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By Mitjagin and Pelczynski a linear operator T from a Banach space
X into another Banach space Y is said to be (p, 7)-absolutely summing, 1= p,
r = oo, if there is a constant p such that for every finite sequence {x;};si=n
of points in X the inequality

@ N Txl?)? = p sup (X< xs, ad |

holds. Here as usual, if p=oco (resp. = 0), the left (resp. right) hand side
of (1) is replaced by sup |Tx;| (resp. p“st (sup |[{x; a>])). The notation
i al=1 i

usup means the supremum taken over all the elements a of the weakly com-
afl=s1

pact unit ball of the dual space X* of X. The theory of (p, r)-absolutely
summing operators is a unified theory of various important classes of opera-
tors in connection with the classes of nuclear and Hilbert-Schmidt operators.

In this paper we shall define (p, ¢; r)-absolutely summing operator, gen-
eralizing (p, r)-absolutely summing operator, inspired from the theory of
Lorentz space [,, of sequences. The aim of this paper is to develop the
theory of this operator. In §1 we discuss the basic properties of the class
of (p, g; r)-absolutely summing operators as a Banach ideal. In §2 we deal
with the composition of these absolutely summing operators. We give there
a generalization of the classical theorem that the composition of two Hilbert-
Schmidt operators is nuclear. When the Banach spaces considered as domain
and range are particular, for instance Hilbert spaces, some of Banach ideals
of absolutely summing operators may happen to coincide. We shall state
these facts in §3 and §4. We also investigate there the mean spaces (Lions-
Peetre of Banach ideals of absolutely summing operators.

8§1. (p, g; r)-absolutely summing operator.

Let X and Y be Banach spaces and let B(X, Y) be all the bounded linear
operators from X into Y.

DEFINITION 1. Let 1<p, ¢, r<co. Let {x;},=:=, be any finite sequence
of points in X, and {||Tx;||«} be the non-increasing rearrangement of {|Tx,|}.
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If TeB(X, Y) satisfies the inequality
@ (S T )< p sup (T 1<z, @[V,

T is called (p, q; r)-absolutely summing operator. Here, p is a constant. As
usual the left and right hand sides in (2) are supposed to mean Slilp instead

of {3(--)%4¥% and (3|---|")¥" in case of ¢=o0 and 7= co respectively.

We denote by 7,,;,(T) the least constant p satisfying (2) for any finite
system {x;}, and by 17, ,;(X, Y) the set of all (p, g; r)-absolutely summing
operators.

REMARK 1. When p=g¢q, (p, q; r)-absolutely summing operator coincides
with (p, r)-absolutely summing operator of Mitjagin and Pelczynski [7], [5]
Hereafter we write I7,;.(X, Y) (resp. II (X, Y)) instead of II,,,.(X,Y) (resp.
II,,.,(X,Y)) and 7,;,(T) (resp. 7,(T)) instead of mp,p;,(T) (resp. 7p,p:,(T))
(see [12]).

By the definition of (p, ¢; r)-absolutely summing operator T, it holds

” Tx” é ﬂp,q :'r(T) I?L,ilsq I<X, a > | _S. 77-'p,q :T(T)

for any x= X with ||x|=<1. Therefore we have
ProOPOSITION 1. Let B(X,Y) be the Banach space of all bounded linear
operators with the norm ||T] ='lei1£1 I Txll. Then we have II, ;. (X, Y)C B(X, Y)
and
TN = 7p,q:-(T) Sfor every Tell, ;,(X,Y).

PROPOSITION 2. With the norm my,q;(T), II,,4:,(X,Y) becomes a Banach
space.

ProOOF. Let {T,} be any Cauchy sequence in I7,,;.(X,Y). Then by
Proposition 1 it follows that for any ¢ >0 there exists a positive integer N
such that

T —Tul S 7, (Ta—Tw) <e for any m,n> N.

