),$ $\pi b=(y, z),$ $pU=b,$ $qU^{\prime}=U$ . We define right translations $R_{a}b$ (or

simply $ba$), $R_{a}^{\prime}U,$ $R_{a}^{\prime\prime}U^{\prime}$ by the following manner:
(i) Let $\varphi,$

$\psi$ be local diffeomorphisms of neighborhoods of $x$ and $y$ into $M$

respectively such that $(j^{r}\varphi)(x)=a,$ $(j^{r}\psi)(y)=b$ . Define $R_{a}b$ by $(j^{r}\psi\varphi)(x)$ .
Of course $\pi R_{a}b=(x, z)$ .

\langle ii) There is a local section $v$ of $\psi^{-1}E$ such that $(j^{r}v)(y)=U$ . Since $ v\varphi$ can
be regarded as a local section of $\varphi^{-1}\psi^{-1}E$ , we define $R_{a}^{\prime}U$ by $(j^{r}v\varphi)(x)$ .
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Therefore, $R_{a}^{\prime}U\in K_{ba}^{r}(M, E)$ .
(iii) There is a smooth curve $U(f)$ such that $U(O)=0,$ $\overline{d}td|_{\iota=0}U(t)=U^{\prime}$ and

$\pi pU(t)=(y, z(t))$ . It is easy to see that $R_{a}^{\prime}U(t)$ is a smooth curve in

$K^{r}(M, E)$ . Define $R_{a}^{\prime\prime}U^{\prime}$ by $-dd\overline{t}|_{t=0}R_{a}^{\prime}U(t)$ . Therefore $R_{a}^{\prime\prime}U^{\prime}$ is an ele-

ment of $q^{-1}R_{a}^{\prime}U$ .
As a matter of fact $R_{a}$ is a smooth diffeomorphism of $I^{r}(\{y\}, M)$ onto’
$I^{r}(\{x\}, M),$ $R_{a}^{\prime}$ a smooth bundle isomorphism of $K^{r}(\{y\}, M)\rightarrow K^{r}(\{x\}, M)$ such
that the commutativity holds in the diagram

$K_{r}^{r}(\{y\},M)\rightarrow^{\prime}K_{r}^{r}(\{x\},M)I(\{y\},M)I(\{x\},M)p|_{R^{a}}p\downarrow\underline{R_{a}}$

and $R_{a}^{\prime\prime}$ is the derivative of $R_{a}^{\prime}$ .
Since $K^{r}(M, T_{M})=TI^{r}(M),$ $R_{a}^{\prime}$ and $R_{a}^{\prime\prime}$ are also defined on $fI^{r}(M)$ and

$T^{J}TI^{r}(M)$ by the same manner, where $\prime ppI^{r}(M)=TK^{\gamma}(M, T_{M})$ . A right in-
variant connection is a smooth subbundle of $\prime fK^{r}(M, E)$ satisfying the follow-
ing:
(1) For every $U\in K^{r}(M, E)$ such that $pU=b$ , this subbundle is given by

the image of linear mapping $\Gamma_{b}^{\prime}(*, U);\prime T_{b}I^{r}(M)\rightarrow f_{U}K^{r}(M, E)$ such that
$dp\Gamma_{b}^{\prime}(X, U)\equiv X$ for any $X\in’\tau_{b}I^{r}(M)$ , where $dp$ is the derivative of the
projection $p$ .

(2) $\Gamma_{b}^{\prime}(X, U)$ is bi-linear with respect to $X,$ $U$ as long as $U\in p^{-1}b$ .
(3) Let $\pi b=(y, z)$ . For any $a\in I^{r}(M)$ such that $\pi a=(x, y),$ $R_{a}^{\prime\prime}\Gamma_{b}^{\prime}(X, U)=$

$\Gamma_{b\alpha}^{\prime}(R_{a}^{\prime}X, R_{a}^{\prime}U)$ .
If you restrict this subbundle on $I^{r}(\{y\}, M)$ , then this is one of smooth
connections of $K^{r}(\{y\}, E)$ with right invariantness which comes from the
condition (3). Conversely, if you have a smooth right invariant connection
on $K^{r}(\{y\}, E)$ for some $y\in M$, then there exists uniquely a right invariant
connection on $K^{r}(M, E)$ . We have only to extend the connection on $K^{r}(\{y\}, E)$ .
by using (3). Such right invariant connections on $K^{r}(\{y\}, E)$ are the same
with what Morimoto ($c$ . $f$ . his recent works, probably in Nagoya J. Math.),

calls r-th order connections.
Anyway, by this definition, we can define a parallelism along a curve $ a(t\rangle$

such that $\pi a(t)=(x, y(t))$ (c. f. [12], p. 27). In case of $E=T_{M}$ , a curve at $ a(t\rangle$

$d$

in $1^{r}(M)$ such that $\pi a(t)=(x, y(t))$ is called geodesic, if –a $(t)$

dt is parallel

along the curve $a(t)$ . Since the condition $\pi a(t)=(x, y(t))$ implies that $a(t)$ is a
curve in 1 $r(\{x\}, M)$ , such parallelism and the concept of geodesics are the
same with the natural things on $K^{r}(\{x\}, M)$ or $I^{r}(\{x\}, M)$ .
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Let $\nabla$ be a smooth connection on $E$ . For any curve $c(t)$ on $M$, denote by
$\tau(c(t))v$ the parallel displacement of a vector $v\in\pi^{\prime}-1c(O)$ along a curve $c(t)$ .
$\tau(c(t))v$ is an element of $\pi^{\prime-1}c(t)$ . By using the connection $\nabla$ on $E$, we can
define an r-th order right invariant connection $\Gamma^{\prime}$ on $K^{r}(M, E)$ by the follow-
ing manner:

