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\S 1. Introduction.

Let $\Delta$ be the unit disk $\{z\in C;|z|<1\}$ in the complex plane and $\Delta*the$

punctured disk $\{z\in C;0<|z|<1\}$ . Let $P_{1}(C)$ be the l-dimensional complex
projective space, $P_{1}(C)=C\cup\{\infty\}$ . Delete three points, say, $0,1,$ $\infty$ , from $P_{1}(C)$ .
The great Picard theorem says that every holomorphic mapping $f:\Delta*\rightarrow P_{1}(C)$

$-\{0,1, \infty\}$ can be extended to a holomorphic mapping $f:\Delta\rightarrow P_{1}(C)$ .
We consider a generalization of the great Picard theorem. Given a

complex space $M$, let $d_{M}$ be the intrinsic pseudo-distance introduced in [3].

We say that $M$ is hyperbolic if $d_{M}$ is a distance on $M$. For example, $P_{1}(C)$

$-\{0,1, \infty\}$ is hyperbolic. Consider the following question.
“ Let $Y$ be a complex space and $M$ a complex hyperbolic subspace of

$Y$ such that its closure $\overline{M}$ is compact. Does every holomorphic mapping
$f:\Delta*\rightarrow M$ extend to a holomorphic mapping $f:\Delta\rightarrow Y$ ¿’

The answer is, in general, negative as shown by Kiernan [2] (see also
[4, Ch. VI, \S 1]). On the other hand, we have the following result, [4].

THEOREM 1. Let $Y$ be a complex space and $M$ a complex subspace of $Y$

satisfying the following conditions:
(1) $M$ is hyperbolic;
(2) the closure $\overline{M}$ of $M$ is compact;
(3) Given a point $p$ on the boundary $\partial M=\overline{M}-M$ and a neighborhood $\mathcal{U}$

of $p$, there exists a smaller neighborhood $\mathcal{V}$ of $p$ in $Y$ such that

$d_{M}(M\cap(Y-\mathcal{U}), M\cap \mathcal{V})>0$ .
Let $X$ be a complex manifold and $A$ a locally closed complex submanifold

of X. Then every holomorphic mapping $X-A\rightarrow M$ extends to a holomorphic
mapping $X\rightarrow Y$ .

It has been shown in [4; Ch. VI, \S 6] that if $Y=P_{2}(C)$ and $M=P_{2}(C)-Q$ ,

where $Q$ is a complete quadrilateral, then the three conditions of Theorem 1
are satisfied. Hence, every holomorphic mapping of $X-A$ into $P_{2}(C)-Q$

extends to a holomorphic mapping of $X$ into $P_{2}(C)$ . This may be considered
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as a generalized great Picard theorem.
The purpose of this paper is to give another example of $M\subset Y$ satisfying

the three conditions of Theorem 1.
THEOREM 2. Let $D$ be a symmetric bounded domain in $C^{N}$ and $\Gamma$ an

arithmetically defined discrete subgroup of the largest connected group $G$ of
holomorphic automorphisms of D. Let $Y$ be the Satake compactification of
$ M=D/\Gamma$ . Then $M$ and $Y$ satisfy the three conditions of Theorem 1, provided
that $\Gamma$ acts freely on $D$ .

We shall make comments in Remark 1 below on the technical assumption
that $\Gamma$ acts freely on $D$ .

From Theorems 1 and 2, we obtain immediately the following
COROLLARY. Let $M$ and $Y$ be as in Theorem 2. Let $X$ be a complex mani-

fold and $A$ a locally closed complex submanifold of X. Then every holomorphic
mapping $X-A\rightarrow M$ extends to a holomorphic mapping $X\rightarrow Y$ .

REMARK 1. In order to include into our consideration the case where
the action of $\Gamma$ is not free, we have to use a modified intrinsic pseudo-distance
$d_{M^{\prime}}$ on a V-manifold $M$. Let $D$ be a complex manifold and $\Gamma$ a properly
discontinuous group of holomorphic automorphisms of $D$ . Put $ M=D/\Gamma$ .
Then $M$ is a V-manifold in the sense of Satake. Since $M$ is a complex space,
we have an intrinsic pseudo-distance $d_{M}$ . In the definition of $d_{M}$ , use only

those holomorphic mappings $f$ from the disk $\Delta$ in $M$ which can be lifted to
holomorphic mappings $f$ from $\Delta$ to $D$ . Then we obtain a modified intrinsic
pseudo-distance $d_{M^{\prime}}$ . This pseudo-distance may be defined also by

