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\S 1. Introduction.

Let $R$ be an open Riemann surface and $K$ a compact subset of $R$ . Let
$C(K)$ be the class of complex valued continuous functions on $K$. A function
$f$ of $C(K)$ is said to be in $H(K)$ , if $f$ is the uniform limit on $K$ of functions,
each holomorphic in some neighborhood of $K$.

The localization theorem is the following
THEOREM A. Let $f$ be a function of $C(K)$ . Suppose, for every point $P$ of

$K$, there is a neighborhood $U_{P}$ of $P$ such that $f|_{(\overline{U}_{P}\cap K)}\in H(\overline{U}_{P}\cap K)$ . Then $f$ is
in $H(K)$ .

This theorem was proved in Bishop [2] and Kodama [5]. Garnett sim-
plified the proof in the plane case [3].

In this note, we shall give two new proofs of Theorem A. The first proof
is based on the solution of $\partial$ -problem with bounded estimate. The second one
is a generalization of Garnett’s method. Through both proofs, the elementary
differential (Behnke-Stein [1]) plays the important role. In Section 2, we
shall prove a generalization of Mergelyan’s theorem for rational approxi-
mation [6] to open Riemann surface. In Section 8, we shall make a remark
about the higher dimensional case.

\S 2. An approximation theorem.

Let $H(K, R)$ be the class of functions on $K$ which are uniform limits on
$K$ of functions, each holomorphic on $R$ . Let $A(K)$ be the class of functions
of $C(K)$ which are holomorphic in the interior of $K$. As an application of
Theorem $A$ , we have the following

THEOREM B. Let $\rho$ be a metric on R. Suppose there is a positive constant
$k$ such that every component of $R\backslash K$ has $\rho$-diameter not less than $k$ . Then
$A(K)=H(K)$ . In particular, if $R\backslash K$ has no relatively compact component, then
$A(K)=H(K, R)$ .

PROOF. Let $P$ be any point of $K,$ $U_{P}$ be a coordinate neighborhood of $P$
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of $\rho$-diameter less than $k$ and $\psi$ be a coordinate map of $U_{P}$ onto the disk
$D=\{z\in C;|z|<1\}$ such that $\psi(P)=0$ . Let $V_{P}$ denote the neighborhood
$\psi^{-1}$ ( $\{|z|<\frac{1}{2}$ }). Then $U_{P}\backslash (\overline{V}_{P}\cap K)$ is connected and hence $C\backslash \psi(\overline{V}_{P}\cap K)$ is

also connected. By Mergelyan’s theorem for polynomial approximation, we
have $A(\psi(\overline{V}_{P}\cap K))=H(\psi(\overline{V}_{P}\cap K))$ and therefore $A(\overline{V}_{P}\cap K)=H(\overline{V}_{P}\cap K)$ .
Theorem A implies that $A(K)=H(K)$ . The last statement follows from the
following theorem.

THEOREM (Behnke-Stein [1]). Suppose $R\backslash K$ has no relatively compact com-
ponent. Then $H(K)=H(K, R)$ .

\S 3. Elementary differential.

We need the following result proved in [1]. There exists a differential
$o)(P, Q)$ on $R$ satisfying the following conditions:

i) For any fixed point $Q,$ $\omega(P, Q)$ is a meromorphic differential in $P$,
which has its only pole at $Q$ of residue $2\pi i$ . If $\psi$ is a coordinate map defined
on a neighborhood $V$ of $P$, and if $z=\psi(P)$ , then we can write $\omega(P, \acute{Q})=$

$k(z, Q)dz$ .
ii) For fixed $P$ and for fixed coordinate $z$ near $P,$ $k(z, Q)$ is a mero-

morphic function of $Q$ on $R$ with a pole only at $Q=P$.
Let $G$ be a relatively compact open set of $R$ whose boundary $\partial G$ consists

of a finite number of smooth Jordan curves. Let $f$ be a function in $C^{1}(\overline{G})$ .
We write $\partial f$ for a differential $f_{\overline{l}}d\overline{z}$. Then $\eta(P)=f(P)\cdot\omega(P, Q)$ is a differential
in $C^{1}(\overline{G}\backslash \{Q\})$ and we have $d\eta(P)=\partial f(P)$ A $\omega(P, Q)$ . Therefore, by Stokes’
theorem, we have the following generalized Green’s formula:

(1) $f(Q)=\int_{\partial 0}f(P)\omega(P, Q)-\int_{o}\partial f(P)\wedge\omega(P, Q)$ .

