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§1. Introduction.

Let 4 be the unit disk {z=C; |z| <1} in the complex plane and 4* the
punctured disk {zeC; 0<|z|<1}. Let Py(C) be the 1-dimensional complex
projective space, P,(C)=C\J{co}. Delete three points, say, 0, 1, co, from P,(C).
The great Picard theorem says that every holomorphic mapping f: 4*— P,(C)
—{0, 1, oo} can be extended to a holomorphic mapping f:4— P,(C).

We consider a generalization of the great Picard theorem. Given a
complex space M, let d, be the intrinsic pseudo-distance introduced in [3].
We say that M is hyperbolic if d, is a distance on M. For example, P,(C)
—{0, 1, oo} is hyperbolic. Consider the following question.

“Let Y be a complex space and M a complex hyperbolic subspace of
Y such that its closure M is compact. Does every holomorphic mapping
f:4*— M extend to a holomorphic mapping f: 4—Y ?”

The answer is, in general, negative as shown by Kiernan [2] (see also
[4, Ch. VI, §17). On the other hand, we have the following result, [4].

THEOREM 1. Let Y be a complex space and M a complex subspace of Y
satisfying the following conditions:

(1) M is hyperbolic;

(2) the closure M of M is compact;

() Given a point p on the boundary M= M—M and a neighborhood U
of p, there exists a smaller neighborhood <V of p in Y such that

dy(MN\(Y—-U), MNV)>0.

Let X be a complex manifold and A a locally closed complex submanifold
of X. Then every holomorphic mapping X—A— M extends to a holomorphic
mapping X—Y.

It has been shown in [4; Ch. VI, § 6] that if Y= P,(C) and M= P,(C)—Q,
where Q is a complete quadrilateral, then the three conditions of
are satisfied. Hence, every holomorphic mapping of X—A into P,(C)—Q
extends to a holomorphic mapping of X into P,(C). This may be considered
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as a generalized great Picard theorem.

The purpose of this paper is to give another example of M C Y satisfying
the three conditions of [Theorem 1.

THEOREM 2. Let D be a symmetric bounded domain in CV and I' an
arithmetically defined discrete subgroup of the largest connected group G of
holomorphic automorphisms of D. Let Y be the Satake compactification of
M=D/I'. Then M and Y satisfy the three conditions of Theorem 1, provided
that I' acts freely on D.

We shall make comments in Remark 1 below on the technical assumption
that I’ acts freely on D.

From Theorems 1 and 2, we obtain immediately the following

COROLLARY. Let M and Y be as in Theorem 2. Let X be a complex mani-
fold and A a locally closed complex submanifold of X. Then every holomorphic
mapping X—A— M extends to a holomorphic mapping X—Y.

REMARK 1. In order to include into our consideration the case where
the action of I” is not free, we have to use a modified intrinsic pseudo-distance
dj on a V-manifold M. Let D be a complex manifold and I' a properly
discontinuous group of holomorphic automorphisms of D. Put M=D/I.
Then M is a V-manifold in the sense of Satake. Since M is a complex space,
we have an intrinsic pseudo-distance d,. In the definition of dy, use only
those holomorphic mappings f from the disk 4 in M which can be lifted to
holomorphic mappings 7 from 4 to D. Then we obtain a modified intrinsic
pseudo-distance dj;. This pseudo-distance may be defined also by

) ay(p, @) =dp(p~(p), " q) pP,9qeM,

where 7: D—D/I'= M is the projection. For details, see [4; Ch. VII, §6].
Of course, if I’ acts freely on D, then dy=dj. Then Theorem 1 can be
modified as follows:

THEOREM 1/. Let M=D/I" be a complex subspace of a complex space Y.
Assume

(1) the pseudo-distance dj is a distance;

(2) the closure M of M is compact;

(3) Given a point pe oM and a neighborhood U of p in Y, there exists
a smaller neighborhood <V of p in Y such that

(MY —U), M) >0.

Let X be a complex manifold and A a locally closed complex submanifold
of X. Then every locally liftable holomorphic mapping X— A— M extends to a
holomorphic mapping X—Y.

A holomorphic mapping f: X—A— M is said to be locally liftable if, for
each point x of X—A, there exist a neighborhood N, and a holomorphic
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mapping f,: N,— D such that nof,=f on N,.

can be modified as follows:

THEOREM 2/. Let D,I', M=D/I" and Y be as in Theorem 2 (but without
the condition that I" acts freely on D). Then M and Y satisfy the three con-
ditions of Theorem 1’.

