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\S 1. Introduction.

This is a continuation of the papers “ Deformations of compact complex
surfaces “ and “ Deformations of compact complex surfaces II “ to which we
refer as Parts I and II, respectively. We studied topological properties of
plurigenera of compact complex surfaces and obtained Theorem II in Part I
and Theorem IV in Part II. Moreover, we showed the invariance of pluri-
genera of compact complex surfaces under deformations in Theorem III in
Part II. In this paper, we first investigate the structure of compact complex
manifolds of dimension 4, and we prove Theorem V which would be important
in the future study of bimeromorphic classification of compact complex mani-
folds. Furthermore, we shall show that the plurigenera of an elliptic surface
are determined by the homotopy invariants of the surface, if its fundamental
group is neither a finite abelian group generated by at most two elements
nor a dihedral group of order $4k,$ $k\geqq 1$ . In order to prove the above assertion,
we determine the structure of the fundamental groups of elliptic surfaces.
We recall that the fundamental group of an algebraic curve determines its
genus $(=h^{1.0})$ and conversely the genus determines the abstract structure of
the fundamental group. In the case of surfaces, such a connection between
topology and general) might be lost. However if we restrict ourselves to
elliptic surfaces, we can say that the fundamental group of any elliptic surface
determines its plurigenera completely with minor exceptions. Conversely, the
essential structure of any elliptic surface of general type can be given by use
of its plurigenera, as will be shown later.

\S 2. Statement of the results.

We employ the notation and the terminology of Parts I and II. Thus,
by a (compact complex) surface we mean a connected compact complex mani-
fold of dimension 2. In [8], S. Kawai has developed a theory of bimero-

1) Here, by genera we mean the basic discrete complex analytic invariants of
compact complex manifolds.



Deformations of compact complex surfaces III 693

morphic classification of connected compact complex manifolds of dimension 3.
By the same way as he did, we can prove the following: Let $M$ be a con-
nected compact complex manifold of dimension 4. We denote by the symbol
$a(M)$ the algebraic dimension of $M$ which is defined to be the dimension of
the field2) of all meromorphic functions on $M$. Then, (A) in the case where
$a(M)=4$ , there exists by the $Nto\dot{M}me3OH$ theorem a compact complex manifold,
admitting a structure of a projective algebraic variety, which is bimeromorphically
equivalent to M. (B) In the case in which $1\leqq a(M)\leqq 3$ , there exists a fiber
space of compact complex manifolds $f:M^{*}\rightarrow V$ such that

(1) $M^{*}$ is bimeromorphically equivalent to $M$,
(2) $V$ has the dimension $a(M)$ and has a $str^{1}ncture$ of a projective algebraic

variety,
(3) $f$ is a proper surjective holomorphic map,
(4) $f$ induces an isomorphism of the field $C(V)$ onto the field $C(M)=C(M^{*})$ ,
(5) the general fiber $F_{v}$ is a connected compact complex manifold of dim-

ension $4-a(M)$ and of Kodaira dimension $\leqq 0$ .
We call the above $V$ an algebraic equivalent to $M$. Note that the notion of
the Kodaira dimension $\kappa(M)$ of $M$ has been introduced in [5] by the author.
Moreover, when $a(M)=3$ , we obtain $\kappa(F_{v})=0$ , namely, $F_{v}$ is an elliptic curve.
(C) In the case in which $a(M)=0$ , we restrict ourselves to the case where $M$

admits a Kahler metric. Then, we have the Albanese map $\Phi:M\rightarrow T$ where $T$

denotes the Albanese torus of M. $T$ is a complex torus of dimension $q(M)$ (by

which we denote the irregularity of $M$). By referring to the results of Kawai,
we conclude that

(i) $T$ has no effective divisors,
(ii) $\Phi$ is proper and surjective,
(iii) any general fiber $\Phi^{-1}(t)$ is connected,
(iv) the case in which $q(M)=1$ does not occur,
(v) if $q(M)=3$ , any general fiber $\Phi^{-1}(t)$ has the Kodaira dimension $\leqq 0$ .

Now in the case in which $q(M)=2$ , a new problem arises which we did not
meet in classifying compact complex manifolds of dimension 2 or 3. The
problem is to classify surfaces which are general fibers of $\Phi$ : $M\rightarrow T$ . It seems
to be true that those surfaces have the Kodaira dimension $\leqq 0$ . Here, as an
application of Theorem III we shall prove

THEOREM V. Any general fiber of $\Phi$ : $M\rightarrow T$ could not be an elliptic surface
of general type.

For the sake of simplicity, we call an elliptic surface of which fundamental
group is neither a finite abelian group generated by at most two elements
nor a dihedral group of order $4k,$ $k\geqq 1$ , a G-surface.

2) This field is denoted by the symbol $C(M)$ .
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THEOREM VI. Any plurigenus of a G-surface is computed in terms of its
certain homotopy invariants, namely, its geometric genus, its irregularity, and
its fundamental group.

COROLLARY. Any plurigenus of a surface in the following three classes is
a homotopy invariant:

(1) the class of surfaces with $b_{1}\equiv 1mod 2$ and $b_{1}>1$ ,

(2) the class of surfaces with $c_{1}^{2}=c_{2}=0$ and $b_{1}>1$ ,
(3) the class of surfaces each of which has a finite unramified covering

manifold belonging to the class (1) or (2).

