On homotopy invariance of triangulability of certain 5-manifolds

By Yukio MATSUMOTO*)

(Received Oct. 28, 1971)

Kirby [4] has constructed a non-triangulable 6-manifold having the same homotopy type as $S^2 \times S^4$. Extending his method, S. Ichiraku [3] proves that there is a non-triangulable manifold which is homotopy equivalent to a given *PL*-manifold satisfying certain conditions of dimension ≥ 6 . Therefore, in dimensions greater than 5, it is likely that the homotopy invariance of triangulability fails in almost all cases. However, in dimension 5 there are some examples which intimate the homotopy invariance of triangulability [1], [2]. In this paper we will study the problem to what extent this invariance holds. We will state our main result in §1, and will give a proof in §§ 2~3.

The author is indebted to helpful discussions with S. Morita.

§1. Our main result.

THEOREM 1. Let M^5 be a closed orientable topological 5-manifold such that (i) $\pi_1(M^5)$ is an abelian group without 2-torsions, and

(ii) $Sq^2: H^2(M^5; \mathbb{Z}_2) \longrightarrow H^4(M^5; \mathbb{Z}_2)$ is a zero map.

Then for any homotopy equivalence $f: M^5 \longrightarrow L^5$ of M^5 to another 5-manifold L^5 , we have

$$f * k(L^5) = k(M^5)$$
,

where $k \in H^4(; \mathbb{Z}_2)$ denotes the obstruction to PL-triangulation [5]. (We will refer this class as the Kirby-Siebenmann class.)

S. Morita [6] has proved that if M_0^5 is an orientable closed *PL* 5-manifold with $\pi_1(M_0^5) \cong \mathbb{Z}_2$, then there is a non-triangulable manifold N^5 having the same homotopy type as M_0^5 . So the condition (i) is essential.

COROLLARY 1. Replacing (ii) in Theorem 1 by the hypothesis that M^5 is a spin-manifold, we have the same conclusion.

This is independently proved by T. Matumoto by a more geometrical argument (unpublished).

PROOF OF COROLLARY 1. Since $H_1(M^5; \mathbb{Z})$ has no 2-torsions, neither does $H^2(M^5; \mathbb{Z})$ by the universal coefficient theorem. Thus the Bockstein

^{*)} The author is partially supported by the Fūjukai Foundation.

 $\delta: H^1(M^5; \mathbb{Z}_2) \longrightarrow H^2(M^5; \mathbb{Z})$ is zero; so $Sq^1 = (\text{mod } 2) \circ \delta: H^1(M^5; \mathbb{Z}_2) \longrightarrow H^2(M^5; \mathbb{Z}_2)$ is a zero map.

Let u_i be the *i*-th Wu class. Then we have

 $w_2 = u_2 + Sq^1u_1 + Sq^2u_0 = u_2$.

Thus by the hypothesis $w_2(M^5) = 0$, we have $u_2(M^5) = 0$. So $Sq^2: H^3(M^5; \mathbb{Z}_2) \longrightarrow H^5(M^5; \mathbb{Z}_2)$ is zero. By Cartan formula,

$$0 = Sq^{2}(x \cup y) = Sq^{2}x \cup y + Sq^{1}x \cup Sq^{1}y + x \cup Sq^{2}y = Sq^{2}x \cup y, \quad (1)$$

where $x \in H^2(M^5; \mathbb{Z}_2)$, $y \in H^1(M^5; \mathbb{Z}_2)$. Here we used again the fact that $Sq^1: H^1(M^5; \mathbb{Z}_2) \longrightarrow H^2(M^5; \mathbb{Z}_2)$ is zero. Since (1) holds for any y, we have $Sq^2x = 0$ by the Poincaré duality. Corollary 1 follows by Theorem 1. Q. E. D. EXAMPLE. A 5-manifold which is homotopy equivalent to $S^i \times T^{5-i}$ ($1 \leq i \leq 5$)

is triangulable.

The triangulability of homotopy tori was proved by Hsiang and Wall [2]. However, [2] includes a statement (about homotopy invariance of a certain cohomology class) which is true in their case but false in general.^{*)} (Cf. Theorem 2, below.) The triangulability of a homotopy- $S^4 \times S^1$ is first proved by S. Fukuhara. See also [1].

