J. Math. Soc. Japan
Vol. 24, No. 2, 1972

Localization theorem for holomorphic approximation
on open Riemann surfaces

By Akira SAKAI

(Received April 26, 1971)

§1. Introduction.

Let R be an open Riemann surface and K a compact subset of R. Let
C(K) be the class of complex valued continuous functions on K. A function
f of C(K) is said to be in H(K), if f is the uniform limit on K of functions,
each holomorphic in some neighborhood of K.

The localization theorem is the following

THEOREM .A. Let f be a function of C(K). Suppose, for every point P of
K, there is a neighborhood Up of P such that f|gpnx<E HUpNK). Then f is
in H(K).

This theorem was proved in Bishop [2] and Kodama [56]. Garnett sim-
plified the proof in the plane case [3].

In this note, we shall give two new proofs of [Theorem Al. The first proof
is based on the solution of d-problem with bounded estimate. The second one
is a generalization of Garnett’s method. Through both proofs, the elementary
differential (Behnke-Stein [1]) plays the important role. In Section 2, we
shall prove a generalization of Mergelyan’s theorem for rational approxi-
mation to open Riemann surface. In Section 8, we shall make a remark
about the higher dimensional case.

§2. An approximation theorem.

Let H(K, R) be the class of functions on K which are uniform limits on
K of functions, each holomorphic on R. Let A(K) be the class of functions
of C(K) which are holomorphic in the interior of K. As an application of
A, we have the following

THEOREM B. Let p be a metric on R. Suppose there is a positive constant
k such that every component of R\K has p-diameter not less than k. Then
A(K)=H(K). In particular, if R\K has no relatively compact component, then
A(K)=H(K, R).

PrOOF. Let P be any point of K, Up be a coordinate neighborhood of P
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of p-diameter less than k2 and ¢ be a coordinate map of Up onto the disk
D={zeC; |z]<1} such that ¢(P)=0. Let Vp denote the neighborhood

¢({lz1<~5)). Then U\(V»NK) is connected and hence C\@(7rNK) is

also connected. By Mergelyan’s theorem for polynomial approximation, we
have A(W(VenK)=H((VeNK)) and therefore A(VpnK)=H(VenK).
A implies that A(K)=H(K). The last statement follows from the
following theorem.

THEOREM (Behnke-Stein [1]). Suppose R\K has no relatively compact com-
ponent. Then H(K)= H(K, R).

§ 3. Elementary differential.

We need the following result proved in [I]. There exists a differential
(P, Q) on R satisfying the following conditions:

i) For any fixed point @, w(P, Q) is a meromorphic differential in P,
which has its only pole at @ of residue 2zi. If ¢ is a coordinate map defined
on a neighborhood V of P, and if z=¢(P), then we can write (P, O)z
k(z, Q)d=z.

ii) For fixed P and for fixed coordinate z near P, k(z, Q) is a mero-
morphic function of Q@ on R with a pole only at @Q=P.

Let G be a relatively compact open set of R whose boundary oG consists
of a finite number of smooth Jordan curves. Let f be a function in CY(G).
We write df for a differential f;d2. Then 7(P)=f(P)-w(P, Q) is a differential
in CYG\{Q}) and we have dp(P)=3f(P)A »(P, Q). Therefore, by Stokes’
theorem, we have the following generalized Green’s formula:

W F@ = [P)a(P, Q[ 3/P) A a(P, Q).

In particular, if f is holomorphic in G, then we have
&) Q=] PP, Q).

A differential y = g(2)dz of type (1, 0) defined on R is said to be in the
class &, if, for any coordinate map ¢ on an open neighborhood U and for
any relatively compact subset V of U,

§ 1g@I-1dz Adz] < oo

holds. This property is independent of the choice of U, ¢ and V.
We note that, for fixed Q, w(P, Q) is in &' as a differential in P, because
of its behavior near Q.
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The following lemma will be used in Section 7.
LEMMA 1. Let ¢ be a coordinate map on a neighborhood V and P, Q, be

distinct pointsin V. Set zo=(P,). If h is a function in CY(R) with compact
support in V, then we have

J_#(zo) P)-3(P) A (P, Q)= {A(P)—~h(Q)} k20, Q) -
PROOF. Let P be a point in V and set z=¢(P). From (1), we have
§_#zo, PYSR(PY A (P, Q) |
= —k(z0, QAQ—lim | KDk, TR, Qu)dz.

