On Toeplitz operators

By Matthew C.Y. LEE

(Received May 19, 1970)

Let L^2 and L^{∞} denote the Lebesgue spaces of square integrable and essentially bounded functions with respect to normalized Lebesgue measure on the unit circle in the complex plane. Let H^2 and H^{∞} denote the corresponding Hardy spaces. For ϕ in L^{∞} , the Toeplitz operator induced by ϕ is the operator T_{ϕ} on H^2 defined by $T_{\phi}f = P(\phi f)$; here P stands for the orthogonal projection in L^2 with range H^2 .

The purpose of this paper is to prove an inversion theorem (Theorem 2) of T_f for f in a class of subalgebras A_{ϕ} of $H^{\infty}+C$, and then we can determine (Theorem 3) the spectrum of T_f , for any unitary function f in A_{ϕ} . We recall that the linear span $H^{\infty}+C$ of H^{∞} and C is a closed subalgebra of L^{∞} [4, Theorem 2], where C stands for the space of continuous complex valued functions on the unit circle. This algebra can also be characterized as the subalgebra of L^{∞} generated by H^{∞} and the function \bar{z} . Let \mathcal{B} denote the algebra of bounded operators on H^2 , \mathcal{K} the uniformly closed two-sided ideal of compact operators in \mathcal{B} , and π the homomorphism of \mathcal{B} onto \mathcal{B}/\mathcal{K} . An operator B in \mathcal{B} is said to be a Fredholm operator if B has a closed range and both a finite dimensional kernel and cokernel. It is known [1] that this is equivalent to $\pi(B)$ being an invertible element of \mathcal{B}/\mathcal{K} . If B is a Fredholm operator, then the index ind (B) is defined ind $(B) = \dim [\ker B] - \dim [\operatorname{coker} B]$. In general for a Fredholm operator B the statement ind (B) = 0 does not imply that B is invertible. For Toeplitz operators, however, the situation is simpler as was shown by Coburn [2].

LEMMA 1. If ψ is in L^{∞} such that T_{ψ} is a Fredholm operator and ind $(T_{\psi}) = 0$, then T_{ψ} is invertible.

Stampfli observed in [5] that $T_{\psi}T_z - T_zT_{\psi}$ is at most one dimensional for any ψ in L^{∞} and hence compact. Therefore, $T_fT_g - T_gT_f$ is a compact operator for any f and g in $H^{\infty} + C$ and $T_fT_{\psi} - T_{\psi}T_f$ is a compact operator for any ψ in L^{∞} if f is in C.

LEMMA 2. Let f be in $H^{\infty}+C$, then $T_{h}T_{f}-T_{hf}$ is a compact operator for every h in L^{∞} .

PROOF. Since f is in $H^{\infty}+C$, we can write $f=f_1+f_2$ where f_1 in H^{∞} and f_2 in C. Consider

$$T_h T_f = T_h T_{f_1 + f_2} = T_h T_{f_1} + T_h T_{f_2} = T_{hf_1} + T_{hf_2} + K,$$

where K is a compact operator, since f_1 is in H^{∞} and f_2 is in C. Hence

$$T_h T_f = T_{h(f_1+f_2)} + K = T_{hf} + K$$
,

for any h in L^{∞} .

The proof is complete.

If f is a conformal map of the open unit disk onto a simply connected domain such that f is not continuous on the closed unit disk and real part of f is continuous everywhere in the closed unit disk, therefore $\bar{f} = 2 \operatorname{Re} f - f$ is in $H^{\infty}+C$ but \bar{f} is not continuous, so there are many discontinuous conjugate analytic functions in $H^{\infty}+C$, hence by Lemma 2, it is easily seen that T_hT_g $-T_gT_h$ is compact for every h in L^{∞} does not imply that g is in C. Let D be the collection of all discontinuous conjugate analytic functions in $H^{\infty}+C$.

For each ϕ in D, let A_{ϕ} be the uniformly closed subalgebra of L^{∞} generated by C and ϕ , hence $C \subseteq A_{\phi} \subseteq H^{\infty} + C$. Let Ψ_{ϕ} denote the C*-subalgebra of \mathscr{B} generated by the operators T_f with f in A_{ϕ} . Then we have the following theorem.

THEOREM 1. Ψ_{ϕ} contains $\mathcal K$ as a two-sided ideal and $\Psi_{\phi}/\mathcal K$ is isometrically isomorphic to A_{ϕ} .

PROOF. Since Ψ_{ϕ} contains the C*-algebra generated by the unilateral shift of multiplicity one, it follows from [3] that Ψ_{ϕ} contains \mathcal{K} and \mathcal{K} is an ideal in any algebra of \mathcal{B} containing it. Since the commutator of T_f and T_g for f and g in Ψ_{ϕ} is a compact operator by Lemma 2. Thus the linear span of the operators of the form $T_f + K$, where f is in A_{ϕ} and K is in \mathcal{K} , is an algebra. In fact, it is a C*-algebra which follows from Coburn's observation that $||T_f + K|| \ge ||T_f||$ for any Toeplitz operator T_f . Therefore, Ψ_{ϕ}/\mathcal{K} is commutative and the mapping $T_f + K \leftrightarrow f$ is an isometrical isomorphism of Ψ_{ϕ}/\mathcal{K} onto A_{ϕ} . The proof is complete.

