Satake compactification and the great Picard theorem

By Shoshichi Kobayashi* and Takushiro Ochiai

(Received June 8, 1970)

§ 1. Introduction.

Let Δ be the unit disk $\{z \in C ;|z|<1\}$ in the complex plane and Δ^{*} the punctured disk $\{z \in \boldsymbol{C} ; 0<|z|<1\}$. Let $P_{1}(\boldsymbol{C})$ be the 1 -dimensional complex projective space, $P_{1}(\boldsymbol{C})=\boldsymbol{C} \cup\{\infty\}$. Delete three points, say, $0,1, \infty$, from $P_{1}(\boldsymbol{C})$. The great Picard theorem says that every holomorphic mapping $f: \Delta^{*} \rightarrow P_{1}(C)$ $-\{0,1, \infty\}$ can be extended to a holomorphic mapping $f: \Delta \rightarrow P_{1}(\boldsymbol{C})$.

We consider a generalization of the great Picard theorem. Given a complex space M, let d_{M} be the intrinsic pseudo-distance introduced in [3]. We say that M is hyperbolic if d_{M} is a distance on M. For example, $P_{1}(\boldsymbol{C})$ $-\{0,1, \infty\}$ is hyperbolic. Consider the following question.
"Let Y be a complex space and M a complex hyperbolic subspace of Y such that its closure \bar{M} is compact. Does every holomorphic mapping $f: \Delta^{*} \rightarrow M$ extend to a holomorphic mapping $f: \Delta \rightarrow Y$?"

The answer is, in general, negative as shown by Kiernan [2] (see also [4, Ch. VI, §1]). On the other hand, we have the following result, [4].

Theorem 1. Let Y be a complex space and M a complex subspace of Y satisfying the following conditions:
(1) M is hyperbolic;
(2) the closure \bar{M} of M is compact;
(3) Given a point p on the boundary $\partial M=\bar{M}-M$ and a neighborhood \mathcal{U} of p, there exists a smaller neighborhood \mathbb{V} of p in Y such that

$$
d_{M}(M \cap(Y-q), M \cap \sim)>0 .
$$

Let X be a complex manifold and A a locally closed complex submanifold of X. Then every holomorphic mapping $X-A \rightarrow M$ extends to a holomorphic mapping $X \rightarrow Y$.

It has been shown in [4; Ch. VI, §6] that if $Y=P_{2}(\boldsymbol{C})$ and $M=P_{2}(\boldsymbol{C})-Q$, where Q is a complete quadrilateral, then the three conditions of Theorem 1 are satisfied. Hence, every holomorphic mapping of $X-A$ into $P_{2}(\boldsymbol{C})-Q$ extends to a holomorphic mapping of X into $P_{2}(C)$. This may be considered

[^0]as a generalized great Picard theorem.
The purpose of this paper is to give another example of $M \subset Y$ satisfying the three conditions of Theorem 1.

Theorem 2. Let D be a symmetric bounded domain in \boldsymbol{C}^{N} and Γ an arithmetically defined discrete subgroup of the largest connected group G of holomorphic automorphisms of D. Let Y be the Satake compactification of $M=D / \Gamma$. Then M and Y satisfy the three conditions of Theorem 1, provided that Γ acts freely on D.

We shall make comments in Remark 1 below on the technical assumption that Γ acts freely on D.

From Theorems 1 and 2, we obtain immediately the following
Corollary. Let M and Y be as in Theorem 2. Let X be a complex manifold and A a locally closed complex submanifold of X. Then every holomorphic mapping $X-A \rightarrow M$ extends to a holomorphic mapping $X \rightarrow Y$.

Remark 1. In order to include into our consideration the case where the action of Γ is not free, we have to use a modified intrinsic pseudo-distance d_{M}^{\prime} on a V-manifold M. Let D be a complex manifold and Γ a properly discontinuous group of holomorphic automorphisms of D. Put $M=D / \Gamma$. Then M is a V-manifold in the sense of Satake. Since M is a complex space, we have an intrinsic pseudo-distance d_{M}. In the definition of d_{M}, use only those holomorphic mappings from the disk Δ in M which can be lifted to holomorphic mappings \tilde{f} from Δ to D. Then we obtain a modified intrinsic pseudo-distance d_{m}^{\prime}. This pseudo-distance may be defined also by

$$
\begin{equation*}
d_{M}^{\prime}(p, q)=d_{D}\left(\eta^{-1}(p), \eta^{-1}(q)\right) \quad p, q \in M \tag{*}
\end{equation*}
$$

where $\eta: D \rightarrow D / \Gamma=M$ is the projection. For details, see [4; Ch. VII, §6]. Of course, if Γ acts freely on D, then $d_{M}=d_{m}^{\prime}$. Then Theorem 1 can be modified as follows:

ThEOREM 1^{\prime}. Let $M=D / \Gamma$ be a complex subspace of a complex space Y. Assume
(1') the pseudo-distance d_{M}^{\prime} is a distance;
(2) the closure \bar{M} of M is compact;
(3') Given a point $p \in \partial M$ and a neighborhood U of p in Y, there exists a smaller neighborhood \mathcal{V} of p in Y such that

$$
d_{M L}^{\prime}(M \cap(Y-Q), M \cap \odot)>0 .
$$

Let X be a complex manifold and A a locally closed complex submanifold of X. Then every locally liftable holomorphic mapping $X-A \rightarrow M$ extends to a holomorphic mapping $X \rightarrow Y$.