$(*)$ $d_{M^{\prime}}(p, q)=d_{D}(\eta^{-1}(p), \eta^{-1}(q))$ $p,$ $q\in M$ ,

where $\eta:D\rightarrow D/\Gamma=M$ is the projection. For details, see [4; Ch. VII, \S 6].
Of course, if $\Gamma$ acts freely on $D$ , then $d_{M}=d_{M^{\prime}}$ . Then Theorem 1 can be
modified as follows:

THEOREM 1’. Let $ M=D/\Gamma$ be a complex subspace of a complex space $Y$.
Assume

(1) the pseudo-distance $d_{M^{\prime}}$ is a distance;
(2) the closure $\overline{M}$ of $M$ is compact;
(3) Given a point $p\in\partial M$ and a neighborhood $\mathcal{U}$ of $p$ in $Y$, there exists

a smaller neighborhood $\mathcal{V}$ of $p$ in $Y$ such that
$d_{M^{\prime}}(M\cap(Y-\mathcal{U}), M_{\cap}\mathcal{V})>0$ .

Let $X$ be a complex manifold and $A$ a locally closed complex submanifold
of X. Then every locally liftable holomorphic mapping $X-A\rightarrow M$ extends to a
holomorphic mapping $X\rightarrow Y$ .

A holomorphic mapping $f:X-A\rightarrow M$ is said to be locally liftable if, for
each point $x$ of $X-A$ , there exist a neighborhood $N_{x}$ and a holomorphic
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mapping $f_{x}$ : $N_{x}\rightarrow D$ such that $\eta\circ f_{x}=f$ on $N_{x}$ .
Theorem 2 can be modified as follows:
THEOREM 2’. Let $D,$ $\Gamma,$ $ M=D/\Gamma$ and $Y$ be as in Theorem 2 (but without

the condition that $\Gamma$ acts freely on $D$). Then $M$ and $Y$ satisfy the three con-
ditions of Theorem 1’.

Accordingly, Corollary can be also modified. In the proof of Theorem 2
or Theorem 2’, we have only to verify the condition (3) or (3). The remaining
conditions are trivially satisfied. In the proof of Theorem 2’, the equality $(*)$

above will be used as the definition of the distance $d_{M^{\prime}}$ . Actually, the proof
will be written in terms of $d_{D}$ . Although it may be possible to prove Theorem
$2^{\prime}$ using the distance defined by an invariant hermitian metric of $D$ , the
intrinsic distance $d_{D}$ allows us to prove our main proposition (Proposition 2.5)

even for non-homogeneous Siegel domains.
REMARK 2. In connection with Theorem 1, we mention the following

result of Kwack [5], (see also [4]).

Let $M$ be a hyperbolic complex space, $X$ a complex manifold and $A$ a locally
closed complex subspace of X. Then every holomorphic mapping $X-A\rightarrow M$

extends to a holomorphic mapping $X\rightarrow M$ if one of the following conditions is
satisfied:

(1) $M$ is compact;
(2) $M$ is complete with respect to $d_{M}$ and codim $A\geqq 2$ .
She proved this result in her attempt to prove Corollary above.
REMARK 3. We have been informed that Corollary has been proved

recently by A. Borel by a different method. During the spring quarter of
1970, W. Schmid presented his own proof of Corollary for the case where $D$

is a generalized upper-halfplane of Siegel in his seminar in Berkeley.
REMARK 4. For the compactification of $ D/\Gamma$ , we have used the method

of Pyatetzki-Shapiro [6]. One can easily check that this is equivalent to that
of [1] (See W. L. Baily, Fourier-Jacobi Series, Proc. Symp. Pure Math., Vol.
IX, Amer. Math. Soc., 1966).

\S 2. Siegel domains of the third kind and cylindrical subsets [6] [7] [9].

Let $V$ be an n-dimensional real vector space. A convex cone $\Omega$ in $V$ is
an open convex subset such that

i) if $ y\in\Omega$ and $t>0$ , then $ ty\in\Omega$ ;
ii) $\Omega$ contains no straight line.

The open subset $T_{\rho}$ of $V_{C}=V+iV$ defined by

$T_{\rho}=\{x+iy\in V_{C} ; y\in\Omega\}$

is called the tube domain associated to $\Omega$ . It is well known that the tube
domain $T_{9}$ is analytically equivalent to a bounded domain. The domain $T_{\rho}$
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is also called the Siegel domain of the first kind associated to $\Omega$ .
An $\Omega$ -hermitian form on an m-dimensional complex vector space $W$ is a

mapping $H:W\times W\rightarrow V_{c}$ such that
i) $H(\alpha u+\beta v, w)=\alpha H(u, w)+\beta H(v, w)$ for $u,$ $v,$ $w\in W,$ $\alpha,$ $\beta\in C$ ;

ii) $H(u, v)=\overline{H(v,u)}$ for $u,$ $v\in W$,

where $\overline{H(v,u)}$ is the natural complex conjugate of $H(u, v)$ in $V_{C}$ ;
iii) $H(u, u)\in\overline{\Omega}$ for $u\in W$,

where $\overline{\Omega}$ denotes the topological closure of $\Omega$ ;
iv) $H(u, u)=0$ only if $u=0$ .

