
J. Math. Soc. Japan
Vol. 22, No. 3, 1970

Some class of doubly transitive groups of degree $n$

and order $4q(n-1)n$ where $q$ is an odd number

By Hiroshi KIMURA1) and Hiroyoshi YAMAKI2)

(Received Sept. 30, 1969)
(Revised Nov. 20, 1969)

1. Introduction.

In this paper we shall consider the following situation $(^{*})$ :
$(^{*})$ A simple group $\mathfrak{G}$ is doubly transitive on $\Omega=\{1,2, \cdot.. , n\}$ of order

$aq(n-1)n$ where $a=2$ or 4 and $q$ is an odd number. The stabilizer f8 of two
points in $\Omega$ is cyclic and $f8\cap A^{-1}PA=1$ or ge for every element $A$ in G.

Our purpose is to prove the following theorem.
THEOREM. In our situation $(*)$ (E13 is isomorphic to the projective special

linear group $PSL(2,4q+1)$ or $PSL(2,8q+1)$ .
REMARK. This theorem was proved by Ito [9] and Kimura [10] in the

case of $q=1$ . Thus we assume that $q\geqq 3$ in the following.
The problem of characterization of doubly transitive groups by the struc-

ture of the stabilizer of two points was presented by Bender [1], Ito [9] and
Kimura [11], [12], [13].

NOTATION. The stabilizer of points $i,$ $j,$ $\cdots$ , $k$ in (S5 is denoted by $\mathfrak{G}_{ij\cdots k}$ .
On the other hand $\mathfrak{G}_{\{ij\cdots k\}}$ will denote the stabilizer in $\mathfrak{G}$ of a set { $i,$ $j$ , $\cdot$ .. , le}
of points. For the subset $\mathfrak{X}$ of $\mathfrak{G},$ $s^{\alpha}(\mathfrak{X})$ will denote the set of all the fixed
points of X. For the elements $A,$ $B$ , $\cdot$ .. of $\mathfrak{G},$ $\langle A, B, \rangle$ is the subgroup of $\mathfrak{G}$

generated by $A,$ $B,$ $\cdots$ and $A\sim B$ means that $A$ is conjugate with $B$ . For a
group $\mathfrak{W},$ $Z(\mathfrak{W})$ and $\mathfrak{W}^{\prime}$ denote respectively the center of $\mathfrak{W}$ and the com-
mutator subgroup of $\mathfrak{W}$ . If $\mathfrak{S}$ is a 2-group, $\Omega_{1}(\mathfrak{S})$ denote the subgroup of $\mathfrak{S}$

generated by all involutions in S.
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2. The case $a=4$ .
Let $\mathfrak{H}$ be the stabilizer of the points 1 and let $\Omega$ be the stabilizer of the

set of points 1 and 2. Then $\theta$ is of order $4q$ and it is generated by an ele-
ment $K$ of order $4q$ whose cycle structure has the form (1)(2) $\cdots$ . Since $\mathfrak{G}$ is
doubly transitive on $\Omega$ , it contains an involution $I$ with the cycle structure
\langle 1, 2) $\cdots$ . Then we have the following decomposition of G.

$\mathfrak{G}=\mathfrak{H}^{u}\mathfrak{H}I\mathfrak{H}$ (2.1)

Since $I$ is contained in $N_{\mathfrak{G}}(9)$ it induces an automorphism of 9. If an element
$H^{\prime}IH$ in a coset $\mathfrak{H}IH,$ $H\in \mathfrak{H}$ , is of order 2, then $I(HH^{\prime})I=(HH^{\prime})^{-1}$ . Since $HH^{\prime}$

$=(1)\cdots$ and $ I=(1,2)\cdots$ , we have $ HH^{\prime}=(1)(2)\cdots$ and hence $HH^{\prime}$ is contained
in t\S . Thus the number $d$ of involutions in a coset $\mathfrak{H}IH$ is equal to that of
the elements in $R$ inverted by $I$. Put $\langle K^{\prime}\rangle=\{K\in\Omega IKI=K^{-1}\}$ . Then $\langle K^{\prime}\rangle$

is of order $d$ and \langle I, $ K^{\prime}\rangle$ is a dihedral group of order $2d$ . Now we have

$ I\sim IK^{\prime 2}\sim IK^{\prime 4}\sim\cdots$ (2.2)
and

$ IK^{\prime}\sim IK^{\prime 3}\sim IK^{\prime 5}\sim\cdots$ . (2.3)

Let $g(2)$ and $h(2)$ denote the number of involutions in $\mathfrak{G}$ and in $\mathfrak{H}$ , respectively.
Then the following equality is obtained from (2.1).

