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Introduction

Let $G$ be a compact topological group, $D(G)$ the set of equivalence classes
of irreducible representations of G. (In this note the representation will mean
always the continuous complex representation.) The character ring $R(G)$ of
$G$ is the free abelian group generated by $D(G)$ with the ring structure induced
by the tensor product of representations. In the present note we provide a
method of finding a system of generators of the character ring $R(G)$ of a
compact (not necessarily connected) Lie group $G$ , assuming that the quotient
group $G/G_{0}$ of $G$ modulo the connected component $G_{0}$ of $G$ is a cyclic group
(Theorem 5). Our problem reduces to finding generators of a certain com-
mutative semi-group in the similar way as for a compact connected Lie group.

By applying the theorem we can know the structure of the character
ring of the orthogonal group 0(21) of degree 21 or of the double covering
group Pin (21) of 0(21). (See \S 3 for the definition of Pin (21).) Let $\lambda^{i}$ be the
i-th exterior power of the standard representation of $0(21),$ $\alpha$ the l-dimensional
representation of $O(2l)$ defined by $\alpha(x)=\det x$ for $x\in O(2l)$ . Let $\mu^{\iota}$ be the
irreducible representation of Pin (21) such that its restriction to the connected
component Spin $(2l)$ of Pin (21) splits into the direct sum of two half-spinor
representations of Spin $(2l)$ and $p$ ; Pin $(2l)\rightarrow O(2l)$ denote the covering homo-
morphism. Then we have

$R(O(2l))=Z[\lambda^{1}, \lambda^{2}, \cdots, \lambda^{\iota}, \alpha]$ with relations $\alpha^{2}=1$ and $\lambda^{\iota}\alpha=\lambda^{\iota}$ ,

$R(Pin(2l))=Z[\lambda^{1}\circ p, \lambda^{2}\circ p, \cdots, \lambda^{l- 1}\circ p, \mu^{l}, \alpha op]$

with relations $(\alpha\circ p)^{2}=1$ and $\mu^{\iota}(\alpha\circ p)=\mu^{l}$ .
The character ring of $O(2l)$ was formerly presented by Minami [7] by

different methods.
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\S 1. Induced representations.

Let $G$ be a compact topological group. We consider the set of equivalence
classes of representations of $G$ as a subset of the character ring $R(G)$ of $G$

and introduce an inner product $(, )$ on $R(G)$ in such a way that $D(G)$ is an
orthonormal basis of $R(G)$ . For an element $\chi\in R(G)$ , an element $\rho\in D(G)$

such that the integer $(\chi, \rho)$ , denoted by $m_{\rho}$ , is not zero is called a component
of $\chi$ . We call $m_{\rho}$ the multiplicity of the component $\rho$ in $\chi$ . For a represen-
tation $\rho$ of $G$ , the equivalence class of $\rho$ will be denoted by $[\rho]$ .

Let $h:H\rightarrow G$ be a continuous homomorphism from a compact group $H$

into a compact group $G$ . Then $h$ induces a ring homomorphism $ R(G)\rightarrow R(H\rangle$

by the composition of $h$ , denoted by $h^{*}$ , and $R(H)$ becomes an $R(G)$-module
by means of the homomorphism $h^{*}$ .

Let $G$ be a compact group, $H$ a closed subgroup of $G$ with the finite
index $[G:H],$ $i:H\rightarrow G$ the inclusion homomorphism. For a representation
$\sigma;H\rightarrow GL(V)$ of $H$, the space

$\Gamma(G, V)^{H}=$ { $f:G\rightarrow V;f(gh)=\sigma(h)^{-1}f(g)$ for $g\in G,$ $h\in H$ }

is a complex vector space of dimension $[G, H]\dim$ V. $G$ acts linearly on
$\Gamma(G, V)^{H}$ by $(gf)(g^{\prime})=f(g^{-1}g^{\prime})$ for $g,$ $g^{\prime}\in G$ and we have a representation
of $G$ on $\Gamma(G, V)^{H}$ , which is called the representation induced by $\sigma$ . The space
$\Gamma(G, V)^{H}$ is naturally identified with the space of sections of the vector bundle
$G\times HV$ over $G/H$ associated with the representation $\sigma$ of $H$ and the action
of $G$ on $\Gamma(G, V)^{H}$ is nothing but the one induced from the natural action of
$G$ on $G\times_{H}V$ . The equivalence class of this representation depends only on
the equivalence class of $\sigma$ so that we have a map $i_{*}:$ $D(H)\rightarrow R(G)$ , which is
linearly extended to an $R(G)$-homomorphism $i_{*}:$ $R(H)\rightarrow R(G)$ (cf. Atiyah [1]).

Then we have the Frobenius reciprocity:

$(i^{*}\rho, \sigma)=(\rho, i_{*}\sigma)$ for $\rho\in R(G),$ $\sigma\in R(H)$ .

Now we assume that $H$ is a normal subgroup of $G$ with the finite index.
Then the quotient group $A=G/H$ of $G$ modulo $H$ is a finite group and the
natural projection $\pi$ : $G\rightarrow A$ is a homomorphism. $\hat{A}$ denotes the character
group $Hom(A, C^{*})$ of $A$ . We imbed $\hat{A}$ into $D(G)$ by the product-preserving
map $\alpha\leftrightarrow\alpha\circ\pi$ . Then $\hat{A}$ acts on $D(G)$ , therefore on $R(G)$ , by the multiplication
of elements of $\hat{A}$ . For a representation $\sigma:H\rightarrow GL(V)$ of $H$ and $g\in G$ , another
representation $\sigma^{\prime}$ : $H\rightarrow GL(V)$ of $H$ is defined by

$\sigma^{\prime}(g^{\prime})=\sigma(g^{-1}g^{\prime}g)$ for $g^{\prime}\in H$ .
The equivalence class of $\sigma^{\prime}$ depends only on the equivalence class of $\sigma$ and
on $\pi(g)$ so that $A$ acts on $D(H)$ , therefore on $R(H)$ , by conjugations. The
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followings are immediate consequences of definitions:

E$(1)$ $ i^{*}(\alpha\cdot\rho)=i^{*}\rho$ for $\alpha\in\hat{A}$ , $\rho\in R(G)$ ,

(2) $ a\cdot(i^{*}\rho)=i^{*}\rho$ for $a\in A$ , $\rho\in R(G)$ ,

(3) $ i_{*}(a\cdot\sigma)=i_{*}\sigma$ for $a\in A$ , $\sigma\in R(H)$ ,

(4) $\alpha\cdot(i_{*}\sigma)=i_{*}\sigma$ for $\alpha\in\hat{A}$ , $\sigma\in R(H)$ .
THEOREM 1. (Clifford) Let $\rho\in D(G)$ . Take $\sigma_{1}\in D(H)$ such that $(i^{*}\rho, \sigma_{1})$

$>0$ and put $m(\rho)=(i^{*}\rho, \sigma_{1}),$ $\Phi_{\rho}=A\cdot\sigma_{1}\subset D(H)$ . Then both $m(\rho)$ and $\Phi_{\rho}$ depend
only on $\rho$ and we have the decomposition

$ i^{*}\rho=m(\rho)\sum_{\sigma-\mathcal{O}_{\rho}}\sigma$
.

For the proof, see Feit [3].

