A theorem in the theory of definition

By Nobuyoshi MOTOHASHI

(Received Nov. 6, 1969)

The well-known theorem of Beth on definability can be extended in different directions. One was pursued by Svenonius [1], another by Kueker [2]. By using the extended form of preservation theorems developed in Motohashi [5], Weglorz [4], we shall get an extension of Beth's theorem of a new kind in this paper.

§ 0. Preliminaries

We shall use the ordinary set-theoretical and model-theoretical notations (see [3], [5]). In this paper, we shall be concerned with the first order predicate calculus with equality \Rightarrow , (abbr. by f.p.c.), L, L', \cdots , will be used to denote f.p.c. For L, M(L) is the class of all the first order structures related to L.

Let $M = \bigcup_L M(L)$. For L, L', $L \subset L'$, $L \cap L'$ have obvious meanings. L_0 denotes the f.p.c. without logical constants. Therefore $M(L_0)$ is the class of all non empty sets. Let $L \subset L'$, $\mathfrak{A} \in M(L')$, then $\mathfrak{A} \subset L$ means the reduct of \mathfrak{A} to L, $|\mathfrak{A}|$ is the universe of \mathfrak{A} , and $\overline{\mathfrak{A}} = |\overline{\mathfrak{A}}|$. If $\gamma_1, \gamma_2, \cdots, \gamma_m$ are non logical constants, then $L(\gamma_1, \cdots, \gamma_m)$ is the f.p.c. having $\gamma_1, \cdots, \gamma_m$ as non logical constants in addition to those of L. For \mathfrak{A} , $\mathfrak{B} \in M(L)$ and $f \in |\mathfrak{B}|^{|\mathfrak{A}|}$, f is said to be an *embedding* of \mathfrak{A} to \mathfrak{B} if f is an injection and the image of \mathfrak{A} by f is the substructure of \mathfrak{B} . For $\mathfrak{A} \in M(L)$, $L(\mathfrak{A})$ means the diagram language of \mathfrak{A} .

We assume that the reader is familiar with the notion of special models (see Morley-Vaught [3]).

§ 1. Main theorem

An operation \mathcal{M} defined on M^2 is said to be a morphism on models (m.o.m.) if $\mathcal{M}(\mathfrak{A},\mathfrak{B}) \subset |\mathfrak{B}|^{|\mathfrak{A}|}$ for $\mathfrak{A},\mathfrak{B} \in M$.

For m.o.m. \mathcal{M} and L, we define $\Delta_L(\mathcal{M})$ by the set of all formulas $F(v_0, v_1, \dots, v_n) \in \mathfrak{F}(L)$ such that $\mathfrak{A} \models F[a_0, a_1, \dots, a_n]$ implies $\mathfrak{B} \models F[f(a_0), f(a_1), \dots, f(a_n)]$, for any $\mathfrak{A}, \mathfrak{B} \in \mathcal{M}(L)$, $f \in \mathcal{M}(\mathfrak{A}, \mathfrak{B})$, $\langle a_0, a_1, \dots, a_n \rangle \in |\mathfrak{A}|^{n+1}$.

DEFINITION. Let \mathcal{M} be a m.o.m.

 \mathcal{M} is *natural* if it satisfies the following conditions:

- (a) $\mathcal{M}(\mathfrak{A},\mathfrak{B}) \subset \mathcal{M}(\mathfrak{A} \vdash L,\mathfrak{B} \vdash L)$ for any $\mathfrak{A},\mathfrak{B} \in M(L')$, $L \subset L'$.
- (b) $t_1 = t_2 \in \mathcal{A}_L(\mathcal{M})$ for any terms t_1 , t_2 in L.
- (c) For any f.p.c. L, \mathfrak{A} , $\mathfrak{B} \in M(L)$ and $f \in \mathcal{M}(|\mathfrak{A}|, |\mathfrak{B}|)$, we have $f \in \mathcal{M}(\mathfrak{A}, \mathfrak{B})$ if and only if $(\mathfrak{A}, a)_{a \in |\mathfrak{A}|} \cap \Delta_{L(\mathfrak{A})}(\mathcal{M}) \subset \operatorname{Th}(\mathfrak{B}, f(a))_{a \in |\mathfrak{A}|}$
- (d) For any f.p.c. L and \mathfrak{A} , $\mathfrak{B} \in M(L)$ such that \mathfrak{A} and \mathfrak{B} are special and one of the conditions: $\bar{\mathfrak{A}} = \bar{\mathfrak{B}}$ or $\bar{\mathfrak{A}} < \omega$ or $\bar{\mathfrak{B}} < \omega$, is satisfied, we have