Let $X\in’\tau_{a}I^{r}(M)$ such that $\pi a=(x, y)$ . Then, there is a curve $a(t)$ in
$I^{t}(\{x\}, M)$ satisfying $a(O)=a,$ $\frac{d}{dt}|_{t=0}a(t)=X$ . There exists a local diffeo-
morphism $\varphi_{t}$ of a neighbourhood of $x$ into $M$ such that $(i^{r}\varphi_{t})(x)=a(t)$ . Let
$U\in K_{a^{\gamma}}(M, E)=p^{-1}a$ . Then, there is a local section $v$ of $\varphi_{0}^{-1}E$ such that
$(j^{r_{?)}})(x)=U$ . This local section $v$ is identified with the mapping $v:M\rightarrow E$ such
that $\pi^{\prime}v=\varphi_{0}$ . Put $v_{t}(z)=\tau(\varphi_{t}(z))v(z)$ . Then, $v_{t}$ is a local section of $\varphi_{t}^{-1}E$.
We define $\Gamma_{a}^{\prime}(X, U)$ by $\frac{d}{dt}|_{t=0}(j^{r}v_{t})(x)$ . It is easy to see that $\frac{d}{dt}|_{t=0}(j^{r}v_{t})(x)$

depends only on $a,$ $X,$ $U$ , because if you use a local coordinate and put
$U_{t}=(j^{r}v_{t})(x)$ , then you get a differential equation that $U_{t}$ has to satisfy. The

coefficients of that equation are depending only on $a(t)$ , and $\frac{d}{dt}|_{\iota=0}a(t)=X$,

$U_{0}=U$ . To get a more precise expression, we identify $v_{t}$ with the mapping
$v_{t}$ : $M\rightarrow E$ such that $\pi^{\prime}v_{t}=\varphi_{t}$ . (Strictly speaking, the notation $v_{t}$ : $M\rightarrow E$ is
not good, because the domain of $v_{t}$ is a neighborhood of $x.$) So the derivative
$\overline{d}\overline{t}d|_{\iota=0}v_{t}$ (this will be denoted by $u^{\prime}$ ) is a mapping of a neighborhood of $x$

into $TE$ . It is easy to see that $(j^{\gamma}u^{\prime})(x)=\frac{d}{dt}|_{\iota=0}(j^{r}v_{t})(x)$ .
For every $x\in M,$ $e\in E$ , let $\Gamma_{x}(*,ae)$ be the linear mapping of $T_{x}M$ into $TE$

defined naturally from $\nabla$ . This $\Gamma_{x}(*, e)$ gives a subbundle of $TE$ such that
(a) $d\pi^{\prime}\Gamma_{x}(u, e)\equiv u$ for any $u\in T_{x}M$,
(b) $\Gamma_{x}(u, e)$ is bi-linear with respect to $u,$ $e$ as long as $e\in\pi^{\prime}x-1$

Since $\nabla$ is a smooth connection, $\Gamma_{x}$ is smooth with respect to $x$ . By using

this notation, we have $u^{\prime}(z)=\Gamma_{\varphi_{0}(z)}(u(z), v(z))$ , where $u(z)=_{d\overline{t}}^{d}-|_{t=0}\varphi_{t}(z)$ . Thus,
$\Gamma_{a}^{\prime}(X, U)=(j^{r}\Gamma_{\varphi_{0}}(u, v))(x)$ . Obviously, $(j^{r}\Gamma_{\varphi_{0}}(u, v))(x)$ depends only on $a=$

$(j^{\gamma}\varphi_{0})(x),$ $X=(j^{r}u)(x),$ $U=(j^{r}v)(x)$ .
It is easy to see that $\Gamma_{a}^{\prime}(X, U)$ satisfies the above condition (1), (2) and

since $u^{\prime}\psi(z)=\Gamma_{\varphi_{0}\psi(z)}(u\psi(z), v\psi(z))$ for any local diffeomorphism $\psi$ of a neigh-
borhood of $x^{\prime}\in M$ into $M$ such that $\psi(x^{\prime})=x$ , we see (3) is also satisfied.

Denote by $\tau^{r}(a(t))U$ the parallel displacement of $U$ along the curve $a(t)$

with respect to the connection defined above. By the definition, we have the
following:

LEMMA 11. For any $C^{1}$ -curve $\varphi_{t}$ in $\mathcal{D}_{0}$ and $v\in\Gamma_{\varphi_{0}}(E)$ , we have

$\tau^{r}((j^{r}\varphi_{t})(x))(j^{r}v)(x)=(j^{r}(\tau(\varphi_{t})v))(x)$ ,
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where $\tau(\varphi_{t})v$ is the parallel displacement of $\gamma(E)$ defined by $(\tau(\varphi_{t})v)(z)=$

$\tau^{\prime}(\varphi_{t}(z))v(z)$ . Of course $\tau(\varphi_{t})v$ is regarded as a mapping of $M$ into $E$ such that
$\pi^{\prime}\tau(\varphi_{t})v\equiv\varphi_{t}$ .