Accordingly, can be also modified. In the proof of
or [Theorem 2, we have only to verify the condition (3) or (3’). The remaining
conditions are trivially satisfied. In the proof of [Theorem 2, the equality (x)
above will be used as the definition of the distance dj. Actually, the proof
will be written in terms of dp. Although it may be possible to prove
2’ using the distance defined by an invariant hermitian metric of D, the
intrinsic distance dp allows us to prove our main proposition (Proposition 2.5)
even for non-homogeneous Siegel domains.

REMARK 2. In connection with [Theorem 1, we mention the following
result of Kwack [5], (see also [4)).

Let M be a hyperbolic complex space, X a complex manifold and A a locally
closed complex subspace of X. Then every holomorphic mapping X—A—M
extends to a holomorphic mapping X— M if one of the following conditions is
satisfied :

(1) M is compact;

(2) M is complete with respect to dy and codim A=2.

She proved this result in her attempt to prove above.

REMARK 3. We have been informed that has been proved
recently by A. Borel by a different method. During the spring quarter of
1970, W. Schmid presented his own proof of for the case where D
is a generalized upper-halfplane of Siegel in his seminar in Berkeley.

REMARK 4. For the compactification of D/I', we have used the method
of Pyatetzki-Shapiro [6]. One can easily check that this is equivalent to that
of (See W.L. Baily, Fourier-Jacobi Series, Proc. Symp. Pure Math., Vol.
IX, Amer. Math. Soc., 1966).

§2. Siegel domains of the third kind and cylindrical subsets [6] [7] [9].

Let V be an n-dimensional real vector space. A convex cone £ in V is
an open convex subset such that

i) if ye2 and t>0, then tyes 2;

ii) £ contains no straight line.
The open subset Tg of Vo=V+4iV defined by

To={x+iyeV¢; ye 2}
is called the tube domain associated to £2. It is well known that the tube
domain Ty is analytically equivalent to a bounded domain. The domain Ty
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is also called the Siegel domain of the first kind associated to £.
An £-hermitian form on an m-dimensional complex vector space W is a
mapping H: WX W -V, such that
i) H(au+pv, w)=aH(u, w)+pHw, w) for u,v,weW, a, C;
ii) H(u, v)= H(v, u) for u,veW,
where H(v, u) is the natural complex conjugate of H(u, v) in Vg;
iiiy Hu,uwyeQ for ueW,
where £ denotes the topological closure of 2 ;
iv) H(u,u)=0 only if u=0.
The open subset D(H, £2) of VX W defined by

DH, Q) ={(x+iy,w) eV X W; y—Hw, w) € 2}

is called the Siegel domain of the second kind associated to H and £. It is
also analytically equivalent to a bounded domain. The domain D(H, £2) always
has analytic automorphisms of the following type:

z— z-+a+21Hw, b)+1H(b, b)
@ {

w—wtb,

where a=V and beW.

In order to define the Siegel domains of the third kind following [7], we
consider the set £ of all complex antilinear mappings p: W— W such that

i) H(pu,v)= H(pv, u) for u,veW,

ii) H(u, wy—H(pu, pu) 2 for ueW,;

iii) H(u, u) # H(pu, pu) if u=+0.
The totality of complex antilinear mappings p: W—W satisfying only (i) forms
a complex vector space in which X is a bounded domain. We need the
following lemma.

LeEMMA 2.1. If pe X, then I+p is a real linear isomorphism of W onto
itself, where I denotes the identity transformation of W.

PrOOF. Suppose (I+p)w=0. Then H(pw, pw)= H(—w, —w)= H(w, w).
From (iii) above, we obtain w=0. QED.

For pe K, we define L,: WXW— V. by

L,(u, v)= H(u, {+p)"") for u,veWw.

Now, let 9 be a bounded domain in a complex vector space U and ¢ an
analytic mapping from 9 into X. We define a domain D(H, 2, 9, ¢) of
UXVeXW by

DH, 2,9, 0)={t,z,w) cUX VX W; t €9, Im(2)—Re (Lyoy,(w, w)) = 2} .
This domain is called the Siegel domain of the third kind associated to H, 2, 9,
and ¢. This domain admits automorphisms of the following type:
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t—1
2 2+ z-+a+2tHw, b)+1H((I+¢(®)b, b)
w—w+b+et)b,

where acV, besW.