In particular, if $f$ is holomorphic in $G$ , then we have

(2) $f(Q)=\int_{\partial 0}f(P)\omega(P, Q)$ .
A differential $\gamma=g(z)dz$ of type $(1, 0)$ defined on $R$ is said to be in the

class $\mathfrak{L}^{1}$ , if, for any coordinate map $\psi$ on an open neighborhood $U$ and for
any relatively compact subset $V$ of $U$,

$\int_{V}|g(z)|\cdot|d\overline{z}\wedge dz|<\infty$

holds. This property is independent of the choice of $U,$ $\psi$ and $V$.
We note that, for fixed $Q,$ $\omega(P, Q)$ is in $\mathfrak{L}^{1}$ as a differential in $P$, because

of its behavior near $Q$ .
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The following lemma will be used in Section 7.
LEMMA 1. Let $\psi$ be a coordinate map on a neighborhood $V$ and $P_{0},$ $Q_{0}$ be

distinct points in V. Set $z_{0}=\psi(P_{0})$ . If $h$ is a function in $C^{1}(R)$ with compact
support in $V$ , then we have

$\int_{R}k(z_{0}, P)\cdot\partial h(P)$ A $\omega(P, Q_{0})=\{h(P_{0})-h(Q_{0})\}k(z_{0}, Q_{0})$ .

PROOF. Let $P$ be a point in $V$ and set $z=\psi(P)$ . From (1), we have

$\int_{R}k(z_{0}, P)\partial h(P)\wedge\omega(P, Q_{0})$

$=-k(z_{0}, Q_{0})h(Q_{0})-\lim_{\epsilon\rightarrow 0}\int_{|z-\eta)}|=\epsilon h(\psi^{-1}(z))k(z_{0}, \psi^{-1}(z))k(z, Q_{0})dz$ .
By the property of $k(z, Q)$ , this proves the lemma.

\S 4. The bounded solution of $\overline{\partial}$-problem.

Let $u$ be a bounded function defined on a set $S$ of $C$ or $R$ . We use the
notation $\Vert u\Vert_{S}$ as the $\sup$ norm of $u$ on $S$. The following lemma is well known.

LEMMA 2. Let $G$ be a bounded open set of $C$ and $G^{\prime}$ any open subset of
G. For every function $v$ of $C^{\infty}(G^{\prime})$ there exists a function $u$ of $C^{\infty}(G^{\prime})$ such
that $\overline\partial u=vd\overline{z}$ in $G^{\prime}$ and

\langle 3) $\Vert u\Vert_{G^{\prime}}\leqq d(G)\Vert v\Vert_{G^{\prime}}$ ,

where $d(G)$ denotes the diameter of $G$ .
Indeed, $u$ is given by

\langle 4) $ u(z)=\frac{1}{2\pi i}\int_{o},\frac{v(\zeta)}{\zeta-z}d\zeta$ A $d\dot{\zeta}$ ,

and (3) follows from

$\int_{G^{\prime}}\frac{1}{|\zeta-z|}|d\zeta\wedge d\overline{\zeta}|\leqq\int_{G}\mapsto_{-}\zeta z|d\zeta\wedge d_{1}\overline{\zeta}|\leqq 2\pi d(G)$ .

