Satake compactification and the great Picard theorem

By Shoshichi KOBAYASHI* and Takushiro OCHIAI

(Received June 8, 1970)

§1. Introduction.

Let Δ be the unit disk $\{z \in C; |z| < 1\}$ in the complex plane and Δ^* the punctured disk $\{z \in C; 0 < |z| < 1\}$. Let $P_1(C)$ be the 1-dimensional complex projective space, $P_1(C) = C \cup \{\infty\}$. Delete three points, say, 0, 1, ∞ , from $P_1(C)$. The great Picard theorem says that every holomorphic mapping $f: \Delta^* \to P_1(C) - \{0, 1, \infty\}$ can be extended to a holomorphic mapping $f: \Delta \to P_1(C)$.

We consider a generalization of the great Picard theorem. Given a complex space M, let d_M be the intrinsic pseudo-distance introduced in [3]. We say that M is hyperbolic if d_M is a distance on M. For example, $P_1(C) - \{0, 1, \infty\}$ is hyperbolic. Consider the following question.

"Let Y be a complex space and M a complex hyperbolic subspace of Y such that its closure \overline{M} is compact. Does every holomorphic mapping $f: \Delta^* \to M$ extend to a holomorphic mapping $f: \Delta \to Y$?"

The answer is, in general, negative as shown by Kiernan [2] (see also [4, Ch. VI, §1]). On the other hand, we have the following result, [4].

THEOREM 1. Let Y be a complex space and M a complex subspace of Y satisfying the following conditions:

(1) M is hyperbolic;

(2) the closure \overline{M} of M is compact;

(3) Given a point p on the boundary $\partial M = \overline{M} - M$ and a neighborhood \mathcal{V} of p, there exists a smaller neighborhood \mathcal{V} of p in Y such that

$$d_{\mathcal{M}}(M \cap (Y-U), M \cap CV) > 0$$
.

Let X be a complex manifold and A a locally closed complex submanifold of X. Then every holomorphic mapping $X \rightarrow A \rightarrow M$ extends to a holomorphic mapping $X \rightarrow Y$.

It has been shown in [4; Ch. VI, §6] that if $Y = P_2(C)$ and $M = P_2(C) - Q$, where Q is a complete quadrilateral, then the three conditions of Theorem 1 are satisfied. Hence, every holomorphic mapping of X-A into $P_2(C)-Q$ extends to a holomorphic mapping of X into $P_2(C)$. This may be considered

^{*} Partially supported by NSF Grant GP-8008.

as a generalized great Picard theorem.

The purpose of this paper is to give another example of $M \subset Y$ satisfying the three conditions of Theorem 1.

THEOREM 2. Let D be a symmetric bounded domain in \mathbb{C}^N and Γ an arithmetically defined discrete subgroup of the largest connected group G of holomorphic automorphisms of D. Let Y be the Satake compactification of $M=D/\Gamma$. Then M and Y satisfy the three conditions of Theorem 1, provided that Γ acts freely on D.

We shall make comments in Remark 1 below on the technical assumption that Γ acts freely on D.

From Theorems 1 and 2, we obtain immediately the following

COROLLARY. Let M and Y be as in Theorem 2. Let X be a complex manifold and A a locally closed complex submanifold of X. Then every holomorphic mapping $X \rightarrow A \rightarrow M$ extends to a holomorphic mapping $X \rightarrow Y$.

REMARK 1. In order to include into our consideration the case where the action of Γ is not free, we have to use a modified intrinsic pseudo-distance d'_{M} on a V-manifold M. Let D be a complex manifold and Γ a properly discontinuous group of holomorphic automorphisms of D. Put $M=D/\Gamma$. Then M is a V-manifold in the sense of Satake. Since M is a complex space, we have an intrinsic pseudo-distance d_{M} . In the definition of d_{M} , use only those holomorphic mappings f from the disk Δ in M which can be lifted to holomorphic mappings \tilde{f} from Δ to D. Then we obtain a modified intrinsic pseudo-distance d'_{M} . This pseudo-distance may be defined also by

(*)
$$d'_{M}(p,q) = d_{D}(\eta^{-1}(p), \eta^{-1}(q)) \quad p,q \in M,$$

where $\eta: D \to D/\Gamma = M$ is the projection. For details, see [4; Ch. VII, §6]. Of course, if Γ acts freely on D, then $d_M = d'_M$. Then Theorem 1 can be modified as follows:

THEOREM 1'. Let $M = D/\Gamma$ be a complex subspace of a complex space Y. Assume

(1') the pseudo-distance d'_{M} is a distance;

(2) the closure \overline{M} of M is compact;

(3') Given a point $p \in \partial M$ and a neighborhood U of p in Y, there exists a smaller neighborhood $\subseteq V$ of p in Y such that

$$d'_{\mathcal{M}}(M \cap (Y - U), M \cap CV) > 0.$$

Let X be a complex manifold and A a locally closed complex submanifold of X. Then every locally liftable holomorphic mapping $X \rightarrow A \rightarrow M$ extends to a holomorphic mapping $X \rightarrow Y$.

