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\S 1. Introduction

Let $P_{n+1}(C)$ be the complex projective space of complex dimension $n+1$

with the Fubini-Study metric of constant holomorphic sectional curvature 1
and let $M$ be a complex hypersurface of $P_{n+1}(C)$ with the induced Kaehler
structure. The purpose of this paper is to prove the following theorem.

THEOREM. Let $M$ be a complete complex hypersurface of $P_{n+1}(C)$ . If $n\geqq 2$

and if every sectional curvature of $M$ is greater than 1/8, then $M$ is a complex
hyperplane $P_{n}(C)$ .

Postponing the proof of the theorem to the following section, we shall
list here results in the same direction. For the sake of simplicity, we shall
adopt the following notations: for example,

$ K>\delta$ : every sectional curvature of $M$ is greater than $\delta$ ,
$ H>\delta$ : every holomorphic sectional curvature of $M$ is greater than $\delta$ .

A. If $M$ is complete and if $K\geqq\frac{1}{4}$ , then $M=P_{n}(C)$ provided $n\geqq 2$ .
In a recent paper ([5]), K. Nomizu proved (A) in case of $n\geqq 3$ . But (A)

is an immediate consequence of the following well known results ([1], [2],
[7]):

(a) $H\leqq 1$ for a complex hypersurface of $P_{n+1}(C)$ .
(b) If $H\geqq 0$ , then a maximum curvature is holomorphic.

(c) If $n\geqq 2$ and if $\delta\leqq K\leqq 1$ , then $\frac{\delta(8\delta+}{1-}\delta^{\underline{1)}}\leqq H$.

The assumption of (A), together with (a) and (b), implies $\frac{1}{4}\leqq K\leqq 1$ and
hence (a) and (c) imply $H=1$ so that $M=P_{n}(C)$ .

In [6] we proved

B. If $M$ is complete and if $H>\frac{1}{2}$ , then $M=P_{n}(C)$ .
Let $z_{0},$ $z_{1},$ $\cdots$ , $z_{n+1}$ be a homogeneous coordinate system of $P_{n+1}(C)$ and let

$Q_{n}(C)=\{(z_{0}, \cdots , z_{n\{\rightarrow 1})\in P_{n+1}(C)|\Sigma z_{i}^{2}=0\}$ . Then it is known that $\frac{1}{2}\leqq H\leqq 1$
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and $0\leqq K\leqq 1$ for $Q_{n}(C)(n\geqq 2)$ and $H=K=\frac{1}{2}$ for $Q_{1}(C)$ . Hence (B) can not
be improved.

Combining (B) and (c), we have an improvement of (A).

C. If $M$ is complete and if $K>\frac{\sqrt{73}-3}{32}$ , then $M=P_{n}(C)$ provided $n\geqq 2$ .
Clearly our theorem is an improvement of (C). We have the following

conjecture.
D. If $M$ is complete and if $K>0$, then $M=P_{n}(C)$ provided $n\geqq 2$.

\S 2. Proof of theorem

Let $M$ be a complete complex hypersurface of $P_{n+1}(C)$ with the induced

metric $g=2\Sigma g_{a\overline{\beta}}dz^{\alpha}d\overline{z}^{\beta}$ and the fundamental 2-form $\Phi=\frac{2}{\prime-1}\Sigma g_{\alpha}pdz\wedge d\mathscr{H}$ .
Let $S=2\Sigma R_{\alpha\overline{\beta}}dz^{\alpha}d\overline{z}^{\beta}$ be the Ricci tensor of $M$.

PROPOSITION 1. Let $M$ be a complete complex hypersurface of $P_{n+1}(C)$ . If
$S-\frac{n}{2}g$ is positive definite, then $M=P_{n}(C)$ .

PROOF. Since $S-\frac{n}{2}g$ is positive definite, a theorem of Myers ([4]) im-

plies $M$ is compact. Hence, by a well known theorem of Chow, $M$ is algebraic.
The first Chern class $c_{1}(M)$ of $M$ is represented by the closed 2-form

$\gamma=\frac{1}{2\pi\sqrt{-1}}\sum R_{\alpha\overline{\beta}}dz^{\alpha}$ A $d\overline{z}^{\beta}$ .
We denote $[\Phi]$ and $[\gamma]$ the cohomology classes represented by $\Phi$ and $\gamma$ , re-
spectively, so that $c_{1}(M)=[\gamma]$ .