The following Theorem VII shows that the converse of Theorem VI is
almost true:

THEOREM VII. Let $S$ be an elliptic surface which is not a hyperelliptic
surface. By $\Psi:S\rightarrow\Delta$ we denote a structure of an elliptic fiber space of $S$.
Then $\pi(\Delta)$ and the set of multiplicities of multiple fibers of $\Psi$ can be computed
in terms of its plurigenera $P_{m}(S)$ and its irregularity $q(S)$ .

Thus, we have arrived at the conclusion that the essential structure of
the fundamental group of $S$ is determined by the values of $P_{m}(S)$ and $q(S)$

as will be explained below in the Table of the fundamental groups of elliptic
surfaces.

About sixty years ago, F. Enriques and G. Castelnuovo discovered various
characterizations of rational surfaces, ruled surfaces, Enriques surfaces,
abelian varieties of dimension 2, Kummer surfaces (K3 surfaces), and hyper-
elliptic surfaces by means of the values of their irregularities and plurigenera.
We note that our Theorem VI and VII treat a similar problem for elliptic
surfaces of general type. On the other hand, K. Kodaira proved that pluri-
genera of an algebraic surface of general type are expressed in terms of the
values of their Chern numbers. Therefore, we dare say that the problem of
characterization of surfaces by use of their irregularities and plurigenera are
completely solved.

\S 3. Proof of Theorem V.

Let $M_{t}$ be a general fiber of the Albanese map $\Phi$ : $M\rightarrow T$. We shall prove
Theorem V by deriving a contradiction under the assumption that $M_{t}$ is an
elliptic surface of general type. Fix an integer $\alpha\geqq 86$ . Referring to the
theory of A. Grothendieck, we have a meromorphic map $h$ of $M$ into $P(\Phi_{*}(\mathcal{L}))$

over $T$ where $\mathcal{L}$ denotes the invertible sheaf $\mathcal{O}(\alpha K)$ . Let $N$ be the mero-
morphic transform of $M$ by $h$ , and $g$ the structure map of $N$ over $T$. Then
$N$ is a closed analytic subset of $P(\Phi_{*}(\mathcal{L}))$ . We denote by $T^{\prime}$ the set of points
$t\in T$ such that the Jacobian matrix of $\Phi$ has the maximal rank at every
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point over $t$ . $T-T^{\gamma}$ is a closed analytic set of $T$ and so the codimension of
$T-T^{\prime}\geqq 2$ , for $T$ has no effective divisors by (i). For simplicity, we abbreviate
$\Phi^{-1}(T^{\prime}),$ $\Phi|(M^{\prime}),$ $g^{-1}(T^{\prime})$ , and $h|M^{\gamma}$ , respectively, by $M^{\prime},$ $\Phi^{\gamma},$ $N^{\prime}$ , and $h^{\prime}$ . It is
clear that $\Phi^{\prime}$ : $M^{\gamma}\rightarrow\tau/$ gives a family of elliptic surfaces of general type and
$h^{\prime}$ : $N^{\prime}\rightarrow T^{\prime}$ a family of base curves of them by the results in \S 3 in Part II.
Note that this result may be recognized as a direct consequence of Theorem
III. We wish to prove that $N$ has a non-constant meromorphic function so
that $M$ has a non-constant meromorphic function. This contradicts the as-
sumption: $a(M)=0$ . If $\pi=\pi(M_{t})\geqq 2$ , then we have $a(N)>0$ by applying
Proposition 7 in [8, II] to the fiber space $g:N\rightarrow T$. If $\pi=1$ [or $\pi=0$], we
make use of the following

LEMMA 1. An elliptic surface $S$ of general type with $\pi(S)=1$ $[or=0]$ has
at least one singular fiber [or at least three singular fibers].

PROOF. Since $S$ is of general type, we have the inequality (the formula
(6) in Part II):

(1) $2\pi-2+1-q+p_{g}+\sum_{\lambda=1}^{s}(1-\frac{1}{m_{\lambda}})>0$ ,

where we write $\pi(S)=\pi,$ $q(S)=q$ , and $p_{g}(s)=p_{g}$ . Furthermore, we denote by
$\{m_{1}, \cdots, m_{s}\}$ the set of multiplicities of multiple fibers of the elliptic fiber space
$\Psi:S\rightarrow\Delta$ of $S$ . If $\pi=1$ and $s=0$ , then we have $1-q+p_{g}>0$ by (1). On the
other hand, we have the formula (12.6) in [9, III] :

(2) $12(1-q+p_{g})=c_{2}(S)=j+\sum_{b>0}6\nu(I_{b}^{*})+2\nu(II)+10\nu(II^{*})$

$+3\nu(III)+9\nu(III^{*})+4\nu(IV)+8\nu(IV^{*})$ ,

where $j$ denotes the order of the functional invariant of $S,$ $v(\#)$ the number
of the singular fibers of type $\#$ (see [9, III] for the definition of type $\#$).
Hence, we conclude that in this case there exist singular fibers of type other
than $mI_{0},$ $m>1$ . If $\pi=1$ and $s\neq 0$ , we see that there exist singular fibers
of type $mI_{0}$ . If $\pi=0$ and $s=0$ , we have $1-q+p_{g}\geqq 3$ by (1). Hence, from the
formula (2) we get