$$\mathcal{M}(\mathfrak{A},\mathfrak{B})\neq \phi$$
 if and only if $\mathrm{Th}\,\mathfrak{A}\cap \mathcal{A}_L(\mathcal{M})\subset \mathrm{Th}\,\mathfrak{B}$.

Define \mathcal{M}_i , \mathcal{M}_h , and \mathcal{M}_e as follows:

For $\mathfrak{A}, \mathfrak{B} \in M$, $\mathcal{M}_i(\mathfrak{A}, \mathfrak{B})$ (resp. $\mathcal{M}_h(\mathfrak{A}, \mathfrak{B})$, $\mathcal{M}_e(\mathfrak{A}, \mathfrak{B})$) is the set of all the isomorphisms (resp. homomorphisms, embeddings) of \mathfrak{A} to \mathfrak{B} if \mathfrak{A} , $\mathfrak{B} \in M(L)$ for some L, and $\mathcal{M}_i(\mathfrak{A}, \mathfrak{B}) = \phi$ (resp. $\mathcal{M}_h(\mathfrak{A}, \mathfrak{B}) = \phi$, $\mathcal{M}_e(\mathfrak{A}, \mathfrak{B}) = \phi$) otherwise.

Then, \mathcal{M}_i , \mathcal{M}_h and \mathcal{M}_e are examples of natural morphisms on models and $\Delta_L(\mathcal{M}_i) = \mathfrak{F}(L)$, $\Delta_L(\mathcal{M}_h) =$ the set of formulas in L equivalent to positive formulas and $\Delta_L(\mathcal{M}_e) =$ the set of formulas in L equivalent to existential formulas.

THEOREM. Suppose $L \subset L'$, T is a theory in L' and M is natural.

(I) If $\mathcal{M}(\mathfrak{A}, \mathfrak{B}) = \mathcal{M}(\mathfrak{A} \sqcap L, \mathfrak{B} \sqcap L)$ for any models $\mathfrak{A}, \mathfrak{B}$ of T, then for any formula $F(v_0, v_1, \dots, v_n) \in \Delta_L(\mathcal{M})$, there is a formula $G(v_0, v_1, \dots, v_n) \in \Delta_L(\mathcal{M})$ such that

$$T \vdash ({}^{\forall}v_0)({}^{\forall}v_1) \cdots ({}^{\forall}v_n)(F(v_0, \cdots, v_n) \leftrightarrow G(v_0, \cdots, v_n))$$
.

(II) If $\mathcal{M}(\mathfrak{A}, \mathfrak{B}) = \mathcal{M}(\mathfrak{A} \sqcap L, \mathfrak{B} \sqcap L)$ for any models \mathfrak{V} , \mathfrak{B} of T such that $\mathfrak{A} \cong \mathfrak{B}$, then for any formula $F(v_0, v_1, \dots, v_n) \in \Delta_{L'}$ (\mathfrak{M}), there are $G_j(v_0, \dots, v_n) \in \Delta_L(\mathfrak{M})$, $j = 1, \dots, m$ such that

$$T \vdash \bigvee_{j=1}^{m} ({}^{\forall}v_0) \cdots ({}^{\forall}v_n) (F(v_0, \dots, v_n) \leftrightarrow G_j(v_0, \dots, v_n)).$$

PROOF. (I) Suppose the hypothesis of (I) is satisfied. Let $F(v_0, \dots, v_n) \in \mathcal{L}_{L'}(\mathcal{M})$.

Let Σ be the set of formulas $G(v_0, \dots, v_n) \in \mathcal{A}_L(\mathcal{M})$ such that $T \vdash F(v_0, \dots, v_n) \to G(v_0, \dots, v_n)$.

Now, assume $T \cup \Sigma \cup \{ \neg F(v_0, \dots, v_n) \}$ is consistent.