Let $A\backslash D(H)$ (resp. $\hat{A}\backslash D(G)$) denotes the set of A-orbits in $D(H)$ (resp.
\^A-orbits in $D(G))$ . The map $\varphi:D(G)\rightarrow A\backslash D(H)$ defined by $\rho\rightarrow\Phi_{\rho}$ is surjective
from the Frobenius reciprocity and induces a surjective map

$\Phi:\hat{A}\backslash D(G)\rightarrow A\backslash D(H)$

in view of (1). Note that $m(\rho)$ is constant on each \^A-orbit in $D(G)$ .
THEOREM 2. (Clifford-Iwahori) If the quotient group $A=G/H$ is com-

mutative, then the map $\Phi$ is bijective. The inverse map of $\Phi$ is given as follows.
Let $\sigma\in D(H)$ . Take $\rho_{1}\in D(G)$ such that $(i_{*}\sigma, \rho_{1})>0$ and put $m(\sigma)=(i_{*}\sigma, \rho_{1})$ ,
$\Psi_{\sigma}=\hat{A}\cdot\rho_{1}\subset D(G)$ . Then both $m(\sigma)$ and $\Psi_{\sigma}$ depend only on $\sigma$ and we have the
decomposition

$ i_{*}\sigma=m(\sigma)\sum_{\rho\in\Psi_{\sigma}}\rho$ .

The map $\psi:D(H)\rightarrow\hat{A}\backslash D(G)$ defined by $\sigma-\Psi_{\sigma}$ induces a map
$\Psi:A\backslash D(H)\rightarrow\hat{A}\backslash D(G)$

in view of (3). The map $\Psi$ is the inverse of $\Phi$ . In particular:
1) If $A$ is a cyclic group, then $m(\rho)=m(\sigma)=1$ for any $\rho\in R(G)$ and

$\sigma\in R(H)$ .
2) If the order $|A|$ of $A$ is a prime number $p$ , then for the orbits $\Phi_{\rho}$ and

$\Psi_{\sigma}$ corresponding by the bijection $\Phi$ it happens one of following two cases:
a) $|\Phi_{\rho}|=p$ and $|\Psi_{\sigma}|=1$ ,
b) $|\Phi_{\rho}|=1$ and $|\Psi_{\sigma}|=p$ ,

where $|S|$ means the cardinality of the set $S$.
PROOF. This theorem can be proved in the same way as the classical

Clifford theorem for $A=Z_{2}$ (Iwahori-Matsumoto [5]). But we give here
another proof.

Let $\sigma\in D(H)$ . For $\rho=\alpha\cdot\rho_{1}\in\Psi_{\sigma}$ we have $(i_{*}\sigma, \rho)=(\sigma, i^{*}(\alpha\rho_{1}))=(\sigma, i^{*}\rho_{1})$

$=(i_{*}\sigma, \rho_{1})$ . Therefore it suffices to show that if $\rho\in D(G)$ with $(i_{*}\sigma, \rho)>0$
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then $\rho\in\Psi_{\sigma}$ . Note that
$ i_{*}1=\sum_{\alpha\in\hat{A}}\alpha$

since $A$ is commutative. It follows that

$i_{*}(i^{*}\rho_{1})=i_{*}((i^{*}\rho_{1})1)=\rho_{1}(i_{*}1)=\rho_{1}\sum_{\alpha\in\hat{A}}\alpha=\sum_{\alpha\in\hat{A}}\alpha\cdot\rho_{1}$
.

On the other hand, the Frobenius reciprocity yields that $(i^{*}\rho_{1}, \sigma)>0$ so that
$\rho$ is a component of $i_{*}(i^{*}\rho_{1})$ . Thus $\rho\in\hat{A}\cdot\rho_{1}=\Psi_{\sigma}$. The above simple proof
was communicated by Professor H. Nagao.

1) See Feit [3].
2) Recall (cf. Atiyah [1]) the general equality $\sum m_{\rho}^{2}=|A_{\sigma}|$ for $\sigma\in D(H)$ ,

$ i_{*}\sigma=\sum_{\rho\in D(G)}m_{\rho}\rho$ and $A_{\sigma}=\{a\in A;a\cdot\sigma=\sigma\}$ . In our case we have $|\Psi_{\sigma}|=|A_{\sigma}|$

$=|A|/|\Phi_{\rho}|$ by the above equality and 1), so that $|\Phi_{\rho}||\Psi_{\sigma}|=p$ , which yields
the statement 2). $q$ . $e$ . $d$ .

Note that $m(\sigma)$ is also constant on each A-orbit in $D(H)$ in view of (3)
and that $m(\rho)$ and $m(\sigma)$ take the same value on the orbits corresponding by
$\Phi$ from the Frobenius reciprocity.

REMARK. We denote by $R(G)^{\hat{A}}$ (resp. $R(H)^{A}$ ) the submodule of $R(G)$

(resp. $R(H)$) of elements fixed by $\hat{A}$ (resp. $A$). From (2) and (4) we have
$i^{*}R(G)\subset R(H)^{A}$ and $ i_{*}R(H)\subset R(G)^{A}\wedge$ . If $A$ is cyclic, then by Theorem 2, 1)

$i_{*}R(H)=R(G)^{\hat{A}}$

It is also known (Atiyah [1]) that if the order $|A|$ of $A$ is square free (A is
not necessarily commutative), then

$i^{*}R(G)=R(H)^{A}$

\S 2. Character ring of a compact Lie group.

Let $G$ be a compact Lie group, $G_{0}$ the connected component of $G$ . Take
a maximal torus $T_{0}$ of $G_{0}$ . Note that $D(T_{0})$ is a commutative group by the
tensor product. Let $\mathfrak{g}$ and $t$ be the Lie algebras of $G_{0}$ and $T_{0}$ . Take an
Ad G-invariant inner product $\langle$ , $\rangle$ on $\mathfrak{g}$ . Let $\Delta$ be the root system of the
complexification $\mathfrak{g}^{C}$ of $\mathfrak{g}$ with respect to $t,$ $i$ . $e$ . the set of non-zero elements
$\alpha$ of the dual space $t^{*}$ of $t$ such that

$\mathfrak{g}_{a}^{C}=$ { $X\in \mathfrak{g}^{C}$ ; $[H,$ $X]=2\pi\sqrt{-1}\alpha(H)X$ for any $H\in t$ }

is not zero. Take a fundamental system $\Pi=\{\alpha_{1}, , \alpha_{\iota}\}$ of $\Delta$ and fix it once
and for all. The duality defined by means of $\langle, \rangle$ identifies $t$ with $t^{*}$ so that
the root system $\Delta$ may be considered as a subset of $t$ . Taking a basis
$\{h_{1}, \cdots, h_{m}\}$ of the center of $\mathfrak{g}$ , we introduce a lexicographic order $>$ on $t^{*}$

by the basis $\{\alpha_{1}$ , $\cdot$ .. , $\alpha_{l},$
$h_{1}$ , $\cdot$ .. , $h_{m}\}$ of $t$ . Such order on $t^{*}$ will be called a

linear order associated with $\Pi$ . We put
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$Z_{0}=$ { $\lambda\in t^{*};$ $\lambda(H)\in Z$ for any $H\in t$ such that $\exp H=1$ }
and

$D_{0}=$ { $\lambda\in Z_{0}$ ; $\lambda(\alpha_{i})\geqq 0$ for any $\alpha_{i}\in\Pi$ }.