A holomorphic mapping $f: X \to A \to M$ is said to be *locally liftable* if, for each point x of $X \to A$, there exist a neighborhood N_x and a holomorphic mapping $f_x: N_x \to D$ such that $\eta \circ f_x = f$ on N_x .

Theorem 2 can be modified as follows:

THEOREM 2'. Let $D, \Gamma, M = D/\Gamma$ and Y be as in Theorem 2 (but without the condition that Γ acts freely on D). Then M and Y satisfy the three conditions of Theorem 1'.

Accordingly, Corollary can be also modified. In the proof of Theorem 2 or Theorem 2', we have only to verify the condition (3) or (3'). The remaining conditions are trivially satisfied. In the proof of Theorem 2', the equality (*) above will be used as the definition of the distance d'_{M} . Actually, the proof will be written in terms of d_{D} . Although it may be possible to prove Theorem 2' using the distance defined by an invariant hermitian metric of D, the intrinsic distance d_{D} allows us to prove our main proposition (Proposition 2.5) even for non-homogeneous Siegel domains.

REMARK 2. In connection with Theorem 1, we mention the following result of Kwack [5], (see also [4]).

Let M be a hyperbolic complex space, X a complex manifold and A a locally closed complex subspace of X. Then every holomorphic mapping $X \rightarrow M$ extends to a holomorphic mapping $X \rightarrow M$ if one of the following conditions is satisfied:

(1) M is compact;

(2) M is complete with respect to d_M and codim $A \ge 2$.

She proved this result in her attempt to prove Corollary above.

REMARK 3. We have been informed that Corollary has been proved recently by A. Borel by a different method. During the spring quarter of 1970, W. Schmid presented his own proof of Corollary for the case where Dis a generalized upper-halfplane of Siegel in his seminar in Berkeley.

REMARK 4. For the compactification of D/Γ , we have used the method of Pyatetzki-Shapiro [6]. One can easily check that this is equivalent to that of [1] (See W. L. Baily, Fourier-Jacobi Series, Proc. Symp. Pure Math., Vol. IX, Amer. Math. Soc., 1966).

$\S 2$. Siegel domains of the third kind and cylindrical subsets [6] [7] [9].

Let V be an n-dimensional real vector space. A convex cone Ω in V is an open convex subset such that

i) if $y \in \Omega$ and t > 0, then $ty \in \Omega$;

ii) Ω contains no straight line.

The open subset $T_{\mathcal{Q}}$ of $V_{c} = V + iV$ defined by

$$T_{\mathcal{Q}} = \{x + iy \in V_{\mathcal{C}} ; y \in \mathcal{Q}\}$$

is called the *tube domain* associated to Ω . It is well known that the tube domain T_{g} is analytically equivalent to a bounded domain. The domain T_{g}

is also called the Siegel domain of the first kind associated to Ω .

An Ω -hermitian form on an m-dimensional complex vector space W is a mapping $H: W \times W \to V_c$ such that

i) $H(\alpha u + \beta v, w) = \alpha H(u, w) + \beta H(v, w)$ for $u, v, w \in W$, $\alpha, \beta \in C$;

ii) $H(u, v) = \overline{H(v, u)}$ for $u, v \in W$,

where $\overline{H(v, u)}$ is the natural complex conjugate of H(u, v) in V_c ; iii) $H(u, u) \in \overline{\Omega}$ for $u \in W$,

where $\bar{\Omega}$ denotes the topological closure of Ω ;

iv) H(u, u) = 0 only if u = 0.

The open subset $D(H, \Omega)$ of $V_c \times W$ defined by

$$D(H, \Omega) = \{(x+iy, w) \in V_c \times W; y-H(w, w) \in \Omega\}$$

is called the Siegel domain of the second kind associated to H and Ω . It is also analytically equivalent to a bounded domain. The domain $D(H, \Omega)$ always has analytic automorphisms of the following type:

(1)
$$\begin{cases} z \mapsto z + a + 2iH(w, b) + iH(b, b) \\ w \mapsto w + b \end{cases}$$

where $a \in V$ and $b \in W$.