Then there is a model \mathfrak{B}' of T and $\langle b_0, \cdots, b_n \rangle \in |\mathfrak{B}'|^{n+1}$ such that $\mathfrak{B}' \models \neg F[b_0, \cdots, b_n]$ and $\mathfrak{B}' \models G[b_0, \cdots, b_n]$ for any $G(v_0, \cdots, v_n) \in \Sigma$. Let Σ' be the set of formulas $H(v_0, \cdots, v_n)$ such that $\mathfrak{B}' \models H[b_0, \cdots, b_n]$ and $\neg H(v_0, \cdots, v_n) \in \Delta_L(\mathcal{M})$.

Then by the definition of Σ and Σ' , $T \cup \Sigma' \cup \{F(v_0, \dots, v_n)\}$ is consistent. So, there is a model \mathfrak{A}' of T and $\langle a_0, \dots, a_n \rangle \in |\mathfrak{A}'|^{n+1}$ such that $\mathfrak{A}' \models F[a_0, \dots, a_n]$ and $\mathfrak{A}' \models H[a_0, \dots, a_n]$ for any $H(v_0, \dots, v_n) \in \Sigma'$. Then $Th(\mathfrak{A}' \mid L, a_0, \dots, a_n) \in \Sigma'$.

 $(a_n) \cap \mathcal{A}_{L(a_0,\cdots,a_n)}(\mathcal{M}) \subset \operatorname{Th}(\mathfrak{B}' \Gamma L, b_0, \cdots, b_n).$

Then by [3], there are two special models \mathfrak{A} , \mathfrak{B} of T such that $\overline{\mathfrak{A}} = \overline{\mathfrak{B}}$ or $\overline{\mathfrak{A}} < \omega$ or $\overline{\mathfrak{B}} < \omega$ and $\mathfrak{A} > \mathfrak{A}'$, $\mathfrak{B} > \mathfrak{B}'$.

Therefore Th $(\mathfrak{A} \sqcap L, a_0, \cdots, a_n) \cap \mathcal{A}_{L(a_0, \cdots, a_n)}(\mathcal{M}) \subset \operatorname{Th}(\mathfrak{B} \sqcap L, b_0, \cdots, b_n).$

By (d), we get $\mathcal{M}((\mathfrak{A} \vdash L, a_0, \dots, a_n), (\mathfrak{B} \vdash L, b_0, \dots, b_n)) \neq \phi$.

Let $f \in \mathcal{M}((\mathfrak{A} \sqcap L, a_0, \dots, a_n), (\mathfrak{B} \sqcap L, b_0, \dots, b_n))$, then $f \in \mathcal{M}(\mathfrak{A} \sqcap L, \mathfrak{B} \sqcap L)$ and $f(a_i) = b_i, i = 0, \dots, n$ by (a), (b). Since $\mathcal{M}(\mathfrak{A}, \mathfrak{B}) = \mathcal{M}(\mathfrak{A} \sqcap L, \mathfrak{B} \sqcap L)$, we have $f \in \mathcal{M}(\mathfrak{A}, \mathfrak{B})$.

As we have $F(v_0, \dots, v_n) \in \mathcal{L}_{L'}(\mathcal{M})$ and $\mathfrak{A} \models F[a_0, a_1, \dots, a_n]$, we get $\mathfrak{B} \models F[f(a_0), f(a_1), \dots, f(a_n)]$ by the definition of $\mathcal{L}_{L'}(\mathcal{M})$. So, we obtain $\mathfrak{B} \models F[b_0, b_1, \dots, b_n]$. But this contradicts $\mathfrak{B} \models \mathcal{T}F[b_0, b_1, \dots, b_n]$.

Therefore $T \cup \Sigma \cup \{F(v_0, \dots, v_n)\}$ is inconsistent.

By the compactness theorem and the definition of Σ , we get $G(v_0, \dots, v_n) \in \mathcal{L}_L(\mathcal{M})$ such that

$$T \vdash (\forall v_0)(\forall v_1) \cdots (\forall v_n)(F(v_0, \dots, v_n) \leftrightarrow G(v_0, \dots, v_n))$$
.