Therefore T, becomes a Cauchy sequence in B(X, Y) which is a Banach
space under the norm | -]|. Hence there is an operator T & B(X, Y) such that
lim | T,—T| =0. Letting m—o0 in

{ZEYP VY Trx;— Trxill)} 0 < e sup (Z [Kxy, ad)r,
i allsl 1

this implies 7p,4;,(T,—T)=¢ for any n > N. This completes the proof.
PROPOSITION 3. (i) For any r: 1=r=<oo we have Il-, (X, Y)=BX, Y)
and 7o (TY=|T| for every T e Ill», (X, Y).
(i) If 1=sp=qg<r=co, then IT,,; (X, Y)={0}.
PrOOF. (i) is clear because for any T € B(X,Y) and any finite sequence
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{x;} of points in X the inequality
sup | Txll = [T sup (X< xy, ad DV
[ 2 feist ¢
holds.

If 1<p=<q<r and T=+#0 be any bounded linear operator, then for any
positive number N there exists a sequence {x;}"in X such that

3P Tx >N and sup Z|<x;, ad|"<c
r; lag=s1l ¢

with some constant ¢ independent of N. This proves (ii).

Let us denote by B (resp. I7, ,;,). all the bounded linear (resp. (p, q; 7)-
absolutely summing) operators which are defined between any two Banach
spaces X, Y. Then I7,,;, makes a Banach ideal of B in the following sense.”"

PROPOSITION 4. Let X, Y and Z be Banach spaces.
@) If SeBX,Y) and Tell, ;(Y,Z), then TSell,,..(X,Z) and the

inequality
7":'zJ,q:r(’TS) = Tp,q T(T)“S“
holds.
(i) If Sell, ;«X,Y) and Te<B(Y,Z), then TSell, ,;(X,Z) and we

obtain
Tp,q:CTS) = [ Tl7mp,q:(S).

PrOOF. (i) For any finite sequence {x;},;=<;=, of points in X, by the as-
sumptions the following inequalities are valid:

(i ¥P | TSxq ||
= Tp,q:(T) sup (23 [{Sx;, bY|TVT

< 70 (DISH sup (<, 1738703
< 7p0s(DISI sup (< xs, ad [,

which proves (i). Here 31“110 (resp. ﬂlp) implies the supremum taken over all
lall=1 =1

a (resp. b) of the weakly compact unit ball of X* (resp. Y*), and S’ denotes

the adjoint of S.
The analogous calculation shows (ii) of the Proposition. In fact, noting
that (3 i¥P7YSx;[«DVe, ¢ <p, is the maximum among all the summations of
1

this type for any possible rearrangements of {||Sx;ll}, it holds
- (DY TS x| D)Ye
4
= IITII(tZ TYP Sy«

= (I T7p,q:+(S) sup (Z¢: [{xs ad|HV".
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Thus our assertions are proved.

We now review shortly the notion of mean space of Lions-Peetre [6]
which will be utilized hereafter. For the precise notations and fundamental
properties of this we may refer to[6], [3] and [8] Let (A,, A) be an inter-
polation couple of Banach spaces and (A, Ag,q 0<0<1, 1=<g= oo, be the
mean space of (A,, A,), namely, the set of elements a € A,+ A, such that

a= f} an: {€%"a,} €1(A,) and {e“"P"a,} €l (A))

with the norm
lallcanans,e=_inf max (I{e”an}ligeap {67 an} licar)
- n

Then, as a special case of mean space, the following relation is well
known :

3) (lpp lpz)li.q ~lpq

with p: 1/p=Q0Q—6)/p:+60/p., 1 =p;, g= o0, 1=1,2. Here [, , means the space
of sequences {x;} € ¢, such that ||{x,;}|l,p,q:|]{i”1"”qxi*}[ilq<00, where {x;x}
denotes the non-increasing rearrangement of {x;}, and ~ means that the both
sides of (3) are set-theoretically equal and their norms are equivalent.

