On homotopy invariance of triangulability of certain 5-manifolds

By Yukio MAtsumoto*)

(Received Oct. 28, 1971)

Kirby [4] has constructed a non-triangulable 6-manifold having the same homotopy type as $S^{2} \times S^{4}$. Extending his method, S. Ichiraku [3] proves that there is a non-triangulable manifold which is homotopy equivalent to a given $P L$-manifold satisfying certain conditions of dimension $\geqq 6$. Therefore, in dimensions greater than 5, it is likely that the homotopy invariance of triangulability fails in almost all cases. However, in dimension 5 there are some examples which intimate the homotopy invariance of triangulability [1], [2]. In this paper we will study the problem to what extent this invariance holds. We will state our main result in § 1 , and will give a proof in $\S \S 2 \sim 3$.

The author is indebted to helpful discussions with S. Morita.

§ 1. Our main result.

THEOREM 1. Let M^{5} be a closed orientable topological 5-manifold such that
(i) $\pi_{1}\left(M^{5}\right)$ is an abelian group without 2 -torsions, and
(ii) $S q^{2}: H^{2}\left(M^{5} ; \boldsymbol{Z}_{2}\right) \longrightarrow H^{4}\left(M^{5} ; \boldsymbol{Z}_{2}\right)$ is a zero map.

Then for any homotopy equivalence $f: M^{5} \longrightarrow L^{5}$ of M^{5} to another 5-manifold L^{5}, we have

$$
f * k\left(L^{5}\right)=k\left(M^{5}\right),
$$

where $k \in H^{4}\left(; \boldsymbol{Z}_{2}\right)$ denotes the obstruction to PL-triangulation [5]. (We will refer this class as the Kirby-Siebenmann class.)
S. Morita [6] has proved that if M_{0}^{5} is an orientable closed PL 5-manifold with $\pi_{1}\left(M_{0}^{5}\right) \cong \boldsymbol{Z}_{2}$, then there is a non-triangulable manifold N^{5} having the same homotopy type as M_{0}^{5}. So the condition (i) is essential.

Corollary 1. Replacing (ii) in Theorem 1 by the hypothesis that M^{5} is a spin-manifold, we have the same conclusion.

This is independently proved by T. Matumoto by a more geometrical argument (unpublished).

Proof of Corollary 1. Since $H_{1}\left(M^{5} ; \boldsymbol{Z}\right)$ has no 2 -torsions, neither does $H^{2}\left(M^{5} ; \boldsymbol{Z}\right)$ by the universal coefficient theorem. Thus the Bockstein

[^0]$\boldsymbol{\delta}: H^{1}\left(M^{5} ; \boldsymbol{Z}_{2}\right) \longrightarrow H^{2}\left(M^{5} ; \boldsymbol{Z}\right)$ is zero $;$ so $S q^{1}=(\bmod 2) \circ \delta: H^{1}\left(M^{5} ; \boldsymbol{Z}_{2}\right) \longrightarrow H^{2}\left(M^{5} ; \boldsymbol{Z}_{2}\right)$ is a zero map.

Let u_{i} be the i-th $W u$ class. Then we have

$$
w_{2}=u_{2}+S q^{1} u_{1}+S q^{2} u_{0}=u_{2} .
$$

Thus by the hypothesis $w_{2}\left(M^{5}\right)=0$, we have $u_{2}\left(M^{5}\right)=0$. So $S q^{2}: H^{3}\left(M^{5} ; Z_{2}\right)$ $\longrightarrow H^{5}\left(M^{5} ; \boldsymbol{Z}_{2}\right)$ is zero. By Cartan formula,

$$
\begin{equation*}
0=S q^{2}(x \cup y)=S q^{2} x \cup y+S q^{1} x \cup S q^{1} y+x \cup S q^{2} y=S q^{2} x \cup y, \tag{1}
\end{equation*}
$$

where $x \in H^{2}\left(M^{5} ; \boldsymbol{Z}_{2}\right), y \in H^{1}\left(M^{5} ; \boldsymbol{Z}_{2}\right)$. Here we used again the fact that $S q^{1}: H^{1}\left(M^{5} ; \boldsymbol{Z}_{2}\right) \longrightarrow H^{2}\left(M^{5} ; \boldsymbol{Z}_{2}\right)$ is zero. Since (1) holds for any y, we have $S q^{2} x=0$ by the Poincaré duality. Corollary 1 follows by Theorem 1. Q. E. D.