In order to define the Siegel domains of the third kind following [7], we consider the set \mathcal{K} of all complex antilinear mappings $p: W \to W$ such that

- i) H(pu, v) = H(pv, u) for $u, v \in W$;
- ii) $H(u, u) H(pu, pu) \in \overline{\Omega}$ for $u \in W$;
- iii) $H(u, u) \neq H(pu, pu)$ if $u \neq 0$.

The totality of complex antilinear mappings $p: W \to W$ satisfying only (i) forms a complex vector space in which \mathcal{K} is a bounded domain. We need the following lemma.

LEMMA 2.1. If $p \in \mathcal{K}$, then I+p is a real linear isomorphism of W onto itself, where I denotes the identity transformation of W.

PROOF. Suppose (I+p)w=0. Then H(pw, pw)=H(-w, -w)=H(w, w). From (iii) above, we obtain w=0. QED.

For $p \in \mathcal{K}$, we define $L_p: W \times W \rightarrow V_c$ by

$$L_p(u, v) = H(u, (I+p)^{-1}v)$$
 for $u, v \in W$.

Now, let \mathcal{D} be a bounded domain in a complex vector space U and φ an analytic mapping from \mathcal{D} into \mathcal{K} . We define a domain $D(H, \Omega, \mathcal{D}, \varphi)$ of $U \times V_c \times W$ by

 $D(H, \Omega, \mathcal{D}, \varphi) = \{(t, z, w) \in U \times V_c \times W; t \in \mathcal{D}, \text{ Im } (z) - \text{Re} (L_{\varphi(t)}(w, w)) \in \Omega\}$. This domain is called the *Siegel domain of the third kind* associated to H, Ω, \mathcal{D} , and φ . This domain admits automorphisms of the following type:

(2)
$$\begin{cases} t \mapsto t \\ z \mapsto z + a + 2iH(w, b) + iH((I + \varphi(t))b, b) \\ w \mapsto w + b + \varphi(t)b, \end{cases}$$

where $a \in V$, $b \in W$.

LEMMA 2.2. Re $(L_p(w, w)) \in \overline{\Omega}$ for $p \in \mathcal{K}$ and $w \in W$. PROOF. Put c = I + p. From the definition of L_p , we have

$$L_p(cv, cv) = H(cv, v)$$
 for $v \in W$.

Hence,

$$\begin{aligned} &2 \operatorname{Re} \left(L_p(cv, cv) \right) - H(cv, cv) \\ &= 2 \operatorname{Re} \left(H(cv, v) \right) - \left\{ H(v, v) + H(pv, pv) + H(v, pv) + H(pv, v) \right\} \\ &= 2H(v, v) + 2 \operatorname{Re} \left(H(pv, v) \right) - \left\{ H(v, v) + H(pv, pv) + 2 \operatorname{Re} \left(H(pv, v) \right) \right\} \\ &= H(v, v) - H(pv, pv) \in \overline{\Omega} \quad \text{(from the definition of } \mathcal{K}) . \end{aligned}$$

Since c is surjective by Lemma 2.1, we obtain

 $2 \operatorname{Re} \left(L_p(w, w) \right) - H(w, w) \in \overline{\Omega} \quad \text{for} \quad w \in W.$

Since $H(w, w) \in \overline{\Omega}$ by the definition of H and since $\overline{\Omega}$ is convex, we obtain

$$\operatorname{Re} (L_p(w, w)) = -\frac{1}{2} \{H(w, w) + (2 \operatorname{Re} (L_p(w, w)) - H(w, w))\} \in \overline{\mathcal{Q}} . \qquad \text{QED}.$$

For $r \in \Omega$, we define a subdomain D_r of $D = D(H, \Omega, \mathcal{D}, \varphi)$ by

$$D_r = \{(t, z, w) \in D; \operatorname{Im}(z) - \operatorname{Re}(L_{\varphi(t)}(w, w)) - r \in \Omega\}.$$

More generally, for an open set \mathcal{O} in \mathcal{D} , the set

 $D_r(\mathcal{O}) = \{(t, z, w) \in D_r; t \in \mathcal{O}\}$

is called a cylindrical set with base \mathcal{O} . In particular, $D_r = D_r(\mathcal{D})$.