(3) $j+\Sigma 6\nu(I_{b}^{*})+\cdots\geqq 36$ .
Now, in the case of $j=0$ , we see that there exist at least three singular

fibers by (3). In the case of $j>0$ , we shall derive a contradiction under the
assumption that there exist at most two singular fibers. Suppose that there
exist two singular fibers $\Psi^{*}(a_{1})$ and $\Psi^{*}(a_{2})$ . Then we consider the usual
representation $\rho$ of the fundamental group of the Riemann surface $\Delta-\{a_{1}, a_{2}\}$

in the l-homology group $H_{1}(C_{u}, Z)$ where $C_{u}$ denotes a general fiber of
$\Psi:S\rightarrow\Delta$ . Set $B_{1}=\rho(\beta_{1})$ and $B_{2}=\rho(\beta_{2})$ where $\beta_{1},$ $\beta_{2}$ are small circles around
$a_{1},$ $a_{2}$ , respectively, with positive orientation, then we have $B_{1}B_{2}=1$ .
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On the other hand, by Table I in [7] we see that if $\Psi^{*}(a_{i})$ is of type
$i1b$ [or $I_{b}^{*}$], then $B_{i}$ is conjugate to

$\left(\begin{array}{llll} & & 1 & b\\ & & 0 & 1\end{array}\right)$ $[or$ $-\left(\begin{array}{llll} & & 1 & b\\ & & 0 & 1\end{array}\right)]$ ,

in $SL_{2}(Z)$ , where $b$ is a positive integer. Moreover, if $\Psi^{*}(a_{i})$ is of type other
than $I_{b}$ or $I_{b}^{*}$ , then we have $B_{i}^{12}=1$ . Therefore, since $\Psi^{*}(a_{1})$ is of type $I_{b}^{*}$ or
$1Ib,$ $B_{1}B_{2}=1$ does not hold, whatever the type of $\Psi^{*}(a_{2})$ may be. In the other
cases, we can easily show that there exist at least three singular fibers.

Now, we proceed with the proof of Theorem V. We can find a compact
complex manifold $M_{1}$ and a holomorphic bimeromorphic map $\mu:M_{1}\rightarrow M$ such
that the composed map $ h_{1}=h\cdot\mu$ is holomorphic. Let $A_{1}$ be a set of points
$p$ such that the Jacobian matrix of $h_{1}$ has not the maximal rank at $p\in M_{1}$ .
Then, $B=h_{1}(A_{1})$ is a closed analytic set in $N$. We note that for every point
$l^{\prime}\in T^{\prime\prime}$ the elliptic fiber space $M_{t^{t}}\rightarrow N_{t^{\prime}}=g^{-1}(t^{\prime})$ has singular fibers only over
points of $B_{t},$ $=B\cap N_{t},$ . Consider the case of $\pi(N_{\ell})=1$ for $t\in T^{\prime}$ . In view of
Lemma 1, we have $g(B)=T$. Hence, the analytic set $B$ has an irreducible
component $B_{1}$ of which image by $g$ is $T$. By the same argument as in the
proof of Proposition in p. 613 of [8, II] we obtain $a(N)=1$ . Next, consider
the case of $\pi(N_{t})=0$ for any point $t\in T^{\prime}$ . Let $B_{1}$ be one of the irreducible
components of $B$ such that $g(B_{1})=T$. We denote by $g_{B_{1}}$ the restriction of $g$

to $B_{1}$ . We define three analytic sets as follows:

$\Sigma_{1}=the$ set of singular points of $B_{1}$ ,

$\Sigma_{2}=the$ set of points $p$ such that the Jacobian matrix

of $g_{B}$ has not the maximal rank,

$\Sigma_{3}=g(\Sigma_{1})\cup g(\Sigma_{2})\cup(T-T^{\prime})$ .
We write $T-\Sigma_{3}=T^{\prime\prime},$ $g^{-1}(T^{\prime\prime})=N^{\prime\prime},$ $\Phi^{-1}(T^{\prime\prime})=M^{\prime\prime}$ , and $B^{\parallel}=B\cap N^{\prime\prime}$ . Then the
holomorphic map $g_{B},$ $=g_{B_{1}}|B^{\prime\prime}$ is an unramified covering map. From the fact
that $T$ has no effective divisors it follows that the codimension of $\Sigma_{3}\geqq 2$ .
Hence, the natural surjection $\pi_{1}(T^{\prime\prime})\rightarrow\pi_{1}(T)$ is isomorphic. This implies that
$T$ has an unramified covering map $f:\tau*\rightarrow T$ and an open immersion $B^{\prime\prime}\subset\tau*$

such that the following diagram

$g_{R\cdot 1}BT^{;/}\sim\tau_{1}*=\tau^{f}$

commutes. Using the map $f$ we extend the base of the fiber space $\Phi:M\rightarrow T$.
Thus we get a fiber space $\Phi^{*}:$

$M^{*}=M\times\tau*T\rightarrow\tau*$ where $\Phi^{*}$ is the natural
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projection of the fiber product. This fiber space has the following properties:
(1) $a(M^{*})=0,$ (2) $\tau*$ is a complex torus without effective divisors, (3) $g^{*}=N^{*}$

$=N\times T^{*}\rightarrow\tau*$ gives a family of base curves of the elliptic surfaces $M_{t}^{*}$ for
$\tau$

any $t\in T^{\gamma*}$ where $\tau/*is$ the full inverse image of $T^{\prime}$ . (4) $B^{\prime\prime*}=B^{\prime\prime}\times_{T}\tau*\subset N^{\prime\prime*}$