The open subset $D(H, \Omega)$ of $V_{c}\times W$ defined by

$D(H, \Omega)=\{(x+iy, w)\in V_{C}\times W;y-H(w, w)\in\Omega\}$

is called the Siegel domain of the second kind associated to $H$ and $\Omega$ . It is
also analytically equivalent to a bounded domain. The domain $D(H, \Omega)$ always
has analytic automorphisms of the following type:

(1) $\left\{\begin{array}{llll} & & & z\mapsto z+a+2iH(w,b)+iH(b,b)\\ & & & w->w+b,\end{array}\right.$

where $a\in V$ and $b\in W$.
In order to define the Siegel domains of the third kind following [7], we

consider the set $JC$ of all complex antilinear mappings $p:W\rightarrow W$ such that
i) $H(pu, v)=H(pv, u)$ for $u,$ $v\in W$ ;

ii) $H(u, u)-H(pu, pu)\in\overline{\Omega}$ for $u\in W$ ;
iii) $H(u, u)\neq H$( $pu,$ pu) if $u\neq 0$ .

The totality of complex antilinear mappings $p;W\rightarrow W$ satisfying only (i) forms
a complex vector space in which $X$ is a bounded domain. We need the
following lemma.

LEMMA 2.1. If $p\in JC$ , then $I+p$ is a real linear isomorphism of $W$ onto
itself, where I denotes the identity transformation of $W$ .

PROOF. Suppose $(I+p)w=0$ . Then $H(pw, pw)=H(-w, -w)=H(w, w)$ .
From (iii) above, we obtain $w=0$ . QED.

For $ p\in\chi$ , we define $L_{p}$ : $W\times W\rightarrow V_{c}$ by

$L_{p}(u, v)=H(u, (I+p)^{-1}v)$ for $u,$ $v\in W$ .
Now, let $\mathcal{D}$ be a bounded domain in a complex vector space $U$ and $\varphi$ an

analytic mapping from $\mathcal{D}$ into $\chi$ . We define a domain $D(H, \Omega, \mathcal{D}, \varphi)$ of
$U\times V_{C}\times W$ by

$D(H, \Omega, \mathcal{D}, \varphi)=\{(t, z, w)\in U\times V_{C}\times W;t\in \mathcal{D}, {\rm Im}(z)-{\rm Re}(L_{\varphi(t)}(w, w))\in\Omega\}$ .
This domain is called the Siegel domain of the third kind associated to $H,$ $\Omega,$ $\mathcal{D}$ ,
and $\varphi$ . This domain admits automorphisms of the following type:
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(2)

where $a\in V,$ $b\in W$ .
LEMMA 2.2. ${\rm Re}(L_{p}(w, w))\in\overline{\Omega}$ for $p\in JC$ and $w\in W$.
PROOF. Put $c=I+p$ . From the definition of $L_{p}$ , we have

$L_{p}(cv, cv)=H(cv, v)$ for $v\in W$ .
Hence,

2 ${\rm Re}(L_{p}(cv, cv))-H(cv, cv)$

$=2{\rm Re}(H(cv, v))-\{H(v, v)+H(pv, pv)+H(v, pv)+H(pv, v)\}$

$=2H(v, v)+2{\rm Re}(H(pv, v))-\{H(v, v)+H(pv, pv)+2{\rm Re}(H(pv, v))\}$

$=H(v, v)-H(pv, pv)\in\overline{\Omega}$ (from the definition of $J\zeta$).

Since $c$ is surjective by Lemma 2.1, we obtain

2 ${\rm Re}(L_{p}(w, w))-H(w, w)\in\overline{\Omega}$ for $w\in W$ .
Since $H(w, w)\in\overline{\Omega}$ by the definition of $H$ and since $\overline{\Omega}$ is convex, we obtain

${\rm Re}(L_{p}(w, w))=_{2^{-}}^{1}-\{H(w, w)+(2{\rm Re}(L_{p}(w, w))-H(w, w))\}\in\overline{\Omega}$ . QED.