Then $Z_{0}$ is a lattice of $l^{*}$ and isomorphic with $D(T_{0})$ by the correspondence
$\lambda-\rangle e^{2_{\overline{\ovalbox{\tt\small REJECT}}}.\sqrt{}-1\lambda}$ , where $ e^{2-\sqrt{}}-1\lambda$ is the character of $T_{0}$ defined by $e^{2-\sqrt{}\lambda}-1(\exp H)=$

$e^{2-\sqrt{}}-1\lambda(H)$ for $H\in t$ . Thus we can introduce an order $>$ on $D(T_{0})$ by means
of the order $>$ on $Z_{0}$ . $D_{0}$ is a commutative semi-group. We put

$D_{d}(T_{0})=\{e^{2\pi\sqrt{}^{-}\lambda}-1 ; \lambda\in D_{0}\}$ .
An element of $D_{a}(T_{0})$ will be called a dominant (with respect to $\Pi$) irreducible
representation of $T_{0}$ .

Now we define a closed subgroup $T$ of $G$ with the connected component
$T_{0}$ by

$T=$ { $g\in G$ ; Ad $gt=t$ , Ad $ g\Pi=\Pi$ }.

The quotient group $T/T_{0}$ is naturally isomorphic with the quotient group
$G/G_{0}$ . This follows from $G_{0}\cap T=T_{0}$ , the conjugateness in $G_{0}$ of maximal
tori of $G_{0}$ and that of fundamental systems of $\Delta$ under the normalizer of $T_{0}$

in $G_{0}$ . We put $A=G/G_{0}=T/T_{0}$ . The adjoint representation Ad induces a
homomorphism $\tau;A\rightarrow GL(t)$ . We define a finite subgroup $C$ of $GL(t)$ by $C=\tau A$ .
It leaves $Z_{0}$ and $D_{0}$ invariant so that we can define the set $Z=C\backslash Z_{0}$ (resp.
$D=C\backslash D_{0})$ of C-orbits in $Z_{0}$ (resp. in $D_{0}$). We introduce a linear order $>$ on
$Z$ by defining that $\Lambda>\Lambda^{\prime}$ for $\Lambda,$ $\Lambda^{\prime}\in Z$ if ${\rm Max}\Lambda>{\rm Max}\Lambda^{\prime}$ . We introduce also
an operation $+$ on $Z$ by defining that for $\Lambda,$ $\Lambda^{\prime}\in Z,$ $\Lambda+\Lambda^{\prime}$ is the C-orbit
through ${\rm Max}\Lambda+{\rm Max}\Lambda^{\prime}$ . Note that ${\rm Max}(\Lambda+\Lambda^{\prime})={\rm Max}\Lambda+{\rm Max}\Lambda^{\prime}$ . The
operation $+induces$ a commutative semi-group structure on $D$ .

Now we consider the following commutative diagram of inclusions:

$j$

$G\prec--T$
$ i_{G_{0}}\uparrow$ $\uparrow i_{T_{0}}$

$G_{0^{<-=}}T_{0}$
$]_{0}$

Then we have the following commutative diagram of ring homomorphisms:

$i_{G_{0}\downarrow\downarrow}^{*}R(G)+R(T)_{)^{0}}R(G_{0})+R(T_{0}^{i_{T}^{*}}\overline{j_{0}^{*}}\underline{j_{*}}$

It is classical that $j_{0}^{*}$ is injective. The homomorphism $j^{*}$ is also injective
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since for any $g\in G$ there exists $g_{0}\in G_{0}$ such that $g_{0}gg_{0}^{-1}\in T$ (Gantmacher [4]).

The inclusions $\hat{A}\subset D(G)$ and $\hat{A}\subset D(T)$ defined in \S 1 are compatible with
the injection $j^{*}:$ $R(G)\rightarrow R(T)$ , i. e. $ j^{*}\alpha=\alpha$ for $\alpha\in\hat{A}$ . Let $\delta\in D(T)$ . From
Theorem 1 there exist a positive integer $m(\delta)$ and $\Lambda_{\delta}\in Z$ such that

$i_{\tau_{0}}^{*}\delta=m(\delta)\sum_{\lambda\in\Lambda_{\delta}}e^{2\pi\sqrt{-1}\lambda}$ .

A surjective map $\varphi:D(T)\rightarrow Z$ is defined by the correspondence $\delta\mapsto\Lambda_{\delta}$ . For
$\delta,$ $\delta^{\prime}\in D(T)$ , we say that $\delta$ is strictly higher than $\delta^{\prime}$ if $\varphi(\delta)>\varphi(\delta^{\prime})$ and it will
be denoted by $\delta\gg\delta^{\prime}$ . We put

$D_{d}(T)=\{\delta\in D(T) ; \varphi(\delta)\in D\}$ .
An irreducible representation $\delta$ of $T$ is called dominant (with respect to $\Pi$)

if the equivalence class of $\delta$ belongs to $D_{d}(T)$ .
Let $\rho:G\rightarrow GL(V)$ be an irreducible representation of $G$ . The holomorphic

extension $G^{C}\rightarrow GL(V)$ of $\rho$ to the complexification $G^{C}$ of $G$ or its differential
$\mathfrak{g}^{C}\rightarrow \mathfrak{g}\mathfrak{l}(V)$ will be denoted by the same letter $\rho$ and put

(5) $V_{0}=$ { $v\in V;\rho(X)v=0$ for any $X\in \mathfrak{m}$ }

$=$ { $v\in V;\rho(\exp X)v=v$ for any $X\in \mathfrak{m}$ } ,

where $\mathfrak{m}=\sum_{\alpha\in\Delta,\alpha>0}\mathfrak{g}_{a}^{c}$ . Then $V_{0}$ is T-invariant since Ad $T$ leaves $\mathfrak{m}$ invariant,

so that we have a representation $\delta_{\rho}$ : $T\rightarrow GL(V_{0})$ of $T$. We shall prove later
that $\delta_{\rho}$ is a dominant irreducible representation of $T$. The equivalence class
of $\delta_{\rho}$ depends only on the equivalence class of $\rho$ . It is called the Cartan
component of $\rho$ or of the equivalence class $[\rho]$ of $\rho$ . The Cartan component

of $\rho\in D(G)$ will be denoted by $\delta_{\rho}$ and the map $D(G)\rightarrow D_{d}(T)$ defined by $\rho-r\delta_{\rho}$

will be denoted by $\gamma$ . The classical representation theory of a compact con-
nected Lie group yields the following

THEOREM 3. 1) The Cartan component $\delta_{\rho}$ of $\rho\in D(G_{0})$ belongs to $D_{a}(T_{0})$

and the map $\gamma_{0}$ : $D(G_{0})\rightarrow D_{d}(T_{0})$ defined by $\rho\mapsto\delta_{\rho}$ is an A-equivariant bijection.
(For $\lambda\in D_{0},$ $\gamma_{0}^{-1}(e^{2\pi\sqrt{-1}\lambda})$ will be denoted by $\rho_{\lambda}.$)

2) For $\rho\in D(G_{0})$ the Cartan component $\delta_{\rho}$ of $\rho$ is the highest component
among components of $j_{0}^{*}\rho\in R(T_{0})$ and has the multiplicity 1.