Example. A 5-manifold which is homotopy equivalent to $S^{i} \times T^{5-i}(1 \leqq i \leqq 5)$ is triangulable.

The triangulability of homotopy tori was proved by Hsiang and Wall [2]. However, [2] includes a statement (about homotopy invariance of a certain cohomology class) which is true in their case but false in general.*) (Cf. Theorem 2, below.) The triangulability of a homotopy $-S^{4} \times S^{1}$ is first proved by S. Fukuhara. See also [1].

Consider the following homotopy commutative diagram

where maps η, τ are natural maps, $\tilde{\eta}$ the unique lift (up to homotopy) of η. Using the facts $T O P / P L \simeq K\left(\boldsymbol{Z}_{2}, 3\right)[5]$ and $\pi_{3}(S T O P) \cong \boldsymbol{Z} \oplus \boldsymbol{Z}_{2}$, it is easily seen that $H^{4}(B S T O P ; \boldsymbol{Z}) \cong H^{4}(B S O ; \boldsymbol{Z})$ and $H^{4}(B S P I N T O P ; \boldsymbol{Z}) \cong H^{4}(B S P I N ; \boldsymbol{Z})$.

Let $q_{1} \in H^{4}(B S P I N T O P ; \boldsymbol{Z}) \cong \boldsymbol{Z}$ be the generator such that $\widetilde{\pi}^{*} p_{1}=2 q_{1}$, where $p_{1} \in H^{4}(B S T O P ; \boldsymbol{Z})$ is the 1 -st Pontrjagin class. Let $k \in H^{4}\left(B S T O P ; \boldsymbol{Z}_{2}\right)$ be the universal Kirby-Siebenmann class. We denote by i_{*}, p_{*} the homomorphisms of cohomology groups which are induced by the coefficient homomorphism $i: \boldsymbol{Z}_{2} \longrightarrow \boldsymbol{Z}_{24}, p: \boldsymbol{Z} \longrightarrow \boldsymbol{Z}_{24}$ (i the non-trivial map, p the projection).

The following is a key theorem to proving Theorem 1.
Theorem 2. In $H^{4}\left(F / T O P ; \boldsymbol{Z}_{24}\right)$, we have

$$
p_{*} \tilde{\eta}^{*}\left(q_{1}\right)+i_{*} \eta^{*}(k)=i_{*} k_{2}^{2},
$$

where $k_{2} \in H^{2}\left(F / T O P ; \boldsymbol{Z}_{2}\right) \cong \boldsymbol{Z}_{2}$ is the generator.
This will be proved in $\S 3$.

[^1]
§ 2. Proof of Theorem 1.

In this section, we will prove Theorem 1 taking Theorem 2 for granted.
Let M^{5}, L^{5}, f be given as in Theorem 1. Let τ_{M}, τ_{L} be the tangent bundles of M, L, respectively. Set $\xi=\tau_{M}-f * \tau_{L}$, then ξ has a canonical $F / T O P$ bundle structure. By Theorem 2, we have

$$
p_{*}\left(q_{1}(\xi)\right)+i_{*}(k(\xi))=i_{*} k_{2}(\xi)^{2} .
$$

However by hypothesis (ii), $k_{2}(\xi)^{2}=S q^{2} k_{2}(\xi)=0$. Thus

$$
\begin{equation*}
p_{*}\left(q_{1}(\xi)\right)+i_{*}(k(\xi))=0 \tag{2}
\end{equation*}
$$

By hypothesis (i), $\pi_{1}\left(M^{5}\right) \cong($ free abelian $) \oplus$ (odd torsions). Let $\tilde{M} \xrightarrow{\pi} M^{5}$, $\widetilde{L} \xrightarrow{\pi^{\prime}} L^{5}$ be odd-fold coverings such that $\pi_{1}(\tilde{M}) \cong \pi_{1}(\widetilde{L})=$ a free abelian group. Let $\tilde{f}: \tilde{M} \longrightarrow \widetilde{L}$ be the induced homotopy equivalence.