$=N^{\prime\prime}\times_{T}\tau*$ is a section of $N^{\prime\prime*}\rightarrow T^{\prime\prime*}$ .
In view of Lemma 1 we can perform the similar construction for the fiber

space $\Phi^{*}:$ $M^{*}\rightarrow\tau*$ . Repeat once more this construction. Then we get fiber
spaces $\Phi^{***}:$ $M^{***}\rightarrow\tau***$ , $h^{***}:$ $M^{***}\rightarrow N^{***}$ , and $g^{***}:$ $N^{***}\rightarrow\tau***$ such
that $\Phi^{***}=g^{***}\cdot h^{***}$ . $Furthermore,$ $N^{\prime\prime***}\rightarrow T^{\prime\prime***}$ is the projective line bundle
with three sections. From this it follows that $C(N^{\prime\prime***})=C(P^{1})\times C(T^{\parallel***})$

$=C(P^{1})$ . On the other hand, referring to Theorem II in [8, II] we have a
$P^{1}$-bundle $g^{\#}$ : $N^{\#}\rightarrow\tau***which$ is bimeromorphically equivalent to the fiber
space $g^{***}:$ $N***\rightarrow\tau***$ . Let $H$ and $H^{\prime}$ denote analytic sets of $N^{\#}$ and $N^{***}$ ,
respectively, such that the bimeromorphic map induces the isomorphism:
$N^{\#}-H\simeq N^{***}-H^{\prime}$ . Moreover, we can assume that $N^{***}-H^{\prime}\subset N^{\prime;***}$ . Since
$co\dim(g^{\#}(H))\geqq 2$ and $\dim(g^{\#}-1(g^{\#}(H)))=\dim g^{\#}(H)+1$ , we get $co\dim H\geqq$

codim $g^{\# 1}-(g^{\#}(H))\geqq 2$ . Hence it follows that $C(N^{\#}-H)=C(N^{*})$ . Further-
more, we have $C(N^{\#}-H)=C(N^{***}-H^{\prime})\supset C(N^{\prime\prime***})=C(P^{1})$ and $\dim C(N)=$

$\dim C(N^{***})=C(N^{\#})$ . These lead to the inequality $a(N)=\dim C(N)\geqq 1$ ,
$q$ . $e$ . $d$ .

\S 4. Proof of Theorem VI.

Let $S$ be an elliptic surface which is minimal3) and $\Psi:S\rightarrow\Delta$ an elliptic
fiber space of $S$. Let $\Psi^{*}(a_{1})$ , $\cdot$ .. , $\Psi^{*}(a_{s})$ be all the multiple fibers of $\Psi$ . We
denote by $m_{i}$ the multiplicity of $\Psi^{*}(a_{i})$ for $1\leqq i\leqq s$ . Since any elliptic surface
can be obtained from an elliptic surface free from multiple fibers by means
of logarithmic transformations (see [10, I], [11]), we can find an elliptic
surface $\overline{S}$ over $\Delta$ such that its fiber space $\overline{\Psi}$ : $\overline{S}\rightarrow\Delta$ has no multiple fibers
and $L(m_{s})L(m_{s- 1})\cdots L(m_{1})\overline{S}=S$. Here, we denote by $L(m_{t})$ a logarithmic trans-
formation of order $m_{i}$ at the point $ a_{i}\in\Delta$ . Letting $\Psi^{*}(a_{i})=P_{i}$ and $\overline{\Psi}^{*}(a_{i})$

$=\overline{P}_{i}$ for $1\leqq i\leqq s$ , we have the biholomorphic map:

$S^{\prime}=S-\sum_{i=1}^{*}P_{i}\simeq\overline{S}^{\prime}=\overline{S}-\sum_{i=1}^{\epsilon}\overline{P}_{i}$ .

Then we get the exact sequence of abstract groups:
$\pi_{1}(S^{\prime})=\pi_{1}(\overline{S}^{\prime})\rightarrow\pi_{1}(S)\rightarrow\{1\}$ .

3) As we consider birational properties of surfaces, $e$ . $g.$ , plurigenera and funda-
mental groups, it is no loss of generality to assume $S$ to be minimal.
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In order to determine the structure of $\pi_{1}(S)$ , we first investigate that of $\pi_{1}(S^{\prime})$ .
We define as usual the loops $\alpha_{1}$ , $\cdot$ .. $\alpha_{\pi},$

$\beta_{1}$ , $\cdot$ .. $\beta_{\pi}$ ( $\pi$ denotes the genus of $\Delta$)

in $\Delta$ which generate $\pi_{1}(\Delta)$ and satisfy the following fundamental relation:

$\alpha_{1}\beta_{1^{4)}}\alpha_{1}^{-1}\beta_{1}^{-1}\ldots\alpha_{\pi}\beta_{r}\alpha_{\pi}^{-1}\beta_{\overline{\pi}^{1}}=1$ .
We can assume that the loops $\alpha_{1},$

$\cdots$ , $\alpha_{\pi},$ $\beta_{1}$ , $\cdot$ .. , $\beta_{\pi}$ contain none of points
$a_{1}$ , $\cdot$ .. , $a_{s}$ . Then these loops can be regarded as loops in $\Delta^{\prime}=\Delta-\{a_{1}, \cdots , a_{s}\}$ .
We denote by $\tau_{i}$ a small circle around $a_{i}$ in $\Delta^{\prime}$ . If we denote by the same
letter $\alpha$ the homotopy class of the loop $\alpha$ in $\Delta^{\prime}$ , we can give the description
of $\pi_{1}(\Delta^{\prime})$ as follows:

$\pi_{1}(\Delta^{\prime})$ is generated by $\alpha_{1},$
$\cdots$ , $\beta_{\pi},$

$\tau_{1},$
$\cdots$ $\tau_{s}$ ;

there exists the fundamental relation:

$\alpha_{1}\beta_{1}\alpha_{1}^{-1}\beta_{1}^{-1}\cdots\alpha_{r}\beta_{7\tau}\alpha_{\pi}^{-1}\beta_{\overline{\pi}^{1}}\tau_{1}\cdots\tau_{s}=1$ .
Now we denote by $\alpha_{1}^{\prime}$ , $\cdot$ .. $\beta_{1}^{\prime}$ , $\cdot$ .. , $\tau_{1}^{\prime}$ , $\cdot$ .. $\tau_{\epsilon}^{\prime}$ the loops in $S^{\prime}$ which lie over $\alpha_{1}$ , ,
$\beta_{1},$

$\cdots,$ $\tau_{1},$ $\cdots,$ $\tau_{s},$ $respectively$ . Moreover, we let $\gamma,$

$\delta$ be generators of $\pi_{1}(\Psi^{-1}(u))$ ,

where $\Psi^{-1}(u)$ is a regular fiber of $S$. Thus we get the following description
of $\pi_{1}(S^{\prime})$ :

$\pi_{1}(S^{\prime})$ is generated by $\alpha_{1}^{\prime},$ $\cdots$ , $\beta_{1}^{\prime},$ $\cdots$ $\tau_{1}^{\prime},$ $\cdots$ , $\gamma,$

$\delta$ ;

there exist the following fundamental relations:
(1) $\gamma\delta=\delta\gamma$ ,

(2) $\{\gamma, \delta\}^{6)}$ is normal in $\pi_{1}(S^{\prime})$ ,

(3) $\alpha_{1}^{\prime}\beta_{1}^{\prime}\alpha_{1}^{\prime- 1}\beta_{1^{-1}}^{\prime}\ldots\alpha_{\pi}^{\prime}\beta_{\pi}^{\prime}\alpha_{\pi^{- 1}}^{\prime}\beta_{\pi^{-1}}^{\prime}\tau_{1}^{\prime}\ldots\tau_{\epsilon}^{\prime}\in\{\gamma, \delta\}$ ,

(4) $R(\gamma, \delta)^{6)}=1$ .
Next we consider a neighbourhood of each multiple fiber. We denote by

$U_{i}$ a small open disc around $a_{i}$ ($i=1$ , $\cdot$ .. , s) such that the elliptic fiber space
$V_{i}=\Psi^{-1}(U_{i})\rightarrow U_{i}$ has no singular fibers except $\Psi^{*}(a_{i})$ . Write $V_{i}^{\prime}=V_{i}-P_{i}$ ,
$\overline{V}_{i}=\overline{\Psi}^{-1}(U_{i})$ , and $\overline{V}_{i}^{\prime}=\overline{V}_{i}-\overline{P}_{i}$ . Then $\pi_{1}(V_{i}^{\prime})$ is generated by $\tau_{i}^{\prime},$

$\gamma,$

$\delta.$] [ Moreover,
we have the following exact sequence:

$\pi_{1}(V_{i}^{\prime})\rightarrow\sim\pi_{1}(\overline{V}_{i}^{\prime})\rightarrow\pi_{1}(V_{i})\rightarrow\{1\}$ .
We denote by $p$ the composition of the first and the second arrows in the
above sequence.

Choose suitable generators $\gamma^{*},$
$\delta^{*}$ of the group $t\gamma,$

$\delta$ }, then the fundamental
relations among them are

4) For simplicity, we denote by the same letter $\gamma$ the homotopy class of the loop $\gamma$

5) By the symbol $\{\gamma, \delta\}$ we denote the subgroup generated by $\gamma,$

$\delta$ .
6) $R(\gamma, \delta)$ denotes a word consisting of $\gamma,$

$\delta$ . Note that $R(\gamma, \delta)$ might be the
word 1.
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$\gamma^{*}\delta^{*}=\delta^{*}\gamma^{*}$ , $\tau_{i}^{\prime}\delta^{*}=\delta^{*}\tau_{i}^{\prime}$ , $\tau_{i}^{\prime}\gamma^{*}=\delta^{*h}\gamma^{*}\tau_{i}^{\prime}$ (see [11]).

Furthermore, we have $p(\tau_{i}^{\prime})^{m_{i}}\in\{p(\gamma), p(\delta)\}$ . In the case in which $h>0$ , we
get $p(\delta^{*})=1$ . Thus we conclude that

$\pi_{1}(V_{i})$ is generated by $\tilde{\tau}_{i}=p(\tau_{i}^{\prime}),\tilde{\gamma}=p(\gamma^{\prime}),\tilde{\delta}=p(\delta^{\gamma})$

and there exist the fundamental relations:
$\tilde{\gamma}\tilde{\delta}=\tilde{\delta}\tilde{\gamma}$ , $\tilde{\tau}_{i}^{mi}\in\{\tilde{\gamma},\tilde{\delta}\}$ , $\tilde{\tau}_{i}\tilde{\gamma}=\tilde{\gamma}\tau_{i}\sim$ , $\tilde{\tau}_{i}\tilde{\delta}=\tilde{\delta}\tilde{\tau}_{i}$ .