In the next place, we shall generalize Lemma 2 to an open subset of $R$ .
-Let $G$ be a relatively compact open subset of $R$ and $\alpha$ a differential of type
$\langle 0,1$) defined on $\overline{G}$ . We mean a finite covering $\mathfrak{A}$ of $\overline{G}$ by the system of
finite number of pairs $\{(V_{j}, z_{j})\}$ of open neighborhoods $V_{j}$ covering $\overline{G}$ and
local coordinates $z_{j}$ defined on $V_{j},$ $j=1,$ $\cdots,$

$N$. For fixed $\mathfrak{A}$ , we define the
norm of $\alpha$ on any subset of $G$ as follows: Let $\psi_{j}$ be the coordinate maps
defining $z_{j}$ . If $\alpha$ is written as $\alpha=a_{j}(z_{j})d\overline{z}_{j}$ in $\psi_{j}(V_{j}\cap G)$ then the norm is
defined by

$\Vert\alpha\Vert_{S.\mathfrak{A}}=\sum_{j=1}^{N}\Vert a_{j}(z_{j})|^{(}|_{\psi_{j^{(V}j^{\cap S)}}}$ ,

provided that the right hand side is finite.
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LEMMA 3. Let $G$ be a relatively compact subset of $R$ and $\mathfrak{A}=\{(V_{j}, z_{j})\}_{j}^{N_{=k}}$

be a finite covering of G. Let $G^{\prime}$ be any open subset of G. For every differen-
tial $\alpha$ of type $(0,1)$ in $C^{\infty}(\overline{G}^{\prime})$ , there exists a function $u$ in $C^{\infty}(G^{\prime})$ such that
$\partial u=\alpha$ , and

(5) $\Vert u\Vert_{G^{\prime}}\leqq C\cdot\Vert\alpha\Vert_{G^{\prime},\mathfrak{U}}$ ,

where $C$ is a constant depending only on $G$ and $\mathfrak{A}$ .
PROOF. From the property of $\omega(P, Q)$ , we have

$\int_{V_{j^{\sim}}G}|k(z_{j}, Q)|\cdot|dz_{j}\wedge d\overline{z}_{j}|\leqq M$ $(j=1, \cdots N)$ ,

for some constant $M$ depending on $G$ and $\mathfrak{A}$ . Therefore, if $\alpha=a_{j}(z_{j})d\overline{z}_{j}$ in
$V_{j}\cap G^{\prime}$ , we have

$|\int_{G^{\prime}}\alpha(P)\wedge\omega(P, Q)|\leqq\sum_{j=1}^{N}\int_{\gamma_{\grave{J}}\cap V_{j}}’|a_{j}(z_{j})k(z_{j}, Q)||dz_{j}\wedge d\overline{z}_{j}|$

$\leqq\Vert\alpha\Vert;,\cdot$

$\leqq N\cdot M\cdot\Vert\alpha\Vert_{G^{\prime},\mathfrak{U}}$ .
Thus, the required function $u$ is given by

$u(Q)=\int_{G^{\prime}}\alpha(P)\wedge\omega(P, Q)$ .

\S 5. The first proof of Theorem A.

We can choose $N$ coordinate neighborhoods $U_{1},$ $\cdots$ , $U_{N}$ such that $K\subset\cup NU_{f}$

$j=1$

and $f|_{(\overline{U}_{j}\cap K)}\in H(\overline{U}_{j}\cap K),$ $j=1$ , $\cdot$ .. , $N$. Let the local coordinates $z_{j}$ in $U_{j}$ be
fixed. For any positive number $\epsilon$ , there exist open sets $\Omega_{j}\supset\overline{U}_{j}\cap K$ and $f_{j}$

holomorphic in $\Omega_{j}$ such that

(6) $|f_{j}-f|<\epsilon$ on $\overline{U}_{j}\cap K,$ $j=1,$ $\cdots$ $N$ .
Let $G_{0}$ be an open set such that $K\subset G_{0}\subset\overline{G}_{0}\subset\cup NU_{j}$ and $\{\varphi_{j}\}_{f=1}^{N}$ be norr

$j=1$

negative functions on $C^{\infty}(R)$ such that each $\varphi_{j}$ has the compact support in