A holomorphic mapping $f: X-A \rightarrow M$ is said to be locally liftable if, for each point x of $X-A$, there exist a neighborhood N_{x} and a holomorphic
mapping $f_{x}: N_{x} \rightarrow D$ such that $\eta \circ f_{x}=f$ on N_{x}.
Theorem 2 can be modified as follows:
Theorem 2'. Let $D, \Gamma, M=D / \Gamma$ and Y be as in Theorem 2 (but without the condition that Γ acts freely on D). Then M and Y satisfy the three conditions of Theorem 1^{\prime}.

Accordingly, Corollary can be also modified. In the proof of Theorem 2 or Theorem 2 2 , we have only to verify the condition (3) or (3^{\prime}). The remaining conditions are trivially satisfied. In the proof of Theorem 2 , the equality (*) above will be used as the definition of the distance d_{M}^{\prime}. Actually, the proof will be written in terms of d_{D}. Although it may be possible to prove Theorem 2^{\prime} using the distance defined by an invariant hermitian metric of D, the intrinsic distance d_{D} allows us to prove our main proposition (Proposition 2.5) even for non-homogeneous Siegel domains.

REMARK 2. In connection with Theorem 1, we mention the following result of Kwack [5], (see also [4]).

Let M be a hyperbolic complex space, X a complex manifold and A a locally closed complex subspace of X. Then every holomorphic mapping $X-A \rightarrow M$ extends to a holomorphic mapping $X \rightarrow M$ if one of the following conditions is satisfied:
(1) M is compact;
(2) M is complete with respect to d_{M} and $\operatorname{codim} A \geqq 2$.

She proved this result in her attempt to prove Corollary above.
Remark 3. We have been informed that Corollary has been proved recently by A. Borel by a different method. During the spring quarter of 1970, W. Schmid presented his own proof of Corollary for the case where D is a generalized upper-halfplane of Siegel in his seminar in Berkeley.

Remark 4. For the compactification of D / Γ, we have used the method of Pyatetzki-Shapiro [6]. One can easily check that this is equivalent to that of [1] (See W. L. Baily, Fourier-Jacobi Series, Proc. Symp. Pure Math., Vol. IX, Amer. Math. Soc., 1966).
§2. Siegel domains of the third kind and cylindrical subsets [6] [7] [9].
Let V be an n-dimensional real vector space. A convex cone Ω in V is an open convex subset such that
i) if $y \in \Omega$ and $t>0$, then $t y \in \Omega$;
ii) Ω contains no straight line.

The open subset T_{Ω} of $V_{c}=V+i V$ defined by

$$
T_{\Omega}=\left\{x+i y \in V_{c} ; y \in \Omega\right\}
$$

is called the tube domain associated to Ω. It is well known that the tube domain T_{Ω} is analytically equivalent to a bounded domain. The domain T_{Ω}
is also called the Siegel domain of the first kind associated to Ω.
An Ω-hermitian form on an m-dimensional complex vector space W is a mapping $H: W \times W \rightarrow V_{c}$ such that
i) $H(\alpha u+\beta v, w)=\alpha H(u, w)+\beta H(v, w)$ for $u, v, w \in W, \alpha, \beta \in \boldsymbol{C}$;
ii) $H(u, v)=\overline{H(v, u)}$ for $u, v \in W$,
where $\overline{H(v, u)}$ is the natural complex conjugate of $H(u, v)$ in $V_{\boldsymbol{c}}$;
iii) $H(u, u) \in \bar{\Omega}$ for $u \in W$,
where $\bar{\Omega}$ denotes the topological closure of Ω;
iv) $H(u, u)=0$ only if $u=0$.

The open subset $D(H, \Omega)$ of $V_{\boldsymbol{c}} \times W$ defined by

$$
D(H, \Omega)=\left\{(x+i y, w) \in V_{c} \times W ; y-H(w, w) \in \Omega\right\}
$$

is called the Siegel domain of the second kind associated to H and Ω. It is also analytically equivalent to a bounded domain. The domain $D(H, \Omega)$ always has analytic automorphisms of the following type:

$$
\left\{\begin{array}{l}
z \mapsto z+a+2 i H(w, b)+i H(b, b) \tag{1}\\
w \mapsto w+b,
\end{array}\right.
$$

- where $a \in V$ and $b \in W$.

