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Kirby [4] has constructed a non-triangulable 6-manifold having the same
homotopy type as $S^{2}\times S^{4}$ . Extending his method, S. Ichiraku [3] proves that
there is a non-triangulable manifold which is homotopy equivalent to a given
PL-manifold satisfying certain conditions of dimension $\geqq 6$ . Therefore, in
dimensions greater than 5, it is likely that the homotopy invariance of
triangulability fails in almost all cases. However, in dimension 5 there are
some examples which intimate the homotopy invariance of triangulability [1],

[2]. In this paper we will study the problem to what extent this invariance
holds. We will state our main result in \S 1, and will give a proof in \S \S 2\sim 3.

The author is indebted to helpful discussions with S. Morita.

\S 1. Our main result.

THEOREM 1. Let $M^{5}$ be a closed orientable topological 5-manifold such that
(i) $\pi_{1}(M^{5})$ is an abelian group without 2-torsions, and
(ii) $Sq^{2}$ : $H^{2}(M^{5} ; Z_{2})\rightarrow H^{4}(M^{5} ; Z_{2})$ is a zero map.

Then for any homotopy equivalence $f:M^{6}\rightarrow L^{5}$ of $M^{5}$ to another 5-manifold
$L^{5}$ , we have

$f^{*}k(L^{5})=k(M^{5})$ ,

where $k\in H^{4}($ ; $Z_{2})$ denotes the obstruction to PL-triangulation [5]. (We will
refer this class as the Kirby-Siebenmann class.)

S. Morita [6] has proved that if $M_{0}^{5}$ is an orientable closed $PL$ 5-manifold
with $\pi_{1}(M_{0}^{5})\cong Z_{2}$ , then there is a non-triangulable manifold $N^{6}$ having the
same homotopy type as $M_{0}^{6}$ . So the condition (i) is essential.

COROLLARY 1. Replacing (ii) in Theorem 1 by the hypothesis that $M^{5}$ is a
spin-manifold, we have the same conclusion.

This is independently proved by T. Matumoto by a more geometrical
argument (unpublished).

PROOF OF COROLLARY 1. Since $H_{1}(M^{5} ; Z)$ has no 2-torsions, neither
does $H^{2}(M^{5} ; Z)$ by the universal coefficient theorem. Thus the Bockstein

$*)$ The author is partially supported by the Fttjukai Foundation.
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$\delta:H^{1}(M^{6} ; Z_{2})\rightarrow H^{2}(M^{5} ; Z)$ is zero; so $Sq^{1}=(mod 2)\circ\delta:H^{1}(M^{6} ; Z_{2})\rightarrow H^{2}(M^{\epsilon} ; Z_{2})$

is a zero map.
Let $u_{i}$ be the i-th $Wu$ class. Then we have

$w_{2}=u_{2}+Sq^{1}u_{1}+Sq^{2}u_{0}=u_{2}$ .
Thus by the hypothesis $w_{2}(M^{6})=0$ , we have $u_{2}(M^{6})=0.$ -So $Sq^{2}$ : $H^{s}(M^{6} ; Z_{2})$

$\rightarrow H^{6}(M^{5} ; Z_{2})$ is zero. By Cartan formula,

$0=Sq^{2}(x\cup y)=Sq^{2}x\cup y+Sq^{1}x\cup Sq^{1}y+x\cup Sq^{2}y=Sq^{2}x\cup y$ , (1)

where $x\in H^{2}(M$ ’ ; $Z_{2}),$ $y\in H^{1}(M^{5} ; Z_{2})$ . Here we used again the fact that
$Sq^{1}$ : $H^{1}(M^{6} ; Z_{2})\rightarrow H^{2}(M^{6} ; Z_{2})$ is zero. Since (1) holds for any $y$ , we have
$Sq^{2}x=0$ by the Poincar\’e duality. Corollary 1 follows by Theorem 1. Q. E. D.

EXAMPLE. A 5-manifold which is homotopy equivalent to $S^{i}\times T^{6-i}(1\leqq i\leqq 5)$

is triangulable.
The triangulability of homotopy tori was proved by Hsiang and Wall [2].

However, [2] includes a statement (about homotopy invariance of a certain
cohomology class) which is true in their case but false in general.*) (Cf.