$U_{j}$ and $\sum_{j=1}^{N}\varphi_{j}\equiv 1$ on $G_{0}$ . Set $C_{1}=\sum_{j=1}^{N}\sup_{U_{j}}|\partial\varphi_{j}/\partial\overline{z}_{j}|$ . Note that $C_{1}$ is independent

of $\epsilon$ .
For every indices $j$ and $k$ , we define the function $h_{jk}$ by $ h_{jk}=\varphi_{j}(f_{j}-f_{k}\rangle$

in $\Omega_{j}\cap\Omega_{k}$ and $h_{jk}=0$ in $\Omega_{k}\backslash \overline{U}_{j}$ . Then $h_{jk}$ is of class $C^{\infty}$ in $\Omega_{kj}^{\prime}=(\Omega_{j}\cap\Omega_{k})$ .
$\cup(\Omega_{k}\backslash \overline{U}_{j})$ . Set $\Omega_{k}^{\prime}=\bigcap_{j=1}^{N}\Omega_{kj}^{\prime}$. Since $\Omega_{k}\supset\overline{U}_{k}\cap K$, we have $\Omega_{k}^{\prime}\supset\overline{U}_{k}\cap K$. Now

set $h_{k}=\sum_{j=1}^{N}h_{jk}$ , then $h_{k}$ is in $C^{\infty}(\Omega_{k}^{\prime})$ and by (6) we have
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(7) $\Vert h_{k}\Vert_{9_{k^{\prime}}\cap K}<2\epsilon$ and $\Vert\partial h\Vert_{9_{k}^{\prime}\cap K,\mathfrak{U}}\leqq 2C_{1}\cdot\epsilon$ ,

where $\mathfrak{A}=\{(U_{j}, z_{j})\}_{j=1}^{N}$ .
Since $h_{k}-h_{j}=f_{j}-f_{k}$ in $\Omega_{j^{\prime}}\cap\Omega_{k}^{\prime}\cap G_{0}$ , there is a differential of type $(0,1)$

in $C^{\infty}(G_{0}\cap(\bigcup_{j=1}^{N}\Omega_{j^{\prime}}))$ such that $\alpha=-\partial h_{k}$ in every $\Omega_{k}^{\prime}\cap G_{0}$ . By means of the

continuity of $\alpha$ , we can find an open set $G$ such that $K\subset G\subset G_{0}$ and $\Vert\alpha\Vert_{G,\mathfrak{U}}$

$<3C_{1}\cdot\epsilon$ . By Lemma 3, there exists a function $u\in C^{\infty}(G)$ such that $\partial u=\alpha$ and

$1(8)$ $\Vert u\Vert_{G}<3C_{1}\cdot C\cdot\epsilon$ ,

where $C$ is dependent only on $G_{0}$ and $\mathfrak{A}$ , and therefore not on $\epsilon$ .
Set $g_{j}=h_{j}+u$ on $\Omega_{j^{\prime}}\cap G$ . Then $g_{j}$ is holomorphic in $\Omega_{j^{\prime}}\cap G$ , and by (7)

and (8) we have

\langle 9) $|g_{j}|<(2+3C_{1}\cdot C)\epsilon$ on $\Omega_{j^{\prime}}\cap K$ .
Since $g_{k}-g_{j}=h_{k}-h_{j}=f_{j}-f_{k}$ , we can find the global function $F$, holomorphic

in $G$ such that $F=f_{j}+g_{j}$ in $\Omega_{j^{\prime}}\cap G$ . By (9), we have

\langle 10) $|f-F|<|g_{j}|\perp|f-f_{j}|<3(1+C_{1}C)\epsilon$ on $\Omega_{j^{\prime}}\cap K$ .

Since $C$ and $C_{1}$ are independent of $\epsilon$ and (10) is valid for all over $K$, we can
conclude that $f\in H(K)$ .

\S 6. Measure orthogonal to $H(K)$ .
Let $\mu$ be a finite complex Borel measure on $R$ with a compact support.

Let $V$ be a coordinate neighborhood and $z$ a local coordinate in $V$. Then,
by the property of $\omega(P, Q)$ , we have

(11) $\int_{V}(\int|k(z, Q)|d|\mu|(Q))|d\overline{z}\wedge dz|<\infty$ .