LEMMA 2.3. The cylindrical set $D_r(\mathcal{O})$ is invariant under the transformations of the type (2).

PROOF. If $(t, z, w) \rightarrow (t', z', w')$ is a transformation of the type (2), then

(2)
$$\begin{cases} t' = t \\ z' = z + a + 2iH(w, b) + iH((I + \varphi(t))b, b) \\ w' = w + b + \varphi(t)b. \end{cases}$$

It suffices therefore to prove that D_r is invariant by a transformation of the type (2). We have

$$\operatorname{Im} (z') - \operatorname{Re} (L_{\varphi(t)}(w', w')) - r$$

= Im (z)+2 Re (H(w, b))+ Re (H((I+\varphi(t))b, b))

Picard theorem

$$\begin{split} &-\operatorname{Re} \left\{ H(w + (1 + \varphi(t))b, \, (I + \varphi(t))^{-1}(w + (I + \varphi(t))b)) \right\} - r \\ &= \operatorname{Im} \, (z) + 2 \operatorname{Re} \, (H(w, b)) + \operatorname{Re} \, (H((I + \varphi(t))b, b)) \\ &- \operatorname{Re} \left\{ H(w + (I + \varphi(t))b, \, b + (I + \varphi(t))^{-1}w) \right\} - r \\ &= \operatorname{Im} \, (z) + 2 \operatorname{Re} \, (H(w, b)) + \operatorname{Re} \, (H((I + \varphi(t))b, b)) \\ &- \operatorname{Re} \left\{ H(w, b) + H(w, \, (I + \varphi(t))^{-1}w) \\ &+ H((I + \varphi(t))b, \, b) + H(((I + \varphi(t))b, \, (I + \varphi(t))^{-1}w)) \right\} - r \\ &= \operatorname{Im} \, (z) - \operatorname{Re} \, (L_{\varphi(t)}(w, w)) - r \\ &+ \operatorname{Re} \left\{ H(w, b) - H((I + \varphi(t))b, \, (I + \varphi(t))^{-1}w) \right\} . \end{split}$$

It suffices therefore to prove

Re {
$$H(w, b) - H((I + \varphi(t))b, (I + \varphi(t))^{-1}w)$$
} = 0.

We have, for $e \in W$,

$$\begin{split} H((I+\varphi(t))b, e) &= H(b, e) + H(\varphi(t)b, e) \\ &= H(b, e) + H(\varphi(t)e, b) \qquad (\text{definition of } \mathcal{K}, (i)) \\ &= H(b, e) + \overline{H(b, \varphi(t)e)} \qquad (H: \text{ hermitian}) \;. \end{split}$$

Hence,

$$\operatorname{Re} \left(H((I+\varphi(t))b, e)\right) = \operatorname{Re} \left(H(b, e)\right) + \operatorname{Re} \left(\overline{H(b, \varphi(t)e)}\right)$$
$$= \operatorname{Re} \left(H(b, e)\right) + \operatorname{Re} \left(H(b, \varphi(t)e)\right)$$
$$= \operatorname{Re} \left(H(b, (I+\varphi(t))e)\right).$$

If we set $e = (I + \varphi(t))^{-1}w$ in the equality above, then

Re
$$(H((I+\varphi(t))b, (I+\varphi(t))^{-1}w)) = \text{Re}(H(b, w)) = \text{Re}(H(w, b))$$
,

thus proving the desired equality.

QED.

The following lemma is evident.

Lemma 2.4.

$$D_r(\mathcal{O}) \supset D_{tr}(\mathcal{O}) \qquad if \quad t > 1.$$

We state the main proposition of this section.

PROPOSITION 2.5. Let $D = D(H, \Omega, \mathcal{D}, \varphi)$ be a Siegel domain of the third kind. Then

$$d_D(a, b) \ge \log t$$
 for $a \in D - D_r$, $b \in D_{tr}$, $t > 1$, $r \in \Omega$,

where d_D denotes the intrinsic distance of D explained in §1.

We prove the proposition in several steps.

LEMMA 2.6. Let $V = \mathbf{R}$, $\Omega = \{a \in \mathbf{R}; a > 0\}$ and $D = T_{\mathbf{Q}} = \{z \in \mathbf{C}; \text{Im}(z) > 0\}$. Then

$$d_D(a, b) \ge \log t$$
 for $a \in D - D_r$, $b \in D_{tr}$, $t > 1$, $r \in \Omega$.