Lemma 1. $p_{1}(\tilde{M})=\tilde{f}^{*} p_{1}(\widetilde{L})$ where p_{1} is the 1 -st (integral) Pontrjagin class.
Although this is an easy consequence of [5] and [7], we will give a proof for completeness. In [7], Novikov proved that L_{k}-class of smooth (or PL) $4 k+1$-manifold is homotopy invariant. His proof is easily extended to topological manifolds by the technique of [5] and [8]. However, the proof includes a certain transversality argument, so some care is needed to the case of L_{1}-class of topological 5 -manifolds. (Cf. [10].) Let $\boldsymbol{C} P_{2}$ be a complex projective surface with fundamental class γ. Then by the higher dimensional topological analogy of Novikov's result, we have $L_{1}(\tilde{M}) \times \gamma=L_{2}\left(\tilde{M} \times \boldsymbol{C} P_{2}\right)=$ $(\tilde{f} \times i d) * L_{2}\left(\tilde{L} \times \boldsymbol{C} P_{2}\right)=\tilde{f}^{*} L_{1}(\tilde{L}) \times \gamma$. Since $\times \gamma$ is an isomorphism, we have $L_{1}(\tilde{M})=\tilde{f} * L_{1}(\widetilde{L})$. This implies that the rational p_{1} of topological 5 -manifolds is homotopy invariant. However, in our case $H^{4}(\tilde{M} ; \boldsymbol{Z}) \cong H_{1}(\tilde{M} ; \boldsymbol{Z})$ which is free abelian, and so $H^{4}(\tilde{M} ; \boldsymbol{Z}) \longrightarrow H^{4}(\tilde{M} ; \boldsymbol{Q})$ is injective. Hence we have the desired invariance of the integral p_{1}.

By Lemma 1, $2 \pi^{*} q_{1}(\xi)=\pi^{*} p_{1}(\xi)=p_{1}(\tilde{M})-\tilde{f}^{*} p_{1}(\widetilde{L})=0$. Noting that $H^{4}(\tilde{M} ; Z)$ is torsion free, we have

$$
\begin{equation*}
\pi^{*} q_{1}(\xi)=0 \tag{3}
\end{equation*}
$$

Combining (2) and (3), we obtain

$$
\begin{equation*}
\pi^{*} i_{*} k(\xi)=0 \tag{4}
\end{equation*}
$$

Lemma 2. Let $\tilde{Y}^{n} \xrightarrow{\nu} Y^{n}$ be an odd-fold covering of a closed manifold Y^{n}. Then $\nu^{*}: H^{i}\left(Y^{n} ; \boldsymbol{Z}_{2}\right) \longrightarrow H^{i}\left(\tilde{Y}^{n} ; \boldsymbol{Z}_{2}\right)$ is injective for any $i \geqq 0$.

This is obvious as ν is degree 1 with respect to Z_{2}-cohomology.
By the lemma, π^{*} is injective. Also $i_{*}: H^{4}\left(M^{5} ; Z_{2}\right)=Z_{2} \oplus \cdots \oplus Z_{2} \longrightarrow$ $\boldsymbol{Z}_{24} \oplus \cdots \oplus \boldsymbol{Z}_{24}=H^{4}\left(M^{5} ; \boldsymbol{Z}_{24}\right)$ is clearly injective. So we have by (4) $k(\xi)=$ $k(M)-f * k(L)=0$. This completes the proof of Theorem 1.

§ 3. Proof of Theorem 2.

For a topological space X, denote by $X\langle n\rangle$ the ($n-1$)-connected fibre space of X. Consider the homotopy commutative diagram:

(N. B. BSTOP $\langle 4\rangle=B S P I N T O P$).