(II) Suppose the hypothesis of (II) is satisfied. Let $F(v_0, v_1, \dots, v_n) \in \mathcal{\Delta}_L(\mathcal{M})$. Let $\Sigma = \{ \neg (\forall v_0) \dots (\forall v_n) (F(v_0, \dots, v_n) \leftrightarrow G(v_0, \dots, v_n)) : G(v_0, \dots, v_n) \in \mathcal{\Delta}_L(\mathcal{M}) \}$. Assume that $T \cup \Sigma$ is consistent.

Let \mathfrak{C} be its model, and $T' = \operatorname{Th} \mathfrak{C}$. Let \mathfrak{A} , \mathfrak{B} be arbitrary models of T' and $f \in \mathcal{M}(\mathfrak{A} \sqcap L, \mathfrak{B} \sqcap L)$. Then by (a), we have $f \in \mathcal{M}(|\mathfrak{A}|, |\mathfrak{B}|)$. Hence by (c), $\operatorname{Th}(\mathfrak{A} \sqcap L, a)_{a \in |\mathfrak{A}|} \cap \Delta_{L(\mathfrak{A})}(\mathcal{M}) \subset \operatorname{Th}(\mathfrak{B} \sqcap L, f(a))_{a \in |\mathfrak{A}|}$. By [3], we get two special models \mathfrak{A}_1 , \mathfrak{B}_1 of T' such that $\mathfrak{A}_1 > \mathfrak{A}$, $\mathfrak{B}_1 > \mathfrak{B}$ and $\overline{\mathfrak{A}}_1 = \overline{\mathfrak{B}}_1$, or $\overline{\mathfrak{A}}_1 < \omega$ or $\overline{\mathfrak{B}} < \omega$. Hence, $\operatorname{Th}(\mathfrak{A}_1 \sqcap L, a)_{a \in |\mathfrak{A}|} \cap \Delta_{L(\mathfrak{A})}(\mathcal{M}) \subset \operatorname{Th}(\mathfrak{B}_1 \sqcap L, f(a))_{a \in |\mathfrak{A}|}$ and $\mathfrak{A}_1 \cong \mathfrak{B}_1$ because $\mathfrak{A}_1 \equiv \mathfrak{B}_1$.

By (d), $\mathcal{M}((\mathfrak{N}_1 \sqcap L, a)_{a \in |\mathfrak{A}|}, (\mathfrak{B}_1 \sqcap L, f(a))_{a \in |\mathfrak{A}|}) \neq \phi$. Let $g \in \mathcal{M}((\mathfrak{N}_1 \sqcap L, a)_{a \in |\mathfrak{A}|}, (\mathfrak{B}_1 \sqcap L, f(a))_{a \in |\mathfrak{A}|})$. Then by (a), (b), we get $g \sqcap |\mathfrak{A}| = f$ and $g \in \mathcal{M}(\mathfrak{N}_1 \sqcap L, \mathfrak{B}_1 \sqcap L)$.

By the hypothesis of (II), $\mathcal{M}(\mathfrak{A}_1 \sqcap L, \mathfrak{B}_1 \sqcap L) = \mathcal{M}(\mathfrak{A}_1, \mathfrak{B}_1)$. Hence $g \in \mathcal{M}(\mathfrak{A}_1, \mathfrak{B}_1)$.

By (c) Th $(\mathfrak{A}_1, a)_{a \in [\mathfrak{A}]_1} \cap \mathcal{A}_{L(\mathfrak{A}_1)}(\mathcal{M}) \subset \text{Th } (\mathfrak{B}_1, g(a))_{a \in (\mathfrak{A}_1)}$.

Therefore Th $(\mathfrak{A}, a)_{a \in [\mathfrak{A}]} \cap \Delta_{L(\mathfrak{A})}(\mathcal{M}) \subset \operatorname{Th}(\mathfrak{B}, f(a))_{a \in [\mathfrak{A}]}$.

By (c), $f \in \mathcal{M}(\mathfrak{A}, \mathfrak{B})$. We conclude $\mathcal{M}(\mathfrak{A} \sqcap L, \mathfrak{B} \sqcap L) = \mathcal{M}(\mathfrak{A}, \mathfrak{B})$ for any models \mathfrak{A} , \mathfrak{B} of T'.

