On complex hypersurfaces of the complex projective space II

By Koichi OGIUE*

(Received Nov. 26, 1969)

§1. Introduction

Let $P_{n+1}(C)$ be the complex projective space of complex dimension n+1 with the Fubini-Study metric of constant holomorphic sectional curvature 1 and let M be a complex hypersurface of $P_{n+1}(C)$ with the induced Kaehler structure. The purpose of this paper is to prove the following theorem.

THEOREM. Let M be a complete complex hypersurface of $P_{n+1}(C)$. If $n \ge 2$ and if every sectional curvature of M is greater than 1/8, then M is a complex hyperplane $P_n(C)$.

Postponing the proof of the theorem to the following section, we shall list here results in the same direction. For the sake of simplicity, we shall adopt the following notations: for example,

 $K > \delta$: every sectional curvature of M is greater than δ ,

 $H > \delta$: every holomorphic sectional curvature of M is greater than δ .

A. If M is complete and if $K \ge \frac{1}{4}$, then $M = P_n(C)$ provided $n \ge 2$.

In a recent paper ([5]), K. Nomizu proved (A) in case of $n \ge 3$. But (A) is an immediate consequence of the following well known results ([1], [2], [7]):

- (a) $H \leq 1$ for a complex hypersurface of $P_{n+1}(C)$.
- (b) If $H \ge 0$, then a maximum curvature is holomorphic.
- (c) If $n \ge 2$ and if $\delta \le K \le 1$, then $\frac{\delta(8\delta+1)}{1-\delta} \le H$.

The assumption of (A), together with (a) and (b), implies $\frac{1}{4} \leq K \leq 1$ and hence (a) and (c) imply H=1 so that $M=P_n(C)$.

In [6] we proved

B. If M is complete and if $H > \frac{1}{2}$, then $M = P_n(C)$.

Let z_0, z_1, \dots, z_{n+1} be a homogeneous coordinate system of $P_{n+1}(C)$ and let $Q_n(C) = \{(z_0, \dots, z_{n+1}) \in P_{n+1}(C) | \sum z_i^2 = 0\}$. Then it is known that $\frac{1}{2} \leq H \leq 1$

^{*} Work done under partial support by the Sakko-kai Foundation.

and $0 \leq K \leq 1$ for $Q_n(C)$ $(n \geq 2)$ and $H = K = \frac{1}{2}$ for $Q_1(C)$. Hence (B) can not be improved.

Combining (B) and (c), we have an improvement of (A).

C. If M is complete and if $K > \frac{\sqrt{73}-3}{32}$, then $M = P_n(C)$ provided $n \ge 2$.

Clearly our theorem is an improvement of (C). We have the following conjecture.

D. If M is complete and if K > 0, then $M = P_n(C)$ provided $n \ge 2$.

§2. Proof of theorem

Let M be a complete complex hypersurface of $P_{n+1}(C)$ with the induced metric $g = 2 \sum g_{\alpha\bar{\beta}} dz^{\alpha} d\bar{z}^{\beta}$ and the fundamental 2-form $\Phi = \frac{2}{\sqrt{-1}} \sum g_{\alpha\bar{\beta}} dz^{\alpha} \wedge d\bar{z}^{\beta}$. Let $S = 2 \sum R_{\alpha\bar{\beta}} dz^{\alpha} d\bar{z}^{\beta}$ be the Ricci tensor of M.

PROPOSITION 1. Let M be a complete complex hypersurface of $P_{n+1}(C)$. If $S - \frac{n}{2}g$ is positive definite, then $M = P_n(C)$.

PROOF. Since $S - \frac{n}{2}g$ is positive definite, a theorem of Myers ([4]) implies *M* is compact. Hence, by a well known theorem of Chow, *M* is algebraic.

The first Chern class $c_1(M)$ of M is represented by the closed 2-form

$$\gamma = \frac{1}{2\pi\sqrt{-1}} \sum R_{\alpha\bar{\beta}} dz^{\alpha} \wedge d\bar{z}^{\beta} \,.$$

We denote $[\Phi]$ and $[\gamma]$ the cohomology classes represented by Φ and γ , respectively, so that $c_1(M) = [\gamma]$.

Let h be the generator of $H^2(P_{n+1}(C), \mathbb{Z})$ corresponding to the divisor class of a hyperplane $P_n(C)$. Then the first Chern class $c_1(P_{n+1}(C))$ of $P_{n+1}(C)$ is given by

$$c_1(P_{n+1}(C)) = (n+2)h$$
.