The map $\pi_{4}(B S T O P\langle 4\rangle) \longrightarrow \pi_{4}(B S F\langle 4\rangle)$ is $p+i: \boldsymbol{Z} \oplus \boldsymbol{Z}_{2} \longrightarrow \boldsymbol{Z}_{24}$; so the lefthand side of the equation in Theorem 2, $p_{*} \tilde{\eta}^{*} q_{1}+i_{*} \eta^{*} k$, is the obstruction to lifting $F / T O P \xrightarrow{\tilde{\eta}} B S T O P\langle 4\rangle \longrightarrow B S F\langle 4\rangle$ to $F / T O P \longrightarrow B S F\langle 5\rangle$.

Lemma 3. $\quad p_{*} \tilde{\eta}^{*} q_{1}+i_{*} \eta^{*} k \neq 0$.
Proof of Lemma 3. If $F / T O P \longrightarrow B S F\langle 4\rangle$ were lifted to $B S F\langle 5\rangle$, for any finite 4 -complex Y^{4} and any map $g: Y^{4} \longrightarrow F / T O P$, the composition $Y^{4} \xrightarrow{g} F / T O P \longrightarrow B S T O P\langle 4\rangle \longrightarrow B S F\langle 4\rangle$ would be null-homotopic, for $B S F\langle 5\rangle$ is 4 -connected. However, the next counter-example shows that this is not the case. Thus $p_{*} \tilde{\eta}^{*} q_{1}+i_{*} \eta^{*} k \neq 0$. Q. E. D.

A counter-example. Let $h: S^{2} \longrightarrow F / T O P$ represent the non-zero element of $\pi_{2}(F / T O P) \cong Z_{2}$, and $H: S^{3} \longrightarrow S^{2}$ the Hopf-fibration. Since $\pi_{3}(F / T O P) \cong 0$, the composite map $S^{3} \xrightarrow{H} S^{2} \xrightarrow{h} F / T O P$ is null-homotopic. Thus h is extended to a map $\mathrm{g}: \boldsymbol{C P}_{2} \longrightarrow F / T O P$. Then the composite map $\boldsymbol{C} P_{2} \xrightarrow{g} F / T O P \longrightarrow B S F\langle 4\rangle$ cannot be null-homotopic.

Proof. The fibre of a fibration $F / T O P \xrightarrow{\tilde{\eta}} B S T O P\langle 4\rangle$ is SPINF. Since $\pi_{2}(S P I N F) \cong \pi_{2}(F / T O P), h$ can be considered as a composition $S^{2} \xrightarrow{h^{\prime}}$ SPINF $\longrightarrow F / T O P$. Regarding $\pi_{2}(S P I N F)\left(\cong \pi_{2}(F)\right)$ as the stable 2 -stem of the homotopy groups of spheres, we know that $h^{\prime} \circ H: S^{3} \longrightarrow S P I N F$ is not null-homotopic (See Toda [9]). Since $B S T O P\langle 4\rangle$ is 3 -connected, the map $C P_{2} \xrightarrow{g} F / T O P \xrightarrow{\tilde{\eta}} B S T O P\langle 4\rangle$ represents a unique element of $\pi_{4}(B S T O P\langle 4\rangle)$ denoted by x. We know that $\partial x=\left\{h^{\prime} \circ H\right\} \neq 0$ in the exact sequence $\pi_{4}(F / T O P)$ $\xrightarrow{\tilde{\eta}_{\#}} \pi_{4}(B S T O P\langle 4\rangle) \xrightarrow{\partial} \pi_{3}(S P I N F)$; so x is not contained in Im $\tilde{\eta}_{\#}$. Consider the commutative diagram:

Since $\widetilde{\pi}_{\#}(x)$ is not in the image $\eta_{\#}$, it is mapped to a non-zero element in $\pi_{4}(B S F)$. Thus the element of $\pi_{4}(B S F\langle 4\rangle)$ determined by the composition $\boldsymbol{C P} \mathbf{2}_{2} \xrightarrow{g} F / T O P \longrightarrow B S T O P\langle 4\rangle \longrightarrow B S F\langle 4\rangle$ is not zero. This reveals that the composition is not null-homotopic.