PROOF. The intrinsic distance d_D is identical in this case with the distance defined by the Bergman metric $(dx^2+dy^2)/y^2$. Hence,

$$d_D(a, b) \ge d_D(\operatorname{Im}(a), \operatorname{Im}(b)) \ge d_D(ir, itr) = d_D(i, it) = \log t . \qquad \text{QED.}$$

LEMMA 2.7. Let $V = \mathbb{R}^n$, $\Omega = \{(y^1, \dots, y^n) \in \mathbb{R}^n ; y^1 > 0, \dots, y^n > 0\}$ and $D = T_{\mathbf{Q}} = \{(z^1, \dots, z^n) \in \mathbb{C}^n ; \text{Im}(z^1) > 0, \dots, \text{Im}(z^n) > 0\}$. Then

$$d_D(a, b) \ge \log t$$
 for $a \in D - D_r$, $b \in D_{tr}$, $t > 1$, $r \in \Omega$.

PROOF. Let $a = (a^1, \dots, a^n)$, $b = (b^1, \dots, b^n)$ and $r = (r^1, \dots, r^n)$. Then

$$\begin{split} & \operatorname{Im} \left(a^{j} \right) \leq r^{j} & \text{for some } j, \ 1 \leq j \leq n , \\ & \operatorname{Im} \left(b^{i} \right) > tr^{i} & \text{for all } i, \ 1 \leq i \leq n . \end{split}$$

We can write $D = D_1 \times \cdots \times D_1$, where D_1 is the domain defined by $D_1 = \{z \in C; Im(z) > 0\}$. Let $p_j: D \to D_1$ be the projection to the *j*-th factor. Since p_j is holomorphic and hence distance-decreasing, we have

$$d_D(a, b) \ge d_{D_1}(p_j a, p_j b) = d_{D_1}(a^j, b^j).$$

Applying Lemma 2.6 to the domain D_1 , we obtain

$$d_{D_1}(a^j, b^j) \ge \log t$$
.

Hence,

$$d_D(a, b) \ge \log t$$
. QED.

LEMMA 2.8. Let Ω be a convex cone in an n-dimensional real vector space V. Let $D = T_{\Omega} = \{z \in V_c; \text{ Im } (z) \in \Omega\}$. Then

 $d_D(a, b) \ge \log t$ for $a \in D - D_r$, $b \in D_{tr}$, t > 1, $r \in \Omega$.

PROOF. Put y = Im(a). Consider the line y+sr, $(-\infty < s < \infty)$; this is a line through y and parallel to the vector r. We shall show that this line meets the boundary $\partial \Omega$ of Ω exactly at one point, say, y_0 . Since this line contains a point of Ω , e.g., $y \in \Omega$ and since the convex cone Ω cannot contain a whole straight line, this line meets the boundary $\partial \Omega$. If y_0 is any point where this line meets $\partial \Omega$, we may write $y_0 = y + s_0 r$. If $\varepsilon > 0$, then

$$y + (s_0 + \varepsilon)r = y_0 + \varepsilon r = (1 + \varepsilon) \left(\frac{1}{1 + \varepsilon} y_0 + \frac{\varepsilon}{1 + \varepsilon} r \right)$$

Since $y_0 \in \overline{\Omega}$, $r \in \Omega$ and Ω is convex, it follows that $\frac{1}{1+\varepsilon}y_0 + \frac{\varepsilon}{1+\varepsilon}r$ is in Ω . Since Ω is a cone, $(1+\varepsilon)\left(\frac{1}{1+\varepsilon}y_0 + \frac{\varepsilon}{1+\varepsilon}r\right)$ is in Ω . This shows that the half-line $\{y+sr; s>s_0\}$ is completely contained in Ω . Hence, y_0 is the unique intersection point.

We claim that there exists a basis e_1, \dots, e_n of V such that the open convex cone $\Omega_n = \{ \sum y^i e_i \in V; y^1 > 0, \dots, y^n > 0 \}$ contains Ω and $y_0 \in \partial \Omega_n$. In

order to prove our claim, we use the following well known fact on the dual cone. Let V^* be the dual space of V and define the dual cone Ω^* of Ω by

$$\Omega^* = \{ y^* \in V^*; \langle y^*, y \rangle > 0 \text{ for all nonzero } y \in \overline{\Omega} \}.$$

Then $\Omega^{**} = \Omega$. In particular, Ω^* is an open convex cone in V^* . It is easy to see that there exists a nonzero element e_1^* in the closure of Ω^* such that $\langle e_1^*, y_0 \rangle = 0$. Choose e_2^*, \dots, e_n^* in Ω^* so that e_1^*, \dots, e_n^* is a basis for V^* ; this is possible because Ω^* is an open cone. Then the dual basis e_1, \dots, e_n for V possesses the desired property.