COROLLARY. If f is in A_{ϕ} , then T_f is a Fredholm operator if and only if f is invertible in A_{ϕ} .

PROOF. If f is invertible in A_{ϕ} , then $\pi(T_f)$ is invertible in Ψ_{ϕ}/\mathcal{K} and hence T_{ϕ} is a Fredholm operator.

If T_f is a Fredholm operator, then $\pi(T_f)$ is invertible in \mathscr{B}/\mathscr{K} , so is $\pi(T_f)^*$, and so $\pi(T_f)^*\pi(T_f)$ is invertible in \mathscr{B}/\mathscr{K} . Since $\pi(T_f)^{-1} = (\pi(T_f)^*\pi(T_f))^{-1}\pi(T_f)^*$, it suffices to show that $(\pi(T_f)^*\pi(T_f))^{-1}$ belongs to Ψ_{ϕ}/\mathcal{K} .

Since the Gelfand transform of $\pi(T_f)^*\pi(T_f)$ is $\widehat{\pi(T_f)^*}\pi(\widehat{T_f}) = |\widehat{\pi(T_f)}|^2 \ge 0$ on the maximal ideal space of Ψ_{ϕ}/\mathcal{K} , $(\lambda - \pi(T_f)^* \pi(T_f))^{-1}$ belongs to Ψ_{ϕ}/\mathcal{K} for $\lambda < 0$. Since $(\lambda - \pi(T_f)^* \pi(T_f))^{-1}$ converges to $-(\pi(T_f)^* \pi(T_f))^{-1}$ in \mathscr{B}/\mathscr{K} as $\lambda \to 0_{-}$, we obtain $(\pi(T_f)^*\pi(T_f))^{-1}$ belongs to Ψ_{ϕ}/\mathcal{K} . This completes the proof.

From Lemma 1 and Corollary to Theorem 1, we obtain our main theorem.

THEOREM 2. If f is in A_{ϕ} , then T_f is invertible if and only if f is invertible in A_{ϕ} and ind $(T_f) = 0$.

From Corollary to Theorem 1 and Theorem 2, we can determine the spectrum of T_f , $\sigma(T_f)$, if f is a unitary function in A_{ϕ} .

THEOREM 3. If f is in A_{ϕ} and |f| = 1 a.e., then

(i) if T_f is not invertible, $\sigma(T_f)$ is the closed unit disk, and

(ii) if T_f is invertible, $\sigma(T_f)$ is the essential range of f.

PROOF OF (i). Case 1. Suppose that f^{-1} is in A_{ϕ} , that is, 0 does not belong to $\sigma_{A_{\phi}}(f)$, where $\sigma_{A_{\phi}}(f)$ denotes the spectrum of f as an element of the subalgebra A_{ϕ} . It is well known that the boundary of $\sigma_{A_{\phi}}(f)$ equals the boundary of $\sigma_{L^{\infty}}(f)$. Since $\sigma_{L^{\infty}}(f)$ is contained in the unit circle, no point in the open unit disk belongs to $\sigma_{A_{\phi}}(f)$. This implies that $f-\lambda$ is invertible in A_{ϕ} for every $|\lambda| < 1$. Therefore $T_{f-\lambda}$ is a Fredholm operator by Corollary to Theorem 1. Since T_f is not invertible, $\operatorname{ind}(T_f) \neq 0$ by Lemma 1, hence $\operatorname{ind}(T_{f-\lambda}) \neq 0$. Therefore $T_{f-\lambda}$ fails to be invertible for all λ such that $|\lambda| < 1$, and it follows that $\sigma(T_f)$ is the closed unit disk.

Case 2. Suppose that f^{-1} is not in A_{ϕ} , that is, 0 is in $\sigma_{A\phi}(f)$. Hence by the same argument as in Case 1, we have $\sigma_{A\phi}(f)$ is the closed unit disk. Therefore $\sigma(T_f)$ is the closed unit disk by Theorem 2.

PROOF OF (ii). f^{-1} is in A_{ϕ} , since T_f is invertible by assumption. Hence by the same argument as in Case 1 of (i), we have $T_{f-\lambda}$ is a Fredholm operator for every λ such that $|\lambda| < 1$. Since $\operatorname{ind}(T_{f-\lambda}) = \operatorname{ind}(T_f) = 0$ by assumption, $T_{f-\lambda}$ is invertible by Theorem 2. Therefore $\sigma(T_f)$ is contained in the unit circle and by the same argument as in Case 1 of (i) again, we have $\sigma(T_f)$ is the essential range of f. The proof is thus complete.

> University of Hawaii Honolulu, Hawaii

References

- F.V. Atkinson, The normal solubility of linear equations in normal spaces, Mat. Sb., 28 (70) (1951), 3-14. (Russian).
- [2] L.A. Coburn, Weyl's theorem for non-normal operators, Michigan Math. J., 13 (1966), 285-288.
- [3] L.A. Coburn, The C*-algebra generated by an isometry, Bull. Amer. Math. Soc., 73 (1967), 722-726.
- [4] H. Helson and D. Sarason, Past and Future, Math. Scand., 21 (1967), 5-16.
- [5] J.G. Stampfli, On hyponormal and Toeplitz operators, Math. Ann., 183 (1969), 328-336.