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\S 1. Introduction.

The class of metric spaces is well designed for dimension theory. At
the present stage we have no class of non-metric spaces which can be said
harmonious for dimension theory. The aim of this paper is to define new
spaces which we name $\sigma$-metric spaces and to show that the class of para-
compact $\sigma$ -metric spaces is pretty effective for harmonious dimension theory.

We note here that all spaces in this paper are Hausdorff and all mappings
are continuous. As for undefined terminology and notations refer to Nagami
[15] or to Nagata [17].

DEFINITION 1. A space $X$ is said $\sigma$-metric if it is the countable sum of
closed metric subsets $X_{i},$ $i=1,2$ , $\cdot$ .. , where $\{X_{i} : i=1, 2, \}$ is said a scale
of $X$. A scale is said monotone if $ X_{1}\subset X_{2}\subset\ldots$

Every $\sigma$-metric space has of course a monotone scale. Every CW-complex

is $\sigma$ -metric. Even every chunk complex in Ceder [3] is also $\sigma$ -metric. As
Dowker [4] pointed out, the product of two CW-complexes need not be $CW$.
Thus such a product offers an example which is not a CW-complex but a
$\sigma$-metric space.

Many dimension theoretical theorems for metric spaces are trivially true
for normal $\sigma$-metric spaces. The following are some of them: i) Coincidence
theorem; $\dim=Ind$ . ii) Decomposition theorem. iii) Two kinds of monotone
decomposition theorems due to the author [14]. iv) The existence of equi-
dimensional $G_{\delta}$ envelope. v) Dimension preserving property by exactly k-to-
one closed mappings. vi) Product theorem. For some cases we need the
assumption of paracompact $\sigma$-metric spaces. Theorems 4 and 5 are examples

of many propositions which are trivially true for paracompact $\sigma$-metric spaces.
Theorem 6 below is the main result of this paper. By this theorem dimen-
sion raising theorems for metric spaces are automatically transferred to
those for paracompact $\sigma$ -metric spaces, as can be seen in Corollaries 1 to 4.
It is to be noted that Corollary 3 gives the first positive support of Arhan-
gelskii’s theorem [1] as well as of its generalization due to Okuyama [19].

We can say that the class of normal $\sigma$-metric spaces has almost no meaning
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for dimension theory, while the class of paracompact $\sigma$-metric spaces has an
interesting feature because of effectiveness for dimension raising theorems.

\S 2. Some properties of $\sigma$-metric spaces.

Since every o-metric space is a $\sigma$-space, every collectionwise normal $\sigma-$

metric space is paracompact and the countable product of paracompact $\sigma-$

metric spaces is again paracompact by Okuyama [18]. As Hodel mentioned
to the author (see [7]), the space $H$ in Bing [2] and its simplification $G$ due
to Michael [9] offer examples of normal $\sigma$-metric spaces which are not col-
lectionwise normal. The finite product of $\sigma$ -metric spaces is evidently $\sigma-$

metric, while the countable product of them need not be $\sigma$-metric as the
following theorem shows.

THEOREM 1. Let $X$ be the countable product of non-metric spaces $X_{i}$ ,

$i=1,2,$ $\cdots$ Then $X$ is not $\sigma$-metric.
PROOF. Assume that $X$ is a $\sigma$-metric space with a scale $\{Y_{i}\}$ . Since $Y_{1}$

is metric, $ X-Y_{1}\neq\emptyset$ . Pick a point $ y_{1}=\langle y_{11}, y_{12}, \rangle$ from $X-Y_{1}$ . Since $Y_{1}$ is
closed, there exists a number $n_{1}$ such that $ D_{1}\cap Y_{1}=\emptyset$ where

$D_{1}=\langle y_{11}, y_{1n_{1}}\rangle\times\prod\{X_{j} : j>n_{1}\}$ .
Since $Y_{2}$ is metric, $ D_{1}-Y_{2}\neq\emptyset$ . Pick a point $ y_{2}=\langle y_{21}, y_{22}, \rangle$ from $D_{1}-Y_{2}$ .
Let $n_{2}$ be a number greater than $n_{1}$ such that $ D_{2}\cap Y_{2}=\emptyset$ where