LEMMA 22. Re(L,(w,w)efR for pe X and weW.
PROOF. Put ¢=I+p. From the definition of L,, we have

L (cv, cv)= H(cv, v) for veW.
Hence,

2 Re (L (cv, cv))— H(cv, cv)
=2 Re (H(cv, v))—{H(v, v)-+ H(pv, pv)+ H(, pv)+ H(pv, v)}
=2H(v, v)+2 Re (H(pv, v))—{H(v, v)+ H(pv, pv)+2 Re (H(pv, v))}
=Hw, v)—H(pv, pv) 2  (from the definition of X).
Since ¢ is surjective by Lemma 2.1, we obtain
2Re (L,(w, w)—Hw,w)e2 for weW.

Since H(w, w) = 2 by the definition of H and since £ is convex, we obtain
Re (L (w, w)) = ¥%—-{H(w, w)+(2 Re (L (w, w))—Hw, w))} € Q. QED.
For r= {2, we define a subdomain D, of D= D(H, 2, 9, ¢) by
D.={(t, z,w)€ D; Im (2)—Re (Ly,w, w)—re 2} .
More generally, for an open set @ in 9, the set
D.(©o)={t z,wye D,; te0}

is called a cylindrical set with base ©. In particular, D, = D.(9D).
LEMMA 2.3. The cylindrical set D.(®) is invariant under the transformations

of the type (2).
Proor. If (¢, z, w)— @/, 2/, w’) is a transformation of the type (2), then
=t
2) 2/ = z+a+2iH(w, b)+i1H(I+¢p@))b, b)
w =w+b+p(t)b .

It suffices therefore to prove that D, is invariant by a transformation of the
type (2). We have

Im (z/)—Re (L, (w’, w))—r
=Im (2)+2 Re (H(w, b))+ Re (H((I4¢(1))b, b))
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—Re { Huw~+(1+®)b, (I+)w-+T+e)b)} —r
=Im (2)+2 Re (H(w, b))+Re (H(I+¢(£)b, b))
—Re { Hw+(I+o(£)b, b+U+p®) u)} —r
= Im (2)+2 Re (H(w, b))+ Re (H{U+¢®))b, b))
—Re {H(w, b)+ Hw, (I+¢®)'w)
+H({I+@(£))b, b)+H(U+ ()b, I+ ()" 'w)} —r
=Im (2)—Re (L u,(w, w))—r
+Re {Hw, b)—H(I+¢@)b, (I+¢®) " 'w)} .
[t suffices therefore to prove
: Re {H(w, b)—H((I+¢)b, I+¢@®) 7 w)} = 0.
We have, for e W,
H({(I+¢®)b, e) = H(b, e)+ H(p(t)b, e)
= H(b, e)+ H(p(t)e, b) (definition of %, (i)
= H(b, e)+H(b, o(t)e)  (H: hermitian) .

Hence,
Re (H((I+ ()b, e)) = Re (H(b, e))-+Re (H(b, ¢(t)e))
= Re (H(b, e))+Re (H(b, ¢(t)e))

= Re (H(b, U+9(1))) -

If we set e=(/+¢()'w in the equality above, then

Re (H((I+¢(t)b, (I+-¢(1))~'w)) = Re (H(b, w)) = Re (H(w, b)) ,

thus proving the desired equality. QED.

The following lemma is evident.

LEMMA 24.
D.(©) DD, (©) if t>1.

We state the main proposition of this section.
PROPOSITION 2.5. Let D=D(H, 2, D, ¢) be a Siegel domain of the third
kind. Then
dp(a, b) =log t for ae€D—D,, beD,, t>1, ref,

where dp denotes the intrinsic distance of D explained in §1.

We prove the proposition in several steps.
LEMMA 26. Let V=R, 2={acsR;a>0} and D=Tgo={zeC; Im (2)>0}.

Then
dp(a, b)=log t for aeD—D, beD,, t>1,ref.
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ProOOF. The intrinsic distance dp is identical in this case with the dis-
tance defined by the Bergman metric (dx?4-dy?)/y®*. Hence,
dp(a, b) = dp(Im (a), Im (b)) = dp(ir, itr) = dp(i, it)=log t. QED.
LEMMA 27. Let V=R", 2={0",--,y)eR";y»>0,--,y">0} and D=
Te={@E, - ,2)eC"; Im(z")>0, - ,Im (") >0}. Then
dp(a, b)=logt for ae¢D—D,, beD,, t>1,ref.
Proor. Let a=(at, :--,a"), b=(* ---, b and r=(*, ---,r"). Then
Im@)=sr! for some j,1=<j<n,
Im (b%) > tr® forall 7, 1<i<n.
We can write D= D, X --- XD,, where D, is the domain defined by D,= {zC;

Im(z) >0}. Let p;: D— D, be the projection to the j-th factor. Since p; is
holomorphic and hence distance-decreasing, we have

dp(a, b) = dp,(p;a, p;b) = dp,(a?, b7).
Applying to the domain D,, we obtain

dp,(a’, by =logt .
Hence,

dpla, b)=1logt. QED.