Let $j: M \to P_{n+1}(C)$ be the imbedding and let \tilde{h} be the image of h under the homomorphism $j^*: H^2(P_{n+1}(C), \mathbb{Z}) \to H^2(M, \mathbb{Z})$. Let d be the degree of the algebraic manifold M. Then we have

(1) $c_1(M) = (n-d+2)\tilde{h}$.

Let Ψ be the fundamental 2-form of $P_{n+1}(C)$ so that

$$c_1(P_{n+1}(C)) = \frac{n+2}{8\pi} \llbracket \Psi \rrbracket.$$

These, together with the fact that $\Phi = j^* \Psi$, imply

(2)
$$\left[\boldsymbol{\Phi} \right] = 8\pi \tilde{h} \,.$$

496

Since $S - \frac{n}{2}g$ is positive definite, $c_1(M) - \frac{n}{8\pi} [\Phi]$ is positive definite. This, together with (1) and (2), implies that $\frac{n-d+2}{8\pi} [\Phi] - \frac{n}{8\pi} [\Phi]$ is positive definite. Hence we have d < 2, that is, d = 1. (Q. E. D.)

Let A be the tensor field of type (1, 1) associated to the second fundamental form of the imbedding. Let J be the complex structure of M and let $e_1, \dots, e_n, Je_1, \dots, Je_n$ be an orthonormal basis of $T_x(M)$ with respect to which the matrix of A is of the form

The eigenvalues $\lambda_1, \dots, \lambda_n, -\lambda_1, \dots, -\lambda_n$ of A are called the principal curvature.

PROPOSITION 2. Let M be a complex hypersurface of $P_{n+1}(C)$. If every principal curvature lies in the interval $\left(-\frac{1}{2}, \frac{1}{2}\right)$, then $S - \frac{n}{2}g$ is positive definite.

PROOF. Let R be the curvature tensor of M. Then the equation of Gauss is

$$g(R(X, Y)Z, W) = g(AX, W)g(AY, Z) - g(AX, Z)g(AY, W) +g(JAX, W)g(JAY, Z) - g(JAX, Z)g(JAY, W) + \frac{1}{4} \{ g(X, W)g(Y, Z) - g(X, Z)g(Y, W) +g(JX, W)g(JY, Z) - g(JX, Z)g(JY, W) +2g(X, JY)g(JZ, W) \}.$$

It follows immediately that

$$S(X, Y) = \frac{n+1}{2}g(X, Y) - 2g(AX, AY).$$

Let $X = \sum X^{\alpha} e_{\alpha} + \sum X^{\alpha*} J e_{\alpha}$. Then we have

$$S(X, X) = \frac{n+1}{2} g(X, X) - 2 \sum \lambda_{\alpha}^2 (X^{\alpha} X^{\alpha} + X^{\alpha*} X^{\alpha*}).$$

Since $\lambda_{\alpha}^2 < \frac{1}{4}$ for $\alpha = 1, \dots, n$, we have $S(X, X) > \frac{n}{2}g(X, X)$, that is, $S - \frac{n}{2}g$ is positive definite. (Q. E. D.)

Let K(X, Y) be the sectional curvature of M determined by two vectors X and Y. Then we have, for $\alpha \neq \beta$,

K. Ogiue

$$K(e_{lpha}+e_{eta}, Je_{lpha}-Je_{eta}) = rac{1}{4} - rac{\lambda_{lpha}^2 + \lambda_{eta}^2}{2}$$

Since every sectional curvature is greater than 1/8, we have $\lambda_{\alpha}^2 + \lambda_{\beta}^2 < \frac{1}{4}$ so that $\lambda_{\alpha}^2 < \frac{1}{4}$ for $\alpha = 1, \dots, n$. This, together with Propositions 1 and 2, implies $M = P_n(C)$.

Tokyo Metropolitan University

Bibliography

- M. Berger, Pincement riemannien et pincement holomorphe, Ann. Scuola Norm. Sup. Pisa, 14 (1960), 151-159.
- [2] R.L. Bishop and S.I. Goldberg, Some implications of the generalized Gauss-Bonnet theorem, Trans. Amer. Math. Soc., 112 (1964), 508-535.
- [3] F. Hirzebruch, Topological methods in algebraic geometry, Springer, 1966.
- [4] S. Myers, Riemannian manifolds with positive mean curvature, Duke Math. J., 8 (1941), 401-404.
- [5] K. Nomizu, On the rank and curvature of non-singular complex hypersurfaces in a complex projective space, J. Math. Soc. Japan, 21 (1969), 266-269.
- [6] K. Ogiue, On complex hypersurfaces of the complex projective space, J. Differential Geometry, 3 (1969), 253-256.
- [7] B. Smyth, Differential geometry of complex hypersurfaces, Ann. of Math., 85 (1967), 246-266.