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\S 0. Introduction.

In this note we shall study minimal immersions of Riemannian manifolds
in some Riemannian manifolds with certain properties. In particular, positions
of compact minimal submanifolds (with oriented boundary or without bound-
ary) in complete Riemannian manifolds with some curvature conditions will
be our main concern.

One of the essential tools in our study here is an integral-geometric in-
equality, to the effect that if the Laplacian $\Delta f$ of a smooth function $f$ defined
over a compact Riemannian manifold (without boundary) has definite sign,
then $f$ is constant everywhere, where the Laplace-Beltrami operator is taken
with respect to the induced Riemannian metric on the minimal submanifold
under consideration. Hermann [7] used this to prove a uniqueness theorem
for minimal submanifolds in a complete Riemannian manifold of non-positive
curvature, which is a clue for us to prove that a compact minimal submanifold
in a product Riemannian manifold $V^{k}\times R^{m},$ $V^{k}$ being compact, is contained
in $V^{k}\times\{p\},$ $p\in R^{m}$ .

Another tool is a well-known concavity property, used first by Tompkins
[19], by which various results on isometric immersions are obtained, for
example, when an ambient manifold is of non-positive curvature $[10, 14]$ or
when an ambient manifold is of positive curvature and compact [5, 6, 17].

In this context, we shall study a compact minimal submanifold lying in some
special position in a compact Riemannian manifold of positive curvature.

Throughout this note, we shall employ definitions and notation as those
of [3]. In \S 1, a proof of a theorem of Hermann will be given with some
corrections to his original one. In \S 2, we shall consider Hermann’s condition
in the case where the ambient manifold is of non-negative curvature and of
product type $V\times R^{m}$ . In \S 3, the concavity condition for a compact minimal
hypersurface in a Riemannian manifold of positive curvature will be con-
sidered.
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\S 1. Hermann’s theorem.

Let $M$ be a connected and complete Riemannian m-manifold of non-positive
curvature, $B$ and $N$ a k-dimensional totally geodesic submanifold and an n-
dimensional compact oriented minimal submanifold with oriented boundary
$\partial N$ such that $\partial N\subset B$ . Hermann’s theorem states that if there is a smooth map1)
$X:N\rightarrow TM$ in such a way that for each point $p\in N$ the geodesic $a:[0,1]\rightarrow M$

defined by $a(t)=\exp_{p}tX(p)$ has an end point $a(1)\in B$ at which $a$ is orthogonal
to $B$ , then we have $N\subset B$ .

In the following, we shall state an outline of the proof for later use.
Putting

$f(p)=\Vert X(p)\Vert^{2}$ , $p\in N$ ,

we shall show that
$\Delta^{N}f|_{p}=0$ , for any $p$ in $N$ ,

where $\Delta^{N}$ is the Laplace-Beltrami operator with respect to the Riemannian
metric on $N$. Take an arbitrary but fixed point $p$ in $N$ and a normal geodesic
$c:[-\epsilon, \epsilon]\rightarrow N$ with $c(O)=p$ . We then consider a l-parameter variation defined
by

$\alpha(u, t)=\exp_{c(u)}t\frac{X(c(u))}{\Vert X(p)||}$ , $u\in(-\epsilon, \epsilon)$ , $t\in[0, \Vert X(p)\Vert]$ ,

where we may assume $X(p)\neq 0$ , for in general we have $\Delta^{N}f|_{q}=0$ if $X(q)=0$ .
Putting $l=\Vert X(p)\Vert,$ $x(p)=X^{\prime}(p)+X^{\prime\prime}(p)$ , where $X^{\prime}(p)\in N_{p}$ and $X^{\prime\prime}(p)\in N_{p}^{\perp}$ ,
and $Y(t)=\alpha_{*}(\partial/\partial u)(O, t),$ $T(t)=\alpha_{*}(\partial/\partial t)(O, t)$ , we get

$\frac{1}{2}\frac{d}{du}f\circ c(u)|_{u=0}=\langle Y, T\rangle|_{0}^{l}$ ,

$\frac{1}{2}\frac{d^{2}}{du^{2}}f\circ c(u)|_{u=0}=\int_{0}^{\iota}(\langle Y^{\prime}, Y^{\prime}\rangle-K(Y, T)\Vert Y_{1}\Vert^{2})dt$