Finally, applying van Kampen’s theorem we have the description of $\pi_{1}(S)$

in the following way:

$\pi_{1}(S)$ is generated by the letters $\alpha_{1},$ $\cdots,$ $\alpha_{\pi},$ $\beta_{1},$
$\cdots,$

$\beta_{\pi},$
$\tau_{1},$ $\cdots,$ $\tau_{s},$ $\gamma,$

$\delta$ .
The fundamental relations among them are
(1) $\gamma\delta=\delta\gamma$ ,
(2) $\{\gamma, \delta\}$ is normal in $\pi_{1}(S)$ ,
(3) $\tau_{i}\gamma=\gamma\tau_{i},$

$\tau_{i}\delta=\delta\tau_{i},$ $\tau_{i}^{m_{i}}\in\{\gamma, \delta\}$ for $1\leqq i\leqq s$ ,
(4) $\alpha_{1}\beta_{1}\alpha_{1}^{-1}\beta_{1}^{-1}\ldots\alpha_{\pi}\beta_{\pi}\alpha_{\pi}^{-1}\beta_{\pi}^{-1}\cdot\tau_{1}\ldots\tau_{s}=1$ ,
(5) $R(\gamma, \delta)=1$ .

Hence, in the case in which $\pi=0$ and $s\leqq 2,$ $\pi_{1}(S)$ is an abelian group generated
by at most three elements. Moreover, $ifc_{2}(S)=0,$ $thentheequality\kappa(S)=-\infty$

follows from the formula of the canonical bundle (the formula (40) in [10, I]).

This implies that $S$ is a Hopf surface or a ruled surface of genus 1 or $0$ .
If $c_{2}(S)\neq 0$ , then $\Psi:S\rightarrow\Delta$ has singular fibers of type other than $mI_{0}$ . Hence,
we may assume that $\pi_{1}(S)$ is generated by $\tau_{1},$ $\tau_{2},$

$\delta$ among which there exist
the fundamental relations $\tau_{1}\tau_{2}\in\{\delta\},$ $\tau_{1}^{m_{1}}\in\{\delta\},$ $\tau_{2}^{m_{2}}\in\{\delta\},$ $R(\delta)=1$ (here we
admit $m_{1},$ $m_{2}=1$). From this we infer that $\pi_{1}(S)$ is an abelian group generated
by at most two elements. Suppose that $\pi_{1}(S)$ is infinite. Then we have
$b_{1}(S)=1$ and so $S$ is an elliptic surface belonging to the class $VlI_{0}$ of surfaces
by Kodaira (see [10], I). Hence it follows that $c_{2}(S)=0$ . This is a contradic-
tion. In the other case, we can construct a universal normally ramified
covering manifold $\tilde{\Delta}$ of $\Delta$ with ramification indices $m_{1},$ $\cdots$ $m_{s}$ , respectively,
at $a_{1},$ $\cdots$ $a_{s}$ . Then the elliptic fiber space $ S\times\tilde{\Delta}\rightarrow\tilde{\Delta}\Delta$ has no multiple fibers.
Hence, we have the exact sequence:

$\{1\}\rightarrow\pi_{1}(\tilde{S})=\{\gamma, \delta\}\rightarrow\pi_{1}(S)\rightarrow\pi_{1}^{*}(\tilde{\Delta}/\Delta)\rightarrow\{1\}$ ,

where $\pi_{1}^{*}(\tilde{\Delta}/\Delta)$ denotes the transformation group associated with the normal
covering $\tilde{\Delta}\rightarrow\Delta$ . Now we deal with the case $\pi=0$ . Then we have $\pi_{1}(\tilde{S})=$

$\{\gamma, \delta\}\subseteqq Cent\pi_{1}(S)$ . Here, we denote by the symbol Cent $G$ the center of the
group $G$ . Except the case in which $\pi_{1}^{*}(\tilde{\Delta}/\Delta)$ is a dihedral group of order $4k$

for an integer $k\geqq 2$ , we see that Cent $\pi_{1}^{*}(\tilde{\Delta}/\Delta)$ reduces to the trivial group
{1}. Hence, in this case, we have $\pi_{1}(\tilde{S})=Cent\pi_{1}(S)$ and so $\pi_{1}(S)/Cent\pi_{1}(S)$
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$\simeq\pi_{1}^{*}(\tilde{\Delta}/\Delta)$ . However, in the case in which $\pi_{1}^{*}(\tilde{\Delta}/\Delta)$ is a dihedral group of
order $4k$ for $k\geqq 2$ , the conclusion would be slightly more complicated. In
this case, we have $\tilde{\Delta}=P^{1}$ . If $\pi_{1}(\tilde{S})$ is not finite, then $\pi_{1}(S)$ is also not finite.
Hence, by the previous consideration, we see that $S$ is a Hopf surface or a
ruled surface. If $\pi_{1}(S)$ is finite, then $\pi_{1}(\tilde{S})$ is finitely cyclic. In this case,
we wish to prove:

A) If Cent $\pi_{1}(S)$ is cyclic and its order $\neq 2$ , then we have Cent $\pi_{1}(S)$

$=\pi_{1}(\tilde{S})$ and so $m_{1}=2,$ $m_{2}=k,$ $m_{3}=2$ where $2k$ is the order of the group
$\pi_{1}(S)/Cent\pi_{1}(S)$ .