In order to define the Siegel domains of the third kind following [7], we consider the set \mathcal{K} of all complex antilinear mappings $p: W \rightarrow W$ such that
i) $H(p u, v)=H(p v, u)$ for $u, v \in W$;
ii) $H(u, u)-H(p u, p u) \in \bar{\Omega}$ for $u \in W$;
iii) $H(u, u) \neq H(p u, p u)$ if $u \neq 0$.

The totality of complex antilinear mappings $p: W \rightarrow W$ satisfying only (i) forms a complex vector space in which \mathcal{K} is a bounded domain. We need the following lemma.

Lemma 2.1. If $p \in \mathcal{K}$, then $I+p$ is a real linear isomorphism of W onto itself, where I denotes the identity transformation of W.

Proof. Suppose $(I+p) w=0$. Then $H(p w, p w)=H(-w,-w)=H(w, w)$. From (iii) above, we obtain $w=0$.

QED.
For $p \in \mathcal{K}$, we define $L_{p}: W \times W \rightarrow V_{\boldsymbol{c}}$ by

$$
L_{p}(u, v)=H\left(u,(I+p)^{-1} v\right) \quad \text { for } \quad u, v \in W
$$

Now, let \mathscr{D} be a bounded domain in a complex vector space U and φ an analytic mapping from \mathscr{D} into \mathcal{K}. We define a domain $D(H, \Omega, \mathscr{G}, \varphi)$ of $U \times V_{c} \times W$ by
$D(H, \Omega, \mathscr{D}, \varphi)=\left\{(t, z, w) \in U \times V_{c} \times W ; t \in \mathscr{A}, \operatorname{Im}(z)-\operatorname{Re}\left(L_{\varphi(t)}(w, w)\right) \in \Omega\right\}$. This domain is called the Siegel domain of the third kind associated to H, Ω, \mathscr{G}, and φ. This domain admits automorphisms of the following type:

$$
\left\{\begin{array}{l}
t \mapsto t \tag{2}\\
z \mapsto z+a+2 i H(w, b)+i H((I+\varphi(t)) b, b) \\
w \mapsto w+b+\varphi(t) b
\end{array}\right.
$$

where $a \in V, b \in W$.
Lemma 2.2. $\operatorname{Re}\left(L_{p}(w, w)\right) \in \bar{\Omega}$ for $p \in \mathcal{K}$ and $w \in W$.
Proof. Put $c=I+p$. From the definition of L_{p}, we have

$$
L_{p}(c v, c v)=H(c v, v) \quad \text { for } \quad v \in W
$$

Hence,

$$
\begin{aligned}
2 \operatorname{Re} & \left(L_{p}(c v, c v)\right)-H(c v, c v) \\
& =2 \operatorname{Re}(H(c v, v))-\{H(v, v)+H(p v, p v)+H(v, p v)+H(p v, v)\} \\
& =2 H(v, v)+2 \operatorname{Re}(H(p v, v))-\{H(v, v)+H(p v, p v)+2 \operatorname{Re}(H(p v, v))\} \\
& =H(v, v)-H(p v, p v) \in \bar{\Omega} \quad \text { (from the definition of } \mathcal{K}) .
\end{aligned}
$$

Since c is surjective by Lemma 2.1, we obtain

$$
2 \operatorname{Re}\left(L_{p}(w, w)\right)-H(w, w) \in \bar{\Omega} \quad \text { for } \quad w \in W
$$

Since $H(w, w) \in \bar{\Omega}$ by the definition of H and since $\bar{\Omega}$ is convex, we obtain

$$
\operatorname{Re}\left(L_{p}(w, w)\right)=-\frac{1}{2}\left\{H(w, w)+\left(2 \operatorname{Re}\left(L_{p}(w, w)\right)-H(w, w)\right)\right\} \in \bar{\Omega} . \quad \text { QED. }
$$

For $r \in \Omega$, we define a subdomain D_{r} of $D=D(H, \Omega, \mathscr{D}, \varphi)$ by

$$
D_{r}=\left\{(t, z, w) \in D ; \operatorname{Im}(z)-\operatorname{Re}\left(L_{\varphi(t)}(w, w)\right)-r \in \Omega\right\} .
$$

More generally, for an open set \mathcal{O} in \mathscr{D}, the set

$$
D_{r}(\mathcal{O})=\left\{(t, z, w) \in D_{r} ; t \in \mathcal{O}\right\}
$$

is called a cylindrical set with base \mathcal{O}. In particular, $D_{r}=D_{r}(\mathscr{G})$.
Lemma 2.3. The cylindrical set $D_{r}(\mathcal{O})$ is invariant under the transformations of the type (2).