Let $h$ be the generator of $H^{2}(P_{n+1}(C), Z)$ corresponding to the divisor
class of a hyperplane $P_{n}(C)$ . Then the first Chern class $c_{1}(P_{n+1}(C))$ of $P_{n+1}(C)$

is given by
$c_{1}(P_{n+1}(C))=(n+2)h$ .

Let $j:M\rightarrow P_{n+1}(C)$ be the imbedding and let $\tilde{h}$ be the image of $h$ under the
homomorphism $j^{*}:$ $H^{2}(P_{n+1}(C), Z)\rightarrow H^{2}(M, Z)$ . Let $d$ be the degree of the
algebraic manifold $M$. Then we have

(1) $c_{1}(M)=(n-d+2)\tilde{h}$ .
Let $\Psi$ be the fundamental 2-form of $P_{n+1}(C)$ so that

$c_{1}(P_{n+1}(C))=\frac{n+2}{8\pi}[\Psi]$ .

These, together with the fact that $\Phi=j^{*}\Psi$ , imply

(2) $[\Phi]=8\pi\tilde{h}$ .
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Since $S-\frac{n}{2}g$ is positive definite, $c_{1}(M)-\frac{n}{8\pi}[\Phi]$ is positive definite. This,

together with (1) and (2), implies that $\frac{n-d+2}{8\pi}[\Phi]-\frac{n}{8\pi}[\Phi]$ is positive def-

inite. Hence we have $d<2$, that is, $d=1$ . (Q. E. D.)

Let $A$ be the tensor field of type $(1, 1)$ associated to the second funda-
mental form of the imbedding. Let $J$ be the complex structure of $M$ and let
$e_{1},$ $\cdots$ , $e_{n},$ $Je_{1},$ $\cdots$ , $Je_{n}$ be an orthonormal basis of $T_{x}(M)$ with respect to which
the matrix of $A$ is of the form

$\left(\begin{array}{lllll}\lambda_{1} & & & & \\ & & \lambda_{n} & & 0\\ & & & -\lambda_{1}. & \\ & 0 & & & -\lambda_{n}\end{array}\right)$

.
The eigenvalues $\lambda_{1},$ $\cdots$ , $\lambda_{n},$ $-\lambda_{1},$ $\cdots$ , $-\lambda_{n}$ of $A$ are called the principal curva-
ture.

PROPOSITION 2. Let $M$ be a complex hypersurface of $P_{n+1}(C)$ . If every

principal curvature lies in the interval $(-\frac{1}{2},$ $\frac{1}{2})$ , then $S-\frac{n}{2}g$ is positive

definite.
PROOF. Let $R$ be the curvature tensor of $M$. Then the equation of

Gauss is

$g(R(X, Y)Z,$ $W$ ) $=g(AX, W)g(AY, Z)-g(AX, Z)g(AY, W)$

$+g(JAX, W)g(JAY, Z)-g(JAX, Z)g(JAY, W)$

$+\frac{1}{4}\{g(X, W)g(Y, Z)-g(X, Z)g(Y, W)$

$+g(JX, W)g(JY, Z)-g(JX, Z)g(JY, W)$

$+2g(X, JY)g(JZ, W)\}$ .
It follows immediately that

$n+1$
$S(X, Y)=-2-g(X, Y)-2g(AX, AY)$ .

Let $X=\Sigma X^{\alpha}e_{\alpha}+\sum X^{\alpha*}Je_{\alpha}$ . Then we have

$S(X, X)=\frac{n+1}{2}g(X, X)-2\sum\lambda_{a}^{2}(X^{\alpha}X^{\alpha}+X^{\alpha*}X)$ .

Since $\lambda_{a}^{2}<-41$-for $\alpha=1,$ $\cdots$ , $n$ , we have $S(X, X)>-2-g(X, X)n$ that is, $s_{--}^{n}2^{-g}$

is positive definite. (Q. E. D.)

Let $K(X, Y)$ be the sectional curvature of $M$ determined by two vectors
$X$ and $Y$ . Then we have, for $\alpha\neq\beta$ ,
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$K(e_{\alpha}+e_{\beta}, Je_{\alpha}-Je_{\beta})=\frac{1\lambda_{a}^{2}+\lambda_{\beta}^{2}}{42}$

Since every sectional curvature is greater than 1/8, we have $\lambda_{\alpha}^{2}+\lambda_{\beta}^{2}<\frac{1}{4}$ so

that $\lambda_{\alpha}^{2}<\frac{1}{4}$ for $\alpha=1,$ $\cdots$ , $n$ . This, together with Propositions 1 and 2, implies

$M=P_{n}(C)$ .
Tokyo Metropolitan University
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