Lemma 4. $p_{*} \tilde{\eta}^{*} q_{1}+i_{*} \eta^{*} k$ belongs to the kernel of

$$
H^{4}\left(F / T O P ; \boldsymbol{Z}_{24}\right) \longrightarrow H^{4}\left(F / T O P\langle 4\rangle ; \boldsymbol{Z}_{24}\right) .
$$

Proof of Lemma 4. We will show that the composition: $F / T O P\langle 4\rangle$ $\longrightarrow F / T O P \longrightarrow B S F\langle 4\rangle$ is lifted to $B S F\langle 5\rangle$. The obstruction lies in $H^{4}\left(F / T O P\langle 4\rangle ; \pi_{4}(B S F\langle 4\rangle)\right)=\operatorname{Hom}\left(\pi_{4}(F / T O P\langle 4\rangle), \pi_{4}(B S F\langle 4\rangle)\right)$, and is represented by the homomorphism $\pi_{4}(F / T O P\langle 4\rangle) \longrightarrow \pi_{4}(B S F\langle 4\rangle)$ induced by the natural map. However, this is a zero homomorphism. This completes the proof of Lemma 4.

Consider the Serre exact sequence associated with a fibration $F / T O P\langle 4\rangle$ $\longrightarrow F / T O P \longrightarrow K\left(\boldsymbol{Z}_{2}, 2\right):$

$$
0 \longrightarrow H^{4}\left(K\left(\boldsymbol{Z}_{2}, 2\right) ; \boldsymbol{Z}_{24}\right) \longrightarrow H^{4}\left(F / T O P ; \boldsymbol{Z}_{24}\right) \longrightarrow H^{4}\left(F / T O P\langle 4\rangle ; \boldsymbol{Z}_{24}\right) .
$$

Now $H^{4}\left(K\left(\boldsymbol{Z}_{2}, 2\right) ; \boldsymbol{Z}_{24}\right) \cong \boldsymbol{Z}_{2}$ and it is generated by $i_{*} k_{2}^{2}$. Therefore, the unique non-zero class in the kernel of $H^{4}\left(F / T O P ; \boldsymbol{Z}_{24}\right) \longrightarrow H^{4}\left(F / T O P\langle 4\rangle ; \boldsymbol{Z}_{24}\right)$ is $i_{*} k_{2}^{2}$. Now Theorem 2 follows from Lemmas 3 and 4.

University of Tokyo

References

[1] S. Fukuhara, On the Hauptvermutung of 5-dimensional manifolds and s-cobordisms, (to appear).
[2] W. C. Hsiang and C. T. C. Wall, On homotopy tori II, Bull. London Math. Soc., 1 (1969), 341-342.
[3] S. Ichiraku, On realization of Kirby-Siebenmann's obstructions by 6-manifolds, (to appear in Osaka J. Math.).
[4] R. Kirby, Lectures on triangulation of manifolds, (mimeographed), U.C.L.A., 1969.
[5] R. Kirby and L. C. Siebenmann, On the triangulation of manifolds and the hauptvermutung, Bull. Amer. Math. Soc., 75 (1969), 742-749.
[6] S. Morita, Some remarks on the Kirby-Siebenmann class, (to appear).
[7] S. P. Novikov, Rational Pontrjagin classes. Homeomorphism and homotopy type of closed manifolds, I, Amer. Math. Soc. Transl., (2) 66 (1968), 214-230.
[8] L. C. Siebenmann, Topological manifolds, (to appear).
[9] H. Toda, Composition methods in homotopy groups of spheres, Annals of Mathcmatical Studies 49, Princeton Univ. Press, Princeton, 1962.
[10] Y. Matsumoto, Topological t-regularity and Rohlin's theorem, J. Fac. Sci. Univ. Tokyo, 18 (1971), 97-108.

[^0]: *) The author is partially supported by the Fūjukai Foundation.

[^1]: *) The author heard that this was independently pointed out by several mathematicians in 1970.

