On complex hypersurfaces of the complex projective space II

By Koichi OgIUE*

(Received Nov. 26, 1969)

§ 1. Introduction

Let $P_{n+1}(\boldsymbol{C})$ be the complex projective space of complex dimension $n+1$ with the Fubini-Study metric of constant holomorphic sectional curvature 1 and let M be a complex hypersurface of $P_{n+1}(\boldsymbol{C})$ with the induced Kaehler structure. The purpose of this paper is to prove the following theorem.

Theorem. Let M be a complete complex hypersurface of $P_{n+1}(\boldsymbol{C})$. If $n \geqq 2$ and if every sectional curvature of M is greater than $1 / 8$, then M is a complex hyperplane $P_{n}(\boldsymbol{C})$.

Postponing the proof of the theorem to the following section, we shall list here results in the same direction. For the sake of simplicity, we shall adopt the following notations: for example,
$K>\delta$: every sectional curvature of M is greater than δ,
$H>\delta$: every holomorphic sectional curvature of M is greater than δ.
A. If M is complete and if $K \geqq \frac{1}{4}$, then $M=P_{n}(\boldsymbol{C})$ provided $n \geqq 2$.

In a recent paper ([5]), K. Nomizu proved (A) in case of $n \geqq 3$. But (A) is an immediate consequence of the following well known results ([1], [2], [7]) :
(a) $H \leqq 1$ for a complex hypersurface of $P_{n+1}(C)$.
(b) If $H \geqq 0$, then a maximum curvature is holomorphic.
(c) If $n \geqq 2$ and if $\delta \leqq K \leqq 1$, then $\frac{\delta(8 \delta+1)}{1-\delta} \leqq H$.

The assumption of (A), together with (a) and (b), implies $\frac{1}{4} \leqq K \leqq 1$ and hence (a) and (c) imply $H=1$ so that $M=P_{n}(C)$.

In [6] we proved
B. If M is complete and if $H>\frac{1}{2}$, then $M=P_{n}(\boldsymbol{C})$.

Let $z_{0}, z_{1}, \cdots, z_{n+1}$ be a homogeneous coordinate system of $P_{n+1}(\boldsymbol{C})$ and let $Q_{n}(\boldsymbol{C})=\left\{\left(z_{0}, \cdots, z_{n+1}\right) \in P_{n+1}(\boldsymbol{C}) \mid \Sigma z_{i}^{2}=0\right\}$. Then it is known that $\frac{1}{2} \leqq H \leqq 1$

[^0]and $0 \leqq K \leqq 1$ for $Q_{n}(\boldsymbol{C})(n \geqq 2)$ and $H=K=\frac{1}{2}$ for $Q_{1}(\boldsymbol{C})$. Hence (B) can not be improved.

Combining (B) and (c), we have an improvement of (A).
C. If M is complete and if $K>\frac{\sqrt{73}-3}{32}$, then $M=P_{n}(\boldsymbol{C})$ provided $n \geqq 2$.

Clearly our theorem is an improvement of (C). We have the following conjecture.
D. If M is complete and if $K>0$, then $M=P_{n}(\boldsymbol{C})$ provided $n \geqq 2$.

§ 2. Proof of theorem

Let M be a complete complex hypersurface of $P_{n+1}(\boldsymbol{C})$ with the induced metric $g=2 \Sigma g_{\alpha \bar{\beta}} d z^{\alpha} d \bar{z}^{\beta}$ and the fundamental 2 -form $\Phi=\frac{2}{\sqrt{-1}} \Sigma g_{\alpha \bar{\beta}} d z^{\alpha} \wedge d \bar{z}^{\beta}$. Let $S=2 \Sigma R_{\alpha \bar{\beta}} d z^{\alpha} d \bar{z}^{\beta}$ be the Ricci tensor of M.

Proposition 1. Let M be a complete complex hypersurface of $P_{n+1}(C)$. If $S-\frac{n}{2} g$ is positive definite, then $M=P_{n}(\boldsymbol{C})$.

Proof. Since $S-\frac{n}{2} g$ is positive definite, a theorem of Myers ([4]) implies M is compact. Hence, by a well known theorem of Chow, M is algebraic.

The first Chern class $c_{1}(M)$ of M is represented by the closed 2-form

$$
\gamma=\frac{1}{2 \pi \sqrt{-1}} \sum R_{\alpha \bar{\beta}} d z^{\alpha} \wedge d \bar{z}^{\beta} .
$$

We denote $[\Phi]$ and $[\gamma]$ the cohomology classes represented by Φ and γ, respectively, so that $c_{1}(M)=[\gamma]$.