For $ r\in\Omega$ , we define a subdomain $D_{r}$ of $D=D(H, \Omega, \mathcal{D}, \varphi)$ by

$D_{r}=\{(t, z, w)\in D;{\rm Im}(z)-{\rm Re}(L_{\varphi}(t)(w, w))-r\in\Omega\}$ .
More generally, for an open set $\mathcal{O}$ in $\mathcal{D}$ , the set

$D_{r}(\mathcal{O})=\{(t, z, w)\in D_{r} ; f\in \mathcal{O}\}$

is called a cylindrical set with base $\mathcal{O}$ . In particular, $D_{r}=D_{r}(\mathcal{D})$ .
LEMMA 2.3. The cylindrical set $D_{r}(\mathcal{O})$ is invariant under the transformations

of the type (2).
PROOF. If $(t, z, w)\rightarrow(t^{\prime}, z^{J}, w^{\prime})$ is a transformation of the type (2), then

(2)

It suffices therefore to prove that $D_{r}$ is invariant by a transformation of the
type (2). We have

${\rm Im}(z^{\prime})-{\rm Re}(L_{\varphi(t)}(w^{\prime}, w^{\prime}))-r$

$={\rm Im}(z)+2{\rm Re}(H(w, b))+{\rm Re}(H((1+\varphi(t))b, b))$
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$-{\rm Re}\{H(w+(1+\varphi(t))b, (I+\varphi(t))^{-1}(w+(I+\varphi(t))b))\}-r$

$={\rm Im}(z)+2{\rm Re}(H(w, b))+{\rm Re}(H((I+\varphi(t))b, b))$

$-{\rm Re}\{H(w+(1+\varphi(t))b, b+(I+\varphi(t))^{-1}w)\}-r$

$={\rm Im}(z)+2{\rm Re}(H(w, b))+{\rm Re}(H((I+\varphi(t))b, b))$

$-{\rm Re}\{H(w, b)+H(w, (I+\varphi(t))^{-1}w)$

$+H((I+\varphi(t))b, b)+H((\Gamma+\varphi(t))b, (I+\varphi(t))^{-1}w)\}-r$

$={\rm Im}(z)-{\rm Re}(L_{\varphi(t)}(w, w))-r$

$+{\rm Re}\{H(w, b)-H((I+\varphi(t))b, (I+\varphi(t))^{-1}w)\}$ .
It suffices therefore to prove

${\rm Re}\{H(w, b)-H((I+\varphi(t))b, (I+\varphi(t))^{-1}w)\}=0$ .
We have, for $e\in W$,

$H((I+\varphi(t))b, e)=H(b, e)+H(\varphi(t)b, e)$

$=H(b, e)+H(\varphi(t)e, b)$ (definition of $\chi,$ $(i)$)

$=H(b, e)+\overline{H(b,\varphi(t)e)}$ ($H:$ hermitian).
Hence,

${\rm Re}(H((I+\varphi(t))b, e))={\rm Re}(H(b, e))+{\rm Re}(\overline{H(b,\varphi(t)e)})$

$={\rm Re}(H(b, e))+{\rm Re}(H(b, \varphi(t)e))$

$={\rm Re}(H(b, (I+\varphi(t))e))$ .
If we set $e=(I+\varphi(t))^{-1}w$ in the equality above, then

${\rm Re}(H((I+\varphi(t))b, (I+\varphi(t))^{-1}w))={\rm Re}(H(b, w))={\rm Re}(H(w, b))$ ,

thus proving the desired equality. QED.
The following lemma is evident.
LEMMA 2.4.

$D_{r}(\mathcal{O})\supset D_{tr}(\mathcal{O})$ if $t>1$ .
We state the main proposition of this section.
PROPOSITION 2.5. Let $D=D(H, \Omega, \mathcal{D}, \varphi)$ be a Siegel domain of the third

kind. Then
$d_{D}(a, b)\geqq\log t$ for $a\in D-D_{r},$ $b\in D_{tr},$ $t>1,$ $ r\in\Omega$ ,

where $d_{D}$ denotes the intrinsic distance of $D$ explained in \S 1.
We prove the proposition in several steps.
LEMMA 2.6. Let $V=R,$ $\Omega=\{a\in R;a>0\}$ and $D=T_{9}=\{z\in C;{\rm Im}(z)>0\}$ .

Then
$d_{D}(a, b)\geqq\log t$ for $a\in D-D_{r},$ $b\in D_{tr},$ $t>1,$ $ r\in\Omega$ .
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PROOF. The intrinsic distance $d_{D}$ is identical in this case with the dis-
tance defined by the Bergman metric $(dx^{2}+dy^{2})/y^{2}$ . Hence,

$d_{D}(a, b)\geqq d_{D}({\rm Im}(a), 1m(b))\geqq d_{D}(ir, itr)=d_{D}(i, it)=\log f$ . QED.