On account of this fact and making use of the inclusion relations of (A,,
A)s,, With respect to the parameters ¢ and g [8], we obtain

PROPOSITION 5. (i) If 1<p, <p,=co0 and 1=gq,, q,, ¥ < o0, then we obtain
I, X, Y)Y, (X, Y) and

77-'172,117;:1-(’1‘) = Cﬂpl,ql;r(T) ’ Sfor every T ”pl,ql:r(xy Y),

where ¢ 1s a constant.
(i) If 1=¢,£¢, =< and 1<p, r<oo, then we have Il,, (X, Y)C

II,,4,:-(X,Y) and
Tpagir(T) = €Tp,q,:(T),  for every Tell,  ..(X,Y).
(i) If 1=rn=rn=<oc and 1=p, g< oo, then we have II,,..(X,Y)C
II,...(X,Y) and
Tpair(T) = ctp,0:2(T), for every Tell,  ..(X,Y).

Moreover, generalizing Kwapien’s result [4], (0. 7), we get the following
proposition.

PROPOSITION 6. If real numbers 1= p;, q;, ri=00, i=1,2, with p,=q, or
b, < q, <7, satisfy the relations 1/p,—1/p,=1/9,—1/q,=1/r;—1/r, =0, then we
have Il , q,.», X, Y)T I, ,:+,(X, Y) and

Tppans ol TS Tpay:r(T), for every Tell, o0 (X, Y).
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PROOF. In case of p,<q,<r, this is trivially true by Proposition 3, (ii).
Therefore it is sufficient to prove this under the assumption p; = ¢, by which
it holds ¢,/p.—q./p;=0. If for each Tell, ,,:,(X,Y) and for each finite
sequence of points {x;},<;=» in X we put

Ay = 1P P/ Ty || %27 with 1/p,—1/p,=1/p,
then {4;} is non-increasing. On account of this we have
@ (P T )
= (i A Ty

= (VT A0l DV,
1

where {j(i)} denotes the permutation of {i} appeared when we make the non-
increasing rearrangement of {|Tx;|}, i.e. | Tx;u/ =|Txlx. By making use
of the definition of T and Hdélder’s inequality with 1/7,=1/r,-+1/p, the last
expression of (4) is not greater than

Tpayir(T)sup (X[ x5y, a>| ™)V

lal=1 <

= Tpy,qy:m,(T) II%}IJ.gpl (12 1<x;, ad] Tz)l/rz(zi: | 2| P)2P
= Ty (D) $UD (S iy @D 779707 Tt 82)' 7

On the other hand, the left hand side of (4) is equal to (Af‘_,i‘“’”z“I]Txill*qz)”‘“.
Therefore we have

(2 192/P2-1 ”sz” *qz)l/(h-l/p
[

g 77'-171#11 H Tl(T)lE!Iu&Fl) (LE l < Xi 4 > ! 72)1/12 ’

which completes the proof.
As a consequence of above two Propositions 5, 6 we get the next
COROLLARY. If real numbers 1<p,, q;, ri< o0, i=1, 2, with p,=q, or p,
<q, <7, satisfy the relations 1/p,—1/p,=1/r,—1/r, =0 and 1/q9,—1/q,=
1/71—1/7, then we have II, ¢ .. (X, Y)CII,, 4,:+,(X, Y) and

Tppagire(T) = Tppqp:0,(T), Jor every Tell, ;- (X,Y).

In the final of this section, we shall give some examples of (p, q; 7)-
absolutely summing operators.

EXAMPLE 1. If 1=qg<r<p<oco, then the identical operator 1 from C[0, 1]
into L0, 1) is (p, q; v)-absolutely summing. However, 1 is not (q; r)-absolutely
summaing.

PrROOF. Let {x;(#)},=:<» be any finite sequence of functions of C[0, 1].
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Then we have

> GVP-14| x, ()| Lq)q — 2 iq/p—lj‘ol |x,(2) | dt

1
=3[ |(x, 8010t
i ]

< sup (Z‘)iq’p'lei» ay|9,

R L1 ES

where 0, is Dirac measure at t. By making use of Holder’s inequality for
the right side of the above inequality, with 1/¢=1/r+1/r/, we obtain

{ZE@P Ol

é (E ir'(l/p—l/q))l/r' sup (2 l<xir a>|1)1/r .
i lallsr <

In account of »/(1/g—1/p)>1, this shows 1 Il ,. . (C[0, 1], L0, 1)).

On the other hand, in view of [Proposition 3, (ii), it is clear that
Te I1,..(C[O, 1], L, (0, 1).