Theorem 2, below.) The triangulability of a $homotopy\rightarrow S^{4}\times S^{1}$ is first proved
by S. Fukuhara. See also [1].

Consider the following homotopy commutative diagram

where maps $\eta,$
$\varpi$ are natural maps, $\tilde{\eta}$ the unique lift (up to homotopy) of $\eta$ .

Using the facts $TOP/PL\simeq K(Z_{2},3)[5]$ and $\pi_{3}(STOP)\cong Z\oplus Z_{2}$ , it is easily seen
that $H^{4}(BSTOP;Z)\cong H^{4}(BSO;Z)$ and $H^{4}(BSPINTOP;Z)\cong H^{4}(BSPIN;Z)$ .

Let $q_{1}\in H^{4}(BSPINTOP;Z)\cong Z$ be the generator such that $\varpi*p_{1}=2q_{1}$ ,
where $p_{1}\in H^{4}(BSTOP;Z)$ is the l-st Pontrjagin class. Let $k\in H^{4}(BSTOP;Z_{2})$

be the universal Kirby-Siebenmann class. We denote by $i_{*},$ $p_{*}$ the homo-
morphisms of cohomology groups which are induced by the coefficient homo-
morphism $i:Z_{2}\rightarrow Z_{24},$ $p;Z\rightarrow Z_{24}$ ($i$ the non-trivial map, $p$ the projection).

The following is a key theorem to proving Theorem 1.
THEOREM 2. In $H^{4}(F/TOP;Z_{24})$ , we have

$p_{*}\tilde{\eta}^{*}(q_{1})+i_{*}\eta^{*}(k)=i_{*}k_{2}^{2}$ ,

where $k_{2}\in H^{2}(F/TOP;Z_{2})\cong Z_{2}$ is the generator.
This will be proved in \S 3.

$*)$ The author heard that this was independently pointed out by several mathe-
maticians in 1970.
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\S 2. Proof of Theorem 1.

In this section, we will prove Theorem 1 taking Theorem 2 for granted.
Let $M^{5},$ $L^{5},$ $f$ be given as in Theorem 1. Let $\tau_{M},$ $\tau_{L}$ be the tangent

bundles of $M,$ $L$ , respectively. Set $\xi=\tau_{M}-f^{*}\tau_{L}$ , then $\xi$ has a canonical
$F/TOP$ bundle structure. By Theorem 2, we have

$p_{*}(q_{1}(\xi))+i_{*}(k(\xi))=i_{*}k_{2}(\xi)^{2}$ .
However by hypothesis (ii), $k_{2}(\xi)^{2}=Sq^{2}k_{2}(\xi)=0$ . Thus

$p_{*}(q_{1}(\xi))+i_{*}(k(\xi))=0$ . (2)

By hypothesis (i), $\pi_{1}(M^{5})\cong(freeabelian)\oplus$ ($odd$ torsions). Let $\tilde{M}\rightarrow^{\pi}M^{6_{r}}$

$\tilde{L}\rightarrow^{\pi^{\prime}}L^{5}$

be odd-fold coverings such that $\pi_{1}(\tilde{M})\cong\pi_{1}(\tilde{L})=a$ free abelian group.
Let $f;\tilde{M}\rightarrow\tilde{L}$ be the induced homotopy equivalence.

LEMMA 1. $p_{1}(\tilde{M})=f*p_{1}(\tilde{L})$ where $p_{1}$ is the l-st (integral) Pontrjagin class.
Although this is an easy consequence of [5] and [7], we will give a proof

for completeness. In [7], Novikov proved that $L_{k}$ -class of smooth (or $PL$)
$4k+1$-manifold is homotopy invariant. His proof is easily extended to topo-
logical manifolds by the technique of [5] and [8]. However, the proof includes
a certain transversality argument, so some care is needed to the case of
$L_{1}$-class of topological 5-manifolds. (Cf. [10].) Let $CP_{2}$ be a complex projec-
tive surface with fundamental class $\gamma$ . Then by the higher dimensional
topological analogy of Novikov’s result, we have $L_{1}(\tilde{M})\times\gamma=L_{2}(\tilde{M}\times CP_{2})=$

$(f\times id)^{*}L_{2}(\tilde{L}\times CP_{2})=f*L_{1}(\tilde{L})\times\gamma$ . Since $\times\gamma$ is an isomorphism, we have
$L_{1}(\tilde{M})=I^{*}L_{1}(\tilde{L})$ . This implies that the rational $p_{1}$ of topological 5-manifolds
is homotopy invariant. However, in our case $H^{4}(\tilde{M} ; Z)\cong H_{1}(\tilde{M} ; Z)$ which is
free abelian, and so $H^{4}(\tilde{M} ; Z)\rightarrow H^{4}(\tilde{M} ; Q)$ is injective. Hence we have the
desired invariance of the integral $p_{1}$ .