By the property of k(z, Q), this proves the lemma.

§4. The bounded solution of j-problem.

Let u be a bounded function defined on a set S of C or R. We use the
mnotation ||ul|s as the sup norm of x on S. The following lemma is well known.

LEMMA 2. Let G be a bounded open set of C and G’ any open subset of
G. For every function v of C=(G’) there exists a function u of C=(G’) such
that du=wvdz in G’ and
3) lulle = dGDlvlle ,
where d(G) denotes the diameter of G.

Indeed, u is given by

_ V(C) 5

@ uD =g Lo-dlnd,

and (3) follows from

|dg A dE)
§ qemarldendli=f ML EEL <oma).

In the next place, we shall generalize Lemma 2 to an open subset of R.
Let G be a relatively compact open subset of R and a a differential of type
{0, 1) defined on G. We mean a finite covering % of G by the system of
finite number of pairs {(V} 2z,)} of open neighborhoods V; covering G and
local coordinates z; defined on V,, j=1,---, N. For fixed %, we define the
morm of a on any subset of G as follows: Let ¢; be the coordinate maps
defining z;. If a is written as a=a,(z;)dZ; in ¢;(V; \G) then the norm is
defined by

N ,
s, =2 la;(zdllg o nss »

provided that the right hand side is finite.
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LEMMA 3. Let G be a relatively compact subset of R and N={(V;, z;)})5
be a finite covering of G. Let G’ be any open subset of G. For every differen-
tial a of type (0, 1) in C=(G’), there exists a function u in C=(G’) such that
ou=a, and

) lullg: = C-laller

where C is a constant depending only on G and N
PROOF. From the property of w(P, @), we have

[ Ik @l-ldz;ndz =M (=1, N),
j‘

for some constant M depending on G and . Therefore, if a=a,;(z;)dz; in
V,NG’, we have

| aPrwp, @], | ek, @lldz; A dz)
G’ =1 6Y;

<lalow 3, ., 1k Qlldz; AdzZ|

=N-M-|ale .

Thus, the required function u is given by

wQ=[_ aP)Aa(P,Q).

§5. The first proof of Theorem A.

N
We can choose N coordinate neighborhoods U,, -+, Uy such that KC,\—Jl U;

and flg,n0 € HU;NK), j=1, -+, N. Let the local coordinates z; in U; be
fixed. For any positive number ¢, there exist open sets £2;DU;NK and f;
holomorphic in £, such that

(6) |f;—fl<e on U;NnK,j=1,--,N.

— N
Let G, be an open set such that KCG,CG,Cc\JU; and {¢;}}~;, be nom
j=1
negative functions on C=(R) such that each ¢; has the compact support in
N N
Uj and S¢p;=1o0n G, Set C;=3] sup |0p;/02,;]. Note that C, is independent
Jj=1 J=1 7
of e.

For every indices j and k, we define the function h,, by hj;v=¢;(f;—f)
in .ij\gk and hjk =0 in Qk\Uj. Then hjk is of class C* in .Q;cj=(gjmgk)

-_— N — —
U(R2:\U;). Set .Q,’c:jﬂ.Q;,. Since 2, D U.NK, we have 2, DU, K. Now
=1
N
set hk:.zlhjk’ then h; is in C=(£2%) and by (6) we have
=
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@ lrellginx <26 and 3kl g xu=2Cs-e,

where %= {(Uj, z,)}.
Since hy—h;=f;—f in 2;N 2, NG,, there is a differential of type (0, 1)
N
in C“(Gom(UQ}» such that a = —0dh, in every £\ G,. By means of the
j=1
continuity of «, we can find an open set G such that KCGCG, and |ajeu
<3C,-e. By there exists a function u € C*(G) such that du =« and
(8 ulle <3Cy-C-e,
where C is dependent only on G, and %, and therefore not on .
Set g;=h;+u on 2;NG. Then g; is holomorphic in 2;N\G, and by (7)
and (8) we have

9) lg;l <(243C;-C)e on £2;NK.