$+\frac{1}{l}S_{X’(p)}^{N}(Y(0), Y(0))$ ,

where $S_{\gamma}^{N}$ is the shape operator of $N$ with respect to the normal vector $V$

and $K(Y, T)$ is the sectional curvature and $Y_{\perp}=Y-\langle Y, T\rangle T$. $Th,erefore$ if
we introduce normal coordinates of $N$ with origin $p\in N$ and $c_{i}$ : $[-\epsilon, \epsilon]\rightarrow N$,

with $c_{i}(0)=p$, are normal geodesics such that $\langle\dot{c}_{i}(0),\dot{c}_{j}(0)\rangle=\delta_{ij}$ , we have

1) The condition $(c)$ in the assumption of Theorem in [7] must be rewritten as
stated above. In fact, end points of the family of geodesics may vary smoothly with
their starting points, even if the map $X$ is not continuous. For example, on the
Clifford torus we can easily construct such a non-continuous $X$ , where $B$ is a closed
geodesic and $N$ is a geodesic segment whose extremals are in $B$ .
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$\frac{1}{2}\Delta^{N}f|_{p}=\sum_{i=0}^{n}\int_{0^{l}}(\langle Y_{i}^{\prime}, Y_{i}^{\prime}\rangle-K(Y_{i}, T)\Vert Y_{i}\perp\Vert^{2})dt$

$+\frac{1}{l}\sum_{i=1}^{n}S_{X(p)}^{N,}(Y_{i}(0), Y_{i}(0))$ ,

where we use the variations $\alpha_{i},$ $Y_{i}$ , and $Y_{i}\perp$ in the same way as $\alpha,$ $Y,$ $Y_{\perp}$ .
Since $N$ is minimal, $M$ is of non-positive curvature and $p$ is arbitrary, we get
$\Delta^{N}f|_{p}\geqq 0$ for every $p$ in $N$. Assume that $X|_{\partial N}\equiv 0$ . Then by Green-Stokes
theorem, we get $f\equiv 0$ and hence $X\equiv 0$ on $N$. It follows $N\subset B$ .

REMARK. In the original statement of the theorem by Hermann, the
condition $X|_{\partial N}\equiv 0$ is missing, without which a counter example will be con-
structed on the Clifford torus.

The condition automatically holds when $ N\cap C(B)=\phi$ , where $C(B)$ is the
cut locus of $B$ . Furthermore it is true when $M$ is simply connected as well.
However this is not true when $M$ is not simply connected, as shown on the
Clifford torus.

\S 2. Applications of Hermann’s theorem.

In this section, we shall first consider the case where $M$ is of non-negative
curvature and $B$ is a compact totally geodesic hypersurface. If $M$ is non-
compact, a position of $B$ in $M$ is determined in [16]. In fact, by Theorem 2
of [16], every point of $B$ has a neighborhood $U$ in which a unit normal vector
field $Z$ is defined smoothly such that for every point $q\in U$ the geodesic
defined by $ c:[0, \infty$) $\rightarrow M,$ $c(t)=\exp_{q}tZ(q)$ is a ray from $B$ to $\infty$ . Hence if $B$

has no unit normal vector field defined globally over $B$ , every normal geodesic
$\lambda_{x}$ : $[0, \infty$) $\rightarrow M,$ $\lambda_{x}(0)=x\in B$ , such that $\lambda_{x}(0)$ is normal to $B$ at $x$ , is a ray from
$M$ to $\infty$ . Then, for each $t>0$ the set $B_{t}=\{\lambda_{x}(\pm t)|x\in B,\dot{\lambda}_{x}(0)\in B_{x}^{\perp}\}$ is a
compact totally geodesic hypersurface, and the map $\phi:B_{t}\rightarrow B$ defined by
$\phi(\lambda_{x}(\pm t))=x$ is a local isometry, from which $B_{t}$ is isometric to $B_{t^{\prime}}$ for any
$t,$ $t^{\prime}>0$ . Then we see that $M$ is isometric to $ B_{t}\times R/\psi$ , where $\psi:B_{t}\times R\rightarrow B_{t}\chi R$

is an isometric involution defined by $\psi(\lambda_{x}(t), v)=(\lambda_{x}(-t), -v),$ $\lambda_{x}(t)\in B_{t},$ $v\in R$ .
Then we get

THEOREM 2.1. Let $M$ be a complete and non-compact Riemannian m-
manifold of non-negative curvature, $B$ a compact totally geodesic hypersurface.
Assume that $B$ has no unit normal vector field defined globally over B. Then
every compact minimal submanifold $N$ is contained either in $B$ , or else in some
$B_{t},$ $t>0$ .