Consider the case $E=T_{H}$ . Let $Exp^{r}$ denote the exponential mapping
defined by the above connection. Of course $Exp_{a}^{r}$ is a smooth mapping of an
open neighbourhood of $0$ of $T_{\alpha}I^{r}(M)$ into $I^{r}(M)$ .

LEMMA 12. Let $\varphi\in \mathcal{D}_{0}$ and $u\in\Gamma_{\varphi}(T_{H})$ . Then $Exp_{\alpha}^{r}(j^{r}u)(x)=j^{r}(Exp_{\varphi}u)(x)$ ,
where $a=(j^{r}\varphi)(x)$ and $Exp_{\varphi}u$ is a mapping defined by $(Exp_{\varphi}u)(x)=Exp_{\varphi(x)}u(x)$ .

PROOF. Put $\varphi_{t}=Exp_{\varphi}$ tu. Then $\varphi_{t}(y)$ is geodesic in $M$ for each $y$ , that

is, $\frac{d}{dt}\varphi_{t}(y)=\tau^{\prime}(\varphi_{t}(y))u(y)$ . Applying $j^{r}$ to this equality and using Lemma 11,

we have
$\frac{d}{d}\overline{t}(j^{r}\varphi_{t})(x)=\tau^{r}((j^{r}\varphi_{t})(x))(j^{r}u)(x)$ .

Therefore
$Exp_{a}^{r}(j^{r}u)(x)=(j^{r}\varphi_{t})(x)$ .

For any element $\varphi\in \mathcal{D}_{0}$ , $\{(j^{r}\varphi)(x);x\in M\}$ is a closed subset of $I^{r}(M)$ .
Denote this by $G^{r}(\varphi)$ . By the definition of $K^{r}(M, E)$ , it is easy to see that
$K^{r}(M, E)|G^{r}(\varphi)=J^{r}\varphi^{-1}E$, where $|G^{r}(\varphi)$ implies the restriction to $G^{r}(\varphi)$ . Let
$U\in J_{x}^{r}\varphi^{-1}E$ . Then, there is a smooth local section $\acute{v}$ of $\varphi^{-1}E$ such that
$(j^{r}\acute{v})(x)=U$ . Since $\varphi\in \mathcal{D}_{0}$ , there is a smooth local section $v$ of $E$ at $\varphi(x)$ such
that $\acute{v}(z)=v\cdot\varphi(z)$ . Recall the definition of the right translation. We have
$(j^{r}\acute{v})(z)=R_{(j^{r}\varphi)(x)}^{\prime}(j^{r}v)(\varphi(x))$ . Since $(j^{r}v)(\varphi(x))$ can be regarded as an element
of $\varphi^{-1}J^{r}E$, we have the following:

LEMMA 13. The right translation $R_{f^{r}\varphi}^{\prime}$ defines a smooth isomorphism of
$J^{r}\varphi^{-1}E$ onto $\varphi^{-1}J^{r}E$ for any $\varphi\in \mathcal{D}_{0}$ .

Let $Exp^{r}X$ denote the exponential mapping at $(j^{r}id)(x)$ evaluated by
$X\in J_{x^{r}}T_{M}$ . If we take $u\in\Gamma(T_{H})$ very small in $C^{1}$ -uniform norm (c. f. 1),

then $Exp^{r}(j^{r}u)(x)$ is an element of $I^{r}(M)$ for every $x\in M$. By Lemma
12, we have $Exp^{r}(j^{r}u)(x)=(j^{r}\xi(u))(x)$ , where $\xi(u)(y)=Exp_{y}u(y)$ (c. f. 1o
about this notation). Therefore, $\{Exp^{r}(j^{r}u)(x);x\in M\}=G^{r}(\xi(u))$ . Let
$\tau^{r}(Exp^{r}(j^{r}u)(x))\tilde{v}(x)$ be the parallel displacement of $\tilde{v}(x)$ along the curve
$Exp^{r}(j^{r}u)(x),$ $t\in[0,1]$ , in $I^{r}(M)$ . This is an element of $K_{a(x)}^{r}(M, E)$ , where
$a(x)=Exp^{r}(j^{r}u)(x)$ . Therefore, if we consider $x$ as a variable, then
$\tau^{r}(Exp^{r}(j^{r}u)(x))\tilde{v}(x)$ gives a section of $K^{r}(M, E)|G^{r}(\xi(u))$ , hence that of
$J^{r}\xi(u)^{-1}E$ . By using Lemma 13, we see that

$R_{Exp^{r}(j^{r}u)(x)}^{\prime-1}\tau^{r}(Exp^{r}(j^{r}u)(x))\tilde{v}(x)$

is a section of $\xi(u)^{-1}J^{r}E$ . We put

$\hat{\tau}^{r}(u,\tilde{v})(x)=R_{Ezp^{r}(J^{r}u)(x)}^{\prime-1}\tau^{r}(Exp^{r}(j^{r}u)(x))\overline{v}(x)$ .
$\hat{\tau}^{r}(u,\tilde{v})$ is an element of $\Gamma_{\xi(u)}(E)$ .
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Assume $r\geqq 1$ , because the case $r=0$ was already discussed (c. f. 1).