In particular, $\int|k(z, Q)|d|\mu|(Q)$ is finite for almost every point $P$ and fixed

local coordinate $z$ corresponding to P. (The term ” almost every ” is used
here and hereafter in the sense of Lebesgue which is meaningful on $R.$)

Thus the map $T$ defined by

$T\mu(P)=\int\omega(P, Q)d\mu(Q)$

is a map of finite complex measures with compact supports into the class $\mathfrak{L}^{1}$ .
$T\mu(P)$ is holomorphic off the support of $\mu$ .

LEMMA 4. Let $\mu$ be a complex measure with the support in K. If $T\mu(P)=0$

for almost every $P\in R$ , then $\mu=0$ .
PROOF. Let $g$ be a $C^{1}$ -function with the compact support. Then we have

by (1)
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$g(Q)=-\int_{R}\partial g(P)\wedge\omega(P, Q)$ for $Q\in K$ .

Hence, by Fubini’s theorem, we have

$\int g(Q)d\mu(Q)=-\int(\int_{R}\partial g(P)\wedge\omega(P, Q))d\mu(Q)$

$=-\int_{R}\partial g(P)\wedge(\int\omega(P, Q)d\mu(Q))=0$ .

Approximating by $C^{1}$ -functions with compact supports, we obtain $\int gd\mu=0$

for any continuous function $g$ and hence $\mu=0$ .
LEMMA 5. A complex measure $\mu$ supported on $K$ is orthogonal to $H(K)$ if

and only if $T\mu(P)=0$ for every point $P$ of $R\backslash K$.
PROOF. Fixing a point $P\in R\backslash K$ and a local coordinate $z$ near $P,$ $k(z,$ $ Q\rangle$

is a holomorphic function of $Q$ in a neighborhood of $K$. Therefore, if $\mu$ is
orthogonal to $H(K)$ , then $T\mu(P)=0$ .

Conversely, for any function $f$ holomorphic in a neighborhood of $K$, we
can choose an open set $G$ containing $K$ such that $\partial G$ consists of a finite
number of smooth curves and $f$ is holomorphic on $\overline{G}$ . If $Q\in K$, we have
by (2)

$f(Q)=\int_{\partial C\prime}f(P)\omega(P, Q)$ .

By Fubini’s theorem, we have

$\int f(Q)d\mu(Q)=\int_{\partial G}f(P)T\mu(P)=0$ .

Thus, we have $\int fd\mu=0$ for all $f\in H(K)$ . The lemma is proved.

\S 7. The second proof of Theorem A.

Let $\mu$ be a finite complex measure with a compact support and $h$ a con-
tinuous function on $R$ . By $ h\mu$ we mean the measure defined as a linear

functional $ f\rightarrow\int fhd\mu$ for any continuous function $f$ on $R$ . If $P$ is a point

such that $\int|\omega(P, Q)|d|\mu|(Q)$ is finite, then, by approximating $\omega(P, Q)$ by con-
tinuous functions on $R$ , we have

(11) $T(h\mu)(P)=\int h(Q)\omega(P, Q)d\mu(Q)$ .

Therefore, (11) holds almost everywhere on $R$ .
LEMMA 6. Let $\mu$ be a complex measure with a compact support, $U$ a

coordinate neighborhood and $h$ a function in $C^{\infty}(R)$ with its compact support
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in U. Then there exists a measure $\mu_{1}$ supported in $U$ such that $hT\mu=T\mu_{1}$

holds almost everywhere on $R$ .
PROOF. Set $ d\nu=-\partial h\wedge T\mu$ , then $\nu$ is a measure supported in $U$. Let $\psi$

be a coordinate map defined on $U$ . Let $P,$ $P_{1}$ and $Q$ be the points in $U$ . Set
$z=\psi(P)$ . If $P$ is any point such that (11) holds, then by Lemma 1 we have

$T\nu(P)=\int\omega(P, P_{1})d\nu(P_{1})$

$=-($ $\int k(z, P_{1})\partial h(P_{1})$ A $[\int\omega(P_{1}, Q)d\mu(Q)]$ ) $dz$

$=-(\int[\int k(z, P_{1})\partial h(P_{1})\wedge\omega(P_{1}, Q)]d\mu(Q))dz$

$=-\int[h(P)-h(Q)]\omega(P, Q)d\mu(Q)$

$=T(h\mu)(P)-h(P)T\mu(P)$ .