$g(2)=h(2)+d(n-1)$ (2.4)

Put $s^{\alpha}(\theta)=\{1,2, \cdot.. , i\}$ . By the theorem of Witt [16], $N_{\mathfrak{G}}(\theta)/9$ can be con-
sidered as a doubly transitive group on $\mathfrak{J}(ff)$ . Since every permutation of
$N_{\mathfrak{G}}(\theta)/R$ distinct from @ leaves by the definition of $\theta$ at most one point of
$s^{\alpha}(\partial)$ fixed, $N_{\mathfrak{G}}(ff)/ff$ is a complete Frobenius group on $s^{\alpha}(\theta)$ .

LEMMA 1. Let $\mathfrak{G}$ satisfy $(^{*})$ . Then f\S is semi-regular on $\Omega^{\alpha}-s(R)$ .
PROOF. Assume that $K^{j}$ fixes a point $v$ in $\Omega-s\alpha(9)$ . Since $\mathfrak{G}$ is doubly

transitive on $\Omega$ , there exists an element $W=\left(\begin{array}{lll}12 & \cdots & \cdots\\ 1 & v & \cdots\end{array}\right)$ in $\mathfrak{G}$ . Now we have

$W^{-1}9W=\mathfrak{G}_{10}$ and $K^{j}\in ff\cap W^{-1}ffW$. It follows from se $\neq W^{-1}ffW$ that $K^{j}$

must be identity. This proves our lemma.
LEMMA 2. Let $\mathfrak{G}$ satisfy $(^{*})$ . Then $N_{\mathfrak{G}}(R)\supset C_{\mathfrak{G}}(K^{J})$ for $1\leqq j\leqq 4q-1$ and in

particular $N_{\mathfrak{G}}(R)=C_{\mathfrak{G}}(K^{2q})$ .
PROOF. Obviously we have $\mathfrak{G}_{\{12\cdots i\}}\supset C_{\mathfrak{G}}(K^{j})$ for $1\leqq j\leqq 4q-1$ . Let $G$ be an

element in $\mathfrak{G}_{t12\cdots i\}}$ . Then $ G^{-1}\Omega G\subset \mathfrak{G}_{12\cdots i}=\mathfrak{G}_{1,2}=f\S$ . This implies that G\in NG(\mbox{\boldmath $\beta$}\S )
and hence $\mathfrak{G}_{t12\cdots i\}}\subset N_{\mathfrak{G}}(9)$ . The proof is complete.

Let us assume that $n$ is even. Then applying Lemma 1, it follows from
Kantor’s theorem [10] that $\mathfrak{G}$ is isomorphic to one of the so called Zassenhaus
groups. A complete classification of the Zassenhaus groups has been achieved
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by the combined effort of Zassenhaus [18], Feit [4], Ito [8] and Suzuki [15].

Hence $\mathfrak{G}$ is isomorphic to the projective special linear group $PSL(2,8q+1)$ .
REMARK. In the following we assume that $n$ is odd and prove that there

exists no group satisfying $(^{*})$ .
Since $\mathfrak{G}$ is doubly transitive on $\Omega$ any involution in $\mathfrak{G}$ which leaves at

least two points in $\Omega$ fixed is conjugate to $K^{2q}$ and by Lemma 2 the number
of such involutions is equal to $|\mathfrak{G}|/|C_{\mathfrak{G}}(K^{zq})|=|\mathfrak{G}|/|N_{\mathfrak{G}}(\Omega)|=n(n-1)/i(i-1)$ .
Similarly any involution in $\mathfrak{H}$ which leaves at least two points in $\Omega$ fixed is
conjugate to $K^{2q}$ in $\mathfrak{H}$ and its number is equal to $|\mathfrak{H}|/|C_{\mathfrak{H}}(K^{2q})|=n-1/i-1$ .
Because $n$ is odd, every involution fixes at least one point in $\Omega$ . Let $h^{*}(2)$

be the number of involutions in $\mathfrak{H}$ leaving only one point 1 fixed. Since
$\mathfrak{H}=\mathfrak{G}_{1},$ $\mathfrak{G}_{2},$ $\cdots$ , $\mathfrak{G}_{n}$ are conjugate each other, the following equality is obtained
from (2.4).