LEMMA 2.7. Let $V=R^{n},$ $\Omega=\{(y^{1}, \cdots, y^{n})\in R^{n} ; y^{1}>0, \cdots, y^{n}>0\}$ and $D=$

$T_{\rho}=\{(z^{1}, \cdots z^{n})\in C^{n} ; {\rm Im}(z^{1})>0, \cdots , 1m(z^{n})>0\}$ . Then

$d_{D}(a, b)\geqq\log f$ for $a\in D-D_{r},$ $b\in D_{tr},$ $t>1,$ $ r\in\Omega$ .
PROOF. Let $a=$ $(a^{1}, \cdots , a^{n}),$ $b=(b^{1}, \cdots b^{n})$ and $r=(r^{1}, \cdots r^{n})$ . Then

$1m(a^{f})\leqq r^{j}$ for some $j,$ $1\leqq j\leqq n$ ,

${\rm Im}(b^{i})>tr^{i}$ for all $i,$ $1\leqq i\leqq n$ .
We can write $D=D_{1}\times\cdots\times D_{1}$ , where $D_{1}$ is the domain defined by $D_{1}=\{z\in C$ ;
${\rm Im}(z)>0\}$ . Let $p_{j}$ : $D\rightarrow D_{1}$ be the projection to the j-th factor. Since $p_{j}$ is
holomorphic and hence distance-decreasing, we have

$d_{D}(a, b)\geqq d_{D_{1}}(p_{j}a, p_{j}b)=d_{D_{1}}(a^{f}, b^{f})$ .
Applying Lemma 2.6 to the domain $D_{1}$ , we obtain

$d_{D_{1}}(a^{j}, b^{f})\geqq\log t$ .
Hence,

$d_{D}(a, b)\geqq\log t$ . QED.

LEMMA 2.8. Let $\Omega$ be a convex cone in an n-dimensional real vector space
V. Let $D=T_{\rho}=\{z\in V_{c} ; {\rm Im}(z)\in\Omega\}$ . Then

$d_{D}(a, b)\geqq\log t$ for $a\in D-D_{r},$ $b\in D_{tr},$ $t>1,$ $ r\in\Omega$ .
PROOF. Put $y={\rm Im}(a)$ . Consider the line $y+sr,$ $(-\infty<s<\infty)$ ; this is a

line through $y$ and parallel to the vector $r$ . We shall show that this line
meets the boundary $\partial\Omega$ of $\Omega$ exactly at one point, say, $y_{0}$ . Since this line
contains a point of $\Omega,$ $e$ . $g.,$ $ y\in\Omega$ and since the convex cone $\Omega$ cannot contain
a whole straight line, this line meets the boundary $\partial\Omega$ . If $y_{0}$ is any point
where this line meets $\partial\Omega$ , we may write $y_{0}=y+s_{0}r$ . If $\epsilon>0$ , then

$y+(s_{0}+\epsilon)r=y_{0}+\epsilon r=(1+\epsilon)(\frac{1}{1+\epsilon}y_{0}+\frac{\epsilon}{1+\epsilon}r)$ .

Since $y_{0}\in\overline{\Omega},$ $ r\in\Omega$ and $\Omega$ is convex, it follows that $\frac{1}{1+\epsilon}y_{0}+\frac{\epsilon}{1+\epsilon}r$ is in $\Omega$ .
Since $\Omega$ is a cone, $(1+\epsilon)(\frac{1}{1+\epsilon}y_{0}+\frac{\epsilon}{1+\epsilon}r)$ is in $\Omega$ . This shows that the

half-line $\{y+sr;s>s_{0}\}$ is completely contained in $\Omega$ . Hence, $y_{0}$ is the unique
intersection point.

We claim that there exists a basis $e_{1}$ , $\cdot$ .. , $e_{n}$ of $V$ such that the open
convex cone $\Omega_{n}=\{\sum y^{i}e_{i}\in V;y^{1}>0, \cdot.. y^{n}>0\}$ contains $\Omega$ and $y_{0}\in\partial\Omega_{n}$ . In
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order to prove our claim, we use the following well known fact on the dual
cone. Let $V^{*}$ be the dual space of $V$ and define the dual cone $\Omega*of\Omega$ by

$\Omega*=$ { $y^{*}\in V^{*};$ $\langle y^{*},$ $y\rangle>0$ for all nonzero $y\in\overline{\Omega}$ }.