By Lemma 1, $2\pi^{*}q_{1}(\xi)=\pi^{*}p_{1}(\xi)=p_{1}(\tilde{M})-f*p_{1}(L)\sim=0$ . Noting that $H^{4}(\tilde{M} ; Z)$

is torsion free, we have
$\pi^{*}q_{1}(\xi)=0$ . (3)

Combining (2) and (3), we obtain

$\pi^{*}i_{*}k(\xi)=0$ . (4)

LEMMA 2. Let $\tilde{Y}^{n}\succ\underline{\nu}Y^{n}$ be an odd-fold covering of a closed manifold $Y^{n}$ .
Then $\nu^{*}:$ $H^{i}(Y^{n} ; Z_{2})\rightarrow H^{i}(\tilde{Y}^{n} ; Z_{2})$ is injective for any $i\geqq 0$ .

This is obvious as $\nu$ is degree 1 with respect to $Z_{2}$-cohomology.
By the lemma, $\pi^{*}$ is injective. Also $ i_{*}:H^{4}(M^{6};Z_{2})=Z_{2}\oplus\cdots\oplus Z_{2}\rightarrow$

$Z_{24}\oplus\cdots\oplus Z_{24}=H^{4}(M^{6} ; Z_{24})$ is clearly injective. So we have by (4) $k(\xi)=$

$k(M)-f^{*}k(L)=0$ . This completes the proof of Theorem 1.
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\S 3. Proof of Theorem 2.

For a topological space $X$, denote by $ X\langle n\rangle$ the $(n-1)$-connected fibre
space of $X$. Consider the homotopy commutative diagram:

$ BSTOP\langle 4\rangle$

$ Bs_{1}F\langle 5\rangle BSF\langle 4\rangle$

$\nearrow^{\eta\tilde}$ $I^{\varpi^{\prime}}$

$BSF|$

$F/TOP\overline{\eta}$ BSTOP

(N. B. $BSTOP\langle 4\rangle=BSP1NTOP$).

The map $\ell\pi_{4}(BSTOP\langle 4\rangle)\rightarrow\pi_{4}(BSF\langle 4\rangle)$ is $p+i:Z\oplus Z_{2}\rightarrow Z_{24}$ ; so the left-
hand side of the equation in Theorem 2, $p_{*}\tilde{\eta}^{*}q_{1}+i_{*}\eta^{*}k$ , is the obstruction to

$\tilde{\eta}$

lifting $ F/TOP\rightarrow BSTOP\langle 4\rangle\rightarrow BSF\langle 4\rangle$ to $ F/TOP\rightarrow BSF\langle 5\rangle$ .
LEMMA 3. $p_{*}\tilde{\eta}^{*}q_{1}+i_{*}\eta^{*}k\neq 0$ .
PROOF OF LEMMA 3. If $ F/TOP\rightarrow BSF\langle 4\rangle$ were lifted to $ BSF\langle 5\rangle$ , for

any finite 4-complex $Y^{4}$ and any map $g:Y^{4}\rightarrow F/TOP$, the composition
$Y^{4}\rightarrow^{g}F/TOP\rightarrow BSTOP\langle 4\rangle\rightarrow BSF\langle 4\rangle$ would be null-homotopic, for
$ BSF\langle 5\rangle$ is 4-connected. However, the next counter-example shows that this
is not the case. Thus $p_{*}\tilde{\eta}^{*}q_{1}+i_{*}\eta^{*}k\neq 0$ . Q. E. D.