Now we shall prove that the former representation $\delta_{\rho}$ : $T\rightarrow GL(V_{0})$ of $T$

induced by an irreducible representation $\rho:G\rightarrow GL(V)$ of $G$ is irreducible
and dominant. Let $W_{0}$ be a T-invariant subspace of $V_{0}$ . Then the subspace
$W=\{\rho(g_{0})s;g_{0}\in G_{0}, s\in W_{0}\}_{C}$ of $V$ spanned by $\rho(G_{0})W_{0}$ is G-invariant because
of $G=TG_{0}$ . Decompose $W_{0}$ into the direct sum of l-dimensional $T_{0}$-invariant
subspaces: $W_{0}=W_{1}+\cdots+W_{m}$ , where $T_{0}$ acts on $W_{i}$ by character of
$T_{0}(1\leqq i\leqq m)$ . Then the subspace $V_{i}$ of $W$ spanned by $\rho(G_{0})W_{i}$ is a $G_{0^{-}}$

irreducible $G_{0}$-invariant subspace with the Cartan component and $W$
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is the direct sum of the $V_{i}’ s$ . Therefore we have

$W_{0}=$ { $v\in W;\rho(X)v=0$ for any $X\in \mathfrak{m}$ } $=W\cap V_{0}$ .
It follows from the G-irreducibility of $V$ that $W_{0}=0$ or $V_{0}$ . Thus $V_{0}$ is 7-
irreducible. We have

$i_{\tau_{0}}^{*}[\delta_{\rho}]=m([\delta_{\rho}])$ $\Sigma$
$e^{2\tau\sqrt{-1}\lambda}$ .

$\lambda\in\Lambda$

$\mathfrak{c}\delta_{\rho^{j}}$

It follows from Theorem 3 and (5) that

$i_{G_{0}}^{*}[\rho]=m([\delta_{\rho}])_{\lambda\in\Lambda}\sum_{\mathfrak{c}\delta_{\rho}1}\rho_{\lambda}$

and so $\Lambda_{[\delta_{\rho}]}\subset D_{0}$ . Thus $\delta_{\rho}$ is dominant.
Theorem 3 is true also for a general compact Lie group $G$ in the following

sense.
THEOREM 4. 1) (Kostant) The map $\gamma:D(G)\rightarrow D_{(}t(T)$ defined by $\rho^{-\rangle}\delta_{\rho}$ is

an $\hat{A}$-equivariant bijection such that

$i_{G_{0}}^{*}\rho=m(\delta_{\rho})\sum_{\lambda\in\Lambda_{\delta_{\rho}}}\rho_{\lambda}$

.

Therefore we have the following commutative diagram:

$\Phi_{G}\downarrow\downarrow\Phi_{T}^{(T_{0})_{)}}\hat{A}\backslash D(G)\hat{A}\backslash DA\backslash D(G_{0})\rightarrow A\backslash D_{d}^{a}(T\overline{\Gamma_{0}}\underline{\Gamma}$

where vertical maps $\Phi_{G}$ and $\Phi_{T}$ are the surjective maps defined in \S 1, horizontal
maps $\Gamma$ and $\Gamma_{0}$ are the bijective maps induced by $\gamma$ and $\gamma_{0}$ .

2) For $\rho\in D(G)$ the Cartan component $\delta_{\rho}$ of $\rho$ is the strictly highest com-
ponent among components of $j^{*}\rho\in R(T)$ and has the multiplicity 1.

PROOF. 1) This was stated in Kostant [6] without proof. We prove it
here for the sake of completeness.

Let $\delta:T\rightarrow GL(V_{0})$ be a dominant irreducible representation of $T$. De-
compose $V_{0}$ into the direct sum of l-dimensional $T_{0}$ -invariant subspaces:

$V_{0}=W_{1}+\cdots+W_{m}$ ,

where $T_{0}$ acts on $W_{i}$ by character $e^{2r\sqrt{-1}\lambda_{i}}\in D_{d}(T_{0})(1\leqq i\leqq m)$ . Take one of
the $\lambda_{i}’ s$ , say $\lambda_{1}$ , and let $\rho_{1}$ : $G_{0}\rightarrow GL(V_{1})$ be an irreducible representation of $G_{0}$

with the Cartan component $e^{2\pi\wedge-1\lambda_{1}}$ (Theorem 3). We imbed $W_{1}$ into $V_{1}$ as a
$T_{0}$-invariant subspace. The natural map $T\times T_{0}W_{1}\rightarrow G\times_{G_{0}}V_{1}$ is a T-equi-
variant injective bundle map over $A=T/T_{0}=G/G_{0}$ so that we have a
T-equivariant imbedding $\Gamma(T, W_{1})^{T_{0}}\subset\Gamma(G, V_{1})^{G_{0}}$ . From the Frobenius recipro-
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city : $((i_{\tau_{0}})_{*}e^{2\pi\sqrt{- 1}\lambda_{1}}, [\delta])=(i_{\tau_{0}}^{*}[\delta], e^{2\overline{7}}\sqrt{}- 1\lambda_{1})>0$ , we have a T-irreducible T-
invariant subspace $V_{0}^{\prime}$ of $\Gamma(T, W_{1})^{T_{0}}$ and a T-equivariant isomorphism
$t\theta:V_{0}\rightarrow V_{0}^{\prime}$ . Thus we have a T-equivariant injective homomorphism $\theta:V_{0}\rightarrow$

$\Gamma(G, V_{1})^{G_{0}}$ . The subspace $V^{\prime}$ of $\Gamma(G, V_{1})^{G_{0}}$ spanned by $G_{0}\theta(V_{0})$ is G-invariant
because of $G=TG_{0}$ so that we have a representation $\rho^{\prime}$ : $G\rightarrow GL(V^{\prime})$ of $G$ .
For $g_{0}\in G_{0},$ $s\in V_{0}$ and $t\in T$ we have

$(\rho^{\prime}(g_{0})\theta(s))(t)=\theta(s)(g_{0^{-1}}t)=\theta(s)(t(t^{-1}g_{0}^{-1}t))=\rho_{1}(t^{-1}g_{0}^{-1}t)^{-1}\theta(s)(t)$ .
It follows seeing $\theta(s)(t)\in W_{1}$ and Ad $t^{-1}\mathfrak{m}=\mathfrak{m}$ that

$\rho^{\prime}(X)\theta(s)=0$ for any $X\in \mathfrak{m}$ and $s\in V_{0}$ .
Thus we have
$f(6)$ $V_{0}^{\prime}=$ { $f\in V^{\prime}$ ; $\rho^{\prime}(X)f=0$ for any $X\in \mathfrak{m}$ },

$i_{G_{0}}^{*}[\rho^{\prime}]=\rho_{\lambda_{1}}+\cdots+\rho_{\lambda_{m}}$ .
The representation $\rho^{\prime}$ is G-irreducible since for a non-trivial G-invariant sub-
space $W^{\prime}$ of $V^{\prime},$ $W^{\prime}\cap V_{0}^{\prime}$ is also a non-trivial T-invariant subspace of $V_{0}^{\prime}$ in
view of (6). The equivalence class of $\rho^{\prime}$ depends only on the equivalence
class of $\delta$ since $\lambda_{i}\in A\cdot\lambda_{1}$ for any $i$ (Theorem 1).