$h^{*}(2)n+n(n-1)/i(i-1)=h^{*}(2)+n-1/i-1+d(n-1)$ (2.5)

Now we have $n=i\{1+(i-1)(d-h^{*}(2))\}$ and then

$|G|=4qi\{1+(i-1)(d-h^{*}(2))\}\{(d-h^{*}(2))i+1\}(i-1)$ . (2.6)

LEMMA 3. Let $\mathfrak{G}$ satisfy $(^{*})$ . Then $h^{*}(2)=0$ or $d/2$ .
PROOF. (2.5) implies that

$n(n-1)/i(i-1)=(d-h^{*}(2))(n-1)+n-1/i-1$ . (2.7)

We have $d>h^{*}(2)$ . Put $ I=(1,2)(a)\cdots$ and $\mathfrak{J}(I)=\{a\}$ . Then $a\in \mathfrak{J}(R)$ . The
number of elements of the form $IK^{\prime 2j}$ is $d/2$ . Thus it follows from (2.2),
(2.3), (2.7) that $d-h^{*}(2)=d$ or $d/2$ because every involution in a coset $\mathfrak{H}IH$ is
of the form $Ff^{-1}(K^{\prime j}I)H$. Hence $h^{*}(2)=0$ or $d/2$ . This proves our lemma.

LEMMA 4. Let $\mathfrak{G}$ satisfy $(*)$ . Then $IK^{q}I=K^{q}$ .
PROOF. Assume by way of contradiction that $IK^{q}I\neq K^{q}$ . Then we have

$IK^{q}I=K^{-q}$ . Lemma 2 yields $N_{\mathfrak{G}}(\theta)\supset C_{\mathfrak{G}}(K^{q})$ and so NG(\mbox{\boldmath $\beta$}\S ) $=\langle I\rangle C_{\mathfrak{G}}(K^{q})$ . Since
$N_{\mathfrak{G}}(ff)/Q$ is a Frobenius group of odd degree $i$ , every involution is conjugate
each other in $ N_{\mathfrak{G}}(R)/\theta$ . Therefore ( $C_{\mathfrak{G}}(K^{q})$ : A) is odd and \langle I, $ K^{q}\rangle$ is a Sylow
2-subgroup of $N_{\mathfrak{G}}(R)$ . Since \langle I, $ K^{q}\rangle$ is a dihedral group of order 8, $d$ is divisi-
ble by 4 and then Lemma 3 implies that $d-h^{*}(2)$ is divisible by 2. Hence it
follows from (2.6) that \langle I, $ K^{q}\rangle$ is a dihedral Sylow 2-subgroup of $\mathfrak{G}$ . Now
applying the theorem of Gorenstein and Walter [7], $\mathfrak{G}$ is isomorphic to either
$PSL(2, r)$ where $r$ is odd or the alternating group $A_{7}$ . By L\"uneburg’s theorem
[14] the former cannot happen. Since $A_{7}$ contains no element of order $4q$

for $q\geqq 3$ , the latter cannot also happen. Thus we get a contradiction.
LEMMA 5. Let $\mathfrak{G}$ satisfy $(*)$ . Then $h^{*}(2)\neq d/2$ .
PROOF. Assume by way of contradiction that $h^{*}(2)=d/2$ . Since $\mathfrak{G}$ is