Recall the definition of the open subset $0$ in 1. This was a bounded open
neighborhood of $0$ of $\hat{\Gamma}^{1}(T_{M})$ with C’-uniform topology. Therefore, there is
a relatively compact tubular neighborhood $W^{r}$ of the zero section of $J^{r}T_{M}$ such

that the subset $\acute{U}^{s}$ of $\Gamma^{S}(T_{M}),$ $s\geqq[\frac{n}{2}]+1+r$, defined by $\acute{U}^{s}=\{u\in\Gamma^{s}(T_{M})$ ;

$(j^{\gamma}u)(x)\in W^{r}$ , for every $x\in M$ } is contained in $\sigma$ . (Here the assumption $r\geqq 1$

is used, and nothing more.) Put $\text{{\it \’{U}}}=\acute{U}^{s}\cap\Gamma(T_{M})$ . Let $\hat{\tau}^{r}$ ; $\acute{U}\times\Gamma(J^{r}E)\rightarrow\gamma(J^{r}E)$

be the mapping defined by $\hat{\tau}^{r}(u,\tilde{v})$ .
LEMMA 14. The above mapping $\hat{\tau}^{r}$ gives a local trivialization of $\gamma^{ts}(E)$ for

every $t,$ $s$ such that $t\geqq s,$ $t\geqq n+5+r,$ $s\geqq n+5$ .
PROOF. Let $\tilde{\nabla}$ be a smooth connection of $J^{\gamma}E$ . (Since $J^{r}E$ is a smooth

vector bundle over $M$, connections on $J^{r}E$ exist.) A local trivialization
of $\gamma^{t\epsilon}(J^{r}E)$ is given by using the parallel displacement $\tilde{\tau}$ defined by $\tilde{\nabla}$ , namely,
we define

$\tilde{\tau}(u,\tilde{v})(x)=\tau^{\prime}\sim(\xi(u)(x))\tilde{v}(x)$

as in 1, where $\tilde{\tau}^{\prime}(\xi(u)(x))$ implies the parallel displacement along the geodesic
$\xi(tu)(x),$ $t\in[0,1]$ . Let $\tilde{\tau}_{\xi(u)}\tilde{v}=\tilde{\tau}(u,\tilde{v})$ . To prove this lemma, we have only
to show that the mapping $\tilde{\tau}_{\overline{\xi}(u)}^{1}\hat{\tau}^{r}(u, v)$ of $\acute{U}\times\Gamma(J^{r}E)$ into $\Gamma(J^{r}E)$ can be ex-
tended to the $C^{\infty}$-mapping of $\acute{U}^{t}\times\Gamma^{s}(J^{r}E)$ into $\Gamma^{s}(J^{r}E)$ .

Let $p;J^{r}T_{M}\rightarrow T_{M}$ be the natural projection and $W^{r}\oplus J^{r}E$ the Whitney
sum. We define a smooth mapping $\psi:W^{r}\oplus J^{r}E\rightarrow J^{r}E$ as following:

$\psi(X, V)=\tilde{\tau}^{\prime}(ExppX)^{-1}R_{Exp^{r}X^{\hat{T}^{r}}}^{-1}(Exp^{\gamma}X)V$ , $X\in J_{x^{\gamma}}T_{M}$ , $V\in J_{x}^{r}E$ ,

where $\tilde{\tau}^{\prime}(ExppX),$ $\tau^{r}(Exp^{r}X)$ imply the parallel displacement along the curves
$ExpfpX,$ $t\in[0,1]$ , and $Exp^{r}tX,$ $t\in[0,1]$ , respectively. Since $\tau^{r}(Exp^{r}X)V$

is an element of $K_{a}^{r}(M, E),$ $a=Exp^{r}X$, we have that $R_{a}^{-1}\tau^{r}(Exp^{r}X)V$ is an
element of $J_{Exp\pi X}T_{M}$ . To prove the smoothness, we have to use local co-
ordinate and if we write all things by local coordinate, then the smoothness
comes in naturally.

Let $JU^{s}=$ { $\tilde{u}\in\Gamma^{s}(J^{r}E);\tilde{u}(x)\in W^{r}$ for any $x\in M$ }. This is defined for
$s\geqq[\frac{n}{2}]+1(c. f. 1^{o})$ . Then, letting $\Psi(\tilde{u},\tilde{v})=\psi(\tilde{u}(x),\tilde{v}(x)),$ $\Psi$ : $ JU^{s}\times\Gamma^{s}(J^{r}E)\rightarrow$

$\Gamma^{s}(J^{r}E)$ is smooth for $s\geqq n+5$ , by using the fact $*$ mentioned in $2^{o}$ . Ob-
viously, $\Psi(j{}^{t}u,\tilde{v})=\tau_{\overline{\xi}(u)}^{1}\sim\tau^{r}(u,\tilde{v})$ . Since $i^{r}$ : $\Gamma^{t}(T_{M})\rightarrow\Gamma^{t-r}(J^{r}T_{M})$ is a bounded
linear operator ( $c$ . $f$ . next $(c)$), we see $j^{\gamma}$ : $\acute{U}^{t}\rightarrow JU^{t-r}$ is smooth for any

$t\geqq[\frac{n}{2}]+1+r$ . Clearly, $\acute{U}^{t}\subset\acute{U}^{\epsilon}$ is smooth for any $t\geqq s$ . Thus, we get