Next we prove that if a dominant irreducible representation $\delta:T\rightarrow GL(V_{0})$

of $T$ is obtained from an irreducible representation $\rho:G\rightarrow GL(V)$ of $G$ by (5),

then the above obtained representation $\rho^{\prime}$ is equivalent to $\rho$ . Let

$i_{\tau_{0}}^{*}[\delta]=e^{2\pi\sqrt{-1}\lambda_{1}}+\cdots+e^{2\pi\sqrt{}\overline{-1}\lambda_{m}}$ .
Then (5) implies

$i_{G_{0}}^{*}[\rho]=\rho_{\lambda_{1}}+\cdots+\rho_{\lambda_{m}}$ .
Together with (6) we have a $G_{0}$-equivariant isomorphism $\theta:V\rightarrow V^{\prime}$ which is
an extension of the T-equivariant isomorphism $\theta:V_{0}\rightarrow V_{0}^{\prime}$ . For $t\in T,$ $g_{0}\in G_{0}$

and $s\in V_{0}$ we have

$\theta(\rho(t)\rho(g_{0})s)=\theta(\rho(tg_{0}t^{-1})\rho(t)s)=\rho^{\prime}(tg_{0}t^{-1})\theta(\rho(t)s)$

$=\rho^{\prime}(tg_{0}t^{-1})\rho^{\prime}(t)\theta(s)=\rho^{\prime}(tg_{0})\theta(s)$

$=\rho^{\prime}(t)\rho^{\prime}(g_{0})\theta(s)=\rho^{\prime}(t)\theta(\rho(g_{0})s)$ .
It follows that $\theta$ is a G-equivariant isomorphism since $V$ is spanned by $\rho(G_{0})V_{0}$

and $G=TG_{0}$ . Thus we have proved that the map $\gamma$ is bijective.
The other statements are clear from the construction.
2) Let

$ j^{*}\rho=\sum_{\delta\in D(T)}m_{\delta}\delta$

and
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$i_{\tau_{0}}^{*}\delta=m(\delta)\sum_{\lambda\in\Lambda_{\delta}}e^{2\tau\sqrt{-}1\lambda}$ .
Then

$i_{\tau_{0}}^{*}j^{*}\rho=\sum_{\delta}m_{\delta}m(\delta)_{\lambda\subset}\sum_{-\Lambda_{\delta}}e^{2r\sqrt{}- 1\lambda}$ .

On the other hand, we have by 1)

$i_{Go}^{*}\rho=m(\delta_{\rho})\sum_{\lambda\in\Lambda_{\delta}}\rho_{\lambda}$

so that
$j_{0}^{*}i_{G_{0}}^{*}\rho=m(\delta_{\rho})\sum_{\lambda e\Lambda_{\delta}}j_{0}^{*}\rho_{\lambda}$

.

It follows from Theorem 3 that the highest component of $j_{0}^{*}i_{G_{0}}^{*}\rho\in R(T_{0})$ is
$e^{2\pi\sqrt{}-1\lambda_{0}}-$ , where $\lambda_{0}={\rm Max}\Lambda_{\delta_{o}}$ , with the multiplicity $m(\delta_{\rho})$ . Comparing the
highest components of $ i_{\tau_{0}}^{*}j^{*}\rho$ and $ j_{0}^{*}i_{G_{0}}^{*}\rho$ , we know that $m_{\delta_{\rho}}=1$ and that $m_{\delta}\neq 0$ ,
$\delta\neq\delta_{\rho}$ imply $\Lambda_{\delta}<\Lambda_{\delta_{\rho}}$ . This completes the proof of 2). q. e. $d$ .

For each $\Lambda\in Z$ the complete inverse $\varphi^{-1}(\Lambda)$ of $\Lambda$ for the map $\varphi:D(T)\rightarrow Z$

defined by $\delta-\Lambda_{\delta}$ is a finite subset of $D(T)$ from the Frobenius reciprocity.

We introduce on each $\varphi^{-1}(\Lambda)$ an arbitrary linear order and fix it once and
for all. We introduce a linear order $>$ on $D(T)$ as follows: For $\delta,$ $\delta^{\prime}\in D(T)$ ,
$\delta>\delta^{\prime}$ if and only if $\delta\gg\delta^{\prime}$ or $\varphi(\delta)=\varphi(\delta^{\prime}),$ $\delta>\delta^{\prime}$ .

LEMMA 1. The highest (with respect to the above order) component of an
element $\chi\in j^{*}R(G)\subset R(T)$ belongs to $D_{a}(T)$ .

PROOF. Let
$ x=j^{*}\sum_{\rho\in 1’(G)}m_{\rho}\rho$ ,

$\delta_{\rho_{0}}={\rm Max}_{\rho}\delta_{\rho}m\neq 0$

and
$ j^{*}\rho=\sum_{\delta_{L}^{\prime}D(T)}m_{o,\delta}\delta$ ,

so that
$ x=\sum_{\rho}m_{\rho}\sum_{\delta}m_{\rho,\delta}\delta$ .

It follows from Theorem 4 that the highest component of $\chi$ is $\delta_{\rho_{0}}$ , which
belongs to $D_{d}(T)$ , with the multiplicity $m_{\rho 0}$ . $q$ . $e$ . $d$ .

Henceforth we assume that the quotient group $A=G/G_{0}$ is a cyclic group.
Let $\alpha$ be a generator of the character group $\hat{A}$ of $A$ . Then Theorem 2
implies that $m(\delta)=1$ for any $\delta\in D(T)$ and that $\Phi_{T}$ and $\Phi_{G}$ are bijections so
that $\varphi(\delta)=\varphi(\delta^{\prime})$ for $\delta,$ $\delta^{\prime}\in D(T)$ if and only if there exists a non-negative
integer $n$ such that $\alpha^{n}\delta=\delta^{\prime}$ .

LEMMA 2. Let $\delta,$ $\delta^{\prime}\in D(T)$ . Then $\delta\delta‘\in R(T)$ has the strictly highest com-
ponent $\delta^{\prime\prime}$ with the multiplicity 1 such that $\varphi(\delta)+\varphi(\delta^{\prime})=\varphi(\delta^{\prime\prime})$ .

PROOF. Let $\lambda_{0}={\rm Max}\Lambda_{\delta}$ and $\lambda_{0}^{\prime}={\rm Max}\Lambda_{\delta^{\prime}}$ . Then the highest component

of
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$(i_{\tau_{0}}^{*}\delta)(i_{\tau_{0}}^{*}\delta^{\prime})=\sum_{(\lambda,\lambda^{\prime})\in\Lambda_{\delta}\times\Lambda_{\delta^{\prime}}}e^{2\pi\sqrt{}- 1(\lambda+\lambda^{\prime})}\in R(T)$

is $e^{2\pi\sqrt{}-\overline{1}(\lambda_{0}+\lambda_{0}^{\prime})}-$ with the multiplicity 1. On the other hand, if $\delta\delta^{\prime}=\sum_{\epsilon\in D(T)}m_{\text{\’{e}}}\epsilon$

we have

$i_{\tau_{0}}^{*}(\delta\delta^{\prime})=\sum_{\epsilon}m_{\epsilon}\sum_{\mu\subset\Lambda_{\epsilon}}e^{2r\sqrt{}-1\mu}$ .

Comparing the highest components of $(i_{\tau_{0}}^{*}\delta)(i_{\tau_{0}}^{*}\delta^{\prime})$ and $i_{\tau_{0}}^{*}(\delta\delta^{\prime})$ we know that
there exists $\delta^{\prime\prime}\in D(T)$ such that $m_{\delta},$ $=1$ and $\Lambda_{\delta}+\Lambda_{\delta},$ $=\Lambda_{\delta}$ , and that $\delta^{\prime\prime}$ is
strictly highest in $\delta\delta^{\prime}$ . $q$ . $e$ . $d$ .