Then $\Omega**=\Omega$ . In particular, $\Omega*is$ an open convex cone in $V^{*}$ . It is easy
to see that there exists a nonzero element $e_{1}^{*}$ in the closure of $\Omega*such$ that
$\langle e_{1}^{*}, y_{0}\rangle=0$ . Choose $e_{2}^{*},$ $\cdots$ $e_{n}^{*}$ in $\Omega*so$ that $e_{1}^{*},$ $\cdots$ , $e_{n}^{*}$ is a basis for $V^{*};$ this
is possible because $\Omega*is$ an open cone. Then the dual basis $e_{1},$

$\cdots$ $e_{n}$ for $V$

possesses the desired property.
Put $D_{n}=T_{p_{n}}=\{z\in V_{C} ; 1m(z)\in\Omega_{n}\}$ . Since $D_{tr}=\{z\in D;{\rm Im}(z)-tr\in\Omega\}$

and $D_{n,tr}=\{z\in D_{n} ; 1m(z)-tr\in\Omega_{n}\}$ , we have $D_{tr}\subset D_{n,tr}$ . Hence $b\in D_{tr}$

implies $b\in D_{n,tr}$ . We shall now show that $a\in D_{n}-D_{n,r}$ . Since $y=1m(a)$ and
$a\not\in D_{r}$ , it follows that $ y-r\not\in\Omega$ . Since $y+sr$ is in $\Omega$ if and only if $s>s_{0}$

as we saw above, we may conclude that $-1\leqq s_{0}$ . Since the line $y+sr$,
$(-\infty<s<\infty)$ , meets $\partial\Omega_{n}$ also exactly at one point $y_{0}=y+s_{0}r$, we see that
$y+sr$ is in $\Omega_{n}$ if and only if $s>s_{0}$ . Hence, $y-r$ is not in $\Omega_{n}$ . This shows
that $a\not\in D_{n,r}$ .

Since the injection $h:D\rightarrow D_{n}$ is holomorphic and hence distance-decreasing,
we have

$d_{D}(a, b)\geqq d_{D_{n}}(ha, hb)=d_{D_{n}}(a, b)$ .
Applying Lemma 2.7 to the domain $D_{n}$ , we have

$d_{D_{n}}(a, b)\geqq\log t$ .
Hence,

$d_{D}(a, b)\geqq\log t$ . QED.

PROOF OF PROPOSITION 2.5. Let $D=D(H, \Omega, \mathcal{D}, \varphi),$ $a\in D-D_{r}$ and $b\in D_{tr}$

with $t>1$ . Put $a=(t^{\sim},\tilde{z},\tilde{w})\in U\times V_{C}\times W$ . Since $I+\varphi(t)$ is a real automorphism
of $W$ by Lemma 2.1, the Siegel domain $D$ of the third kind admits an auto-
morphism of the type (2) which sends $a=(t,\tilde{z},\tilde{w})$ into $(t,\tilde{z}, 0)$ . Since such
an automorphism of $D$ leaves the distance $d_{D}$ invariant and, by Lemma 2.3,
leaves the domains $D_{r}$ and $D_{t\gamma}$ invariant, we may assume without loss of
generality that $a=(t,\tilde{z}, 0)$ .

Let $\rho:U\times V_{C}\times W\rightarrow V_{C}$ be the natural projection. We claim that $\rho$ maps
$D$ into $D^{\prime}=T_{\Omega}=\{z\in V_{C} ; {\rm Im}(z)\in\Omega\}$ . In fact, if $(t, z, w)$ is in $D$ so that
${\rm Im}(z)-{\rm Re}(L_{\varphi(t)}(w, w))\in\Omega$ , then ${\rm Im}(z)\in\Omega$ because ${\rm Re}(L_{\varphi(t)}(w, w))$ is in $\overline{\Omega}$ by
Lemma 2.2. Hence, $z$ is in $D^{\gamma}$ , proving our claim. In particular, $\rho(a)$ is in $D^{\prime}$ .
Since $a=(\tilde{t},\tilde{z}, 0)$ is not in $D_{r}$ , it follows that ${\rm Im}(\tilde{z})-r$ is not in $\Omega$ . Hence
$\tilde{z}=\rho(a)$ is not in $D_{\gamma}^{\prime}$ , thus proving $\rho(a)\in D‘-D_{r^{\prime}}$ . From Lemma 2.2 it follows
easily that $b\in D_{tr}$ implies $\rho(b)\in D_{tr}^{\prime}$ . Since $\rho$ is holomorphic and hence
distance-decreasing, we have
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$d_{D}(a, b)\geqq d_{D^{\prime}}(\rho(a), \rho(b))$ .
Applying Lemma 2.8 to the domain $D^{\gamma}$ , we have

$d_{D},(\rho(a), \rho(b))\geqq\log t$ .
Hence,

$d_{D}(a, b)\geqq\log t$ . QED.

\S 3. Boundary components of symmetric bounded domains [1], [6], [7],
[8], [9].