EXAMPLE 2. If 1< g<r=<p< oo, then the identical operator 1: C[0, 1]—
L., 1) does belong to II,,(CLO,1], L0, 1), but does mnot belong to
1, ... (CLo, 11, Ly, 1)).

PROOF. Let {x;,(#)},s;s, be any finite sequence of functions of C[0, 1].
Then we have

(SOl = (2 1xo1dt)”

= ([ '21<x, 8>17d)"

= sup (X< x;, ay|?)*"?
lalls1 1t

< sup (Z[<{x;, ad|D'".
lalsy €

This proves the first assertion of this example.
The second assertion is proved in the same way in [12] as follows. Let
us consider a sequence of positive numbers z; such that

=] o] . ,
> ;=1 and X ¥ ;%P =o00.
i=1 i=1

For instance we take as
_ 1
cG—1)(log i)*’
e 1
k . - Y .
where k2 be a constant: 1<k <p/gq, and ¢ Ep_ (i_~1)(log oy
t;= i} z; for j=1, 2, -+, and consider a sequence of functions ¢,(f) defined by
i=1

Ti-1

izz’ 3, cee

We put t,=0,
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1—|2t—t;— ;4] /7y for te [4;-y, t]

()= .
otherwise.

For any element a of (C[0, 1]) such that |la] £1, and for any positive integer
m, we have

(Z1<pu D= 5 Kew @]
:<t=%1 22‘901', ay
< ugzi(pinc:l,

where the number A; is taken as |[4;]=1 and A<¢;, a)=|<¢;, ay|. On the
other hand, we obtain

S PN

— {é}l iqm_l(“p:ilw

This means that /e 17, ,,.(C[O0, 1], L0, 1)).

a/py 1/g
} —> 0 as m—oo,

§2. Composition of (p, ¢; r)-absolutely summing operators.

In this section we are concerned with the classical theorem: If S and T
are Hilbert-Schmidt operators on a Hilbert space H, then the composition TS
becomes a nuclear operator, and the inequality

v(TS) = a(T)a(S)

holds, where o (resp. v) stands for the norm as Hilbert-Schmidt (resp. nuclear)

operator.
This theorem has been generalized in various directions. Especially,

of Pietsch for p-absolutely summing operators and Proposi-
tion of Tomczak for (p, g)-absolutely summing operators are interesting.
The analogous results for (p, ¢; r)-absolutely summing operators are stated
as the following two theorems. The proofs follow along the lines of
and [15].

THEOREM 1. Let X, Y and Z be Banach spaces and let 1 = p, p;, q;, Vi =0,
i=1, 2, be real numbers satisfying 1/p,<1/p+1/p. =1, 1/9. <1/p+1/9, =1 and
1/p+1r,<1/r,. Then, for any Tell(X,Y) and any S&ll, q.,(Y,Z) the
composition ST belongs to Il,,,,,; (X, Z) and satisfies

77'.1’2"12 ; Tz(ST) é ﬂpl,ql H Tl(S)ﬂp<T) .
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PROOF. By virtue of Proposition 5, it will suffice to prove the assertion
under the assumptions 1/p,=1/p+1/p,=<1, 1/¢,=1/p+1/q;, <1 and 1/r,=
1/p+1/7,. Since T is p-absolutely summing operator, the following result by
Pietsch [12] is well known : there exists a regular positive Borel measure g
on the weakly compact unit ball K* of X* such that

1/p
1Tl < 7 (D({ <5 a>17dua))
for every x € X. For any finite sequence {x;},s:<» of points in X, we put
1/p
x;=x"§; where &=(fK*|<xi, &> |"dp(@) .