LEMMA 3. 1) Let $\delta_{1},$ $\delta_{2},$ $\delta^{\prime}\in D(T)$ such that $\delta_{1}\ll\delta_{2}$ and $\delta_{1^{\prime}}^{\prime}$ (resp. $\delta_{2}^{\prime\prime}$ ) the
strictly highest component of $\delta_{1}\delta^{\prime}$ (resp. of $\delta_{2}\delta^{\prime}$). Then $\delta_{1^{\prime\prime}}\ll\delta_{2^{\prime\prime}}$ .

2) Let $\delta_{1},$ $\delta_{2},$ $\delta_{1}^{\prime},$ $\delta_{2}^{\prime}\in D(T)$ such that $\delta_{1}\ll\delta_{2},$ $\delta_{1}^{\prime}\ll\delta_{\Delta}^{\prime}$ and $\delta_{1}^{\prime\prime}$ (resp. $\delta_{2}^{\prime\prime}$ ) be the
strictly highest component of $\delta_{1}\delta_{1}^{\prime}$ (resp. of $\delta_{2}\delta_{2}^{\prime}$). Then $\delta_{1^{\prime\prime}}\ll\delta_{2}^{\prime\prime}$ .

PROOF. 1) We have by Lemma 2 $\varphi(\delta_{1}^{\prime\prime})=\varphi(\delta_{1})+\varphi(\delta^{\prime})$ and $\varphi(\delta_{2}^{\prime\prime})=\varphi(\delta_{2})+$

$\varphi(\delta^{\prime})$ . Together with $\varphi(\delta_{1})<\varphi(\delta_{2})$ we have $\varphi(\delta_{1}^{\prime\prime})<\varphi(\delta_{2}^{\prime\prime})$ .
2) We have by Lemma 2 $\varphi(\delta_{1^{\prime\prime}})=\varphi(\delta_{1})+\varphi(\delta_{1}^{\prime})$ and $\varphi(\delta_{2^{\prime\prime}})=\varphi(\delta_{2})+\varphi(\delta_{2}^{\prime})$ .

Together with the inequalities $\varphi(\delta_{1})<\varphi(\delta_{2})$ and $\varphi(\delta_{1}^{\prime})<\varphi(\delta_{2}^{\prime})$ we have $\varphi(\delta_{1^{\prime\prime}})<$

$\varphi(\delta_{2}^{\prime\prime})$ . q. e. d.
LEMMA 4. Let $\chi_{i}(1\leqq i\leqq m)$ be an element of $R(G)$ such that $j^{*\chi_{i}}$ has the

strictly highest component $\delta_{i}\in D_{d}(T)$ with the multiplicity 1 and $n_{i}(1\leqq i\leqq m)$

be a non-negative integer. Then $j^{*}(x_{1}^{n_{1}} x_{m^{m}}^{n})$ has the strictly highest component
$\delta\in D_{d}(T)$ with the multiplicity 1 such that $\varphi(\delta)=n_{1}\varphi(\delta_{1})+\cdots+n_{m}\varphi(\delta_{m})$ .

PROOF. The existence of the strictly highest component $\delta$ follows from
Lemma 3. The other statements follow from Lemma 2. $q$ . $e$ . $d$ .

THEOREM 5. Assume that $A=G/G_{0}$ is a cyclic group. Let $\{\Lambda_{1}$ , $\cdot$ .. , $\Lambda_{m}\}$

be a system of generators of the semigroup $D,$ $\delta_{i}(1\leqq i\leqq m)$ an element of
$D_{a}(T)$ with $\varphi(\delta_{i})=\Lambda_{i},$ $\chi_{i}(1\leqq i\leqq m)$ an element of $R(G)$ such that $j^{*\chi_{t}}$ has the
strictly highest component $\delta_{i}$ with the multiplicity 1. (Existence of such $\chi_{i}$ is
assured by Theorem 4.) Let $\alpha$ be a generator of the character group $\hat{A}$ of $A$ .
Then the character ring $R(G)$ of $G$ is generated by $\chi_{1},$

$\cdots,$
$\chi_{m},$ $\alpha$ .

PROOF. Take any element $\chi\in R(G)$ . Let $\delta_{0}$ be the highest component of
$j^{*\chi}$ . $m_{\delta_{0}}$ denotes the multiplicity of $\delta_{0}$ in $1^{*\chi}$ Since $\delta_{0}\in D_{d}(T)$ (Lemma 1),

we have non-negative integers $n_{1},$ $\cdots,$ $n_{m}$ such that $n_{1}\Lambda_{1}+\cdots+n_{m}\Lambda_{m}=\varphi(\delta_{0})$ .
On the other hand, Lemma 4 implies that $j^{*}(\chi_{1^{1}}^{\eta}\ldots\chi_{m^{nm}})$ has the strictly highest
component, say $\delta$ , with the multiplicity 1 such that $n_{1}\Lambda_{1}+\cdots+n_{m}\Lambda_{m}=\varphi(\delta)$ .
Thus there exists a non-negative integer $n$ such that $\alpha^{n}\delta=\delta_{0}$ . It follows
that the highest component of $1^{*}(m_{\delta_{0}}\alpha^{n}x_{1}^{n_{1}}\cdots x_{m^{n_{m}}})=m_{\delta_{0}}\alpha^{n}j^{*}(x_{1}^{n_{1}}\cdots x_{m^{n_{m}}})$ is $\delta_{0}$

with the multiplicity $m_{\delta_{0}}$ . Therefore the highest component of $i^{*}(\chi-m_{\delta_{0}}\alpha^{n}x_{1}^{n_{1}}$

$x_{m}^{n_{m}})$ is lower than $\delta_{0}$ . Thus we can show inductively that $\chi$ is a polynomial
of $\chi_{1},$

$\cdots,$
$\chi_{m},$ $\alpha$ with coefficients in $Z$, recalling that $j^{*}$ is injective. $q$ . $e$ . $d$ .
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THEOREM 6. Assume that $A=G/G_{0}$ is a cyclic group. Let $\{\Lambda_{1}, \cdots , \Lambda_{m}\}$ be

an independent system of $D,$ $i$ . $e.\sum_{\iota=1}^{m}n_{i}\Lambda_{i}=\sum_{l=l}^{m}n_{i}^{\prime}\Lambda_{i}$ , where the $n_{i}$ , n\’i are non-

negative integers, implies $n_{i}=n_{i}^{\prime}$ for any $i$ . Let $\delta_{i}(1\leqq i\leqq m)$ be an element of
$D_{d}(T)$ with $\varphi(\delta_{i})=\Lambda_{i},$ $\chi_{i}$ an element of $R(G)$ such that $j^{*\chi_{i}}$ has the strictly
highest component $\delta_{i}$ with the multiplicity 1. Then the system $\{\chi_{1}, \cdots, \chi_{m}\}$ has
no relations in $R(G)$ .