By (I) there is a $G(v_0, \dots, v_n)$ in $\Delta_L(\mathcal{M})$ such that $T' \vdash (\forall v_0) \cdots (\forall v_n) (F(v_0, \dots, v_n) \hookrightarrow G(v_0, \dots, v_n))$.

Hence $\mathfrak{C} \models (\forall v_0) \cdots (\forall v_n)(F(v_0, \dots, v_n) \leftrightarrow G(v_0, \dots, v_n))$. But this contradicts the fact that \mathfrak{C} is a model of Σ . Hence $T \cup \Sigma$ is inconsistent.

By the compactness theorem, there are $G_j(v_0, v_1, \cdots, v_n) \in \mathcal{A}_L(\mathcal{M}), j = 1, \cdots, m$ such that $T \vdash \bigvee_{j=1}^m (\forall v_n)(F(v_0, \cdots, v_n) \leftrightarrow G_j(v_0, \cdots, v_n)).$ q. e. d.

REMARK. The condition (c) is not necessary in the proof of (I).

§ 2. Some corollaries

In this section, we assume that P is an (n+1)-ary new predicate symbol which is not in L, and we set L' = L(P). Let T be a theory in L'. Then by applying the theorem (I), (II) to \mathcal{M}_i , \mathcal{M}_h , \mathcal{M}_e , we can get the following six corollaries.

COROLLARY 1 (Beth's theorem). The following three conditions are equivalent:

- (i) For any models \mathfrak{A} , \mathfrak{B} of T, $\mathfrak{A} \vdash L = \mathfrak{B} \vdash L$ implies $\mathfrak{A} = \mathfrak{B}$.
- (ii) For any models \mathfrak{A} , \mathfrak{B} of T, if f is an isomorphism of $\mathfrak{A} \sqcap L$ to $\mathfrak{B} \sqcap L$, then f is an isomorphism of \mathfrak{A} to \mathfrak{B} .
 - (iii) For some formula $G(v_0, \dots, v_n)$ in L, we have

$$T \vdash (\forall v_0) \cdots (\forall v_n) (P(v_0, \cdots, v_n) \leftrightarrow G(v_0, \cdots, v_n))$$
.

COROLLARY 2 (Svenonius' theorem). The following three conditions are equivalent:

- (i) For any models $\mathfrak{A}, \mathfrak{B}$ of T such that $\mathfrak{A} \cong \mathfrak{B}, \mathfrak{A} \sqcap L = \mathfrak{B} \sqcap L$ implies $\mathfrak{A} = \mathfrak{B}$.
- (ii) For any models \mathfrak{A} , \mathfrak{B} of T such that $\mathfrak{A} \cong \mathfrak{B}$, if f is an isomorphism of $\mathfrak{A} \vdash L$ to $\mathfrak{B} \vdash L$, then f is an isomorphism of \mathfrak{A} to \mathfrak{B} .
 - (iii) For some formulas $G_j(v_0, v_1, \dots, v_n)$, $j = 1, 2, \dots, m$ in L

$$T \mapsto \bigvee_{j=1}^{m} (\forall v_0)(\forall v_1) \cdots (\forall v_n)(P(v_0, v_1, \dots, v_n) \leftrightarrow G_j(v_0, v_1, \dots, v_n)).$$

COROLLARY 3. The following two conditions are equivalent:

- (i) For any models \mathfrak{A} , \mathfrak{B} of T, if f is a homomorphism of $\mathfrak{A} \sqcap L$ to $\mathfrak{B} \sqcap L$, then f is a homomorphism of \mathfrak{A} to \mathfrak{B} .
 - (ii) For some positive formula $G(v_0, \dots, v_n)$ in L,

$$T \vdash (\forall v_0) \cdots (\forall v_n) (P(v_0, \cdots, v_n) \leftrightarrow G(v_0, \cdots, v_n))$$
.

COROLLARY 4. The following two conditions are equivalent:

- (i) For any models \mathfrak{A} , \mathfrak{B} of T such that $\mathfrak{A} \cong \mathfrak{B}$, if f is a homomorphism of $\mathfrak{A} \sqcap L$ to $\mathfrak{B} \sqcap L$, then f is a homomorphism of \mathfrak{A} to \mathfrak{B} .
 - (ii) For some positive formulas $G_j(v_0, \dots, v_n)$, $j = 1, \dots, m$ in L,

$$T \vdash \bigvee_{j=1}^{m} (\forall v_0) \cdots (\forall v_n) (P(v_0, \dots, v_n) \leftrightarrow G_j(v_0, \dots, v_n)).$$

From now on, we assume that T is a universal theory in L' (i.e. the class of models of T is closed under substructure).