$D_{2}=\langle y_{21}, y_{2n_{2}}\rangle\times\Pi\{X_{j} : j>n_{2}\}$ .
Repeating this procedure we get a sequence $ n_{1}<n_{2}<\ldots$ of numbers and a
sequence $y_{i}=\langle y_{i1}, y_{i2}, \rangle,$ $i=1,2,$ $\cdots$ , of points of $X$ such that $ D_{i}\cap Y_{i}=\emptyset$

for each $i$, where

$D_{i}=\langle y_{iA}, y_{in_{i}}\rangle\times\Pi\{X_{i} : j>n_{i}\}$ ,

and such that $y_{i+1}\in D_{i}$ for each $i$ . Set

$ y=\langle y_{11}, y_{1n_{1}}, y_{2n_{1+1}}, y_{2n_{2}}, y_{3n_{2}+1}, \rangle$ .
Then $y$ is not contained in any $Y_{i}$ and hence not in $X$, which is a contra-
diction. The proof is completed.

DEFINITION 2. Let $X$ be a $\sigma$-metric space. A metric space $\rho X$ with a
metric $\rho$ defined on the set $X$ is said a replica of the space $X$ if the follow-
ing conditions are satisfied.

i) The identity transformation $\rho$ of $X$ to $\rho X$ is continuous.
ii) There exists a common monotone scale $\{X_{i}\}$ of $X$ and of $\rho X$ with

respect to which $\rho|X_{i}$ is a homeomorphism for each $i$ .
Such a replica is said one with respect to $\{X_{i}\}$ .
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THEOREM 2. Let $X$ be a paracompact $\sigma$ -metric space and $\{X_{i}\}$ its mono-
tone scale. Then there exists a replica $\rho X$ with respect to $\{X_{i}\}$ .

PROOF. Let $\mathfrak{U}_{ij},$ $j=1,2,$ $\cdots$ , be a sequence of locally finite open coverings
of $X$ such that the restriction of it to $X_{i}$ is a base of $X_{i}$ . The existence
of such a sequence is assured by Hanner [6]. Let $U$ be an arbitrary ele-
ment of $\mathfrak{U}_{ij}$ . Since every paracompact $\sigma$-metric space is perfectly normal,
there exists a non-negative continuous function $f_{U}$ defined on $X$ such that
$U=\{x:f_{U}(x)>0\}$ . Set

$\rho_{ij}(x, y)=\sum\{|f_{U}(x)-f_{U}(y)| : U\in \mathfrak{U}_{ij}\}$ .

Then $\rho_{ij}$ is a pseudo-metric on $X$ with respect to which every element of
$\mathfrak{U}_{ij}$ is open. Set

$\rho(x, y)=\Sigma\sum(\rho_{ij}(x, y)/2^{t+j}(1+\rho_{ij}(x, y)))$ .
Then $\rho$ is a metric on the set $X$. Let $\rho X$ be the metric space thus ob-

tained. This $\rho X$ satisfies the following conditions.
i) $\cup \mathfrak{U}_{ij}$ is a base of $\rho X$. Especially every element of $\cup \mathfrak{U}_{ij}$ is open

in $\rho X$ .
ii) Every $X_{i}$ is closed in $\rho X$.
iii) Every $X_{i}$ in $X$ is homeomorphic to itself in $\rho X$.
Thus we know that $\rho X$ is a replica of $X$ with respect to $\{X_{i}\}$ and the

theorem is proved.
This argument contains a very simple and direct proof of Nagata-

Smirnov’s metrization theorem. In the sequel $\rho$ thus defined is said the
subordinate metric to $\cup \mathfrak{U}_{ij}$ .

THEOREM 3. A paracompact $\sigma$ -metric space $X$ is the inverse limit of $alt$

replicas.
PROOF. Let $\rho_{1}X$ or $\rho_{2}X$ be a replica of $X$ with respect to a monotone

scale $\{X_{1i}\}$ or $\{X_{2i}\}$ respectively. Let $\mathfrak{U}_{1}$ or $\mathfrak{U}_{2}$ be a $\sigma$-locally finite base of
$\rho_{1}X$ or $\rho_{2}X$ respectively. If $\cup \mathfrak{U}_{ij}$ in the preceding proof is replaced by
$\rho_{1}^{-1}(\mathfrak{U}_{1})\cup\rho_{2}^{-1}(\mathfrak{U}_{2})$ , we get the subordinate metric $\rho_{3}$ corresponding to it. Then
$\rho_{3}X$ is a replica with respect to $\{X_{1i}\},$ $\{X_{2i}\}$ and $\{X_{1i}\cap X_{2i}\}$ at the same time.
The projections of $\rho_{3}X$ to $\rho_{i}X,$ $i=1,2$ , are continuous. Thus the system of
replicas is directed and forms an inverse system. Let $\rho X$, having a $\sigma$ -locally
finite base $\mathfrak{U}$ , be an arbitrary replica of $X$ with respect to $\{X_{i}\}$ . Let $U$ be
an arbitrary open set of $X$. Set $\mathfrak{V}=\rho^{-1}(\mathfrak{U})\cup\{U\}$ . Then for each $i,$ $\mathfrak{V}|X_{i}$ is
a $\sigma$-locally finite base of $X_{i}$ . Let $\rho^{\prime}X$ be the metric space subordinate to
this $\mathfrak{V}$ . Then $\rho^{r}X$ is a replica with respect to $\{X_{i}\}$ and $\rho^{\prime}(U)$ is open in
$\rho^{\prime}X$. Thus $X$ is essentially the inverse limit of all replicas and the theorem
is proved.