Put $D_n = T_{\mathcal{Q}_n} = \{z \in V_c; \text{ Im } (z) \in \mathcal{Q}_n\}$. Since $D_{tr} = \{z \in D; \text{ Im } (z) - tr \in \mathcal{Q}\}$ and $D_{n,tr} = \{z \in D_n; \text{ Im } (z) - tr \in \mathcal{Q}_n\}$, we have $D_{tr} \subset D_{n,tr}$. Hence $b \in D_{tr}$ implies $b \in D_{n,tr}$. We shall now show that $a \in D_n - D_{n,r}$. Since y = Im (a) and $a \notin D_r$, it follows that $y - r \notin \mathcal{Q}$. Since y + sr is in \mathcal{Q} if and only if $s > s_0$ as we saw above, we may conclude that $-1 \leq s_0$. Since the line y + sr, $(-\infty < s < \infty)$, meets $\partial \mathcal{Q}_n$ also exactly at one point $y_0 = y + s_0 r$, we see that y + sr is in \mathcal{Q}_n if and only if $s > s_0$. Hence, y - r is not in \mathcal{Q}_n . This shows that $a \notin D_{n,r}$.

Since the injection $h: D \rightarrow D_n$ is holomorphic and hence distance-decreasing, we have

$$d_D(a, b) \ge d_{D_n}(ha, hb) = d_{D_n}(a, b).$$

Applying Lemma 2.7 to the domain D_n , we have

$$d_{D_n}(a, b) \ge \log t$$
.

Hence,

$$d_D(a, b) \ge \log t$$
. QED.

PROOF OF PROPOSITION 2.5. Let $D = D(H, \Omega, \mathcal{D}, \varphi)$, $a \in D - D_r$ and $b \in D_{tr}$ with t > 1. Put $a = (\tilde{t}, \tilde{z}, \tilde{w}) \in U \times V_c \times W$. Since $I + \varphi(\tilde{t})$ is a real automorphism of W by Lemma 2.1, the Siegel domain D of the third kind admits an automorphism of the type (2) which sends $a = (\tilde{t}, \tilde{z}, \tilde{w})$ into $(\tilde{t}, \tilde{z}, 0)$. Since such an automorphism of D leaves the distance d_D invariant and, by Lemma 2.3, leaves the domains D_r and D_{tr} invariant, we may assume without loss of generality that $a = (\tilde{t}, \tilde{z}, 0)$.

Let $\rho: U \times V_c \times W \to V_c$ be the natural projection. We claim that ρ maps D into $D' = T_{\mathcal{Q}} = \{z \in V_c; \text{Im}(z) \in \Omega\}$. In fact, if (t, z, w) is in D so that $\text{Im}(z) - \text{Re}(L_{\varphi(t)}(w, w)) \in \Omega$, then $\text{Im}(z) \in \Omega$ because $\text{Re}(L_{\varphi(t)}(w, w))$ is in $\overline{\Omega}$ by Lemma 2.2. Hence, z is in D', proving our claim. In particular, $\rho(a)$ is in D'. Since $a = (\tilde{t}, \tilde{z}, 0)$ is not in D_r , it follows that $\text{Im}(\tilde{z}) - r$ is not in Ω . Hence $\tilde{z} = \rho(a)$ is not in D'_r , thus proving $\rho(a) \in D' - D'_r$. From Lemma 2.2 it follows easily that $b \in D_{tr}$ implies $\rho(b) \in D'_{tr}$. Since ρ is holomorphic and hence distance-decreasing, we have

S. KOBAYASHI and T. OCHIAI

 $d_D(a, b) \geq d_{D'}(\rho(a), \rho(b)) .$

Applying Lemma 2.8 to the domain D', we have

 $d_{D'}(\rho(a), \rho(b)) \ge \log t$.

Hence,

$$d_D(a, b) \ge \log t$$
. QED.

§ 3. Boundary components of symmetric bounded domains [1], [6], [7], [8], [9].