PROOF. Let $\tilde{M}$ be the double covering of $B_{t}\times R$ of $M$ for a fixed $t>0,$ $\pi$

be the covering projection. Then $\pi^{-1}(N)$ is also a minimal submanifold of $M$.
Let $V$ be a connected component of $\pi^{-1}(N)$ , which is compact and minimal
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in $M$. Let $(y, t)$ be a local coordinate of $M$. There is a large $t_{0}\in R$ such
that $ V\cap B_{\iota_{0}}=\phi$ . Then, for any $p\in V$ , the smooth function $f$ defined by $f(p)$

$=t(p)-t_{0}$ and the smooth map $X:V\rightarrow T\tilde{M},$ $x(p)=(t(p)-t_{0})\frac{\partial}{\partial t}(y(p), t(p))$ are
well defined. Since we have $K(\partial/\partial t, Z)=0$ for any $Z\in TM$, we obtain

$\Delta^{N}f|_{p}=\sum_{t=1}^{m-1}\int_{0^{||X(p)||}}$ $\langle Y_{i}^{\prime}, Y_{i}^{\prime}\rangle dt\geqq 0$ .

This implies $f=c$ , therefore $V$ is contained in $B_{c- t_{0}}$ .
Now, under the situation of Theorem 2.1, if $B$ has a unit normal vector

field defined globally over $B$ , then $B$ devides $M$ into two parts $B\times(O, \infty)$ and
the bounded part $ D=M-B\times[0, \infty$) each of which has boundary B. (We need
not consider the case where $D$ is unbounded, because this implies $M=B\times R$

and the argument is essentially covered in Theorem 2.1.) If $N$ intersects
with $D$ , we know nothing about the position of $N$. If $ N\cap D=\phi$ holds, then
$N$ is contained in some $B\times t_{0}$ .

According to [2], there is a soul which is a compact totally geodesic
submanifold without boundary and a totally convex set in a complete and
non-compact Riemannian manifold of non-negative curvature. It seems to the
authors that the relation between souls of $M$ and compact minimal sub-
manifolds is not yet investigated, in which we will be particularly interested.
If $M$ is compact, there will be no information about the positions of compact
minimal submanifolds in $M$.

We shall next consider the case where $M$ is of product type.
THEOREM 2.2. Let $B$ be a compact Riemannian k-manifold and put $M=$

$B\times R^{m-k}$ . If $N$ is a compact minimal submanifold (without boundary) of $M$, then
$N\subset B\times t_{0}$ holds for a certain $t_{0}\in R^{m- k}$ . Hence if the dimension of $N$ is not
less than $k,$ $N$ is isometric to $B$ .

PROOF. Since $N$ is compact, there is $t_{1}\in R^{m- k}$ such that $N\cap B\times t_{1}=\phi_{-}$

Then $N$ is locally expressed by $(y, t^{1}, \cdots , t^{m-k})$ . Let $X^{\alpha}$ : $N\rightarrow TM$ be defined
by $X^{\alpha}(p)=(t^{\alpha}(p)-t_{1}^{a})\frac{\partial}{\partial t^{a}}(y(p), t^{1}(p),$ $\cdots$ $r^{m- k}(p))$ and $f^{\alpha}$ : $N\rightarrow R$ by $f^{\alpha}(p)=$

$r^{\alpha}(p)-r_{1}$ . We see that $f^{\alpha}=c^{\alpha}$ (constant) for $\alpha=1,2$ , $\cdot$ .. , $m-k$ . This implies.
$N\subset B\times(t_{0}-c)$ , where $c=(c^{1}$ , $\cdot$ .. , $c^{m-k})$ , from which we obtain $\dim N\leqq k$ .

Taking account of the theorem above, we see that the next statement is
clear.

COROLLARY 2.3. Let $B$ and $M$ be those of Theorem 2.2 and $N$ a compact
oriented minimal submanifold with oriented boundary $\partial N$ such that $\partial N\subset B$ .
Then $N\subset B$ .

Theorem 2.2 states that every compact minimal submanifold in $M=$
$B\times R^{m-k}$ must satisfy $\dim N\leqq\dim B$ . Hence if $\dim N=\dim B,$ $N$ is isometric
to $B$ .
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\S 3. $M$ of positive curvature.