Proof. If $(t, z, w) \rightarrow\left(t^{\prime}, z^{\prime}, w^{\prime}\right)$ is a transformation of the type (2), then

$$
\left\{\begin{array}{l}
t^{\prime}=t \tag{2}\\
z^{\prime}=z+a+2 i H(w, b)+i H((I+\varphi(t)) b, b) \\
w^{\prime}=w+b+\varphi(t) b
\end{array}\right.
$$

It suffices therefore to prove that D_{r} is invariant by a transformation of the type (2). We have

$$
\begin{aligned}
\operatorname{Im}\left(z^{\prime}\right) & -\operatorname{Re}\left(L_{\varphi(t)}\left(w^{\prime}, w^{\prime}\right)\right)-r \\
& =\operatorname{Im}(z)+2 \operatorname{Re}(H(w, b))+\operatorname{Re}(H((I+\varphi(t)) b, b))
\end{aligned}
$$

$$
\begin{aligned}
& -\operatorname{Re}\left\{H\left(w+(1+\varphi(t)) b,(I+\varphi(t))^{-1}(w+(I+\varphi(t)) b)\right)\right\}-r \\
= & \operatorname{Im}(z)+2 \operatorname{Re}(H(w, b))+\operatorname{Re}(H((I+\varphi(t)) b, b)) \\
& -\operatorname{Re}\left\{H\left(w+(I+\varphi(t)) b, b+(I+\varphi(t))^{-1} w\right)\right\}-r \\
= & \operatorname{Im}(z)+2 \operatorname{Re}(H(w, b))+\operatorname{Re}(H((I+\varphi(t)) b, b)) \\
& -\operatorname{Re}\left\{H(w, b)+H\left(w,(I+\varphi(t))^{-1} w\right)\right. \\
& \left.+H((I+\varphi(t)) b, b)+H\left((I+\varphi(t)) b,(I+\varphi(t))^{-1} w\right)\right\}-r \\
= & \operatorname{Im}(z)-\operatorname{Re}\left(L_{\varphi(t)}(w, w)\right)-r \\
& +\operatorname{Re}\left\{H(w, b)-H\left((I+\varphi(t)) b,(I+\varphi(t))^{-1} w\right)\right\} .
\end{aligned}
$$

It suffices therefore to prove

$$
\operatorname{Re}\left\{H(w, b)-H\left((I+\varphi(t)) b,(I+\varphi(t))^{-1} w\right)\right\}=0
$$

We have, for $e \in W$,

$$
\begin{aligned}
H((I+\varphi(t)) b, e) & =H(b, e)+H(\varphi(t) b, e) \\
& =H(b, e)+H(\varphi(t) e, b) \quad \text { (definition of } \mathcal{K},(\mathrm{i})) \\
& =H(b, e)+\overline{H(b, \varphi(t) e)} \quad(H: \text { hermitian) } .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\operatorname{Re}(H((I+\varphi(t)) b, e)) & =\operatorname{Re}(H(b, e))+\operatorname{Re}(\overline{H(b, \varphi(t) e)}) \\
& =\operatorname{Re}(H(b, e))+\operatorname{Re}(H(b, \varphi(t) e)) \\
& =\operatorname{Re}(H(b,(I+\varphi(t)) e))
\end{aligned}
$$

If we set $e=(I+\varphi(t))^{-1} w$ in the equality above, then

$$
\operatorname{Re}\left(H\left((I+\varphi(t)) b,(I+\varphi(t))^{-1} w\right)\right)=\operatorname{Re}(H(b, w))=\operatorname{Re}(H(w, b))
$$

thus proving the desired equality.
QED.
The following lemma is evident.
Lemma 2.4.

$$
D_{r}(\Theta) \supset D_{t r}(\theta) \quad \text { if } \quad t>1
$$

We state the main proposition of this section.
Proposition 2.5. Let $D=D(H, \Omega, \mathscr{D}, \varphi)$ be a Siegel domain of the third kind. Then

$$
d_{D}(a, b) \geqq \log t \quad \text { for } \quad a \in D-D_{r}, b \in D_{t r}, t>1, r \in \Omega
$$

where d_{D} denotes the intrinsic distance of D explained in $\S 1$.
We prove the proposition in several steps.
Lemma 2.6. Let $V=\boldsymbol{R}, \Omega=\{a \in \boldsymbol{R} ; a>0\}$ and $D=T_{\Omega}=\{z \in \boldsymbol{C} ; \operatorname{Im}(z)>0\}$. Then

$$
d_{D}(a, b) \geqq \log t \quad \text { for } \quad a \in D-D_{r}, b \in D_{t r}, t>1, r \in \Omega
$$

Proof. The intrinsic distance d_{D} is identical in this case with the distance defined by the Bergman metric $\left(d x^{2}+d y^{2}\right) / y^{2}$. Hence,

$$
d_{D}(a, b) \geqq d_{D}(\operatorname{Im}(a), \operatorname{Im}(b)) \geqq d_{D}(i r, i t r)=d_{D}(i, i t)=\log t . \quad \text { QED. }
$$