Let $D$ be a symmetric bounded domain in $C^{N}$ in the so-called Harish-
Chandra realization. Let $\overline{D}$ be the topological closure of $D$ and put $\partial D=\overline{D}-D$ .
A subset $\mathcal{F}$ of $\partial D$ is called a boundary component of $D$ if (i) $\mathcal{F}$ is an analytic
subset of $C^{N}$ and (ii) $\mathcal{F}$ is minimal with respect to the property that any
analytic arc contained in $\partial D$ and having a point in common with $\mathcal{F}$ must be
entirely contained in $\mathcal{F}$ . Then each boundary component $\mathcal{F}$ is again a bounded
symmetric domain. And if $\mathcal{F}^{\prime}$ is another boundary component of $D$ and if

$\mathcal{F}^{\prime}\subset\partial \mathcal{F}$ , then $\mathcal{F}^{\prime}$ is a boundary component of $\mathcal{F}$ also. For each boundary
component $\mathcal{F}$ of $D$ , there exists a Siegel domain of the third kind $D(H, \Omega, \mathcal{F}, \varphi)$

which is biholomorphic to $D$ . In the following, we fix such a realization
$D(H, \Omega, \mathcal{F}, \varphi)$ once and for all for each $D$ and $\mathcal{F}$ .

Let $G$ be the identity component of the group of automorphisms of $D$ .
Then each element of $G$ extends to an automorphism of a neighborhood of $\overline{D}$ .
Let $\Gamma$ be a discrete subgroup of $G$ defined arithmetically. We consider only
those boundary components $\mathcal{F}$ which are called the rational boundary compo-
nents with respect to $\Gamma$ . Let $B$ denote the union of all rational boundary
components of $D$ and set

$D^{*}=D\cup B$ .
The action of $\Gamma$ on $D$ extends to $D^{*}$ in a natural manner. With a topology
described below, $D^{*}/\Gamma=(D/\Gamma)\cup(B/\Gamma)$ is the so-called Satake compactification
of $ D/\Gamma$ . Let $\eta:D^{*}\rightarrow D^{*}/\Gamma$ denote the natural projection. For each point of
$ D/\Gamma$ , a basis of its neighborhood system is given by its neighborhood system

in $ D/\Gamma$ with the usual quotient topology. For a point $p$ in $ B/\Gamma$ , we construct
a basis of its neighborhood system as follows. Assume $p\in\eta(\mathcal{F})$ and let $\tilde{p}\in \mathcal{F}$

be a point such that $\eta(\tilde{p})=p$ . Consider the family of all rational boundary
components $\mathcal{E}$ of $D$ such that $\mathcal{F}\subset\partial \mathcal{E}$ . It is known that there are only a finite
number of $\Gamma$ -equivalence classes in this family. Let $\mathcal{F}_{1},$ $\cdots,$

$\mathcal{F}_{m}$ be a system

of representatives for these $\Gamma$ -equivalence classes. Thus the family $t\gamma(\mathcal{F}_{i})$ ;
$\gamma\in\Gamma$ and $i=1,$ $\cdots,$ $m$ } exhausts the rational boundary components $\mathcal{E}$ of $D$

such that $\mathcal{F}\subset\partial \mathcal{E}$ . Let $\mathcal{O}$ be an open neighborhood of $\tilde{p}$ in $\mathcal{F}$ . Considering
$D$ as a Siegel domain $D(H, \Omega, \mathcal{F}, \varphi)$ of the third kind, we consider a cylindrical
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set $D_{r}(\mathcal{O})$ in $D$ (as defined in \S 2), where $r$ is an element of the open convex
cone $\Omega$ . Each $\mathcal{F}_{i}$ is also a Siegel domain $\mathcal{F}_{i}=D(H_{i}, \Omega_{i}, \mathcal{F}, \varphi_{i})$ of the third
kind. We choose a cylindrical set $\mathcal{F}_{i,r_{i}}(\mathcal{O})$ in $\mathcal{F}_{i}$ , where $r_{i}\in\Omega_{i}$ . Put

$\tilde{\mathcal{U}}=\mathcal{O}\cup D_{r}(\mathcal{O})\cup \mathcal{F}_{1,r_{1}}(\mathcal{O})\cup\cdots\cup \mathcal{F}_{m,rm}(\mathcal{O})$

and
$\mathcal{U}=\eta(\tilde{\mathcal{U}})$ .