$\tilde{\tau}_{\overline{\xi}(u)}^{1}\tau(u,\tilde{v})$ is smooth.
Now, assume $E=T_{M}$ . For any $X\in J_{x^{r}}T_{M},$ $(dExp^{r})_{X}$ can be regarded as

a linear mapping of $J_{x}^{r}T_{M}$ into $T_{Exp^{r}X}J^{r}(M)$ . In fact, if $X\in W^{r}$ (see just
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above Lemma 14), then $(dExp^{r})_{X}$ : $J_{x^{r}}T_{M}\rightarrow I_{Exp^{r}X}^{\prime}(M)$ is isomorphic. By the
same argument between Lemma 13 and Lemma 14, if $u\in\acute{U},\tilde{v}\in\Gamma(J^{r}T_{lt})$ , then
$(dExp^{r})_{(j^{r}u)(x)}\tilde{v}(x)$ is a section of $K(M, T_{M})|G^{r}(\xi(u))$ , hence of $J^{r}\xi(u)^{-1}T_{M}$ .
Therefore by Lemma 13, we get that $R_{Exp^{r}(j^{r}u)(x)}^{\prime-1}(dExp^{r})_{(j^{r}u)(x)}\tilde{v}(x)$ is an ele-
ment of $\Gamma_{\xi(u)}(J^{r}T_{M})$ , where $x$ is regarded as a variable. Let $d\xi^{r}$ : $\acute{U}\times\Gamma(J^{r}T_{M})$

$\rightarrow\gamma(J^{r}T_{M})$ be the mapping defined by

$d\xi^{r}(u,\tilde{v})(x)=R_{Exp^{r}(j^{r}u)(x)}^{\prime- 1}(dExp^{r})_{(j^{r}u)(x)}\tilde{v}(x)$ .
LEMMA 15. $d\xi^{r}$ gives a local trivialization of $\gamma^{ts}(J^{r}T_{M})$ for every $t,$ $s$ such

that $t\geqq s,$ $t\geqq n+5+r,$ $s\geqq n+5$ .
PROOF. Define a mapping $\psi:W^{r}\oplus J^{r}T_{M}\rightarrow J^{r}T_{M}$ by

$\psi(X, Y)=\tilde{\tau}^{\prime}(ExppX)^{-1}R_{Exp^{r}X}^{J-1}(dExp^{r})_{X}Y$ , $X,$ $Y\in J_{x^{r}}T_{M}$ .
Then, the parallel argument as in Lemma 14, we have the desired results.

PROPOSITION 1. Nota tions being as above, we have the following:

$d\xi^{r}(u, j^{r}v)=R_{\xi(u)}^{*}j^{r}R_{\xi(u)}^{*-1}(d\xi)_{u}v$ ,

$\hat{\tau}^{r}(u, j^{r}v)=R_{\xi(u)}^{*}j^{r}R_{\xi(u)}^{*-1}\tau(u, v)$ .
Especially, $j\sim_{r}$ defined by $R_{g}^{*}j^{r}R_{g}^{*-1}$ is a smooth mapping of $\gamma^{S}(T_{M})$ in to $\gamma^{s,s-r}(J^{r}T_{M}\rangle$

and $\gamma^{s}(E)$ into $\gamma^{ss-r}(J^{r}E)$ for any $s\geqq n+5+r$ .
PROOF. By Lemma 12, we have $(j^{r}\xi(u))(x)=Exp^{r}(j^{r}u)(x)$ . So, we see

$(j^{r}(d\xi)_{u}v)(x)=(dExp^{r})_{(J^{r}u)(x)}(j^{r}v)(x)$ . Therefore, letting $\varphi=\xi(u)$ ,

$(j^{r}R_{\varphi-1}^{*}(d\xi)_{u}v)(x)=R_{(J^{r}\varphi^{-1})(x)}^{\prime}(j^{r}(d\xi)_{u}v)(\varphi^{-1}x)$

$=R_{(J^{r}\varphi^{-1})(x)}^{\prime}(dExp^{r})_{(j^{r}u)(\varphi^{-1}x)}(j^{r}v)(\varphi^{-1}x)$ .
Thus,

$(R_{\varphi}^{*}j^{r}R_{\varphi- 1}^{*}(d\xi)_{u}v)(x)=R_{(j^{r}\varphi^{-1})(\varphi(x))}^{\prime}(dExp^{r})_{(J^{r}u)(x)}(j^{r}v)(x)$ .
Since $R_{(j^{r}\varphi^{-1}}^{\prime}$

)
$(\varphi(x))=R_{(J^{r_{\varphi)(x)}}}^{\prime- 1}$ , we have

$R_{\xi(u)}^{*}j^{r}R_{\epsilon^{-1}}^{*_{(u)}}(d\xi)_{u}v=d\xi^{r}(u, j^{r}v)$ .
On the other hand, we have

$(j^{r}R_{\varphi}^{*_{-1}}\tau(u, v))(x)=R_{(j^{r}\varphi^{-1})(x)}^{\prime}(j^{r_{T}}(u, v))(\varphi^{-1}(x))$ .
By Lemma 11-2, we have

$(j^{r}R_{\varphi-1}^{*}\tau(u, v))(x)=R_{(j^{r}\varphi^{-1})(x)}^{\prime}\tau^{r}(Exp^{r}(j^{r}u)(\varphi^{-1}x))(j^{r}v)(\varphi^{-1}x)$ .
So,

$(R_{\varphi}^{*}j^{r}R_{\varphi-1}^{*}\tau(u, v))(x)=R_{(j^{r_{\varphi^{-1})(\varphi}}(x))}^{\prime}\tau^{r}(Exp^{r}(j^{r}u)(x))(j^{r}v)(x)$

$=\hat{\tau}^{r}(u, j^{r}v)(x)$ .
These two equalities show that the local expression of $j\sim_{r}$ is trivial, namely,
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if we put $d\xi_{u}^{\gamma}(\tilde{v})=d\xi^{r}(u,\tilde{v})$ , then $(d\xi_{u}^{r})^{-1}j^{\sim_{r}}(d\xi)_{u}v\equiv j^{\gamma}v$ , and, if we put $\hat{\tau}_{u}^{r}(v)=$

$\hat{\tau}^{r}(u, v)$ , then $(\hat{\tau}_{u}^{r})-1^{\sim_{\gamma}}j\tau(u, v)\equiv j^{r}v$ .