Lemma 2.7. Let $V=\boldsymbol{R}^{n}, \Omega=\left\{\left(y^{1}, \cdots, y^{n}\right) \in \boldsymbol{R}^{n} ; y^{1}>0, \cdots, y^{n}>0\right\}$ and $D=$ $T_{\Omega}=\left\{\left(z^{1}, \cdots, z^{n}\right) \in C^{n} ; \operatorname{Im}\left(z^{1}\right)>0, \cdots, \operatorname{Im}\left(z^{n}\right)>0\right\}$. Then

$$
d_{D}(a, b) \geqq \log t \quad \text { for } \quad a \in D-D_{r}, b \in D_{t r}, t>1, r \in \Omega .
$$

Proof. Let $a=\left(a^{1}, \cdots, a^{n}\right), b=\left(b^{1}, \cdots, b^{n}\right)$ and $r=\left(r^{1}, \cdots, r^{n}\right)$. Then

$$
\begin{array}{ll}
\operatorname{Im}\left(a^{j}\right) \leqq r^{j} & \text { for some } j, 1 \leqq j \leqq n, \\
\operatorname{Im}\left(b^{i}\right)>t r^{i} & \text { for all } i, 1 \leqq i \leqq n .
\end{array}
$$

We can write $D=D_{1} \times \cdots \times D_{1}$, where D_{1} is the domain defined by $D_{1}=\{z \in \boldsymbol{C}$; $\operatorname{Im}(z)>0\}$. Let $p_{j}: D \rightarrow D_{1}$ be the projection to the j-th factor. Since p_{j} is holomorphic and hence distance-decreasing, we have

$$
d_{D}(a, b) \geqq d_{D_{1}}\left(p_{j} a, p_{j} b\right)=d_{D_{1}}\left(a^{j}, b^{j}\right) .
$$

Applying Lemma 2.6 to the domain D_{1}, we obtain

$$
d_{D_{1}}\left(a^{j}, b^{j}\right) \geqq \log t .
$$

Hence,

$$
d_{D}(a, b) \geqq \log t
$$

QED.
Lemma 2.8. Let Ω be a convex cone in an n-dimensional real vector space V. Let $D=T_{\Omega}=\left\{z \in V_{c} ; \operatorname{Im}(z) \in \Omega\right\}$. Then

$$
d_{D}(a, b) \geqq \log t \quad \text { for } \quad a \in D-D_{r}, b \in D_{t r}, t>1, r \in \Omega .
$$

Proof. Put $y=\operatorname{Im}(a)$. Consider the line $y+s r,(-\infty<s<\infty)$; this is a line through y and parallel to the vector r. We shall show that this line meets the boundary $\partial \Omega$ of Ω exactly at one point, say, y_{0}. Since this line contains a point of Ω, e. g., $y \in \Omega$ and since the convex cone Ω cannot contain a whole straight line, this line meets the boundary $\partial \Omega$. If y_{0} is any point where this line meets $\partial \Omega$, we may write $y_{0}=y+s_{0} r$. If $\varepsilon>0$, then

$$
y+\left(s_{0}+\varepsilon\right) r=y_{0}+\varepsilon r=(1+\varepsilon)\left(\frac{1}{1+\varepsilon} y_{0}+\frac{\varepsilon}{1+\varepsilon} r\right) .
$$

Since $y_{0} \in \bar{\Omega}, r \in \Omega$ and Ω is convex, it follows that $\frac{1}{1+\varepsilon} y_{0}+\frac{\varepsilon}{1+\varepsilon} r$ is in Ω. Since Ω is a cone, $(1+\varepsilon)\left(\frac{1}{1+\varepsilon} y_{0}+\frac{\varepsilon}{1+\varepsilon} r\right)$ is in Ω. This shows that the half-line $\left\{y+s r ; s>s_{0}\right\}$ is completely contained in Ω. Hence, y_{0} is the unique intersection point.

We claim that there exists a basis e_{1}, \cdots, e_{n} of V such that the open convex cone $\Omega_{n}=\left\{\Sigma y^{i} e_{i} \in V ; y^{1}>0, \cdots, y^{n}>0\right\}$ contains Ω and $y_{0} \in \partial \Omega_{n}$. In
order to prove our claim, we use the following well known fact on the dual cone. Let V^{*} be the dual space of V and define the dual cone Ω^{*} of Ω by

$$
\Omega^{*}=\left\{y^{*} \in V^{*} ;\left\langle y^{*}, y\right\rangle>0 \text { for all nonzero } y \in \bar{\Omega}\right\} .
$$

Then $\Omega^{* *}=\Omega$. In particular, Ω^{*} is an open convex cone in V^{*}. It is easy to see that there exists a nonzero element e_{1}^{*} in the closure of Ω^{*} such that $\left\langle e_{1}^{*}, y_{0}\right\rangle=0$. Choose $e_{2}^{*}, \cdots, e_{n}^{*}$ in Ω^{*} so that $e_{1}^{*}, \cdots, e_{n}^{*}$ is a basis for V^{*}; this is possible because Ω^{*} is an open cone. Then the dual basis e_{1}, \cdots, e_{n} for V possesses the desired property.