THEOREM 4. For a paracompact $\sigma$-metric space $X$ the following are equi-
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valent.
i) $\dim X\leqq n$ .

ii) There exist a mapping $f:X\rightarrow I^{n}$ and a scale $\{X_{i}\}$ of $X$ such that $f|X_{i}$

is uniformly O-dimensional for each $i$ .
PROOF. $ii$) $\rightarrow i$): By KatKtov [8] $\dim X_{i}\leqq n$ . Thus $\dim X\leqq n$ by the sum

theorem.
$i)\rightarrow ii)$ : Let $\{X_{i}\}$ be a monotone scale of $X$ and $\rho X$ a replica with respect

to it. Again by KatKtov [8] there exists a uniformly O-dimensional mapping
$g$ of $\rho X$ to I. Set $ f=g\rho$ . Then $f$ is the desired one and the theorem is
proved.

THEOREM 5. Let $X$ be a paracompact $\sigma$-metric space and $F$ a closed set of
$X$ with $\dim(X-F)=m>0$ . Let $n$ be a positive integer with $n\leqq m$ and $f$ a
mapping of $F$ to $I^{n}$ . Then there exists a mapping $g;X\rightarrow I^{n}$ which has the fol-
lowing properties.

i) $g$ is an extension of $f$.
ii) $\dim(g^{-1}(y)-F)\leqq m-n$ for each $y\in I^{n}$ .

iii) $1f$ moreover $\dim\Gamma^{1}(y)\leqq m-n$ for each $y\in 1^{n}$ , then $\dim g^{-1}(y)\leqq m-n$

for each $y\in I^{n}$ .
PROOF. This is true for the case when $X$ is a metric space as was shown

by Sakai [20]. It is to be noted that it stems from the work of Fort, Jr.
[5]. Let $\cup \mathfrak{V}_{i}$ be a $\sigma$ -locally finite open covering of $X$ stated in the proof
of Theorem 2. Let $\mathfrak{U}$ be a $\sigma$-locally finite base of $I^{n}$ and $\mathfrak{W}$ a $\sigma$-locally finite
open covering of $X$ such that $\mathfrak{W}|F=f^{-1}(\mathfrak{U})$ . Set

$\mathfrak{G}=(\cup \mathfrak{V}_{i})\cup \mathfrak{W}\cup\{X-F\}$ .
Let $\rho X$ be a replica of $X$ where $\rho$ is a metric subordinate to $\mathfrak{G}$ . Let $f:\rho F$

$\rightarrow I^{n}$ be the transformation defined by: $f=f\rho^{-1}$ .

$x\downarrow^{\supset_{\rho^{F}}}\rightarrow I^{n}\hat{f}f||$

$\rho X\supset\rho F\rightarrow 1^{n}$

Then the following conditions are satisfied.
a) $\dim(\rho X-\rho F)=m$ .
b) $f$ is continuous.
c) $\rho F$ is closed in $\rho X$.
d) $\dim f^{-1}(y)\leqq m-n$ if $\dim f^{-1}(y)\leqq m-n$ .
Let $\hat{g}$ : $\rho X\rightarrow I^{n}$ be an extension of $f$ satisfying the conditions i), ii) and

iii) where $f,$ $g$ or $F$ is respectively replaced with $\hat{f},\hat{g}$ or $\rho F$ . Set $ g=\hat{g}\rho$ .
Then $g$ is the desired extension and the theorem is proved.
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\S 3. Dimension-raising perfect mappings.

THEOREM 6. Let $X$ be a paracompact $\sigma$ -metric space, $\rho X$ its replica, $\sigma Z$ a
metric space and $f;\sigma Z\rightarrow\rho X$ a mapping onto.