LEMMA 28. Let  be a convex cone in an n-dimensional real vector space
V. Let D=Tg={z€V,; Im ()€ 2}. Then

dpa, b)=logt for a€¢ D—-D,, beD,, t>1, ref.

PrROOF. Put y=1Im(a). Consider the line y+sr, (—oo < s < o0); this is a
line through y and parallel to the vector . We shall show that this line
meets the boundary 02 of £ exactly at one point, say, y,. Since this line
contains a point of 2, e.g., y = £ and since the convex cone £ cannot contain
a whole straight line, this line meets the boundary o0f2. If y, is any point
where this line meets 02, we may write y,=y+s,r. If ¢>0, then

Y+ (Sot+o)r =y, +er=(~1+ e)(fl:lpe—-yﬁ—fg r) .

. — ) . 1 € ..
Since y, €2, re 2 and 2 is convex, it follows that —lq_?yo-l-—l—_l_?r is in Q.

Since £ is a cone, (1+e)(*1-_1*_ve—yo+—l~*_§_~e~r) is in £2. This shows that the
half-line {y+s»; s> s,} is completely contained in £2. Hence, y, is the unique
intersection point.

We claim that there exists a basis e,,---,e, of V such that the open
convex cone £2,={Xye;V; y'>0,---,y*>0} contains £ and y,=02,. In
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order to prove our claim, we use the following well known fact on the dual
cone. Let V* be the dual space of V and define the dual cone £2* of 2 by

Q*={y*cV*; {y* 3> >0 for all nonzero y s 2}.

Then 2**= . In particular, 2* is an open convex cone in V* It is easy
to see that there exists a nonzero element e in the closure of £* such that
{e¥, ¥,>=0. Choose e¥F, ---,e¥ in 2% so that ef, ---, e} is a basis for V*; this
is possible because £2* is an open cone. Then the dual basis e, ---, e, for V
possesses the desired property.

Put D,=Tg,={z€V,; Im(2) € 2,}. Since D,={ze€ D; Im(z)—tre 2}
and D,.,,={zeD,; ImE—tre,}, we have D, D,,. Hence beD,
implies b= D, ;,. We shall now show that a € D,—D,,. Since y=1Im (a) and
a< D,, it follows that y—re& 2. Since y+sr is in £ if and only if s>s,
as we saw above, we may conclude that —1=s,. Since the line y+s7,
(—oo < s <), meets 9, also exactly at one point y,=y-+s,7, we see that
y+sr is in 2, if and only if s>s,. Hence, y—r is not in £,. This shows
that a&¢ D, ,.

Since the injection % : D—D, is holomorphic and hence distance-decreasing,
we have

dp(a, b) = dp,(ha, hb) = dp,(a, b) .

Applying Lemma 2.7 to the domain D,, we have

dp,(a, b)=logt.
Hence,
dpa, b)=logt. QED.

PROOF OF PROPOSITION 2.5. Let D= D(H, 2, 9, ¢), ac D—D, and b D,,
with t>1. Puta=(, 2,0) €UX VexW. Since I+¢(f) is a real automorphism
of W by Lemma 2.1, the Siegel domain D of the third kind admits an auto-
morphism of the type (2) which sends a= (¢, Z, %) into (¢, 2, 0). Since such
an automorphism of D leaves the distance d, invariant and, by Lemma 2.3,
leaves the domains D, and D,, invariant, we may assume without loss of
generality that a=({, 2, 0).

Let p: UXVXW—V, be the natural projection. We claim that p maps
D into D'=Tg={z€V¢; Im(2) = L2}. In fact, if (¢,z, w) is in D so that
Im (2)—Re (L, (w, w)) € 2, then Im(z) € 2 because Re (L,u,(w, w)) is in 2 by
Lemma 2.2. Hence, z is in D/, proving our claim. In particular, p(a) is'in D’.
Since a=({, #,0) is not in D,, it follows that Im (¢)—r is not in £2. Hence
Z = p(a) is not in D/, thus proving p(a) € D’—D/. From Lemma 2.2 it follows
easily that b< D,, implies p(b) = D;.. Since p is holomorphic and hence
distance-decreasing, we have
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dp(a, b) = dp(p(a), p(b)) .
Applying to the domain D’, we have

dp(p(a), p(b)) = log t .
Hence,

dp(a, by=logt. QED.