Let h be the generator of $H^{2}\left(P_{n+1}(\boldsymbol{C}), \boldsymbol{Z}\right)$ corresponding to the divisor class of a hyperplane $P_{n}(\boldsymbol{C})$. Then the first Chern class $c_{1}\left(P_{n+1}(\boldsymbol{C})\right)$ of $P_{n+1}(\boldsymbol{C})$ is given by

$$
c_{1}\left(P_{n+1}(\boldsymbol{C})\right)=(n+2) h .
$$

Let $j: M \rightarrow P_{n+1}(\boldsymbol{C})$ be the imbedding and let \tilde{h} be the image of h under the homomorphism $j^{*}: H^{2}\left(P_{n+1}(\boldsymbol{C}), \boldsymbol{Z}\right) \rightarrow H^{2}(M, \boldsymbol{Z})$. Let d be the degree of the algebraic manifold M. Then we have

$$
\begin{equation*}
c_{1}(M)=(n-d+2) \tilde{h} . \tag{1}
\end{equation*}
$$

Let Ψ be the fundamental 2 -form of $P_{n+1}(\boldsymbol{C})$ so that

$$
c_{1}\left(P_{n+1}(C)\right)=\frac{n+2}{8 \pi}[\Psi] .
$$

These, together with the fact that $\Phi=j * \Psi$, imply

$$
\begin{equation*}
[\Phi]=8 \pi \tilde{h} . \tag{2}
\end{equation*}
$$

Since $S-\frac{n}{2} g$ is positive definite, $c_{1}(M)-\frac{n}{8 \pi}[\Phi]$ is positive definite. This, together with (1) and (2), implies that $\frac{n-d+2}{8 \pi}[\Phi]-\frac{n}{8 \pi}[\Phi]$ is positive definite. Hence we have $d<2$, that is, $d=1$.
(Q. E. D.)

Let A be the tensor field of type $(1,1)$ associated to the second fundamental form of the imbedding. Let J be the complex structure of M and let $e_{1}, \cdots, e_{n}, J e_{1}, \cdots, J e_{n}$ be an orthonormal basis of $T_{x}(M)$ with respect to which the matrix of A is of the form

$$
\left(\begin{array}{ccccc}
\lambda_{1} & & & & \\
& \ddots & & & \\
& & \lambda_{n} & & \\
& & -\lambda_{1} & & \\
& & & \ddots & \\
0 & & & -\lambda_{n}
\end{array}\right)
$$

The eigenvalues $\lambda_{1}, \cdots, \lambda_{n},-\lambda_{1}, \cdots,-\lambda_{n}$ of A are called the principal curvature.

Proposition 2. Let M be a complex hypersurface of $P_{n+1}(\boldsymbol{C})$. If every principal curvature lies in the interval $\left(-\frac{1}{2}, \frac{1}{2}\right)$, then $S-\frac{n}{2} g$ is positive definite.

Proof. Let R be the curvature tensor of M. Then the equation of Gauss is

$$
\begin{aligned}
g(R(X, Y) Z, W) & =g(A X, W) g(A Y, Z)-g(A X, Z) g(A Y, W) \\
& +g(J A X, W) g(J A Y, Z)-g(J A X, Z) g(J A Y, W) \\
& +\frac{1}{4}\{g(X, W) g(Y, Z)-g(X, Z) g(Y, W) \\
& +g(J X, W) g(J Y, Z)-g(J X, Z) g(J Y, W) \\
& +2 g(X, J Y) g(J Z, W)\}
\end{aligned}
$$

It follows immediately that

$$
S(X, Y)=\frac{n+1}{2} g(X, Y)-2 g(A X, A Y)
$$

Let $X=\Sigma X^{\alpha} e_{\alpha}+\Sigma X^{\alpha^{*}} J e_{\alpha}$. Then we have

$$
S(X, X)=\frac{n+1}{2} g(X, X)-2 \Sigma \lambda_{\alpha}^{2}\left(X^{\alpha} X^{\alpha}+X^{\alpha *} X^{\alpha *}\right)
$$

Since $\lambda_{\alpha}^{2}<\frac{1}{4}$ for $\alpha=1, \cdots, n$, we have $S(X, X)>\frac{n}{2} g(X, X)$, that is, $S-\frac{n}{2} g$ is positive definite.
(Q. E. D.)

Let $K(X, Y)$ be the sectional curvature of M determined by two vectors X and Y. Then we have, for $\alpha \neq \beta$,

$$
K\left(e_{\alpha}+e_{\beta}, J e_{\alpha}-J e_{\beta}\right)=\frac{1}{4}-\frac{\lambda_{\alpha}^{2}+\lambda_{\beta}^{2}}{2} .
$$

Since every sectional curvature is greater than $1 / 8$, we have $\lambda_{\alpha}^{2}+\lambda_{\beta}^{2}<\frac{1}{4}$ so that $\lambda_{\alpha}^{2}<\frac{1}{4}$ for $\alpha=1, \cdots, n$. This, together with Propositions 1 and 2 , implies $M=P_{n}(\boldsymbol{C})$.

Tokyo Metropolitan University

Bibliography

[1] M. Berger, Pincement riemannien et pincement holomorphe, Ann. Scuola Norm. Sup. Pisa, 14 (1960), 151-159.
[2] R.L. Bishop and S.I. Goldberg, Some implications of the generalized GaussBonnet theorem, Trans. Amer. Math. Soc., 112 (1964), 508-535.
[3] F. Hirzebruch, Topological methods in algebraic geometry, Springer, 1966.
[4] S. Myers, Riemannian manifolds with positive mean curvature, Duke Math. J., 8 (1941), 401-404.
[5] K. Nomizu, On the rank and curvature of non-singular complex hypersurfaces in a complex projective space, J. Math. Soc. Japan, 21 (1969), 266-269.
[6] K. Ogiue, On complex hypersurfaces of the complex projective space, J. Differential Geometry, 3 (1969), 253-256.
[7] B. Smyth, Differential geometry of complex hypersurfaces, Ann. of Math., 85 (1967), 246-266.

[^0]: * Work done under partial support by the Sakko-kai Foundation.