$Z\rightarrow^{f}X$

$\downarrow\sigma f$
$\downarrow\rho$

$\sigma Z\rightarrow\rho X$

Then there exist a paracompact a-metric space $Z$ and a mapping $f$ of $Z$ to $X$

satisfying the following conditions.
i) $\sigma Z$ is a replica of $Z$.

ii) $\rho f=f_{\sigma}$ .
iii) If every point-inverse under $f$ is compact, then every point-inverse under

$f$ is also compact.
iv) If $f$ is perfect, then $f$ is perfect.
v) If $f$ is open, then $f$ is open.

PROOF (suggested by the referee, simplifying the original one). Set
$Z=\{\langle z, x\rangle\in\sigma Z\times X:\hat{f}(z)=\rho x\}$ . Since $\sigma Z\times X$ is paracompact by Morita [11,

Theorem 5.1] and $Z$ is closed in it, $Z$ is paracompact. Let $\sigma;Z\rightarrow\sigma Z$ and
$f:Z\rightarrow X$ be the projections. Let $\{X_{i}\}$ be a monotone scale of $X$. Set $\sigma Z_{i}$

$=f^{-1}(\rho X_{i})$ and $Z_{i}=\sigma^{-1}(\sigma Z_{i})$ . Since $Z\cap(\sigma Z_{i}\times X)=Z\cap(\sigma Z_{i}\times\rho X_{i}),$ $\sigma|Z\cap$

$(\sigma Z_{i}\times X):Z\cap(\sigma Z_{i}\times X)\rightarrow\sigma Z_{i}$ is a homeomorphism onto. Hence $Z$ is a $\sigma-$

metric space with the scale $\{Z_{i}\}$ . The conditions i), ii), iii) and v) are evidently

satisfied. To verify the condition iv) let $\beta f;\beta(\sigma Z)\rightarrow\beta(\rho X)$ or $\beta\rho:\beta X\rightarrow\beta(\rho X)$

be respectively the extension of $f$ or $\rho$ over the Stone-Cech compactifications.
Set $Z^{\prime}=\{\langle z, x\rangle\in\beta(\sigma Z)\times\beta X:\beta\hat{f}(z)=\beta\rho(x)\}$ . Let $a^{\prime}$ : $Z^{\prime}\rightarrow\beta(\sigma Z)$ and $f^{\prime}$ : $Z^{\prime}\rightarrow\beta X$

be the projections. Then $f^{\prime}$ is perfect. Since $f$ is perfect, $(f^{\prime})^{-1}(X)=Z$ and
$f^{\prime}|(f^{\prime})^{-1}(X)$ is perfect. Since $f^{\prime}|(f^{\prime})^{-1}(X)=f,$ $f$ is perfect and the theorem is
proved.

Since $\dim X=\dim\rho X$ and $\dim Z=\dim\sigma Z$, the following four corollaries
are trivially true from our lifting Theorem 6 and known theorems for metric
spaces.

COROLLARY 1. Let $X$ be a nonempty paracompact $\sigma$-metric space. Then $X$

is the image of a paracompact $\sigma$-metric space $Z$ with $\dim Z=0$ under a perfect
mapping.

Cf. a similar theorem to the metric case due to Morita [10].

COROLLARY 2. Let $X$ be a nonempty paracompact $\sigma$-metric space. Then $X$

is the image of a paracompact $\sigma$-metric space $Z$ with $\dim Z=0$ under an open
mapping such that every point-inverse is compact.
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Cf. a similar theorem to the metric case due to Nagami [13].

COROLLARY 3. Let $X$ be a nonempty paracompact $\sigma$-metric space of count-
able dimension. Then there exist a paracompact $\sigma$-metric space $Z$ with $\dim Z=0$

and a perfect mapping $f$ of $Z$ onto $X$ such that $f^{-1}(x)$ is finite for each point $x$

in $X$.
Cf. a similar theorem to the metric case due to Nagata [16].

COROLLARY 4. Let $X$ be a nonempty paracompact $\sigma$-metric space with
$\dim X=n$ . Let $k$ be an arbitrary integer with $0\leqq k\leqq n$ . Then there exist a
paracompact $\sigma$-metric space $Z$ with $\dim Z=k$ and a perfect mapping $f$ of $Z$ onto
$X$ such that ord $f=n-k+1$ .

Cf. a similar theorem to the metric case due to Nagami [12].

Ehime University
University of Pittsburgh
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