Consider the following homotopy commutative diagram

where maps η , ϖ are natural maps, $\tilde{\eta}$ the unique lift (up to homotopy) of η . Using the facts $TOP/PL \simeq K(\mathbb{Z}_2, 3)$ [5] and $\pi_3(STOP) \cong \mathbb{Z} \oplus \mathbb{Z}_2$, it is easily seen that $H^4(BSTOP; \mathbb{Z}) \cong H^4(BSO; \mathbb{Z})$ and $H^4(BSPINTOP; \mathbb{Z}) \cong H^4(BSPIN; \mathbb{Z})$.

Let $q_1 \in H^4(BSPINTOP; \mathbb{Z}) \cong \mathbb{Z}$ be the generator such that $\mathfrak{T}^*p_1 = 2q_1$, where $p_1 \in H^4(BSTOP; \mathbb{Z})$ is the 1-st Pontrjagin class. Let $k \in H^4(BSTOP; \mathbb{Z}_2)$ be the universal Kirby-Siebenmann class. We denote by i_* , p_* the homomorphisms of cohomology groups which are induced by the coefficient homomorphism $i: \mathbb{Z}_2 \longrightarrow \mathbb{Z}_{24}$, $p: \mathbb{Z} \longrightarrow \mathbb{Z}_{24}$ (*i* the non-trivial map, *p* the projection).

The following is a key theorem to proving Theorem 1.

THEOREM 2. In $H^4(F/TOP; \mathbb{Z}_{24})$, we have

$$p_*\tilde{\eta}^*(q_1) + i_*\eta^*(k) = i_*k_2^2$$

where $k_2 \in H^2(F/TOP; \mathbb{Z}_2) \cong \mathbb{Z}_2$ is the generator.

This will be proved in §3.

280

^{*)} The author heard that this was independently pointed out by several mathematicians in 1970.

§2. Proof of Theorem 1.

In this section, we will prove Theorem 1 taking Theorem 2 for granted. Let M^5 , L^5 , f be given as in Theorem 1. Let τ_M , τ_L be the tangent bundles of M, L, respectively. Set $\xi = \tau_M - f^* \tau_L$, then ξ has a canonical F/TOP bundle structure. By Theorem 2, we have

$$p_*(q_1(\xi)) + i_*(k(\xi)) = i_*k_2(\xi)^2$$
.

However by hypothesis (ii), $k_2(\xi)^2 = Sq^2k_2(\xi) = 0$. Thus

$$p_*(q_1(\xi)) + i_*(k(\xi)) = 0.$$
 (2)

By hypothesis (i), $\pi_1(M^5) \cong (\text{free abelian}) \oplus (\text{odd torsions})$. Let $\widetilde{M} \xrightarrow{\pi} M^5$, $\widetilde{L} \xrightarrow{\pi'} L^5$ be odd-fold coverings such that $\pi_1(\widetilde{M}) \cong \pi_1(\widetilde{L}) = a$ free abelian group. Let $\widetilde{f} : \widetilde{M} \longrightarrow \widetilde{L}$ be the induced homotopy equivalence.

LEMMA 1. $p_1(\tilde{M}) = \tilde{f} * p_1(\tilde{L})$ where p_1 is the 1-st (integral) Pontrjagin class.

Although this is an easy consequence of [5] and [7], we will give a proof for completeness. In [7], Novikov proved that L_k -class of smooth (or PL) 4k+1-manifold is homotopy invariant. His proof is easily extended to topological manifolds by the technique of [5] and [8]. However, the proof includes a certain transversality argument, so some care is needed to the case of L_1 -class of topological 5-manifolds. (Cf. [10].) Let CP_2 be a complex projective surface with fundamental class γ . Then by the higher dimensional topological analogy of Novikov's result, we have $L_1(\tilde{M}) \times \gamma = L_2(\tilde{M} \times CP_2) =$ $(\tilde{f} \times id)^* L_2(\tilde{L} \times CP_2) = \tilde{f}^* L_1(\tilde{L}) \times \gamma$. Since $\times \gamma$ is an isomorphism, we have $L_1(\tilde{M}) = \tilde{f}^* L_1(\tilde{L})$. This implies that the rational p_1 of topological 5-manifolds is homotopy invariant. However, in our case $H^4(\tilde{M}; \mathbb{Z}) \cong H_1(\tilde{M}; \mathbb{Z})$ which is free abelian, and so $H^4(\tilde{M}; \mathbb{Z}) \longrightarrow H^4(\tilde{M}; \mathbb{Q})$ is injective. Hence we have the desired invariance of the integral p_1 .