We take the family of $\mathcal{U}$ with varying $\mathcal{O},$ $r,$ $r_{1},$
$\cdots$ , $r_{m}$ as a basis for the open

neighborhood system for $\tilde{p}$ .
LEMMA 3.1. Let $D_{r}(\mathcal{O})$ be a cylindrical set in $D$ with a base $\mathcal{O}$ in a boundary

component $\mathcal{F}$ . Let $\mathcal{O}^{\prime}$ be an open set in $\mathcal{F}$ such that $\overline{\mathcal{O}}^{\prime}\subset \mathcal{O}$ and let $D_{tr}(\mathcal{O}^{\prime})$ be
a cylindrical set in $D$ with a base $\mathcal{O}^{\prime}$ , where $t>1$ . Then

$d_{D}(a, b)\geqq{\rm Min}\{\log t, d_{\mathcal{F}}(\mathcal{F}-\mathcal{O}, \mathcal{O}^{\prime})\}$ for $a\in D-D_{r}(\mathcal{O}),$ $b\in D_{tr}(\mathcal{O}^{\prime})$ .
PROOF. Let $\theta:D=D(H, \Omega, \mathcal{F}, \varphi)\rightarrow \mathcal{F}$ be the natural projection. If $\theta(a)\in \mathcal{O}$ ,

then $a\in D-D_{r}$ and Proposition 2.5 implies $d_{D}(a, b)\geqq\log t$ . Suppose $\theta(a)\not\in \mathcal{O}$ .
Since $\theta$ is holomorphic and hence distance-decreasing, we have

$d_{D}(a, b)\geqq d_{\mathcal{F}}(\theta a, \theta b)\geqq d_{\mathcal{F}}(\mathcal{F}-\mathcal{O}, \mathcal{O}^{\prime})$ . QED.

PROOF OF THEOREM 2’. Let $p$ be a point of $ B/\Gamma$ and $\mathcal{U}$ a neighborhood
of $p$ in $D^{*}/\Gamma=(D/\Gamma)\cup(B/\Gamma)$ . We have to prove that there is a smaller
neighborhood $\mathcal{V}$ of $p$ in $ D^{*}/\Gamma$ such that $\overline{\mathcal{V}}\subset \mathcal{U}$ and

$ d_{D}(a, b)\geqq\delta$ if $a,$ $b\in D$ , $\eta(a)\not\in \mathcal{U}$ and $\eta(b)\in \mathcal{V}$ ,

where $\delta$ is a positive number which depends only on $\mathcal{U}$ and $\mathcal{V}$ but not on
$a,$

$b$ . We choose $\tilde{p}\in \mathcal{F}$ such that $\eta(\tilde{p})=p$ .
Without loss of generality, we may assume that $\mathcal{U}=\eta(\tilde{\mathcal{U}})$ , where $\tilde{\mathcal{U}}$ is

of the form
$\tilde{\mathcal{U}}=\mathcal{O}\cup D_{r}(\mathcal{O})\cup \mathcal{F}_{1,r_{1}}(\mathcal{O})\cup\cdots\cup \mathcal{F}_{m,r_{m}}(\mathcal{O})$ ,

where $\mathcal{O}$ is an open neighborhood of $\tilde{p}\in \mathcal{F}$ , (see the definition of the topology

in $ D^{*}/\Gamma$ above). Let $\mathcal{O}^{\prime}$ be a smaller neighborhood of $\tilde{p}$ in $\tilde{\mathcal{F}}$ such that
$\overline{\mathcal{O}}^{\prime}\subset \mathcal{O}$ and let $t>1$ . Put

$\tilde{\mathcal{V}}=\mathcal{O}^{\prime}\cup D_{tr}(\mathcal{O}^{\prime})\cup \mathcal{F}_{1,tr_{1}}(\mathcal{O}^{\prime})\cup\cdots\cup \mathcal{F}_{m,trm}(\mathcal{O}^{\prime})$

and
$\mathcal{V}=\eta(\tilde{\mathcal{V}})$ .

Let $a,$ $b\in D,$ $\eta(a)\not\in \mathcal{U}$ and $\eta(b)\in \mathcal{V}$ . Since $b$ is equivalent to a point in $\tilde{\mathcal{V}}$

under the group $\Gamma$ and since $d_{D}$ is invariant by $\Gamma$ , we may assume that
$b\in\tilde{\mathcal{V}}$. Clearly, $a\not\in\tilde{\mathcal{U}}$ . Since $a\in D$ and $a\not\in\tilde{\mathcal{U}}$, we have $a\in D-D_{r}(\mathcal{O})$ . Since
$b\in D$ and $b\in\tilde{\mathcal{V}}$ , we have $b\in D_{tr}(\mathcal{O}^{\prime})$ . By Lemma 3.1,
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$ d_{D}(a, b)\geqq\delta$ ,
where

$\delta={\rm Min}\{\log t, d_{\xi F}(\mathcal{F}-\mathcal{O}, \mathcal{O}^{\prime})\}$ . QED.

University of California,
Berkeley
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