§3. Boundary components of symmetric bounded domains [1], [6], [7],

81, [9].

Let D be a symmetric bounded domain in C¥ in the so-called Harish-
Chandra realization. Let D be the topological closure of D and put 8D =D—D.
A subset & of dD is called a boundary component of D if (i) & is an analytic
subset of C¥ and (ii) & is minimal with respect to the property that any
analytic arc contained in 0D and having a point in common with & must be
entirely contained in &#. Then each boundary component & is again a bounded
symmetric domain. And if &’ is another boundary component of D and if
F'Co0F, then F’ is a boundary component of & also. For each boundary
component &F of D, there exists a Siegel domain of the third kind D(H, 2, &, ¢)
which is biholomorphic to D. In the following, we fix such a realization
D(H, 2, &, ¢) once and for all for each D and &.

Let G be the identity component of the group of automorphisms of D.
Then each element of G extends to an automorphism of a neighborhood of D.
Let I' be a discrete subgroup of G defined arithmetically. We consider only
those boundary components & which are called the rational boundary compo-
nents with respect to I'. Let B denote the union of all rational boundary
components of D and set

D*¥=D\UB.

The action of I on D extends to D* in a natural manner. With a topology
described below, D*/I' =(D/I")\J(B/I') is the so-called Satake compactification
of D/I". Let n:D*— D*/I" denote the natural projection. For each point of
D/I', a basis of its neighborhood system is given by its neighborhood system
in D/I" with the usual quotient topology. For a point p in B/I', we construct
a basis of its neighborhood system as follows. Assume p< 7(F) and let p &
be a point such that 7(p)=p. Consider the family of all rational boundary
components & of D such that FC 0&€. It is known that there are only a finite

number of I’-equivalence classes in this family. Let &, ---, ¥, be a system
of representatives for these I'-equivalence classes. Thus the family {y(F));
yel and i=1,..-,m} exhausts the rational boundary components & of D

such that #C0d&. Let © be an open neighborhood of p in &. Considering
D as a Siegel domain D(H, 2, &, ¢) of the third kind, we consider a cylindrical
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set D,(©) in D (as defined in §2), where » is an element of the open convex
cone 2. Each &, is also a Siegel domain &,=D(H,, £,, F, ¢;) of the third
kind. We choose a cylindrical set &,,,(0) in &;, where r,=£2,. Put

U=0\ DO\ Fy,n (O -+ \J Fpp . (O)
and

U = (V) .
We take the family of ¥ with varying ©, », 7, .-+, 7, as a basis for the open
neighborhood system for 5.
LEMMA 3.1. Let D.(®) be a cylindrical set in D with a base © in a boundary

component F. Let ©' be an open set in F such that ©’ C O and let D, (O") be
a cylindrical set in D with a base ©’, where t>1. Then

dp(a, b) = Min {log t, de(F—0, ©)}  for ac D—D.®), b D.(O).
ProOF. Let 6: D=D(H, 2, F, ¢) —>F be the natural projection. If §(a)=0,

then a = D—D, and Proposition 2.5 implies dp(a, b)=1logt. Suppose f(a)&0.
Since 6 is holomorphic and hence distance-decreasing, we have

dp(a, b)=dz(fa, 0b) = de(F—0, O) . QED.
PROOF OF THEOREM 2/. Let p be a point of B/I’ and U a neighborhood

of p in D*/I'=(D/I")\J(B/I'). We have to prove that there is a smaller
neighborhood <V of p in D*/I" such that <V < U and

dpla,b)=0 if a,b=D, npla)evU and pb) ey,
where J is a positive number which depends only on U and ¢ but not on
a,b. We choose p & & such that n(H)=p.

Without loss of generality, we may assume that CU:r;(‘ﬁ), where U is
of the form

U=0Y DO F11(O)\ Y Frn(O)

where © is an open neighborhood of p = &, (see the definition of the topology
in D*/I" above). Let ©’ be a smaller neighborhood of # in & such that
O’C o and let t>1. Put

WV =0"\ Dy(0) F1,07, (O - \J F o 1y, (O)
and

W = (V).
Let a, b= D, n(a)& U and n(b)= <. Since b is equivalent to a point in =y
under the group I’ and since dp is invariant by I, we may assume that
bedy. Clearly, ag9. Since a=D and a<& U, we have aeD—D,(0). Since
be D and be U, we have be D..(©"). By [Lemma 3.1,
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dD(a: b) g 5 ’
where
0 =Min {log ¢, de(F—0, ©')}. QED.
University of California,
Berkeley
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