doubly transitive on $\Omega$ we may assume that $\mathfrak{J}(I)=\{a\}$ for some $ a\in\Omega$ .
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Because $i$ is odd $s^{\alpha}(I)\cap^{\alpha}s(\theta)=\{a\}$ . It follows from Lemma 4 that $d$ is not
divisible by 4. Now $d-h^{*}(2)$ is odd and then by (2.6) $K^{2q}$ is a non-central
involution. We may assume that $I$ is a central involution of some Sylow 2-
subgroup $\mathfrak{S}$ of G. Since $\mathfrak{G}_{a}$ is conjugate to $\mathfrak{G}_{1}=\mathfrak{H}$ , the number of involutions
in $\mathfrak{G}_{a}$ which fixes only one point $a$ is equal to $d/2=h^{*}(2)$ . Since $IK^{\prime 2},$ $IK^{\prime 4}$ , $\cdot$ ..
for $K^{\prime 2j}\neq 1$ are not in $C_{\mathfrak{G}}(I)$ it follows from (2.2) that $I$ is the only involution
in $C_{\mathfrak{G}}(I)$ which fixes only one point. Now we have $\{G^{-1}IG;G\in \mathfrak{G}\}\cap \mathfrak{S}=\{I\}$

and by the $z*$ -theorem of Glauberman [6] we have $I\in Z(\mathfrak{G}mod. O_{2},(\mathfrak{G}))$ where
$O_{2},(\mathfrak{G})$ is the maximal normal subgroup of odd order of $\mathfrak{G}$ . Thus $\mathfrak{G}$ is non-
simple. This contradicts $(^{*})$ . The proof is complete.

LEMMA 6. Let $\mathfrak{S}$ be a group of order $2^{m+2}$ containing a cyclic normal sub-
group $\mathfrak{B}$ of order 4. Let $\mathfrak{G}$ be a finite group containing $\mathfrak{S}$ as a Sylow 2-subgroup.
Assume that all involutions are conjugate in $\mathfrak{G}$ .

(i) If $\mathfrak{S}/\mathfrak{B}$ is cyclic and $\mathfrak{S}$ is non-abelian, then $|\mathfrak{S}|=8$ and $\mathfrak{S}$ is isomor-
phic to a dihedral group or a quaternion group.

(ii) If $\mathfrak{S}/\mathfrak{B}$ is isomorphic to a generalized quaternion group, then $\mathfrak{G}$ is
non-simple.

PROOF. (i) Put $\mathfrak{B}=\langle V\rangle$ and $\mathfrak{S}/\mathfrak{B}=\langle A\mathfrak{B}\rangle$ . Then $V^{4}=1$ and $A^{2}m\in \mathfrak{B}$ . If
$A^{2^{m}}=V$ or $V^{-1}$ , then $\mathfrak{S}=\langle A\rangle$ is cyclic. This is impossible. Thus $A^{2}m=1$ or
$V^{2}$ . The group $\mathfrak{S}$ is non-abelian, so that $A^{-1}$ $VA=V^{-1}$ and $A^{2},$ $V^{2}$ are in $Z(\mathfrak{S})$ .
Assume that $A^{zm}=1$ . If $m=1$ , then $A^{2}=1$ and $\mathfrak{S}$ is isomorphic to a dihedral
group of order 8. If $m>1$ , then $A^{2}m- 1$ is of order 2 and contained in $Z(\mathfrak{S})$ .
By our assumption $A^{2^{m- 1}}$ is fused with $V^{2}$ in $\mathfrak{G}$ and thus Burnside’s argument
implies that $A^{2^{m-1}}$ is fused with $V^{2}$ in $N_{\mathfrak{G}}(\mathfrak{S})$ . On the other hand since $\mathfrak{S}^{\prime}$ is
contained in $\mathfrak{B}$ and $\Omega_{1}(\mathfrak{S}^{\prime})=\langle V^{2}\rangle$ is a characteristic subgroup of $\mathfrak{S}$ , $V^{2}$ is
not fused with $A^{2}m-1$ in $N_{\mathfrak{G}}(\mathfrak{S})$ . This is a contradiction. Assume that $A^{2m}=V^{2}$ .
Then $\langle A\rangle$ is a cyclic normal subgroup of index 2 in S. Since $ Z(\mathfrak{S})=\langle A^{2}\rangle$

and $(\mathfrak{S}:Z(\mathfrak{S}))=4,$ $\mathfrak{S}$ is isomorphic to a quaternion group or a pseudo semi-
dihedral group \langle X, $Y;X^{2^{m+1}}=Y^{2}=1$ , $ Y^{-1}XY=X^{1+2^{m}}\rangle$ . The latter cannot
happen because in this case $\mathfrak{G}$ has a normal 2-complement by Wong’s theorem
[17] and then the number of conjugacy classes of involutions in $\mathfrak{G}$ is the
same as that in S. Now $|\mathfrak{S}|=8$ and $\mathfrak{S}$ is isomorphic to a quaternion group.