Let D be a symmetric bounded domain in \mathbb{C}^N in the so-called Harish-Chandra realization. Let \overline{D} be the topological closure of D and put $\partial D = \overline{D} - D$. A subset \mathcal{F} of ∂D is called a *boundary component* of D if (i) \mathcal{F} is an analytic subset of \mathbb{C}^N and (ii) \mathcal{F} is minimal with respect to the property that any analytic arc contained in ∂D and having a point in common with \mathcal{F} must be entirely contained in \mathcal{F} . Then each boundary component \mathcal{F} is again a bounded symmetric domain. And if \mathcal{F}' is another boundary component of D and if $\mathcal{F}' \subset \partial \mathcal{F}$, then \mathcal{F}' is a boundary component of \mathcal{F} also. For each boundary component \mathcal{F} of D, there exists a Siegel domain of the third kind $D(H, \Omega, \mathcal{F}, \varphi)$ which is biholomorphic to D. In the following, we fix such a realization $D(H, \Omega, \mathcal{F}, \varphi)$ once and for all for each D and \mathcal{F} .

Let G be the identity component of the group of automorphisms of D. Then each element of G extends to an automorphism of a neighborhood of \overline{D} . Let Γ be a discrete subgroup of G defined arithmetically. We consider only those boundary components \mathcal{F} which are called the rational boundary components with respect to Γ . Let B denote the union of all rational boundary components of D and set

$D^* = D \cup B.$

The action of Γ on D extends to D^* in a natural manner. With a topology described below, $D^*/\Gamma = (D/\Gamma) \cup (B/\Gamma)$ is the so-called Satake compactification of D/Γ . Let $\eta: D^* \to D^*/\Gamma$ denote the natural projection. For each point of D/Γ , a basis of its neighborhood system is given by its neighborhood system in D/Γ with the usual quotient topology. For a point p in B/Γ , we construct a basis of its neighborhood system as follows. Assume $p \in \eta(\mathcal{F})$ and let $\tilde{p} \in \mathcal{F}$ be a point such that $\eta(\tilde{p}) = p$. Consider the family of all rational boundary components \mathcal{E} of D such that $\mathcal{F} \subset \partial \mathcal{E}$. It is known that there are only a finite number of Γ -equivalence classes in this family. Let $\mathcal{F}_1, \dots, \mathcal{F}_m$ be a system of representatives for these Γ -equivalence classes. Thus the family $\{\gamma(\mathcal{F}_i);$ $\gamma \in \Gamma$ and $i=1, \dots, m\}$ exhausts the rational boundary components \mathcal{E} of Dsuch that $\mathcal{F} \subset \partial \mathcal{E}$. Let \mathcal{O} be an open neighborhood of \tilde{p} in \mathcal{F} . Considering D as a Siegel domain $D(H, \mathcal{Q}, \mathcal{F}, \varphi)$ of the third kind, we consider a cylindrical

set $D_r(\mathcal{O})$ in D (as defined in §2), where r is an element of the open convex cone Ω . Each \mathcal{F}_i is also a Siegel domain $\mathcal{F}_i = D(H_i, \Omega_i, \mathcal{F}, \varphi_i)$ of the third kind. We choose a cylindrical set $\mathcal{F}_{i,r_i}(\mathcal{O})$ in \mathcal{F}_i , where $r_i \in \Omega_i$. Put

$$\tilde{\mathcal{U}} = \mathcal{O} \cup D_r(\mathcal{O}) \cup \mathcal{F}_{1,r_1}(\mathcal{O}) \cup \cdots \cup \mathcal{F}_{m,r_m}(\mathcal{O})$$

and

$$\mathcal{U} = \eta(\widetilde{\mathcal{U}})$$
.

We take the family of \mathcal{U} with varying \mathcal{O} , r, r_1, \dots, r_m as a basis for the open neighborhood system for \tilde{p} .

LEMMA 3.1. Let $D_r(\mathcal{O})$ be a cylindrical set in D with a base \mathcal{O} in a boundary component \mathfrak{F} . Let \mathcal{O}' be an open set in \mathfrak{F} such that $\overline{\mathcal{O}}' \subset \mathcal{O}$ and let $D_{tr}(\mathcal{O}')$ be a cylindrical set in D with a base \mathcal{O}' , where t > 1. Then

$$d_D(a, b) \ge \operatorname{Min} \{ \log t, d_{\mathfrak{F}}(\mathfrak{F} - \mathcal{O}, \mathcal{O}') \}$$
 for $a \in D - D_r(\mathcal{O}), b \in D_{tr}(\mathcal{O}')$.