Put $D_{n}=T_{\Omega_{n}}=\left\{z \in V_{c} ; \operatorname{Im}(z) \in \Omega_{n}\right\}$. Since $D_{t r}=\{z \in D ; \operatorname{Im}(z)-t r \in \Omega\}$ and $D_{n, t r}=\left\{z \in D_{n} ; \operatorname{Im}(z)-t r \in \Omega_{n}\right\}$, we have $D_{t r} \subset D_{n, t r}$. Hence $b \in D_{t r}$ implies $b \in D_{n, t r}$. We shall now show that $a \in D_{n}-D_{n, r}$. Since $y=\operatorname{Im}(a)$ and $a \notin D_{r}$, it follows that $y-r \notin \Omega$. Since $y+s r$ is in Ω if and only if $s>s_{0}$ as we saw above, we may conclude that $-1 \leqq s_{0}$. Since the line $y+s r$, $(-\infty<s<\infty)$, meets $\partial \Omega_{n}$ also exactly at one point $y_{0}=y+s_{0} r$, we see that $y+s r$ is in Ω_{n} if and only if $s>s_{0}$. Hence, $y-r$ is not in Ω_{n}. This shows that $a \notin D_{n, r}$.

Since the injection $h: D \rightarrow D_{n}$ is holomorphic and hence distance-decreasing, we have

$$
d_{D}(a, b) \geqq d_{D_{n}}(h a, h b)=d_{D_{n}}(a, b) .
$$

Applying Lemma 2.7 to the domain D_{n}, we have

$$
d_{D_{n}}(a, b) \geqq \log t
$$

Hence,

$$
d_{D}(a, b) \geqq \log t
$$

QED.

Proof of Proposition 2.5. Let $D=D(H, \Omega, \mathscr{T}, \varphi), a \in D-D_{r}$ and $b \in D_{t r}$ with $t>1$. Put $a=(\tilde{t}, \tilde{z}, \tilde{w}) \in U \times V_{\boldsymbol{c}} \times W$. Since $I+\varphi(\tilde{t})$ is a real automorphism of W by Lemma 2.1, the Siegel domain D of the third kind admits an automorphism of the type (2) which sends $a=(\tilde{t}, \tilde{z}, \tilde{w})$ into ($\tilde{t}, \tilde{z}, 0)$. Since such an automorphism of D leaves the distance d_{D} invariant and, by Lemma 2.3, leaves the domains D_{r} and $D_{t r}$ invariant, we may assume without loss of generality that $a=(\tilde{t}, \tilde{z}, 0)$.

Let $\rho: U \times V_{\boldsymbol{C}} \times W \rightarrow V_{\boldsymbol{C}}$ be the natural projection. We claim that ρ maps D into $D^{\prime}=T_{\Omega}=\left\{z \in V_{C} ; \operatorname{Im}(z) \in \Omega\right\}$. In fact, if (t, z, w) is in D so that $\operatorname{Im}(z)-\operatorname{Re}\left(L_{\varphi(t)}(w, w)\right) \in \Omega$, then $\operatorname{Im}(z) \in \Omega$ because $\operatorname{Re}\left(L_{\varphi(t)}(w, w)\right)$ is in $\bar{\Omega}$ by Lemma 2.2. Hence, z is in D^{\prime}, proving our claim. In particular, $\rho(a)$ is in D^{\prime}. Since $a=(\tilde{t}, \tilde{z}, 0)$ is not in D_{r}, it follows that $\operatorname{Im}(\tilde{z})-r$ is not in Ω. Hence $\tilde{z}=\rho(a)$ is not in D_{r}^{\prime}, thus proving $\rho(a) \in D^{\prime}-D_{r}^{\prime}$. From Lemma 2.2 it follows easily that $b \in D_{t r}$ implies $\rho(b) \in D_{t r}^{\prime}$. Since ρ is holomorphic and hence distance-decreasing, we have

$$
d_{D}(a, b) \geqq d_{D^{\prime}}(\rho(a), \rho(b))
$$

Applying Lemma 2.8 to the domain D^{\prime}, we have

$$
d_{D^{\prime}}(\rho(a), \rho(b)) \geqq \log t
$$

Hence,

$$
d_{D}(a, b) \geqq \log t
$$

QED.
§ 3. Boundary components of symmetric bounded domains [1], [6], [7], [8], [9].