Setting $\mu_{1}=h\mu-\nu$ , the lemma is proved.
Though the followings are similar to the proof in [3], we shall give the

details for completeness.
LEMMA 7. Let $\mu$ be a complex measure supported on $K$ and orthogonal to

$H(K)$ . For any covering $\{U_{j}\}$ of $K$ by the coordinate neighborhoods, we can
choose the measures $\mu_{j}$ each supported on $U_{j}$ and orthogonal to $H(K\cap\overline{U}_{j})$ such
that $\mu=\sum\mu_{j}$ .

PROOF. Let $\{h_{j}\}$ be a partition of unity subordinate to $\{U_{j}\}$ . By Lemma
$r||_{\alpha}6$ , we can find $\mu_{j}$ supported on $U_{j}$ such that $h_{j}T\mu=T\mu_{j}$ a. e. on $R$ . Since $\mu$

is orthogonal to $H(K)$ , we have, by Lemma 5, $T\mu(P)=0$ for all $P\in R\backslash K$.
Since $h_{j}$ vanishes off $U_{j}$ , and $T\mu_{j}(P)$ is holomorphic off $U_{j}$ , we have $T\mu_{j}(P)=0$

for all $P\in R\backslash (K\cap\overline{U}_{j})$ . Hence, by Lemma 5, $\mu_{j}$ is orthogonal to $H(K\cap\overline{U}_{j})$ .
We have $T\mu=\sum h_{j}T\mu=\sum T\mu_{j}=T(\sum\mu_{j})$ , and therefore, $T(\mu-\sum\mu_{j})=0$ a. e.
on $R$ . By Lemma 4, we have $\mu=\sum\mu_{j}$ . The lemma is proved.

We note that $u_{j}$ are orthogonal to $H(K)$ .
Now we are in a position to prove Theorem A. We can find a covering

$\{U_{j}\}$ of $K$ by a finite number of coordinate neighborhoods such that $ f\in$

$H(\overline{U}_{j}\cap K)$ for every $j$ . If $\mu$ is orthogonal to $H(K)$ , then, by Lemma 7, there
are measures $\mu_{j}$ supported in $U_{j}$ such that $\mu=\sum\mu_{j}$ and each $\mu_{j}$ is orthogonal

to $H(\overline{U}_{j}\cap K)$ . Since $f\in H(\overline{U}_{j}\cap K),$ $\int fd\mu_{j}=0$ , and hence we have $\int fd\mu=0$.
Since it holds for all measures $\mu$ orthogonal to $H(K)$ , we conclude that
$f\in H(K)$ .
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\S 8. A generalization.

In this section, we shall remark about the higher dimensional case.
Let $X$ be a complex manifold of dimension $n$ and $K$ a compact subset of

X. $H(K)$ will be defined similarly to the case of Riemann surface. Let
$\mathfrak{A}=\{(V_{j}, z^{(j)})\}_{j=1}^{N}$ be a finite covering of $K$ by the coordinate neighborhoods.
We write $z^{(j)}=(z_{1^{(j)}}, \cdots z_{n}^{(j)})$ and denote the coordinate maps defining $z^{(j)}$ by $\psi_{j}$ .

Let $\alpha$ be a $(0,1)$-form of class $C^{\infty}$ on an open set $G$ containing K. $\alpha$ is
represented as

$\alpha=\sum_{k=1}^{n}a_{k}^{(j)}(z^{(j)})d\overline{z}_{k}^{(j)}$ in $G\cap V_{j}$ .