LEMMA. Suppose $F(v_0, \dots, v_n)$ is a universal formula in L and $G(v_0, \dots, v_n)$ is an existential formula in L. If $T \vdash (\forall v_0) \cdots (\forall v_n)(F(v_0, \dots, v_n) \leftrightarrow G(v_0, \dots, v_n))$, then there is an open formula $H(v_0, \dots, v_n)$ in L such that $T \vdash (\forall v_0) \cdots$

 $(\forall v_n)(F(v_0, \dots, v_n) \leftrightarrow H(v_0, \dots, v_n)).$

The proof of this lemma can be easily carried out by the standard method. (See $\lceil 6 \rceil$).

COROLLARY 5. The following three conditions are equivalent:

- (i) For any models \mathfrak{A} , \mathfrak{B} of T, $\mathfrak{A} \cap L \subset \mathfrak{B} \cap L$ implies $\mathfrak{A} \subset \mathfrak{B}$.
- (ii) For any models \mathfrak{A} , \mathfrak{B} of T, if f is an embedding of $\mathfrak{A} \sqcap L$ to $\mathfrak{B} \sqcap L$, then f is an embedding of \mathfrak{A} to \mathfrak{B} .
 - (iii) For some open formula $H(v_0, \dots, v_n)$ in L,

$$T \vdash (\forall v_0) \cdots (\forall v_n) (P(v_0, \cdots, v_n) \leftrightarrow H(v_0, \cdots, v_n))$$

PROOF. It is obvious that (iii) implies (ii), (ii) implies (i), and (i) implies (ii). Assume (ii). Then by the theorem (I), there are two existential formulas $F(v_0, \dots, v_n)$, $G(v_0, \dots, v_n)$ such that $T \vdash (\forall v_0) \cdots (\forall v_n) (P(v_0, \dots, v_n) \leftrightarrow F(v_0, \dots, v_n))$ and $T \vdash (\forall v_0) \cdots (\forall v_n) (\neg P(v_0, \dots, v_n) \leftrightarrow G(v_0, \dots, v_n))$.

Then by lemma, (iii) follows.

q. e. d.

COROLLARY 6. The following three conditions are equivalent:

- (i) For any models \mathfrak{A} , \mathfrak{B} of T such that $\mathfrak{A} \cong \mathfrak{B}$, $\mathfrak{A} \vdash L \subset \mathfrak{B} \vdash L$ implies $\mathfrak{A} \subset \mathfrak{B}$.
- (ii) For any models \mathfrak{A} , \mathfrak{B} of T such that $\mathfrak{A} \cong \mathfrak{B}$, if f is an embedding of $\mathfrak{A} \vdash L$ to $\mathfrak{B} \vdash L$, then f is an embedding of \mathfrak{A} to \mathfrak{B} .
 - (iii) For some open formulas $H_j(v_0, \dots, v_n)$, $j=1, \dots, m$ in L, we have

$$T \vdash \bigvee_{j=1}^{m} (\forall v_0) \cdots (\forall v_n) (P(v_0, \dots, v_n) \leftrightarrow H_j(v_0, \dots, v_n)).$$

Gakushuin University

References

- [1] S. Kochen, Topics in the theory of definition, Proc. of Model Theory Symposium, Berkeley, 1963 (1965), 170-176.
- [2] D. W. Kueker, A generalization of Beth's theorem on definability, Notices Amer. Math. Soc., 14 (1967), 718.
- [3] M. Morley and R. Vaught, Homogeneous universal models, Math. Scand., 11 (1962), 37-57.
- [4] B. Weglorz, Some preservation theorems, Colloq. Math., 17 (1967), 269-276.
- [5] N. Motohashi, On normal operations on models, J. Math. Soc. Japan, 21 (1969), 564-573.
- [6] A. Robinson, Introduction to model theory, North-Holland, 1963.