Let D be a symmetric bounded domain in C^{N} in the so-called HarishChandra realization. Let \bar{D} be the topological closure of D and put $\partial D=\bar{D}-D$. A subset \mathscr{F} of ∂D is called a boundary component of D if (i) \mathscr{F} is an analytic subset of C^{N} and (ii) \mathscr{F} is minimal with respect to the property that any analytic arc contained in ∂D and having a point in common with \mathscr{F} must be entirely contained in \mathscr{F}. Then each boundary component \mathscr{F} is again a bounded symmetric domain. And if \mathscr{F}^{\prime} is another boundary component of D and if $\mathscr{F}^{\prime} \subset \partial \mathscr{F}$, then \mathscr{F}^{\prime} is a boundary component of \mathscr{F} also. For each boundary component \mathscr{F} of D, there exists a Siegel domain of the third kind $D(H, \Omega, \mathscr{F}, \varphi)$ which is biholomorphic to D. In the following, we fix such a realization $D(H, \Omega, \mathscr{F}, \varphi)$ once and for all for each D and \mathscr{F}.

Let G be the identity component of the group of automorphisms of D. Then each element of G extends to an automorphism of a neighborhood of \bar{D}. Let Γ be a discrete subgroup of G defined arithmetically. We consider only those boundary components \mathscr{F} which are called the rational boundary components with respect to Γ. Let B denote the union of all rational boundary components of D and set

$$
D^{*}=D \cup B
$$

The action of Γ on D extends to D^{*} in a natural manner. With a topology described below, $D^{*} / \Gamma=(D / \Gamma) \cup(B / \Gamma)$ is the so-called Satake compactification of D / Γ. Let $\eta: D^{*} \rightarrow D^{*} / \Gamma$ denote the natural projection. For each point of D / Γ, a basis of its neighborhood system is given by its neighborhood system in D / Γ with the usual quotient topology. For a point p in B / Γ, we construct a basis of its neighborhood system as follows. Assume $p \in \eta(\mathscr{F})$ and let $\tilde{p} \in \mathscr{F}$ be a point such that $\eta(\tilde{p})=p$. Consider the family of all rational boundary components \mathcal{E} of D such that $\mathscr{F} \subset \partial \mathcal{E}$. It is known that there are only a finite number of Γ-equivalence classes in this family. Let $\mathscr{F}_{1}, \cdots, \mathscr{F}_{m}$ be a system of representatives for these Γ-equivalence classes. Thus the family $\left\{\gamma\left(\mathscr{F}_{i}\right)\right.$; $\gamma \in \Gamma$ and $i=1, \cdots, m\}$ exhausts the rational boundary components \mathcal{E} of D such that $\mathscr{F} \subset \partial \mathcal{E}$. Let \mathcal{O} be an open neighborhood of \tilde{p} in \mathscr{F}. Considering D as a Siegel domain $D(H, \Omega, \mathscr{F}, \varphi)$ of the third kind, we consider a cylindrical
set $D_{r}(\mathcal{O})$ in D (as defined in $\S 2$), where r is an element of the open convex cone Ω. Each \mathscr{F}_{i} is also a Siegel domain $\mathscr{F}_{i}=D\left(H_{i}, \Omega_{i}, \mathscr{F}^{\prime}, \varphi_{i}\right)$ of the third kind. We choose a cylindrical set $\mathscr{F}_{i, r_{i}}(\mathcal{O})$ in \mathscr{F}_{i}, where $r_{i} \in \Omega_{i}$. Put

$$
\tilde{U}=\mathcal{O} \cup D_{r}(\Theta) \cup \mathscr{F}_{1, r_{1}}(\mathcal{O}) \cup \ldots \cup \mathscr{F}_{m, r_{m}}(\mathcal{O})
$$

and

$$
v=\eta(\tilde{v})
$$

We take the family of U with varying $\mathcal{O}, r, r_{1}, \cdots, r_{m}$ as a basis for the open neighborhood system for \tilde{p}.

Lemma 3.1. Let $D_{r}(\mathcal{O})$ be a cylindrical set in D with a base \mathcal{O} in a boundary component \mathscr{F}. Let \mathcal{O}^{\prime} be an open set in \mathscr{F} such that $\overline{\mathcal{O}}^{\prime} \subset \mathcal{O}$ and let $D_{t r}\left(\mathcal{O}^{\prime}\right)$ be a cylindrical set in D with a base \mathcal{O}^{\prime}, where $t>1$. Then

$$
d_{D}(a, b) \geqq \operatorname{Min}\left\{\log t, d_{\mathscr{F}}\left(\mathscr{F}-\mathcal{O}, \mathcal{O}^{\prime}\right)\right\} \quad \text { for } \quad a \in D-D_{r}(\mathcal{O}), b \in D_{t r}\left(\mathcal{O}^{\prime}\right)
$$