4\circ Proofs of Lemma 2, Theorem A and several inequalities.

(a) PROOF OF LEMMA 2. Recall the definition of $U^{k_{0}+1}$ in the statement
of Lemma 2. This was given by $O\cap\Gamma^{k_{0}+1}(T_{M})$ and $U$ was a bounded open
neighborhood of $0$ of $\hat{\Gamma}^{1}(T_{M})$ with $C^{1}$ -uniform topology. Therefore, we may
assume there is a relatively compact tubular neighborhood $W^{1}$ of zero section
of $J^{1}T_{M}$ such that $\hat{U}=\{u\in\hat{\Gamma}^{1}(T_{M});j^{1}u\in W^{1}\}$ . Now, by the definition of $O$,

we may assume that $Exp^{1}X$ is still contained in $I^{1}(M)$ for any $X\in W^{1}$ , where
$Exp1$ is the exponential mapping at $(j^{1}id)(x),$ $X\in J_{x}^{1}T_{M}$ . Since $Exp^{1}X$ is a
l-jet of a local diffeomorphism, denoting by $\mu$ a volume element on $M$ we can
define a mapping $J^{\prime}$ : $W^{1}\rightarrow 1_{M}$ by the proportion of volume elements

1
$J^{\prime}(X)=\overline{\mu}(\overline{x)}(Exp^{1}X)*\mu(Exp_{x}p^{\gamma}X)$ ,

where $X=J_{x}^{1}T_{M}$ and $p/$ is the natural projection of $J^{1}T_{M}$ onto $T_{M}$ . $I^{\prime}$ is a
smooth mapping. Therefore, by the fact $*$ in 1 we see that $\hat{J}:\Gamma^{k_{0}}(W^{1})\rightarrow$

$\Gamma^{k_{0}}(1_{M})$ defined by $\hat{J}(u)(X)=J^{\prime}(\hat{u}(x))$ is a smooth mapping. On the other hand,
$j^{1}$ : $\Gamma^{k_{0}+1}(T_{M})\rightarrow\Gamma^{k_{0}}(J^{1}T_{M})$ is bounded linear, hence smooth. So together with
the fact $J(u)=\hat{J}\circ j^{1}u$ . we see that ]: $U^{k_{0}+1}\rightarrow\Gamma^{k_{0}}(1_{M})$ is a smooth mapping.

(b) PROOF OF THEOREM A. Let $E,$ $F$ be vector bundles over $M$. Denote
by $\tau^{\prime}(ExpV),$ $\tau^{\prime\prime}(ExpV)$ the parallel displacements along the curve $ExptV$,
$t\in[0,1]$ , in $E$ and $F$ respectively, where $V$ is an element of the tangent
bundle of $M$. Let $W^{r}$ be the same relatively compact tubular neighborhood
of zero section of $J^{r}T_{M}$ as between Lemma 13 and 14. Let $\tau^{r}(Exp^{r}X)$ be the
parallel displacement along the curve $Exp^{r}X$, $t\in[0.1]$ in $I^{r}(M)$ , where
$X\in J^{r}T_{M}$ .

Suppose $\alpha$ is an element of $\Gamma((J^{r}T_{M})^{*}\otimes F)$ or $\Gamma((J^{r}E)^{*}\otimes F)$ , that is, ar
is a smooth section of $(J^{r}T_{M})^{*}\otimes F$ or $(J^{r}E)^{*}\otimes F$. We define two smooth
maps $\psi:W^{r}\rightarrow(J^{r}T_{M})^{*}\otimes F,$ $\psi^{\prime}$ : $W^{r}\rightarrow(J^{r}E)^{*}\otimes F$ by the following:

$\psi(x)=\tau^{\prime\prime}(E_{Xp}pX)^{-1}\alpha(E_{Xp}pX)R_{E^{-}x^{1}p^{r}X}^{\prime}(dExp^{\tau})_{X}$ ............ (1)

$\psi^{\prime}(x)=\tau^{n}(E_{Xp}pX)^{-1}\alpha(E_{Xp}pX)R_{Exp^{r}X}^{\prime-1}\tau^{\gamma}(Exp^{r}X)$ ............ (2)

where $p$ is the natural projection of $J^{r}T_{M}$ onto $T_{M}$ .
Define the subsets \’U, $\acute{U}^{s}$ as just above Lemma 14, and let $\Gamma^{s}(W^{r})=$

{ $\tilde{v}\in\Gamma^{s}(J^{r}T_{M});\overline{v}(x)\in W^{r}$ for any $x\in M$ }. Then, putting $\Gamma(W^{r})=\Gamma^{s}(W^{r})\cap$