(ii) Put $\mathfrak{B}=\langle V\rangle$ and $\mathfrak{S}=\langle A, B, V\rangle$ with $A^{2^{m- 1}}\equiv 1(mod. \mathfrak{B}),$ $B^{-1}AB\equiv A^{-1}$

$(mod. \mathfrak{B}),$ $B^{2}\equiv A^{zm-2}(mod. \mathfrak{B}),$ $m\geqq 3$ . Put $A^{2m- 2}=J$ and so $J^{2}$ is in $\mathfrak{B}$ . We
have $(A^{\lambda}B^{j}V^{k})^{2}=J,$ $JV,$ $JV^{z}$ or $JV^{a}$ for $j=1$ or 3. The element $A^{2}$ centralizes
$V$, so that $J$ also centralizes $V$ . Thus the order of the elements $A^{i}B^{j}V^{k}$ for
$j=1$ or 3 are at most 8. Every involution of $\mathfrak{S}$ is in cosets $\mathfrak{B}$ or $J\mathfrak{B}$ and so
the number of involutions in $\mathfrak{S}$ is 3. Now assume by way of contradiction
that $\mathfrak{G}$ is simple. If $A^{2}m- 1=V$, then $\mathfrak{S}$ contains a cyclic normal subgroup $A$

of index 2 and it follows from the result of Brauer and Suzuki [3], Wong
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[17] that $\mathfrak{S}$ is isomorphic to a dihedral group or a semi-dihedral group.
Clearly they are not our case. If $A^{2m-1}=V^{2}$ , then the exponent of $\mathfrak{S}$ is $2^{m}$ .
Therefore Fong’s theorem [5] implies that $\mathfrak{S}$ is isomorphic to the wreath
product $Z_{4}\sim Z_{2}$ . This is not the case because $Z_{4}\sim Z_{2}$ contains 7 involutions.
Assume that $A^{2}m-1=1$ and $m>4$ . Now for odd $i$ we have

$(A^{i}V^{j})^{2}m- 2=(A^{i}V^{j})(A^{i}V^{j})\cdots(A^{i}V^{J})(A^{i}V^{j})$

$=A^{i}(V^{j}A^{i}V^{j})A^{i}\cdots A^{i}(V^{j}A^{i}V^{j})=(A^{i})^{2}m- 2=J^{i}=J$ .
Hence $J$ is in $Z(\mathfrak{S})$ and $\langle J\rangle$ is a characteristic subgroup of S. Since $V^{2}$ is in
$Z(\mathfrak{S})$ and $J$ is fused with $V^{2}$ in $\mathfrak{G}$ by our assumption, Burnside’s argument
implies that $J$ is fused with $V^{2}$ in $N_{\mathfrak{G}}(\mathfrak{S})$ . This is a contradiction. Now $m\leqq 4$

and $|\mathfrak{S}|=32$ or 64. Since $\mathfrak{G}$ is simple, we may apply the theorem of Fong
[5]. If $|\mathfrak{S}|=32$ , then $\mathfrak{S}$ is dihedral, semi-dihedral or $Z_{4}\sim Z_{2}$ . If $|\mathfrak{S}|=64$ , then

$\mathfrak{S}$ is dihedral, semi-dihedral, the Sylow 2-subgroup of the Mathieu group on
12 symbols or the direct product of four group and semi-dihedral group of
order 16. It is easily checked that they are not our case. The proof of
Lemma 6 is complete.