Then, by making use of Holder’s inequality and on account of the note used
in the proof of Proposition 4, (ii), it yields

(B)  (SiwrSTa ey

= (2 /PST x|« 1)V (X &: 1 PP

1/p
S 0y (S) SUP (BT, X1 ( [ [Kx, ad172dp(@))
The terms of the form (Tx, 6> in the latter expression can be written as
(Tx, b>={ <x adf@dpa)
Kt
for every xe X with an fe L, (K* p), satisfying the inequality
1/p’
6) (f @17 du@) ™ sz (D81,

1/p+1/p’=1. In fact, let E,(K*, p) be the subspace of L,(K*, ¢) which is
constituted by the rest classes @, for ¢ (a) =<(x, a) = C(K*) with xe X. Then,
for each b & Y* there exists a linear form §8, on E,(K*, p) defined by

@z Bo>=(Tx, b>

and it satisfies
<8z Bo | = I Tx[I0]
1/p
< m(D({_1<x ad17dp@) 1] .
Therefore, there exists an fe L,(K*, p), 1/p+1/p’ =1, such that
(Tx, b>=[ <x adf(@ydu(@)  for x=X

and it satisfies (6). Hence we observe that
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[<Tx, by 1= [ 1<x ay]1f(@)]dp(a)
=[x & 1(x o121 @) P A7 dpa)
with 1/p+1/r,+1/7" =1, and by Holder’s inequality

= ([ J<x @ 1mdp@) ([, 1< @171 @) dp@))

1/r!
Pdula .
x (| 7@ du(a)
Replacing x by x,° in the above inequality, we obtain

[<Tx?, bY|™

s [erro([, ) <xo @ 1apa)
xgrvn(f Kx a1l @7 dp@) "
x(J r@7dp@) " T"

= ([ J<x0 o171 @17 dp@)(f, @17 @)

Summing up all these terms for i1=1, 2, ---, n, we get

(BT, by|yHm
< sup (T [< x;, a>l’2)””(fKJf(a) l p'df‘@)w'

lall=1 ¢

Hence applying this inequality to the right hand side of (5) and in view of
(6), we have

(o271 | STy azy
1

é ﬁp]:qliTl(S)ﬂp(T) "Sall-llspl (; I < Xiy a> l ’rz>1/'rz ’

which completes the proof.
REMARK 2. This theorem in case of p,=¢,=r=p=2, p,=¢q,=r,=1,
coincides with the classical theorem mentioned in the first of this section.
THEOREM 2. Let X, Y and Z be Banach spaces and 1 <P, Py, q,, 7, < 0
satisfy 1/p+1/p,=1, 1/p+1/q,=1 and 1/p+1/r,<1. Then, for any Te
II,(X,Y) and Sell, ;. (Y, Z) the composition ST belongs to II(X,Z) and
satisfies

7,(ST) = Tparsr(Tp(T) .
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PROOF. In case of p=1, this is clear by Proposition 4. Thus, we proceed
to show this in case of p>1. Let us put 1/p+1/p’=1. Then it satisfies
1=p,=p, 1=q,=p’ and r,=p’. By Proposition 5, Sll, .. (Y,Z)C
IT,(Y,Z). Hence Theorem 1 is applicable to these S and T. Therefore we
obtain STe/l,(X,Z) and 7,(ST) = 7p,,q,:+,(S)7(T). This establishes the proof.

§3. (p, g; r)-absolutely summing operators on _C,-spaces.

In the preceding theory of I7,.;.(X, Y), when X is a space of type L,
(5], it may happen the special relation among the spaces 17, ,;.(X,Y). To
see that we first prepare the next

LEMMA 1. Let X be isomorphic to a subspace of L,(¢) for a measure space
K, 2, ) and Y be any Banach space. Then, T € B(X,Y) is (p, ¢; 1)-absolutely
summing if and only if for any S & B(l., X) the composition TS Il ,4;,(, Y).

PROOF. By virtue of Proposition 4, it is clear that if Te Il,,;,(X, Y) and
SeB(., X), then TSel,,;,(. Y). We next assume that T € B(X, Y) satis-
fies the condition TSe 7,,,;,(., Y) for any S € B(l., X), but T & I1,,;,(X, Y).
Then there exists a sequence {x;} C X such that X x; converges uncondition-
ally, and '

) P Trflxf = oo

Now we define S € B(l.., X) as S({a;})= %}aixt for each {a;} €l.. On the other

hand, from (7), there exists a sequence {7;} ¢, such that

§3 1P (| Txill$)t=oc0.