B) If Cent $\pi_{1}(S)$ is not cyclic, then we have Cent $\pi_{1}(S)=\pi_{1}(\tilde{S})$ and so
$m_{1}=2,$ $m_{2}=2k,$ $m_{3}=2$ where $2k$ is the order of the group $\pi_{1}(S)/Cent\pi_{1}(S)$ .

C) If Cent $\pi_{1}(S)\simeq Z_{2}$ , then $\pi_{1}(S)$ is a dihedral group of order $4k$ for an
integer $k\geqq 2$ .

For this we note that the dihedral group $\Gamma_{k}$ has a non-trivial center if
and only if $k$ is even and the center of $\Gamma_{2k}$ is $\{1, \beta^{k}\}$ where $\Gamma_{2k}$ is generated
by $\alpha,$ $\beta$ among which the fundamental relations are $\alpha^{2}=\beta^{2k}=(\alpha\beta)^{2}=1$ .
Moreover, $\Gamma_{2k}$ can be regarded as a central extension of $Z_{2}$ by $\Gamma_{k}$ . Therefore,

since $\pi_{1}(S)$ is an extension of $\pi_{1}(\tilde{S})(\subset Cent\pi_{1}(S))$ by $\Gamma_{k}$ , we have Cent $\pi_{1}(S)$

$=Z_{a}$ or $=Z_{d}\oplus Z_{2}$ . Clearly it follows that the isomorphism Cent $\pi_{1}(S)$ t4 $Z_{d}\oplus Z_{2}$

for $d\geqq 2$ implies Cent $\pi_{1}(S)=\pi_{1}(\tilde{S})$ and that the isomorphism Cent $\pi_{1}(S)=Z_{d}$

for $d\geqq 1$ implies that Cent $\pi_{1}(S)=\pi_{1}(\tilde{S})$ or that $\pi_{1}(\tilde{S})=\{1\}$ and Cent $\pi_{1}(S)=Z_{2}$ .
From these assertions $A,$ $B$ , and $C$ follow at once.

Next we deal with the case $\pi=1$ and $s=0$ . If $c_{2}(S)=0$ , then we have $\kappa(S)=0$

and $h^{1.0}(S)\geqq 1$ . Hence, $S$ is a complex torus or a hyperelliptic surface or a
surface with the trivial canonical bundle and $b_{1}=3$ by virtue of Theorem 19
in [10, I]. Any hyperelliptic surface can be regarded as an elliptic surface
over $P^{1}$ . This was used by Enriques and Severi and has been rigorously
proved by T. Suwa in [13]. Hence, we can apply the previous consideration
to such a surface. It is clear that the fundamental group of a complex torus
is isomorphic to $Z^{4}$ . We denote by $G_{1}$ the fundamental group of type (1)

with $b_{1}=3$ . Then we have a realization of $G_{1}$ as a central extension:
$\{1\}\rightarrow Z^{2}\rightarrow G_{1}\rightarrow Z^{2}\rightarrow\{1\}$ .

We can easily prove this referring to the fact that $G_{1}$ can be recognized as
an affine transformation group: $G_{1}$ is generated by four affine transformations
$g_{1},$ $g_{2},$ $g_{s},$ $g_{4}$ ; the fundamental relations among them are $g_{i}g_{j}=g_{j}g_{i}$ for any
$1\leqq i\leqq 2,1\leqq j\leqq 4$ and $g_{8}g_{4}=g_{4}g_{3}g_{2}^{m}$ for an integer $m\geqq 1$ . Hence, by an easy
computation we have

Cent $G_{1}=\{g_{1}, g_{2}\}\rightarrow\sim z^{2}$ , $G_{1}/CentG_{1}\rightarrow\sim Z^{2}$ .
Now, if $c_{2}(S)\neq 0$ , we see that $S$ has singular fibers of type other than $mI_{0}$
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for an integer $m>1$ . Therefore, letting $\tilde{\Delta}=C$ and $\tilde{S}=S_{\Delta}\times\tilde{\Delta}$ we conclude that
$\pi_{1}(\tilde{S})$ is cyclic and $\pi_{1}(S)/\pi_{1}(\tilde{S})_{\rightarrow}\sim\pi_{1}(\Delta)_{\rightarrow}\sim Z^{2}$ . From this it follows that $\pi_{1}(S)/$

Cent $\pi_{1}(S)$ is an abelian group generated by at most two elements. Further $\cdot$

more, in the case in which $-2+\sum_{\nu=1}^{s}(1-\frac{1}{m_{\nu}})=0$, we make use of the following

LEMMA 2. Let $\Gamma$ be a group generated by $\tau_{1},$ $\cdots,$ $\tau_{s}$ among which there exist
the fundamen $fal$ relations: $\tau_{1}^{m_{1}}=$ $=\tau_{\epsilon}^{m_{S}}=\tau_{1}\cdots\tau_{s}=1$ , where the $m_{1},$ $\cdots,$ $m_{s}$ are
positive integers and satisfy the inequality: $-2+\sum_{\nu\supset 1}^{s}(1-\frac{1}{m})=0$ . Then $\Gamma$ has

$\nu$

the following properties:
1) $\Gamma$ can be realized as the extension below:

$\{1\}\rightarrow Z^{2}\rightarrow\Gamma\rightarrow Z_{i}\rightarrow\{1\}$ for $i=2,3,4,6$ .
2) Cent $\Gamma=\{1\}$ .
3) the structure of the abelianized group of $\Gamma$ are described as follows:

$\underline{|_{\frac{}{4}}^{\frac{class}{1}}\overline{\frac\frac{2}{3}|_{\frac{}{6}}^{\frac{i}{2}}\frac}}$

,

4) $[\Gamma, \Gamma]\simeq Z^{2}$ .
PROOF. We can verify this by a routine work.
Finally, let us consider the case in which $2\pi-2+\sum_{\nu=1}^{s}(1-\frac{1}{m_{\nu}})>0$ . Then,

by a similar argument as in the previous cases, we have a realization of
$\pi_{1}(S)$ as an extension of $N$ by $F$, where $N$ is one of $Z^{2},$ $Z,$ $Z_{d},$ $1\leqq d$ , and $F$

is a fuchsian group without parabolic elements. In this case, we need the
following two lemmas:

LEMMA 3 (Reidemeister). If two fuchsian groups without parabolic elements
are isomorphic to each other as abstract groups, then they have the common
signature.