Throughout this section, let $M$ be a complete Riemannian manifold of
positive curvature and $N$ be a compact minimal submanifold without boundary
of $M$. Suppose that $M$ is non-compact. Then, since, in general, there is no
minimal immersion of a compact Riemannian manifold $N$ in a non-compact,
complete Riemannian manifold [17], $M$ is necessarily compact and hence there
exists a positive minimum $\delta$ of curvature of $M$. If $N$ is a hypersurface and
$M$ is of positive Ricci curvature, then $M$ must be also compact by [17]. First
of all, we shall prove

LEMMA 3.1. Let $r$ be a point on $M$ such that $d(r, N)={\rm Max}\{d(N, x)|x\in M\}$ .
Then we have $d(r, N)\leqq\pi/2\sqrt{\delta}$. In particular, if $N$ is a hypersurface and there
exists a point $r$ in $M$ such that $d(r, N)=\pi/2\sqrt{\delta}$, then there exists a point $p$ in
$N$ at which all eigenvalues of the shape operator are zero, $i$ . $e.,$ $p$ is a geodesic
point.

PROOF. Let $p\in N$ be the point such that $d(r, p)=d(r, N)=l$ , and $c:[0,1]$

$\rightarrow M$ be a shortest geodesic from $r$ to $p$ . For an arbitrary unit tangent vector
$X$ in $N_{p}$ , let $X(t)$ be the parallel vector field defined by $X(l)=X$. Suppose
that 1 is greater than $\pi/2\sqrt{\delta}$ . We have a l-parameter variation $\alpha$ along $c$

which is associated with the vector field $Y(t)=\sin\frac{\pi t}{2l}X(t)$ . Then, Proposition

3 of [1] shows that $L^{\prime\prime}(O)<0$ , which is a contradiction. If 1 is equal to
$\pi/2\sqrt{\delta}$, we must have $ K(X(t), c(t))=\delta$ for all $t\in[0, \pi/2\sqrt{\delta}]$ and $S^{N}(X, X)=0$

for any $X\in N_{p}$ .
Now, we shall consider $M$ admitting a point $r$ in $M$ such that $d(r, N)$

$=\pi/2\sqrt{\delta}$ . By virtue of the theorem due to the second named author (Prop-

osition 2.1 of [15]), if the diameter $d(M)$ of $M$ is greater than $\pi/2\sqrt{\delta}$ , then
$M$ is simply connected. Then we have the following

THEOREM 3.2. Let $M$ be a complete Riemannian m-manifold whose curvature
is everywhere not less than $\delta(>0)$ and $N$ a compact minimal hypersurface without
boundary. Assume that there is a point $r$ in $M$ such that $d(r, N)=\pi/2\sqrt{\delta}$ and
$M$ is not simply connected. Then $M$ is isometric to the real projective space
$PR^{m}(\delta)$ of constant curvature $\delta$ and $N$ is also isometric to the real projective
space $PR^{m-1}(\delta)$ .

PROOF. By Proposition 2.1 in [15] for every point $q$ in $N$, we have
$d(r, q)=\pi/2\sqrt{\delta}$ , from which it follows that $q$ is the furthest point from $r$ in
$M$. Therefore we obtain $C(r)\subset N$. For any fixed point $q$ in $N$ and a shortest
geodesic $c:[0, \pi/2\sqrt{\delta}]\rightarrow M$ from $r$ to $q$ , we see that $ K(Z,\dot{c}(t))=\delta$ for any $Z$

in $M_{c(t)}$ such that $\langle Z,\dot{c}(t)\rangle=0,$ $Z\neq 0$ and any $t\in[0, \pi/2\sqrt{\delta}]$ . This fact
implies that $r$ is not conjugate to $q$ along $c$ . Hence $q$ and $r$ can be joined
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by another shortest geodesic $c_{1}:[0, \pi/2\sqrt{\delta}]\rightarrow M$. Because of $\dot{c}(\pi/2\sqrt{}\delta\rangle$

$\neq\dot{c}_{1}(\pi/2\sqrt{\delta})$ , we must have $\dot{c}(\pi/2\sqrt{\delta})=-c_{1}(\pi/2\sqrt{\delta})$ by the hypothesis of
dimension. We next prove that $C(r)$ is contained in $N$. Let $S_{r}^{m-1}(\pi/2\sqrt{\delta})$ be
a hypersphere in $M_{r}$ with center origin and radius $\pi/2\mathcal{F}\delta$ . We observe that
$\exp_{r}(S_{r}^{m-1}(\pi/2\sqrt{\delta}))\supset N$. If we put $W=(\exp_{r}S_{r}^{m-1}(\pi/2\sqrt{\delta}))^{-1}(N)$ , then we also
see that $\exp_{r}W$ is locally regular and hence it is an open map. The compact-

ness (without boundary) implies $W=S_{r}^{m-1}(\pi/2\sqrt{\delta})$ . This fact shows that
every geodesic starting from $r$ and of length $\pi/\sqrt{\delta}$ is a geodesic loop (or a
closed geodesic segment without self-intersection). Then by a theorem due
to Nakagawa [11] we have $\pi_{1}(M)=Z_{2}$ . Making use of the well-known com-
parison theorem of Rauch, we obtain that $M$ is of constant curvature $\delta$ . For
details, see [12]. Hence $M$ is isometric to the real projective space $PR^{m}(\delta)$ .
By virtue of Lemma 3.1, we see that $N$ is a totally geodesic hypersurface,
from which $N$ is isometric to $PR^{m- 1}(\delta)$ . Q. E. D.