We define the norm of $\alpha$ on a subset $S$ of $G$ with respect to $\mathfrak{A}$ by

$\Vert\alpha\Vert_{S,\mathfrak{U}}=\sum_{j=1}^{N}\sum_{k=1\psi_{j}(S\cap V_{j})}^{n}$$\sup$ $|a_{k}^{(p}(z^{(j)})|$ .
DEFINITION. A compact subset $K$ of $X$ is said to be of class $(\delta)$ , if there

exists a sequence $\{D_{m}\}$ of open subsets of $X$ satisfying the following conditions:

(i) $D_{m}\supset\overline{D}_{m+1}(m=1, 2, )$ and $\bigcap_{m=1}^{\infty}D_{m}=K$.
(ii) For every finite covering $\mathfrak{A}$ of $K$, there exists a positive constant $C$

such that, for any $(0,1)$-form $\alpha$ of class $C^{\infty}(\overline{D}_{m})$ satisfying $\partial\alpha=0$ , there is a
function $u$ of class $C^{\infty}(D_{m})$ such that $\partial u=\alpha$ and

$\sup_{D_{m}}|u|\leqq C\cdot\Vert\alpha\Vert_{D_{m},\mathfrak{U}}$
,

provided that $D_{m}\subset\bigcup_{i=1}^{N}V_{j}$ .
By a slight modification of the first proof of Theorem $A$ , we can conclude

the following
THEOREM $A^{\prime}$ . Let $K$ be a compact subset of a complex manifold in the

class $(\delta)$ . Then the statement of Theorem $A$ is true for $K$.
Lemma 2 shows that, for the case of $X=R$ , all compact subsets are of

class $(\delta)$ . We shall give some examples of the compact sets of class $(\delta)$ in
$C^{n}(n>1)$ . A bounded domain $G$ of $C^{n}$ with $C^{\infty}$-boundary is said to be strictly
pseudoconvex, if there is a function $\rho(z)$ of class $C^{\infty}(\overline{G})$ such that $\rho$ is strictly
plurisubharmonic in a neighborhood of $\partial G$ and $G=\{z\in C^{n} ; \rho(z)<0\}$ . We
cite the following

THEOREM (Henkin [4]). Let $G$ be strictly pseudoconvex bounded domain

with $C^{\infty}$-boundary in $C^{n}$ . If $\alpha=\sum_{k=1}^{n}a_{k}d\overline{z}_{k}$ is a $(0,1)$-form of class $C^{\infty}(\overline{G})$, with
$\partial\alpha=0$, then there exists a function $u$ of class $C^{\infty}(G)$ such that $\partial u=\alpha$ and

$\sup_{G}|u|\leqq C(G)\cdot\sum_{k=1}^{n}\sup_{c_{l}}|a_{k}|$ ,
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where $C(G)$ is a constant depending on the diameter of $G$ and the function $\rho(z)$

defining $G$ .
If we can take the sequence $\{D_{m}\}$ of open sets descending to $K$, so that

each $D_{m}$ consists of a finite number of bounded strictly pseudoconvex domains
and the constants $C(D_{m})$ in Henkin’s theorem are bounded, then $K$ is of class
$(\delta)$ . Especially, if there is a function $\rho_{0}(z)$ , strictly plurisubharmonic in a

neighborhood of $K$, such that $D_{m}$ are represented as $\{\rho_{0}<\frac{1}{m}$ }, then $K$ is of
class $(\delta)$ .

For example, if $K$ is the closure of a bounded strictly pseudoconvex
domain $D$ with $C^{\infty}$-boundary, then $K$ is of class $(\delta)$ . In this case, we can take
the function defining $D$ as $\rho_{0}(z)$ . Another example is a finite or compact
totally real $C^{\infty}$-submanifold $M$ of $C^{n}$ . In this case, $\rho_{0}$ is defined by $\rho_{0}(z)=$

dist $(z, M)^{2}$ (Nirenberg-Wells [7]).

The same method as our first proof had already been applied by I. Lieb
in Math. Ann. 184 (1969) 56-60 in the case of the strictly pseudoconvex
domain of $C^{n}$ , which the author did not know during this work. The author
thanks the referee for his valuable suggestions and comments.
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