Proof. Let $\theta: D=D(H, \Omega, \mathscr{F}, \varphi) \rightarrow \mathscr{F}$ be the natural projection. If $\theta(a) \in \mathcal{O}$, then $a \in D-D_{r}$ and Proposition 2.5 implies $d_{D}(a, b) \geqq \log t$. Suppose $\theta(a) \notin \mathcal{O}$. Since θ is holomorphic and hence distance-decreasing, we have

$$
d_{D}(a, b) \geqq d_{\mathscr{F}}(\theta a, \theta b) \geqq d_{\Im}\left(\mathscr{F}-\mathcal{O}, \mathcal{O}^{\prime}\right)
$$

QED.
Proof of Theorem 2'. Let p be a point of B / Γ and U a neighborhood of p in $D^{*} / \Gamma=(D / \Gamma) \cup(B / \Gamma)$. We have to prove that there is a smaller neighborhood \widetilde{V} of p in D^{*} / Γ such that $\bar{V} \subset U$ and

$$
d_{D}(a, b) \geqq \delta \quad \text { if } \quad a, b \in D, \quad \eta(a) \notin \mathcal{U} \quad \text { and } \quad \eta(b) \in \mathbb{V},
$$

where δ is a positive number which depends only on \mathcal{U} and \mathbb{V} but not on a, b. We choose $\tilde{p} \in \mathscr{F}$ such that $\eta(\tilde{p})=p$.

Without loss of generality, we may assume that $U=\eta(\tilde{U})$, where $\tilde{\mathcal{U}}$ is of the form

$$
\tilde{v}=\mathcal{O} \cup D_{r}(\mathcal{O}) \cup \mathscr{F}_{1, r_{1}}(\mathcal{O}) \cup \cdots \cup \mathscr{F}_{m, r_{m}}(\mathcal{O})
$$

where \mathcal{O} is an open neighborhood of $\tilde{p} \in \mathscr{F}$, (see the definition of the topology in D^{*} / Γ above). Let \mathcal{O}^{\prime} be a smaller neighborhood of \tilde{p} in $\tilde{\mathscr{F}}$ such that $\bar{O}^{\prime} \subset \mathcal{O}$ and let $t>1$. Put

$$
\tilde{\mathscr{V}}=\mathcal{O}^{\prime} \cup D_{t r}\left(\mathcal{O}^{\prime}\right) \cup \mathscr{F}_{1, t r_{1}}\left(\mathcal{O}^{\prime}\right) \cup \cdots \cup \mathscr{F}_{m, t r_{m}}\left(\mathcal{O}^{\prime}\right)
$$

and

$$
c=\eta(\tilde{v}) .
$$

Let $a, b \in D, \eta(a) \notin U$ and $\eta(b) \in Q$. Since b is equivalent to a point in $\tilde{\vartheta}$ under the group Γ and since d_{D} is invariant by Γ, we may assume that $b \in \widetilde{V}$. Clearly, $a \notin \tilde{U}$. Since $a \in D$ and $a \notin \tilde{\mathcal{U}}$, we have $a \in D-D_{r}(\mathcal{O})$. Since $b \in D$ and $b \in \tilde{V}$, we have $b \in D_{t r}\left(\mathcal{O}^{\prime}\right)$. By Lemma 3.1,

$$
d_{D}(a, b) \geqq \delta,
$$

where

$$
\delta=\operatorname{Min}\left\{\log t, d_{\Im}\left(\mathscr{F}-\mathcal{O}, \mathcal{O}^{\prime}\right)\right\}
$$

QED.

University of California, Berkeley

Bibliography

[1] W.L. Baily, Jr. and A. Borel, Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math., 84 (1966), 442-528.
[2] P. J. Kiernan, Some remarks on hyperbolic manifolds, Proc. Amer. Math. Soc., 25 (1970), 588-592.
[3] S. Kobayashi, Intrinsic metrics on complex manifolds, Bull. Amer. Math. Soc., 73 (1967), 347-349.
[4] S. Kobayashi, Hyperbolic manifolds and holomorphic mappings, monograph, Marcel Dekker Inc., New York, 1970.
[5] M. H. Kwack, Generalization of the big Picard theorem, Ann. of Math., 90 (1969), 9-22.
[6] I. I. Pyatetzki-Shapiro, Géométrie des domaines classiques et théorie des fonctions automorphes, Dunod, Paris, 1966.
[7] I. I. Pyatetzki-Shapiro, Arithmetic groups in complex domains, Russian Math. Surveys, 19 (1964), 83-109.
[8] I. Satake, On compactifications of the quotient spaces for arithmetically defined discontinuous groups, Ann. of Math., 72 (1960), 555-580.
[9] J.A. Wolf and A. Korányi, Generalized Cayley transformations of bounded symmetric domains, Amer. J. Math., 87 (1965), 899-939.

[^0]: * Partially supported by NSF Grant GP-8008.