Since gy—g;=hy—h;=f;—fx we can find the global function ¥, holomorphic
in G such that F=f;+g; in 2;N\G. By (9), we have

(10) |f—FI<l|gil+1/—/f;1<31+CC)  on 2iNK.

Since C and C, are independent of ¢ and (10) is valid for all over K, we can
conclude that fe H(K).

§ 6. Measure orthogonal to H(K).

Let ¢ be a finite complex Borel measure on R with a compact support.
Let V be a coordinate neighborhood and z a local coordinate in V. Then,
by the property of w(P, Q), we have ‘

an J (Ji# @ldlgl@)1dz A dz] < oo

In particular, jlk(z, Q1d| p¢1(Q) is finite for almost every point P and fixed

‘

local coordinate z corresponding to P. (The term “ almost every” is used
here and hereafter in the sense of Lebesgue which is meaningful on R.)
Thus the map T defined by

Tu(P) = [ w(P, Q)du(Q)

is a map of finite complex measures with compact supports into the class .
Tp(P) is holomorphic off the support of p.

LEMMA 4. Let p be a complex measure with the support in K. If Tu(P)=0
for almost every P R, then p=0.

ProOOF. Let g be a C'-function with the compact support. Then we have

by (1)
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2@=~f 3g(P)Aa(P,Q) for QcK.

Hence, by Fubini’s theorem, we have

J2@du@=—f(§ 32(P) A (P, )du(@

=—{ 32P) A (fo(P, Qdu@)=0.

Approximating by C!-functions with compact supports, we obtain jgdy=0

for any continuous function g and hence g =0.

LEMMA 5. A complex measure p supported on K is orthogonal to H(K) if
and only if Tu(P)=0 for every point P of R\K.

PrOOF. Fixing a point P= R\K and a local coordinate z near P, k(z, Q)
is a holomorphic function of @ in a neighborhood of K. Therefore, if g is
orthogonal to H(K), then Tu(P)=0.

Conversely, for any function f holomorphic in a neighborhood of K, we
can choose an open set G containing K such that 0G consists of a finite
number of smooth curves and f is holomorphic on G. If Q € K, we have

by (2)
Q= f(P)a(P, Q).

By Fubini’s theorem, we have
Jr@du@={_rpyrup)=0.

Thus, we have ffdyzo for all f= H(K). The lemma is proved.

§7. The second proof of Theorem A.

Let ¢ be a finite complex measure with a compact support and # a con-
tinuous function on R. By hAp we mean the measure defined as a linear

functional f—»ffhdpe for any continuous function f on R. If P is a point
such that fla)(P, Q)| d|p|(Q) is finite, then, by approximating «(P, Q) by con-
tinuous functions on R, we have

an T(h)(P) = [ KQw(P, Q)du(Q) .

Therefore, holds almost everywhere on R.

LEMMA 6. Let pu be a complex measure with a compact support, U a
coordinate neighborhood and h a function in C=(R) with its compact support
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in U. Then there exists a measure g, supported in U such that hTu=Tp,
holds almost everywhere on R.

PROOF. Set dv=—oh A Ty, then v is a measure supported in U. Let ¢
be a coordinate map defined on U. Let P, P, and @ be the points in U. Set
z=¢(P). If P is any point such that (11) holds, then by Lemma 1 we have

Tv(P)= [ (P, P)dv(P,)
= —([rtz, PY3RPY N[ [Py, @dp@])dz
= —([[ [#@ PYBRP) A (P, O] dp(@)dz

= — [ [A(P)—h(@)Jw(P, Q)du(@)
= T(hpX(P)—h(P)Tp(P) .

Setting p; = hp—y, the lemma is proved.

Though the followings are similar to the proof in [3], we shall give the
details for completeness.

LEMMA 7. Let p be a complex measure supported on K and orthogonal to
H(K). For any covering {U;} of K by the coordinate neighborhoods, we can
choose the measures p; each supported on U, and orthogonal to HEKNU,) such
that p=3 ;.