PROOF. A proof of this lemma can be found in [12].

LEMMA 4. Any fuchsian group contain no normal abelian subgroups.
PROOF. Considering fixed points of a fuchsian group acting naturally on

the complex upper half plane, we can immediately prove this.
Summarizing the above results, we obtain the following classification of

elliptic surfaces by the structure of their fundamental groups:
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Let $S$ be an elliptic surface. We denote by $G,$ $C,$ $H,$ $K$, and $A$ , respectively,
the fundamental group of $S$, Cent $G,$ $G/C,$ $[H, H]$ , and $H/K$.

Table III
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Here, we used the following notation:
$D_{2k}=dihedral$ group of order $2k$ ,

$A_{4}=alternating$ group of four letters,
$S_{4}=symmetric$ group of four letters,
$A_{5}=alternating$ group of five letters,

$d^{\prime},$ $d,$ $d^{\prime\prime}$ are integers satisfying $2\leqq d^{\prime},$ $1\leqq d$ , and $d^{\prime\prime}=1,3,4,$ $\cdots$

(III) $G$ is neither abelian nor finite; $K$ is abelian.

Here, $B^{\prime}$ is an abelian group generated by at most 2 elements.

(IV) $G$ can be realized as an extension of $N$ by $F$, where $N$ is one of
$Z^{2},$ $Z,$ $Z_{x}((d\geqq 1)$ and $F$ is a fuchsian group without parabolic ele-
ments.

In this case $F$ is uniquely determined by $G$ in view of Lemma 4.
Furthermore, $\{\pi;m_{1}, \cdots, m_{s}\}$ is the signature of $F$ as a fuchsian
group by virtue of Lemma 3. Note that $K$ cannot be abelian.

Therefore, we can conclude that
(i) the genus of the base curve of an elliptic surface $S$ is a homotopy

invariant, if and only if $S$ is not hyperelliptic.
(ii) Plurigenera of $S$ are all homotopy invariants, if $S$ is a G-surface.

For the proof of the latter, it suffices to note that plurigenera of any
elliptic surface of general type can be computed in terms of its $p_{g},$ $q,$ $\pi$ and
$m_{1}$ , $\cdot$ .. , $m_{s}$ , referring to the formula (3) in Part II.
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\S 5. Proof of Theorem VII.

Setting $f(m)=P_{m}(S)$ and $\lambda=\varliminf_{m}f(m)/m$ , we get the invariants $\pi,$ $p_{g}$ as
follows:

$\lambda=2\pi-2+1+q+p_{g}+\sum_{\nu=1}^{s}(1-\frac{1}{m_{\nu}})$ ,

$1-\pi=\varlimsup_{m-\infty}(f(m)-\lambda m)$ ,

$p_{g}=f(1)$ .
Furthermore, we define $f_{1}(m)$ to be $f(m)-(2\pi-2+1-q+p_{g})m+\pi-1$ . Then
$f_{1}(m)=\sum_{\nu=1}^{s}[m(1-\overline{m}_{\nu}1-)]$ . Hence, we have $s=f_{1}(2),$ $s_{1}+2s_{1}^{\prime}=f_{1}(3)$ , where we
denote by $s_{1}$ the number of $m_{\nu}$ such that $m_{\nu}=2$ and we define s\’i to be $s-s_{1}$ .
Next, setting $f_{2}(m)=f_{1}(m)-s_{1}[-2m-]=\sum_{m_{\nu}\geqq 3}[m(1\frac{1}{m_{\nu}}$)], we have $f_{2}(4)=2s_{2}+3s_{2}^{\prime}$ ,

where $s_{2}=the$ number of $m_{\nu}$ such that $m_{\nu}=3$ , and we write $s_{2}^{\prime}=s-s_{1}-s_{2}$ .
Repeating these arguments, we arrive at the conclusion: $\{m_{1}, \cdots m_{s}\}$ can be
computed in terms of the values of $f$. Hence, comparing the table of the
fundamental groups of elliptic surfaces, we may say that the essential struc-
tures of the fundamental groups of elliptic surfaces are determined by the
values of their irregularities and plurigenera. We remark that for an elliptic

surface of general type, its irregularity is determined by its plurigenera.

\S 6. Proof of Corollary.

Let $S$ be a surface which has the same homotopy type as a surface in
the class (2). By Proposition 12 in Part II we see that $S$ is minimal. Hence
$S$ is either an elliptic surface or a surface classified in Table I in Part I.
Applying Theorem Vl we can prove the Corollary. Note that it has been
proved in pp. 26-27 in [9] that the class (2) contains the class (1). The proof
of Corollary for the class (3) is easy.

University of Tokyo
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