Hence it holds
2‘ 1921 | TS(n:e0)||+2

= Z‘)i""’"(mllTxtll*)"= 0,
{

where ¢;=(0, ---,0,1,0, ). Thus we have TS« I, ,;,(l, Y). This contradic-
tion leads to the completion of the proof.

We note here, by a result of Lindenstrauss and Pelczynski [5], that the
operator S cited in Lemma 1 is 2-absolutely summing.

THEOREM 3. Let X and Y be the same spaces in Lemma 1. If real num-
bers 1< p;, qs < 00, 1=1, 2, satisfy the conditions 1=p, <2, 1=¢,=2, p,=4q,,
1/p,=1/p,—1/2 and 1/9,=1/q9,—1/2, then we have

prql: 1(X1 Y) = ”pg,qz;z(X, Y) .

PrROOF. Since the above conditions satisfy the assumptions of Proposi-
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tion 6, it is clear
HPl:‘l] ; 1(X’ Y) C Hpg,l]z H Z(X! Y) .

The reverse inclusion relation is proved as follows. Let Tell,, .. ..(X, Y).
Since, in view of the notice cited before any Se B(., X) is
2-absolutely summing, on account of we obtain TS € IT,, 4, :1(l, Y).
Hence owing to Lemma 1, we have T & /l,, . ::(X, Y), which completes the
proof.

As some examples for these cases we obtain the following

COROLLARY. Suppose p;, q;, 1=1, 2, satisfy the same conditions of Theorem
3. Let 1=r=<2 and Y be any Banach space. Then we have

HPI!QJ; 1<l1" Y) - Hpg,qgtz(l‘r, Y)
and
le,qlzl(Lr(O’ 1)1 Y) = sz,qZ;Z(LT(Oi 1); Y) .

This is a consequence of Theorem 3 and the result of [5] asserting that
for 1=r=2 the spaces /, and L,(0, 1) are isomorphic to a subspace of L,(u).

§4. (p, q; r)-absolutely summing operators on Hilbert space.

Throughout this section, let H be a Hilbert space. When we consider
the operator on Hilbert space, some particular relations may happen between
(p, ¢; )-absolutely summing operators. For instance, from [4], 17, ,(H, H)=
B(H, H) is known. On the other hand, if 1/24+1/p=1/2-+1/¢=<1/r, by virtue
of of Proposition 6 it holds 17, ,,;.(H, H) D11, ,(H, H), by which we
obtain

THEOREM 4. Let 1=p, q, r<oo, and 1/2+1/p=1/241/9=<1/r, then we

have
1,4, H)=BH, H) .

Extending the operator of type [, by Pietsch [11], which is itself also a
generalization of Hilbert-Schmidt operator and nuclear operator, we shall
define the operator of type [,,. Let X and Y be two Banach spaces, and
AX,Y), 1=0,1, 2, ---, be the space of all the i-dimensional operators, namely
the operators with range of at most i-dimension. For T e B(X,Y), the

number
a;(T)=inf {IT—Al: Ae A(X, )}

is called the approximation number of T [11].

DEFINITION 2. If the operator T  B(X, Y) satisfies the condition {a;(T)}
El,,, (resp. lp), 1=p, g= oo, then T is called the operator of type l,, (resp.
l,). The collection of all the operators of type [, (resp. [,) is denoted by
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1p,oX, Y) (resp. [,(X,Y)) and we denote [{a:(T)},,,, (resp. [[{a;(T)}.,) by
15,4(T) (resp. [,(T)). Then [, (X, Y) becomes a Banach space with the norm
1p,(T).

In particular case when X and Y are Hilbert spaces H, the operators of
type [, have been treated by Dunford and Schwartz (class C,), Gohberg
and Krein [2] (class &,) and Triebel (class &, ) etc.