$\Gamma(J^{r}T_{M})$ , we have the following:
(i) Let $\Psi(v)(x)=\psi(v(x))$ . Then $\Psi:\Gamma(W^{r})\rightarrow\Gamma((J^{r}T_{M})^{*}\otimes F)$ can be ex-

tended to the smooth mapping $\Psi:\Gamma^{s}(W^{r})\rightarrow\Gamma^{s}((J^{r}T_{M})^{*}\otimes F)$ for any
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$s\geqq n+5$ $(c. f. *)$ .
(ii) Let $\Psi^{J}(\tilde{v})(x)=\psi^{\prime}(\tilde{v}(x))$ . Then $\Psi:\Gamma(W^{\tau})\rightarrow\Gamma((J^{r}E)^{*}\otimes F)$ can be ex-

tended to the smooth mapping $\Psi^{\prime}$ : $\Gamma^{\theta}(W^{r})\rightarrow\Gamma^{\iota}((J^{r}E)^{*}\otimes F)$ for any
$s\geqq n+5$ $(c. f. *)$ .

Now, let $A$ : $\Gamma(T_{M})\rightarrow\Gamma(F)$ (or $A$ : $\Gamma(E)\rightarrow\Gamma(F)$) be a differential operator
of order $r$ with smooth coefficients. Then, there exists $\alpha\in\Gamma((J^{t}T_{M})^{*}\otimes F)$

\langle or $\Gamma((J^{r}E)^{*}\otimes F))$ such that $A=aj^{r}$ . Define a bundle morphism $\tilde{A}:\gamma(T_{M})\rightarrow$

$\gamma(F)$ (or $\tilde{A}:\gamma(E)\rightarrow\gamma(F)$) by $R_{g}^{*}AR_{g}^{*}- 1$ . To prove Theorem $A$ , it is enough to
show that $\Psi(j^{r}u)j^{r}v$ or $\Psi^{J}(j^{r}u)j^{r}v$ gives a local expression of $\tilde{A}$ . Letting
$(\tau_{\xi(u)}^{\prime\prime}v)(x)=\tau^{\prime\prime}(Expu(x))v(x)$ , the local expression of $\tilde{A}$ is given by $\tau_{\xi(u)}^{\prime\prime}-1\tilde{A}(d\xi)_{u}v$

or $\tau_{\xi(u)}^{\prime;-1}\tilde{A}\tau(u, v)$ .
Put $\varphi=\xi(u)$ . Then we have

$(\Psi(j^{r}u)j^{r}v)(x)=\psi(j^{r}u)(x)(j^{r}v)(x)$

$=\tau^{\prime\prime}(Expu(x))^{-1}\alpha(\varphi(x))R_{Exp^{r}(j^{r}u)(x)}^{\prime-1}d(Exp^{r})_{(j^{f}u)(x)}(j^{r}v)(x)$

$=\tau^{\prime\prime}(Expu(x))^{-1}\alpha(\varphi(x))(R_{\varphi}^{*}j^{r}R_{\varphi-1}^{*}(d\xi)_{u}v)(x)$

(c. f. Proposition 1)

$=\tau^{\prime\prime}(Expu(x))^{-1}(R_{\varphi}^{*}\alpha j^{r}R_{\varphi-1}^{*}(d\xi)_{u}v)(x)$

$=(\tau_{\xi(u)}^{\prime\prime}-1R_{\varphi}^{*}\alpha j^{r}R_{\varphi}^{*_{-1}}(d\xi)_{u}\iota))(x)$ .
On the other hand, by similar computations, we have

$(\Psi^{\prime}(j^{r}u)j^{r}v)(x)=(\tau\xi_{(u)}- 1R_{\varphi}^{*}\alpha j^{r}R_{\varphi-1}^{*}\tau(u, v))(x)$ .
Since $j^{r}$ : $\Gamma^{s}(T_{M})\rightarrow\Gamma^{s-r}(J^{r}T_{M})$ (or, $\Gamma^{s}(E)\rightarrow\Gamma^{s-r}(J^{r}E)$) is bounded linear, the
above computations complete the proof of Theorem A.

(c) Some inequalities. In (b), we get that the local expression of $\tilde{A}$ is
given by $\Psi(j^{r}u)j^{r}v$ or $\Psi^{J}(j^{r}u)j^{r}v$ . Here, in the last part of this paper, the
norm $\Vert\Psi(j^{r}u)j^{r}v\Vert_{s}$ etc. will be calculated. Such estimations are needful to
get a kind of regularity theorem. Inequalities given here will be used in
next few papers.

By Lemma 13 in [9], we have

$\Vert\Psi(j^{r}u)j^{r}v\Vert_{s}^{2}\leqq e_{k_{0}}\{\Vert\Psi(j^{r}u)\Vert_{\epsilon}^{2}\Vert j^{r}v\Vert_{k_{0}}\lrcorner+\Vert\Psi(j^{r}u)\Vert_{k_{0}}^{2}\Vert j^{r}v\Vert_{s}^{2}\}$

$+C_{s}\Vert\Psi(j^{r}u)\Vert_{s-1}^{2}\Vert j^{r}v\Vert_{\epsilon-1}^{2}$ . $\cdot$ ........ (3)

The same inequality holds for $\Psi^{\prime}$ , where $k_{0}=[-n2]+1,$ $e_{k_{0}}$ a constant depend-

ing only on $k_{0}$ and C. is a constant depending on $s$ .
By Theorem A in [9], we have the following inequality:

$|_{\eta}|\Psi(j^{r}u)\Vert_{s}^{2}\leqq P^{\prime}(\Vert j^{r}u\Vert_{2k_{0}}^{2})\Vert j^{r}u\Vert_{\iota}^{2}+Q_{s}^{\prime}(\Vert j^{r}u\Vert_{\iota-1}^{2})$ ......... (4)
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where $P^{\prime}$ is a positive coefficients polynomial independent from $s$ and $Q_{s}^{\prime}$ is.
a polynomial depending on $s$ . The same inequality holds for $\Psi$ ‘.