PROOF. Let $\theta: D = D(H, \Omega, \mathcal{F}, \varphi) \to \mathcal{F}$ be the natural projection. If $\theta(a) \in \mathcal{O}$, then $a \in D - D_r$ and Proposition 2.5 implies $d_D(a, b) \ge \log t$. Suppose $\theta(a) \notin \mathcal{O}$. Since θ is holomorphic and hence distance-decreasing, we have

$$d_{\mathcal{D}}(a, b) \geq d_{\mathcal{F}}(\theta a, \theta b) \geq d_{\mathcal{F}}(\mathcal{F} - \mathcal{O}, \mathcal{O}') . \qquad \text{QED.}$$

PROOF OF THEOREM 2'. Let p be a point of B/Γ and U a neighborhood of p in $D^*/\Gamma = (D/\Gamma) \cup (B/\Gamma)$. We have to prove that there is a smaller neighborhood \mathcal{O} of p in D^*/Γ such that $\overline{\mathcal{O}} \subset U$ and

$$d_D(a, b) \geq \delta$$
 if $a, b \in D$, $\eta(a) \notin \mathcal{V}$ and $\eta(b) \in \mathcal{V}$,

where δ is a positive number which depends only on \mathcal{U} and \mathcal{V} but not on a, b. We choose $\tilde{p} \in \mathcal{F}$ such that $\eta(\tilde{p}) = p$.

Without loss of generality, we may assume that $U = \eta(\tilde{U})$, where \tilde{U} is of the form

$$\widetilde{\mathcal{U}} = \mathcal{O} \cup D_r(\mathcal{O}) \cup \mathcal{F}_{1,r_1}(\mathcal{O}) \cup \cdots \cup \mathcal{F}_{m,r_m}(\mathcal{O}),$$

where \mathcal{O} is an open neighborhood of $\tilde{p} \in \mathcal{F}$, (see the definition of the topology in D^*/Γ above). Let \mathcal{O}' be a smaller neighborhood of \tilde{p} in $\tilde{\mathcal{F}}$ such that $\bar{\mathcal{O}}' \subset \mathcal{O}$ and let t > 1. Put

$$\mathcal{CV} = \mathcal{O}' \cup \mathcal{D}_{tr}(\mathcal{O}') \cup \mathcal{F}_{1,tr_1}(\mathcal{O}') \cup \cdots \cup \mathcal{F}_{m,tr_m}(\mathcal{O}')$$

and

$$\mathcal{CV} = \eta(\mathcal{CV})$$
.

Let $a, b \in D$, $\eta(a) \notin U$ and $\eta(b) \in C$. Since b is equivalent to a point in \widetilde{CV} under the group Γ and since d_D is invariant by Γ , we may assume that $b \in \widetilde{CV}$. Clearly, $a \notin \widetilde{U}$. Since $a \in D$ and $a \notin \widetilde{U}$, we have $a \in D - D_r(\mathcal{O})$. Since $b \in D$ and $b \in \widetilde{CV}$, we have $b \in D_{tr}(\mathcal{O}')$. By Lemma 3.1, where

 $\delta = \operatorname{Min} \{ \log t, \ d_{\mathcal{F}}(\mathcal{F} - \mathcal{O}, \mathcal{O}') \} .$

University of California, Berkeley

Bibliography

- [1] W.L. Baily, Jr. and A. Borel, Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math., 84 (1966), 442-528.
- [2] P.J. Kiernan, Some remarks on hyperbolic manifolds, Proc. Amer. Math. Soc., 25 (1970), 588-592.
- [3] S. Kobayashi, Intrinsic metrics on complex manifolds, Bull. Amer. Math. Soc., 73 (1967), 347-349.
- [4] S. Kobayashi, Hyperbolic manifolds and holomorphic mappings, monograph, Marcel Dekker Inc., New York, 1970.
- [5] M. H. Kwack, Generalization of the big Picard theorem, Ann. of Math., 90 (1969), 9-22.
- [6] I.I. Pyatetzki-Shapiro, Géométrie des domaines classiques et théorie des fonctions automorphes, Dunod, Paris, 1966.
- [7] I. I. Pyatetzki-Shapiro, Arithmetic groups in complex domains, Russian Math. Surveys, 19 (1964), 83-109.
- [8] I. Satake, On compactifications of the quotient spaces for arithmetically defined discontinuous groups, Ann. of Math., 72 (1960), 555-580.
- [9] J.A. Wolf and A. Korányi, Generalized Cayley transformations of bounded symmetric domains, Amer. J. Math., 87 (1965), 899-939.

350

QED.