Since I, ,H, H) and II,,..(H, H) are both normed ideals of B(H, H), by
Gohberg and Krein [2], Chapter III, the operator of type [,, and (p, q; r)-
absolutely summing operator on H are compact operators. Therefore, by the
spectral decomposition theorem [11], 8. 3, T/, ,(H, H) can be represented
as follows:

Tx= il o:(x, e)fs for xe X

with certain two orthonormal systems {e;} and {f;} in H and {p;} such that
{0t lipe= Ip,o(T) < oo,

In the rest of this section we shall investigate a certain relation between
(p, g; r)-absolutely summing operators and the operators of type [,, For
this purpose we prepare some known results. Let J(H, H) be the space of
nuclear operators with the norm »(T). Then, H. Triebel [14], Lemma 1,
proved

LEMMA 2. For any 6: 0<6@ <1, putting 1/p=1—60, we have (JI(H, H),
l(H, H))g,q~1,o(H, H) with 1 =q=co.

Moreover, on account of the reiteration theorem for interpolation spaces
[6], it yields

COROLLARY. Let 1<p;, p<oo,1=Zqy, g<o0, 1=1, 2, satisfy 1/p=01—6)/p,+
8/p, with 0< 0 <1. Then we get

(Up,q,(H, H), [5,,0,(H, H))o,q~ [,,(H, H).

Concerning with the mean space for I7,,.,(X, Y), X and Y being Banach
spaces, we obtained the following lemma in the previous paper [9]

LEMMA 3. Suppose that 1=p;, p<oo, 1=4qy, q, r=o0, 1=1, 2, satisfy the
conditions p,+ p,, 1/p=A—6)/p,+8/p, for some §:0< 0 <1. Then it holds

(T p0,: X, YD), My 005+ (X, Yo, C I p,0:0(X, YD

With the aid of these I.emmas we get the next two theorems.
THEOREM 5. Let 2<p<oo, 1£q=< 0 and 1<r<2. Then, for any p,:
1/, £1/p+1/r—1/2, we have

L, H I, ..(H H.

PROOF. We notice first the following equations:
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[,(H, H) =91(H, H)
with [,(T) =u(T) for every T [,(H, H) [11], and
L(H, H) =11 ,(H, H)=6,(H, H), 1=p < o,
with L,(T) =7,(T) =a(T) for every Te [,(H, H) [11], [12], [10], where &,(H, H)
denotes the space of all Hilbert-Schmidt operators with the norm o(T).
Hence, by Lemma 2 and its corollary we have
(8) lp,q(H, H)N(W(Hy H), lm(H, H))1—1/p,q

~ ((91(H, H), I.(H, H))l/z,z; (J(H, H), L.(H, H))I,S)I—Z/p,q
with 1 <s < co.

Here, since in view of the above notice we have (Ji(H, H), L.(H, H)),,,
~I,(H, H)y=II,(H, H) with 1<7r<2, and, by (71(H, H), L.(H, Hy),,,
=11,,,(H, H) with 1/r=1/2+1/r,, the right hand side of (8) is equivalent to
{1.(H,H),11,, ,(H,H)),_,/p,, which is contained in I7,_,,;,(H,H) with 1/p+1/r—1/2
=1/p, by virtue of Lemma 3. This shows Theorem 5.

THEOREM 6. Let 1=p, g=oo0, 1=r<2 and let positive numbers p,, q,
satisfy 1/p,=1/p+1/2—1/r and 1/9,=1/q+1/2—1/r. Then, we obtain

I,,...(H Hc lpl,ql(H, H).

PrOOF. Let T be any element of I/,,;.(H, H). Then, for any finite
sequence {x;},;s;s, of points in H, it holds

) P T 9 = S P Tl
= p,q:r(T) sup (; [{xiy @ad |V

On the other hand, recalling the notice mentioned after Definition 2, T is
expressed as follows:

Tx= ﬁ) 0i{x, e)fs for every xe X,
=1

where {e;}, {/;} are two orthonormal systems in H and {p;} €¢,. We put

— ¢ -1)(1/r-1/2) Q/r—-1/2)
X; =1 q1/P1 Ipillh / e; .

Then the inequality (9), with this {x;}, gives
(S0P | 0 |98 < 7y, (TH(S i99/7172 | py | ) r=42
7 A T !

by which we have
(S0P 0, | )0 S ,0:,(T) .

‘This implies that T =/,,(H, H), and completes the proof.
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