PROOF. Let $F\in Z[X_{1}, \cdots, X_{m}]$ be a relation for $\{\chi_{1}, \cdots \chi_{m}\},$ $i$ . $e$ . $F=$

$\Sigma a_{n_{1}\cdots n_{m}}X_{1}^{n_{1}}\cdots X_{m}^{nm}(a_{n_{1}\cdots n_{m}}\in Z)$ satisfies $F(\chi_{1}, \cdots, \chi_{m})=0$ . Suppose that $F\neq 0$ .
Let $\Sigma n_{i}^{0}\Lambda_{i}$ be the highest among the $\Sigma n_{i}\Lambda_{i}$ such that $a_{n_{1}\cdots n_{m}}\neq 0$ . The as-
sumption for $\{\Lambda_{1}, \cdots, \Lambda_{m}\}$ implies the uniqueness of such $(n_{1}^{0}, \cdots, n_{m}^{0})$ , so that
$a_{n_{1}\cdots nm}\neq 0,$ $(n_{1}, \cdots n_{m})\neq(n_{1}^{0}, \cdots n_{m}^{0})$ imply $\sum n_{i}\Lambda_{i}<\sum n_{i}^{0}\Lambda_{i}$ . It follows from
Lemma 4 that $j^{*}F(\chi_{1}, \cdots, \chi_{m})$ has the strictly highest component with the
multiplicity

$a_{n_{1}^{0}\cdots n_{m}^{0}}$
, which contradicts $F(\chi_{1}, \cdots \chi_{m})=0$ . $q$ . $e$ . $d$ .

\S 3. Character rings of $O(n)$ and Pin $(n)$ .
We recall the notion of the group Pin $(n)$ (Atiyah-Bott-Shapiro [2]). Let

$C_{n}$ be the Clifford algebra over $R$ of degree $n$ associated with the positive
definite quadratic form, $i$ . $e$ . the associative algebra over $R$ generated by
1, $e_{1}$ , , $e_{n}$ with relations $e_{i}^{2}=1(1\leqq i\leqq n)$ and $e_{i}e_{j}+e_{j}e_{i}=0(1\leqq i<j\leqq n)$ .
$C_{n}^{*}$ denotes the group of invertible elements of $C_{n}$ . For $i=0,1,$ $C_{n^{i}}$ denotes
the subspace of $C_{n}$ spanned by the $e_{i_{1}}e_{\iota_{2}}\cdots e_{i_{r}}(1\leqq i_{1}<i_{2}<\ldots<i_{r}\leqq n,$ $r\equiv i$

mod2). Then $C_{n^{0}}$ is a subalgebra of $C_{n}$ and $C_{n}=C_{n}^{0}+C_{n^{1}}$ (direct sum). Let
$\iota$ be an automorphism of $C_{n}$ defined by $ x^{0}+x^{1}-\rangle$ $x^{0}-x^{1}$ for $x^{i}\in C^{\oint_{\eta}}(i=0,1)_{r}$

$x-x^{t}$ be an anti-automorphism of $C_{n}$ defined by $e_{i_{1}}e_{i_{2}}\ldots e_{i_{r}}\rightarrow e_{i_{r}}\cdots e_{i_{2}}e_{i_{1}}$

$(1\leqq i_{1}<i_{2}<\cdots<i_{r}\leqq n)$ . Put $\overline{x}=\iota(x^{t})$ for $x\in C_{n}$ and define the norm $\nu$ of
$x\in C_{n}$ by $\nu(x)=\overline{x}x$ . We shall identify $R^{n}$ with the subspace of $C_{n}$ spanned
by $e_{1},$ $\cdots,$ $e_{n}$ and $R$ with that spanned by 1. Then we have a natural homo-
morphism $p$ from the twisted Clifford group $\Gamma_{n}$ defined by

$\Gamma_{n}=\{s\in C_{n}^{*} ; \iota(s)R^{n}s^{-1}\subset R^{n}\}$

into $GL(n, R)$ . It is known that the norm $\nu$ induces a homomorphism
$\nu$ : $\Gamma_{n}\rightarrow R^{*}$ . We put

Pin $(n)=\{s\in\Gamma_{n} ; |\nu(s)|=1\}$

and
Spin $(n)=Pin(n)\cap C_{n}^{0}$ .

Both Pin $(n)$ and Spin $(n)$ are compact Lie groups with respect to the topology
induced by that of $C_{n}$ . For $n\geqq 2$ , Spin $(n)$ is the connected component of
Pin $(n)$ and Pin $(n)/Spin(n)\cong Z_{2}$ . For $n\geqq 3$ , Spin $(n)$ is simply connected. We
have the following exact sequences:
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$p$

$1\rightarrow R^{*}-\Gamma_{n}\rightarrow O(n)\rightarrow 1$

$1\rightarrow Z_{2}\rightarrow Pin(n)\rightarrow^{p}O(n)\rightarrow 1$

$1\rightarrow Z_{2}\rightarrow Spin(n)\rightarrow^{p}SO(n)\rightarrow 1$

where $Z_{2}=\{\pm 1\}\subset R^{*}$ . Our Pin $(n)$ is slightly different from Pin $(n)$ in [2],
which was defined by the Clifford algebra associated with the negative definite
quadratic form. For example, our Pin (1) is isomorphic with $Z_{2}\times Z_{2}$ , while
Pin(l) in [2] is isomorphic with $Z_{4}$ .

If $n=2l+1$ is odd, we have isomorphisms

$0(2l+1)\cong SO(2l+1)\times Z_{2}$

and
Pin $(2l+1)\cong Spin(2l+1)\times Z_{2}$

so that we shall confine ourselves to consider 0(21) or Pin (21).
Let first $G=O(2l)(1\geqq 1)$ . Then $G_{0}=SO(2l)$ and $A\cong Z_{2}$ .

$T_{0}=\{\left(\begin{array}{ll}r(t_{1}) & \\ & r(t_{l})\end{array}\right)$ ; $t_{i}\in R\}$

where

$r(t_{i})=\left(\begin{array}{ll}cos2\pi t_{i} & -sin2\pi t_{i}\\sin2\pi t_{i} & cos2\pi t_{i}\end{array}\right)$

is a maximal torus of $G_{0}$ . The Lie algebra $t$ of $T_{0}$ is identified with

$t=\{H(x_{1}, \cdots, x_{l})=\left(\begin{array}{ll}R(x_{1}) & \\ & \dot{R}(x_{\iota})\end{array}\right)$ ; $x_{i}\in R\}$

where

$R(x_{i})=\left(\begin{array}{ll}0 & -2\pi x_{i}\\2\pi x_{i} & 0\end{array}\right)$ .

The linear form on $i$ taking value $x_{i}$ at $H(x_{1}, \cdots, x_{\iota})$ will be denoted by
$x_{i}(1\leqq i\leqq l)$ . Then the root system is

$\Delta=\{\pm(x_{i}\pm x_{j});1\leqq i<j\leqq l\}$

and
$\Pi=\{\alpha_{i}=x_{i}-x_{i+1}(1\leqq i\leqq l-1), \alpha_{l}=x_{l-1}+x_{\iota}\}$

is a fundamental system of $\Delta$ . The order $x_{1}>\ldots>\chi_{l}>0$ is a linear order
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associated with $\Pi$ . We have

$D_{0}=\{\sum m_{i}x_{i} ; m_{i}\in Z, m_{1}\geqq m_{2}\geqq\ldots\geqq m_{l-1}\geqq|m_{\iota}|\}$ .
$\tau;A\rightarrow C$ is an isomorphism and $C\cong Z_{2}$ is generated by the transformation
$\tau_{0}$ of 1*defined by $\tau_{0}x_{i}=x_{i}(1\leqq i\leqq l-1)$ and $\tau_{0}x_{\iota}=-x_{\iota}$ . Thus the set

$\{\sum m_{i}x_{i} ; m_{i}\in Z, m_{1}\geqq m_{2}\geqq\ldots\geqq m_{l-1}\geqq m_{\iota}\geqq 0\}$

is a complete set of representatives of $D=C\backslash D_{0}$ . If we put $\Lambda_{i}=C(x_{1}+\cdots+x_{i})$

$(1\leqq i\leqq l),$ i. e.