By Lemmas 3 and 5 we must have $h^{*}(2)=0$ . Therefore all involutions are
fused with $K^{2q}$ in $\mathfrak{G}$ . Now let $\mathfrak{S}$ be a Sylow 2-subgroup of $\mathfrak{G}$ contained in
$N_{\mathfrak{G}}(ff)$ and containing \langle I, $ K^{q}\rangle$ . Since $ N_{\mathfrak{G}}(R)/\theta$ is a Frobenius group of odd
degree $i,$ $\mathfrak{S}\theta/5\partial\cong \mathfrak{S}/\mathfrak{S}\cap ff=\mathfrak{S}/\langle K^{q}\rangle$ is cyclic or a generalized quaternion
group. It follows from Lemma 6 that $\mathfrak{S}$ must be abelian because \langle I, $ K^{q}\rangle$ is
isomorphic to an abelian group of type $(2, 2^{2})$ . Let $\mathfrak{S}$ be an abelian group of
type $(2^{m}, 2^{2})$ . Since $h^{*}(2)=0$ , we have $m=2$ . Now the result of Brauer [2]

implies that $\mathfrak{G}$ is non-simple. In the case $a=4$ the proof of our theorem is
complete.

3. The case $a=2$ .
If $n$ is even, then Kantor’s theorem [10] implies that $\mathfrak{G}$ is isomorphic to

the Zassenhaus groups. If $n$ is odd, then by the same way as in the case
$a=4$ we have $h^{*}(2)=0$ .

LEMMA 7. Let $\mathfrak{S}$ be a group of order $2^{m+1}$ and $\mathfrak{B}$ a cyclic normal subgroup
of order 2. Let $\mathfrak{G}$ be a finite group containing $\mathfrak{S}$ as a Sylow 2-subgroup. As-
sume that all involutions are conjugate in $\mathfrak{G}$ .

(i) $If\mathfrak{S}/\mathfrak{B}iscyclicand\mathfrak{S}isnon$ -cyclic, then({5is isomorphic toafourgroup.
(ii) If $\mathfrak{S}/\mathfrak{B}$ is isomorphic to a generalized quaternion group, then $\mathfrak{G}$ is

non-simple.
PROOF. (i) Now $\mathfrak{B}\subset Z(\mathfrak{S})$ , so that $\mathfrak{S}$ is abelian. Since all involutions are

conjugate in $\mathfrak{G}$ , the result follows immediately from Burnside’s argument.



Doubly transitive groups 393

(ii) Put $\mathfrak{B}=\langle V\rangle$ and $\mathfrak{S}=\langle A, B, V\rangle$ with $A^{2^{m- 1}}\equiv 1(mod \mathfrak{B}),$ $B^{-1}AB\equiv A^{-1}$

\langle$mod$ . $\mathfrak{B}$)
$,$

$B^{2}\equiv A^{2}m- 2(mod.\mathfrak{B}),$ $m\geqq 3$ . Put $A^{2}m- 2=J$. We have $(A^{i}B^{j}V^{k})^{2}=J$ or
$JV$ for $j=1$ or 3. Thus the order of the elements $A^{i}B^{j}V^{k}$ for $j=1$ or 3 are
four. Every involution of $\mathfrak{S}$ is in cosets $\mathfrak{B}$ or $J\mathfrak{B}$ and so the number of
involutions in $\mathfrak{S}$ is equal to 3. Now assume by way of contradiction that $\mathfrak{G}$

is simple. If $A^{2}m-1=V$ , then $\mathfrak{S}$ contains a cyclic normal subgroup $\langle A\rangle$ of
index 2. This is impossible. Thus $A^{2}m-1=1$ . If $m\geqq 4$ , then $\langle J\rangle$ is a charac-
teristic subgroup of S. Since $J$ is fused with $V$ in $\mathfrak{G}$ , Burnside’s argument

implies that $J$ is fused with $V$ in $N_{\mathfrak{G}}(\mathfrak{S})$ . This is impossible. Therefore $m=3$

and so $|\mathfrak{S}|=16$ . Fong’s theorem [5] yields a contradiction.
Let $\mathfrak{S}$ be a Sylow 2-subgroup of $\mathfrak{G}$ contained in $N_{\mathfrak{G}}(\theta)$ . Applying the

theorem of Gorenstein and Walter [7], Lemma 7 implies that $\mathfrak{G}$ is isomorphic
to either $PSL(2, r)$ where $r$ is odd or the alternating group $A_{7}$ . By the same
way as in the proof of Lemma 4 they are not our case. Thus the proof of
our theorem is complete.
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