A COUNTER-EXAMPLE. Let $h:S^{2}\rightarrow F/TOP$ represent the non-zero element
of $\pi_{2}(F/TOP)\cong Z_{2}$ , and $H:S^{3}\rightarrow S^{2}$ the Hopf-fibration. Since $\pi_{3}(F/TOP)\cong 0$ ,

$H$ $h$

the composite map $S^{3}\rightarrow S^{2}\rightarrow F/TOP$ is null-homotopic. Thus $h$ is extended to

a map $g:CP_{2}\rightarrow F/TOP$. Then the composite map $ CP_{2}\rightarrow^{g}F/TOP\rightarrow BSF\langle 4\rangle$

cannot be null-homotopic.

PROOF. The fibre of a fibration $ F/TOP\rightarrow^{\eta\tilde}BSTOP\langle 4\rangle$ is SPlNF. Since
$h^{\prime}$

$\pi_{2}(SPINF)\cong\pi_{2}(F/TOP),$ $h$ can be considered as a composition $S^{2}\rightarrow SPINF$

$\rightarrow F/TOP$. Regarding $\pi_{2}(SP1NF)(\cong\pi_{2}(F))$ as the stable 2-stem of the
homotopy groups of spheres, we know that $h^{\prime}\circ H:S’\rightarrow SPINF$ is not
null-homotopic (See Toda [9]). Since $ BSTOP\langle 4\rangle$ is 3-connected, the map
$ CP_{2}\rightarrow^{g}F/TOP\rightarrow^{\eta\tilde}BSTOP\langle 4\rangle$ represents a unique element of $\pi_{4}(BSTOP\langle 4\rangle)$

denoted by $x$ . We know that $\partial x=\{h^{\prime}\circ H\}\neq 0$ in the exact sequence $\pi_{4}(F/TOP)$

$\tilde{\eta}_{*}$

$\partial$

$\rightarrow\pi_{4}(BSTOP\langle 4\rangle)\rightarrow\pi_{s}(SP1NF)$ ; so $x$ is not contained in ${\rm Im}\tilde{\eta}_{*}$ . Consider
the commutative diagram:
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$\pi_{4}(BSF\langle 4\rangle)$

$|\cong$

$\pi_{4}(BSF)$ .

Since $\varpi_{\#}(x)$ is not in the image $\eta_{\#}$ , it is mapped to a non-zero element in
$\pi_{4}(BSF)$ . Thus the element of $\pi_{4}(BSF\langle 4\rangle)$ determined by the composition
$ CP_{2}\rightarrow^{g}F/TOP\rightarrow BSTOP\langle 4\rangle\rightarrow BSF\langle 4\rangle$ is not zero. This reveals that the
composition is not null-homotopic.

LEMMA 4. $p_{*}\tilde{\eta}^{*}q_{1}+i_{*}\eta^{*}k$ belongs to the kernel of
$H^{4}(F/TOP;Z_{24})\rightarrow H^{4}(F/TOP\langle 4\rangle;Z_{24})$ .

PROOF OF LEMMA 4. We will show that the composition: $ F/TOP\langle 4\rangle$

$\rightarrow F/TOP\rightarrow BSF\langle 4\rangle$ is lifted to $ BSF\langle 5\rangle$ . The obstruction lies in
$H^{4}(F/TOP\langle 4\rangle;\pi_{4}(BSF\langle 4\rangle))=Hom(\pi_{4}(F/TOP\langle 4\rangle), \pi_{4}(BSF\langle 4\rangle))$ , and is repre-
sented by the homomorphism $\pi_{4}(F/TOP\langle 4\rangle)\rightarrow\pi_{4}(BSF\langle 4\rangle)$ induced by the
natural map. However, this is a zero homomorphism. This completes the
proof of Lemma 4.

Consider the Serre exact sequence associated with a fibration $ F/TOP\langle 4\rangle$

$\rightarrow F/TOP\rightarrow K(Z_{2},2)$ :
$0\rightarrow H^{4}(K(Z_{2},2);Z_{24})\rightarrow H^{4}(F/TOP;Z_{24})\rightarrow H^{4}(F/TOP\langle 4\rangle;Z_{24})$ .

Now $H^{4}(K(Z_{2},2);Z_{24})\cong Z_{2}$ and it is generated by $i_{*}k_{2}^{2}$ . Therefore, the unique
non-zero class in the kernel of $H^{4}(F/TOP;Z_{24})\rightarrow H^{4}(F/TOP\langle 4\rangle;Z_{24})$ is $i_{*}k_{2}^{2}$.
Now Theorem 2 follows from Lemmas 3 and 4.

University of Tokyo
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