By Lemma 1, $2\pi^*q_1(\xi) = \pi^*p_1(\xi) = p_1(\widetilde{M}) - \widetilde{f}^*p_1(\widetilde{L}) = 0$. Noting that $H^4(\widetilde{M}; \mathbb{Z})$ is torsion free, we have

$$\pi^* q_1(\xi) = 0.$$
 (3)

Combining (2) and (3), we obtain

$$\pi^* i_* k(\xi) = 0$$
. (4)

LEMMA 2. Let $\tilde{Y}^n \xrightarrow{\nu} Y^n$ be an odd-fold covering of a closed manifold Y^n . Then $\nu^* \colon H^i(Y^n; \mathbb{Z}_2) \longrightarrow H^i(\tilde{Y}^n; \mathbb{Z}_2)$ is injective for any $i \ge 0$.

This is obvious as ν is degree 1 with respect to Z_2 -cohomology.

By the lemma, π^* is injective. Also $i_*: H^4(M^5; \mathbb{Z}_2) = \mathbb{Z}_2 \oplus \cdots \oplus \mathbb{Z}_2 \longrightarrow \mathbb{Z}_{24} \oplus \cdots \oplus \mathbb{Z}_{24} = H^4(M^5; \mathbb{Z}_{24})$ is clearly injective. So we have by (4) $k(\xi) = k(M) - f^*k(L) = 0$. This completes the proof of Theorem 1.

§3. Proof of Theorem 2.

For a topological space X, denote by $X \langle n \rangle$ the (n-1)-connected fibre space of X. Consider the homotopy commutative diagram:

The map $\pi_4(BSTOP\langle 4\rangle) \longrightarrow \pi_4(BSF\langle 4\rangle)$ is $p+i: \mathbb{Z} \oplus \mathbb{Z}_2 \longrightarrow \mathbb{Z}_{24}$; so the lefthand side of the equation in Theorem 2, $p_*\tilde{\eta}^*q_1+i_*\eta^*k$, is the obstruction to lifting $F/TOP \xrightarrow{\tilde{\eta}} BSTOP\langle 4\rangle \longrightarrow BSF\langle 4\rangle$ to $F/TOP \longrightarrow BSF\langle 5\rangle$.

LEMMA 3. $p_* \tilde{\eta}^* q_1 + i_* \eta^* k \neq 0$.

PROOF OF LEMMA 3. If $F/TOP \longrightarrow BSF\langle 4 \rangle$ were lifted to $BSF\langle 5 \rangle$, for any finite 4-complex Y⁴ and any map $g: Y^4 \longrightarrow F/TOP$, the composition $Y^4 \xrightarrow{g} F/TOP \longrightarrow BSTOP\langle 4 \rangle \longrightarrow BSF\langle 4 \rangle$ would be null-homotopic, for $BSF\langle 5 \rangle$ is 4-connected. However, the next counter-example shows that this is not the case. Thus $p_*\tilde{\eta}^*q_1 + i_*\eta^*k \neq 0$. Q. E. D.

A COUNTER-EXAMPLE. Let $h: S^2 \longrightarrow F/TOP$ represent the non-zero element of $\pi_2(F/TOP) \cong \mathbb{Z}_2$, and $H: S^3 \longrightarrow S^2$ the Hopf-fibration. Since $\pi_3(F/TOP) \cong 0$, the composite map $S^3 \xrightarrow{H} S^2 \xrightarrow{h} F/TOP$ is null-homotopic. Thus h is extended to a map $g: \mathbb{CP}_2 \longrightarrow F/TOP$. Then the composite map $\mathbb{CP}_2 \xrightarrow{g} F/TOP \longrightarrow BSF \langle 4 \rangle$ cannot be null-homotopic.

PROOF. The fibre of a fibration $F/TOP \xrightarrow{\tilde{\eta}} BSTOP\langle 4 \rangle$ is SPINF. Since $\pi_2(SPINF) \cong \pi_2(F/TOP)$, h can be considered as a composition $S^2 \xrightarrow{h'} SPINF \longrightarrow F/TOP$. Regarding $\pi_2(SPINF) \ (\cong \pi_2(F))$ as the stable 2-stem of the homotopy groups of spheres, we know that $h' \circ H : S^3 \longrightarrow SPINF$ is not null-homotopic (See Toda [9]). Since $BSTOP\langle 4 \rangle$ is 3-connected, the map $CP_2 \xrightarrow{g} F/TOP \xrightarrow{\tilde{\eta}} BSTOP\langle 4 \rangle$ represents a unique element of $\pi_4(BSTOP\langle 4 \rangle)$ denoted by x. We know that $\partial x = \{h' \circ H\} \neq 0$ in the exact sequence $\pi_4(F/TOP) \xrightarrow{\tilde{\eta}_*} \pi_4(BSTOP\langle 4 \rangle) \xrightarrow{\partial} \pi_3(SPINF)$; so x is not contained in $\text{Im } \tilde{\eta}_*$. Consider the commutative diagram:

282

Since $\varpi_{*}(x)$ is not in the image η_{*} , it is mapped to a non-zero element in $\pi_{4}(BSF)$. Thus the element of $\pi_{4}(BSF\langle 4\rangle)$ determined by the composition $CP_{2} \xrightarrow{g} F/TOP \longrightarrow BSTOP\langle 4\rangle \longrightarrow BSF\langle 4\rangle$ is not zero. This reveals that the composition is not null-homotopic.

LEMMA 4. $p_* \tilde{\eta}^* q_1 + i_* \eta^* k$ belongs to the kernel of

 $H^{4}(F/TOP; \mathbb{Z}_{24}) \longrightarrow H^{4}(F/TOP\langle 4 \rangle; \mathbb{Z}_{24}).$

PROOF OF LEMMA 4. We will show that the composition: $F/TOP\langle 4 \rangle \longrightarrow F/TOP \longrightarrow BSF\langle 4 \rangle$ is lifted to $BSF\langle 5 \rangle$. The obstruction lies in $H^4(F/TOP\langle 4 \rangle; \pi_4(BSF\langle 4 \rangle)) = \text{Hom}(\pi_4(F/TOP\langle 4 \rangle), \pi_4(BSF\langle 4 \rangle))$, and is represented by the homomorphism $\pi_4(F/TOP\langle 4 \rangle) \longrightarrow \pi_4(BSF\langle 4 \rangle)$ induced by the natural map. However, this is a zero homomorphism. This completes the proof of Lemma 4.

Consider the Serre exact sequence associated with a fibration $F/TOP \langle 4 \rangle$ $\longrightarrow F/TOP \longrightarrow K(\mathbb{Z}_2, 2)$:

$$0 \longrightarrow H^{4}(K(\mathbb{Z}_{2}, 2); \mathbb{Z}_{24}) \longrightarrow H^{4}(F/TOP; \mathbb{Z}_{24}) \longrightarrow H^{4}(F/TOP\langle 4 \rangle; \mathbb{Z}_{24}).$$

Now $H^4(K(\mathbb{Z}_2, 2); \mathbb{Z}_{24}) \cong \mathbb{Z}_2$ and it is generated by $i_*k_2^2$. Therefore, the unique non-zero class in the kernel of $H^4(F/TOP; \mathbb{Z}_{24}) \longrightarrow H^4(F/TOP\langle 4 \rangle; \mathbb{Z}_{24})$ is $i_*k_2^2$. Now Theorem 2 follows from Lemmas 3 and 4.

University of Tokyo

References

- [1] S. Fukuhara, On the Hauptvermutung of 5-dimensional manifolds and s-cobordisms, (to appear).
- [2] W. C. Hsiang and C. T. C. Wall, On homotopy tori II, Bull. London Math. Soc., 1 (1969), 341-342.
- [3] S. Ichiraku, On realization of Kirby-Siebenmann's obstructions by 6-manifolds, (to appear in Osaka J. Math.).
- [4] R. Kirby, Lectures on triangulation of manifolds, (mimeographed), U. C. L. A., 1969.
- [5] R. Kirby and L. C. Siebenmann, On the triangulation of manifolds and the hauptvermutung, Bull. Amer. Math. Soc., 75 (1969), 742-749.
- [6] S. Morita, Some remarks on the Kirby-Siebenmann class, (to appear).

I. MAISUMOIO	Υ.	Matsumoto
--------------	----	-----------

- [7] S. P. Novikov, Rational Pontrjagin classes. Homeomorphism and homotopy type of closed manifolds, I, Amer. Math. Soc. Transl., (2) 66 (1968), 214-230.
- [8] L.C. Siebenmann, Topological manifolds, (to appear).
- [9] H. Toda, Composition methods in homotopy groups of spheres, Annals of Mathematical Studies 49, Princeton Univ. Press, Princeton, 1962.
- [10] Y. Matsumoto, Topological t-regularity and Rohlin's theorem, J. Fac. Sci. Univ. Tokyo, 18 (1971), 97-108.