$\Lambda_{i}=\{\{X_{1}\{X_{1}I\ldots I_{x_{l-1}+x_{\iota}}^{x_{i}\}}, x_{1}+^{i}\cdots+x-x_{\iota}\}1\leqq\leqq l-1_{l-1}$

$i=l$ ,

then $\{\Lambda_{1}, \cdots, \Lambda_{m}\}$ is a system of generators of the semigroup $D$ . Let
$\rho_{0}\in D(O(2l))$ be the equivalence class of the standard representation of 0(21),
$\lambda^{i}(\rho_{0})\in D(O(2I))$ the i-th exterior power of $\rho_{0}$ . Then

$i_{SO(2l)}^{*}\lambda^{i}(\rho_{0})=$

$i=l$

$1\leqq i\leqq l-1$

so that $\varphi(\delta_{\lambda^{i}(\rho_{0^{)}}})=\Lambda_{i}(1\leqq i\leqq l)$ . Moreover the determinant representation
$\alpha\in D(O(2l))$ generates $\hat{A}$ . It follows from Theorem 5 that $R(O(2l))$ is generated
by $\lambda^{1}(\rho_{0})$ , $\cdot$ .. , $\lambda^{\iota}(\rho_{0}),$ $\alpha$ . More precisely we have

THEOREM 7.
$R(O(21))=Z[\lambda^{1}(\rho_{0}), \cdots \lambda^{l}(\rho_{0}), \alpha]$

with relations $\alpha^{2}=1$ and $\lambda^{\iota}(\rho_{0})\alpha=\lambda^{l}(\rho_{0})$ .
PROOF. Let $R=Z[\lambda^{1}(\rho_{0}), \cdots \lambda^{\iota}(\rho_{0})]$ be the subring of $R(O(2l))$ generated

by $\{\lambda^{i}(\rho_{0});1\leqq i\leqq l\}$ . Then $R(O(2l))$ is generated by $\alpha$ over $R$ .
The highest components of $j_{0}^{*}i_{so(2l)}^{*}\lambda^{i}(\rho_{0})$ are $e^{2\pi\prime-1\lambda}$ for $\lambda=x_{1}+\cdots+x_{i}$

$(1\leqq i\leqq l)$ , which are linearly independent. It follows from Theorem 6 that
$\{i_{SO(2l)}^{*}\lambda^{i}(\rho_{0});1\leqq i\leqq l\}$ has no relations in $R(SO(21))$ . Therefore $\{\lambda^{i}(\rho_{0});1\leqq i\leqq l\}$

has no relations and the homomorphism $i_{so(2l)}^{*}$ is injective on $R$ .
Thus it remains to prove that the ideal

$I=\{F\in R[X];F(\alpha)=0\}$

of $R[X]$ is generated by $X^{2}-1$ and $\lambda^{\iota}(\rho_{0})X-\lambda^{l}(\rho_{0})$ . Since the first polynomial
clearly belongs to $I$ and the second belongs to $I$ in view of Theorem 2, 2),

it suffices to show that if $F=fX+g(f, g\in R)$ is a polynomial in $I$ with
degree 1, then $g=-f$ and $f$ is divisible by $\lambda^{l}(\rho_{0})$ . From $0=i_{SO(2l)}^{*}F(\alpha)=i_{so(2l)}^{*}f$

$+i_{so(2l)}^{*}g=i_{so(2l)}^{*}(f+g)$ and that $i_{so(2l)}^{*}$ is injective on $R$ , we have $g=-f$ and
thus $f\alpha=f$. Let $f=h+k\lambda^{\iota}(\rho_{0})$ , where $h\in Z[\lambda^{1}(\rho_{0}), \cdot.. , \lambda^{l-1}(\rho_{0})]$ and $k\in R$ .
$f\alpha=f$ implies $h\alpha=h$ . We shall show that $h=0$ . Suppose that
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$h=\Sigma a_{n_{1}\cdots n_{l- 1}}\lambda^{1}(\rho_{0})^{n_{1}}\ldots\lambda^{\iota- 1}(\rho_{0})^{n_{l-1}}$ $(a_{n_{1}\cdots n_{l-1}}\in Z)$

is not zero. Let $\sum_{=l0}^{l-1}n_{i}^{0}(x_{1}+\cdots+x_{i})$ be the highest among the $\sum_{\iota=1}^{\iota-1}n_{i}(x_{1}+ +x_{i})$

such that $a_{n_{1}\cdots n_{l-1}}\neq 0$ . It follows from Lemma 4 that $j^{*}h$ has the strictly highest

component, say $\delta$ , with the multiplicity 1 such that $\Lambda_{\delta}=\{\sum_{\iota=1}^{\iota-1}n_{i}^{0}(x_{1}+\cdots+x_{i})\}$ .
On the other hand, $h\alpha=h$ implies that $\alpha\delta=\delta$ , which contradicts $|\Lambda_{\delta}|=1$ in
view of Theorem 2, 2). $q$ . $e$ . $d$ .

Now let $G=Pin(21)(1\geqq 1)$ . Then $G_{0}=Spin(2l)$ and $A=G/G_{0}\cong Z_{2}$ . We
have $\nu=\alpha\circ p$ and $\hat{A}$ is generated by $\nu$ . Let $\hat{\rho}_{0}\in D(Pin(21))$ be the equivalence

class of the covering homomorphism $p$ ; Pin (21) $\rightarrow 0(21)$ and $\lambda^{i}(\hat{\rho}_{0})\in D(Pin(21))$

the i-th exterior power of $\hat{\rho}_{0}$ . Take an irreducible $C_{2l}^{0C}$ -module $M_{0}$ and let
$M=C_{2t}^{c}\otimes_{C_{2l}^{0C}}M_{0}$ , where $C_{2l}^{0C}$ (resp. $C_{2}^{c_{\iota}}$) denotes the complexification of $C_{2l}^{0}$ (resp.

of $C_{2l}$). Then $M$ is an irreducible Pin (21)-module, whose equivalence class
will be denoted by $\mu^{l}$ . The restriction $i_{Spin(2l)}^{*}\mu^{\iota}$ is the sum of two half-spinor
representations of Spin $(2l)$ . Then we have the following theorem in the same
way as for 0(21), but replacing $x_{1}+\cdots+x_{l-1}\pm x_{\iota}$ by $\frac{1}{2}(x_{1}+\cdots+x_{l-1}\pm x_{\iota})$ .

THEOREM 8. $R(Pin(21))=Z[\lambda^{1}(\hat{\rho}_{0}), \cdot.. , \lambda^{l-1}(\hat{\rho}_{0}), \mu^{l}, \nu]$ with relations $\nu^{2}=1$

and $\mu^{\iota}\nu=\nu$ .
Osaka University
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