PRrROOF. Let {h;} be a partition of unity subordinate to {U;}. By Lemma
6, we can find p; supported on U; such that h;Tp=Tu,; a.e. on R. Since p
is orthogonal to H(X), we have, by Lemma 5 Twu(P)=0 for all P= R\K.
Since h; vanishes off Uj;, and Tu;(P) is holomorphic off U;, we have Tu;(P)=0
for all P R\(K N 17,-). Hence, by Lemma 5, g¢; is orthogonal to H(K A (7,).
We have Tp=3h;Tu=3Tyr;=T(X ¢;), and therefore, T(x—S p¢;)=0 a.e.
on R. By Lemma 4, we have pg=3 y;. The lemma is proved.

We note that u#; are orthogonal to H(K).

Now we are in a position to prove Theorem A. We can find a covering
{U;} of K by a finite number of coordinate neighborhoods such that fe
H(U'jmK) for every j. If p is orthogonal to H(K), then, by Lemma 7, there
are measures p; supported in U; such that g#=3 ¢; and each p; is orthogonal

to H([j'jr\K). Since fe H(l:-fjmK),' ffdyj:O, and hence we have jfd)a:O.

Since it holds for all measures g orthogonal to H(X), we conclude that
fe HK).
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§8. A generalization.

In this section, we shall remark about the higher dimensional case.

Let X be a complex manifold of dimension n and K a compact subset of
X. H(K) will be defined similarly to the case of Riemann surface. Let
WA= {(V;, 2”)}), be a finite covering of K by the coordinate neighborhoods.
We write 2 =(z{, ---, z) and denote the coordinate maps defining z‘” by ¢;.

Let a« be a (0, 1)-form of class C*® on an open set G containing K. « is
represented as

a=aP(@Mdz® in GAV,.
k=1
We define the norm of a« on a subset S of G with respect to A by

N n
lals=2 3 sup |a@(Z?)].
J=1k=1 d)j(Sfle)

DEFINITION. A compact subset K of X is said to be of class (d), if there
exists a sequence {D,,} of open subsets of X satisfying the following conditions :

(i) Dp,OD,. (m=1,2, ) and (\ D, =K.

m=1
(ii) For every finite covering % of K, there exists a positive constant C
such that, for any (0, 1)-form « of class C*(D,,) satisfying da =0, there is a
function u of class C=(D,,) such that du =a and

sup |[u| ZC-||allpp,u,
m

N
provided that D,C U V;.
i=1

By a slight modification of the first proof of Theorem A, we can conclude
the following

THEOREM A’. Let K be a compact subset of a complex manifold in the
class (0). Then the statement of Theorem A is true for K.

shows that, for the case of X=R, all compact subsets are of
class (0). We shall give some examples of the compact sets of class (d) in
C"™ (n>1). A bounded domain G of C™ with C~-boundary is said to be strictly
pseudoconvex, if there is a function p(z) of class C=(G) such that o is strictly
plurisubharmonic in a neighborhood of 0G and G={zeC"; p(2) <0}. We
cite the following

THEOREM (Henkin [4]). Let G be strictly pseudoconvex bounded domain

with C>-boundary in C". If azéakdz'k is a (0, 1)-form of class C=(G), with
k=1

oa =0, then there exists a function u of class C*(G) such that du=a and

sup lul| = C(G)- 3 sup |al,
£ k=1 G
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where C(G) is a constant depending on the diameter of G and the function p(2)
defining G.

If we can take the sequence {D,} of open sets descending to K, so that
each D, consists of a finite number of bounded strictly pseudoconvex domains
and the constants C(D,,) in Henkin’s theorem are bounded, then K is of class
(0). Especially, if there is a function p,(z), strictly plurisubharmonic in a

neighborhood of K, such that D,, are represented as {po <%}, then K is of

class (9).

For example, if K is the closure of a bounded strictly pseudoconvex
domain D with C®-boundary, then K is of class (6). In this case, we can take
the function defining D as py(z). Another example is a finite or compact
totally real C=-submanifold M of C™. In this case, p, is defined by p.(z)=
dist (z, M)? (Nirenberg-Wells [7]).

The same method as our first proof had already been applied by I. Lieb
in Math. Ann. 184 (1969) 56-60 in the case of the strictly pseudoconvex
domain of C™, which the author did not know during this work. The author
thanks the referee for his valuable suggestions and comments.
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