THEOREM 3.3. Let $M$ be a complete Riemannian m-manifold whose Ricci
curvature is not less than $\delta(>0)$ and $N$ a compact minimal hypersurface
(without boundary). Assume that there exists a point $r$ in $M$ in such a way
that $d(r, N)={\rm Max}\{d(r, x)|x\in M\}=\pi/2\sqrt{\delta}$ is satisfied. Then, both $M$ and $N$

are isometric to real projective spaces $PR^{m}(\delta)$ and $PR^{m-1}(\delta)$ of constant curvature
$\delta$ , respectively.

PROOF. Since every point of $N$ is the furthest point from $r,$ every shortest
geodesic joining $r$ to each point of $N$ comes back to the starting point $r$

with length $\pi/\sqrt{\delta}$ . Let $c:[0, \pi/\sqrt{\delta}]\rightarrow M$ be a closed geodesic segment such
that $c(O)=c(\pi/\mathcal{F}\delta)=r,$ $c(\pi/2\sqrt{\delta})=q\in N$, and $X_{1},$ $X_{2},$ $X_{m- 1}$ in $N_{q}$ be an
orthonormal basis for $N_{q}$ . Let $X_{i}(t)$ be the unit parallel vector field along $c$

defined by $X_{i}(\pi/2\sqrt{\delta})=X_{i}$ , for $i=1,2,$ $\cdots$ $m-1$ , and $Y_{i}$ be defined by $Y_{i}(t)$

$=\sin\sqrt{}\delta^{-}t\cdot X_{i}(t)$ . Then the variation formula for each l-parameter variation
$\alpha_{i}$ associated with $Y_{i}$ implies that the Ricci curvature in the direction of $\dot{c}(t)$

is constant for $t\in[0, \pi/\sqrt{\delta}]$ . If $c$ has a conjugate point to $0$ in the interval
$(0, \pi/\sqrt{\delta})$ , we have a vector field $Z$ along $c$ and a l-parameter variation as-
sociated with $Z$ such that $L^{\prime\prime}(O)<0$ . Then there is a point $x$ in $N$ near to $q$

in $N$ which has the distance $d(x, r)<d(q, r)=\pi/2\sqrt{\delta}$ . But this is a contra-
diction. Therefore we have $lndc=0$ and $Ind_{0}c=m-1$ , which implies $\exp_{r}|W$

is locally regular, ( $W$ is defined in the proof of Theorem 3.2) and it is an
open map. On the other hand, we shall claim that $Y_{\iota}(t)=\sin\sqrt{\delta}t\cdot X_{i}(t)$ is a
Jacobi field along $c$ . In fact, we obtain

$I(Y_{i}, Y_{i})=\int_{0^{\pi/\overline{\delta}}}\sqrt{}(\langle Y_{i}^{\prime}, Y_{i}^{\prime}\rangle-K(Y_{i},\dot{c}) \langle Y_{i}, Y_{i}\rangle)dt=0$ ,



Minimal immersions 415

for $i=1,2,$ $\cdots,$ $m-1$ . Since $c$ has no conjugate point to $0$ in $(0, \pi/\sqrt{\delta})$ , we
have $I(Y_{i}, V)=0$ for any piecewise smooth vector field $V$ along $c$ such that
$V(O)=V(\pi/\sqrt{\delta})=0$ and $\langle V,\dot{c}\rangle=0$ . This implies $Y_{i}$ is a Jacobi field. Then
it follows from $Y_{i^{\prime\prime}}+R(Y_{i},\dot{c})\dot{c}=0$ that $ K(X_{i},\dot{c})(t)=\delta$ for all $t\in[0, \pi/\sqrt{\delta}]$ .
The rest of the proof is covered in that of Theorem 3.2.

REMARK. Calabi gave an interesting problem [9], asking whether or not
a complete minimal hypersurface in a Euclidean space is unbounded, to which
Omori [13] gave an affirmative answer. Then we may consider an analogous
question for complete minimal submanifolds in a sphere. Is there a complete
minimal submanifold in a sphere whose image is contained in a closed (or
open) hemisphere? In this case the local concavity seems to be of no use.
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