Let $(d\Psi)_{j^{\gamma}u}j^{r}v$ be the derivative of $\Psi$ at $j^{r}u$ evaluated by $j^{r}v$ .
Then

$\Psi(j^{r}u)-\Psi(0)=\int_{0^{1}}(d\Psi)_{j^{r}\theta u}j^{r}ud\theta$ .
Therefore,

$\Vert\Psi(j^{r}u)-\Psi(0)\Vert_{\epsilon}^{2}\leqq\int_{0^{1}}\Vert(d\Psi)_{j^{r}\theta u}j^{r}u\Vert_{\epsilon}^{2}d\theta$ ,

using Schwartz’s inequality. Since $ d\Psi$ (or $d\Psi^{\prime}$) is defined from smooth func-
tion $ d\psi$ (or $ d\psi$ ‘), we have the following inequality using Theorem A in [9]:

$\Vert\Psi(j^{r}u)-\Psi(0)\Vert_{s}^{2}\leqq P^{\prime\prime}(\Vert j^{r}u\Vert_{2k_{0}}^{2})\Vert j^{r}u\Vert_{s}^{2}+Q^{\prime\prime}(\Vert j^{r}u\Vert_{s-1}^{2})\Vert j^{r}u\Vert_{s-1}^{2}$ ...... (5)

where $P^{\prime\prime}$ is a positive coefficient polynomial independent from $s$ and $Q_{s}^{\prime\prime}$ is
a polynomial depending on $s$ . The same inequality holds for $\Psi^{\prime}$ , where
$s\geqq\dim M+5$ .

LEMMA 16.
$\Vert j^{r}u\Vert_{s}^{2}\leqq 3^{r}\Vert u\Vert_{s+r}^{2}+C_{r}\Vert u\Vert_{s+r- 1}^{2}$ .

PROOF. First of all, we prove the following inequality:

$\Vert j^{1}u\Vert_{\$}^{2}\leqq 3\Vert u\Vert_{s+1}^{2}+\Vert u\Vert_{s}^{2}$ .
Consider the vector bundle $J^{1}T_{M}$ or $J^{1}E$ . If we restrict the transition func-
tion of this bundle, then this can be naturally identified with $T_{M}\oplus T_{M}\otimes T_{M}$

or $E\oplus T_{M}\otimes E$ . Another word, both vector bundle have transition functions
which can be restricted to a common transition group. So by using a basis
contained in this common transition group, two vector bundles can be
naturally identified. In this sense, we can put $j^{1}u=\nabla u+u$ . Therefore,

$|1j^{1}u\Vert_{s}^{2}\leqq\Vert\nabla u\Vert_{s}^{2}+\Vert u\Vert_{s}^{2}+2\Vert\nabla u\Vert_{s}\Vert u\Vert_{s}$ .

Therefore, $\Vert j^{1}u\Vert_{s}^{2}\leqq 3\Vert u\Vert_{s+1}^{2}+\Vert u\Vert_{s}^{2}$ . Using this inequality successively we get

a desired one, because $j^{1}j^{k}u=j^{k+1}u$ .
Combining inequalities $(4, 5)$ , Lemma 16 and the argument in (b), we get
PROPOSITION 2. Suppose $s\geqq n+5+r$ . If $u$ is restricted in a bounded neigh-

bourhood of $0$ in $\Gamma^{2k_{0}+r}(T_{M})$ , then the following inequalities hold:

$\Vert\tau_{\xi(u)}^{\prime\prime}-1\tilde{A}(d\xi)_{u}v\Vert_{s}^{2}$

$\leqq C_{1}\Vert u\Vert_{s+r}^{2}\Vert v\Vert_{k_{0}+r}^{2}+C_{2}\Vert v\Vert_{s+r}^{2}+R_{s}(\Vert u\Vert_{s+r-1}^{2})\Vert v\Vert_{s+r-1}^{2}$ ,

$\Vert\tau_{\xi(u)}^{\prime\prime}- 1\tilde{A}(d\xi)_{u}v-Av\Vert_{s}^{2}$

$\leqq C_{1}^{\prime}$ I $u\Vert_{s+r}^{2}\Vert v\Vert_{k_{0}+r}^{2}+C_{2}^{\prime}\Vert u\Vert_{k_{0+\gamma}}^{2}\Vert v\Vert_{s+r}^{2}+R_{s}^{\prime}(\Vert u\Vert_{s+r-1}^{2})\Vert u\Vert_{s+r-1}^{2}\Vert v\Vert_{s+r-1}^{2}$ .
The same inequalities hold for $\tau_{\xi(u)}^{\prime\prime}-1\tilde{A}\tau(u, v)$ and $\tau_{\xi(u)}^{-1}\tilde{A}\tau(u, v)-Av$ , where $C_{1},$ $C_{2}$ ,
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C\’i, $C_{2}^{\prime}$ are constants independent from $s$ and $R_{s},$ $R_{s}^{\prime}$ are polynomials depending
on $s$ .
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