Some class of doubly transitive groups of degree n and order $4 \boldsymbol{q}(\boldsymbol{n}-1) \boldsymbol{n}$ where \boldsymbol{q} is an odd number

By Hiroshi Kimura ${ }^{1)}$ and Hiroyoshi Yamaki ${ }^{2)}$

(Received Sept. 30, 1969)
(Revised Nov. 20, 1969)

1. Introduction.

In this paper we shall consider the following situation (*):
(*) A simple group \mathbb{B} is doubly transitive on $\Omega=\{1,2, \cdots, n\}$ of order $a q(n-1) n$ where $a=2$ or 4 and q is an odd number. The stabilizer \mathfrak{R} of two points in Ω is cyclic and $\mathfrak{\Re} \cap A^{-1} \mathfrak{\Re} A=1$ or $\mathfrak{\Re}$ for every element A in \mathbb{G}.

Our purpose is to prove the following theorem.
Theorem. In our situation (*) (B) is isomorphic to the projective special linear group $\operatorname{PSL}(2,4 q+1)$ or $\operatorname{PSL}(2,8 q+1)$.

Remark. This theorem was proved by Ito [9] and Kimura [10] in the case of $q=1$. Thus we assume that $q \geqq 3$ in the following.

The problem of characterization of doubly transitive groups by the structure of the stabilizer of two points was presented by Bender [1], Ito [9] and Kimura [11], [12], [13].

Notation. The stabilizer of points i, j, \cdots, k in \mathbb{E} is denoted by $\mathbb{E}_{i j \cdots k}$. On the other hand $\mathscr{G}_{\{i j \cdots k\}}$ will denote the stabilizer in © of a set $\{i, j, \cdots, k\}$ of points. For the subset \mathfrak{X} of $\mathfrak{A}, \mathfrak{\Im}(\mathfrak{X})$ will denote the set of all the fixed points of \mathfrak{X}. For the elements A, B, \cdots of $\mathfrak{G},\langle A, B, \cdots\rangle$ is the subgroup of (B) generated by A, B, \cdots and $A \sim B$ means that A is conjugate with B. For a group $\mathfrak{W ,} Z(\mathfrak{W})$ and \mathfrak{W}^{\prime} denote respectively the center of \mathfrak{W} and the commutator subgroup of \mathfrak{W}. If \mathbb{S} is a 2 -group, $\Omega_{1}(\mathbb{S})$ denote the subgroup of \mathbb{S} generated by all involutions in \mathbb{S}.

Acknowledgement. The second author proved our theorem for $a=4$ with an additional condition. The first author found that this additional condition is unnecessary and that the case $a=2$ can be proved in the same way.

1) This work was partially supported by The Sakkokai Foundation.
2) This work was partially supported by The Yukawa fellowship.

2. The case $a=4$.

Let \mathscr{S} be the stabilizer of the points 1 and let \mathscr{R} be the stabilizer of the set of points 1 and 2 . Then Ω is of order $4 q$ and it is generated by an element K of order $4 q$ whose cycle structure has the form (1)(2)… Since $\mathscr{E S}$ is doubly transitive on Ω, it contains an involution I with the cycle structure $(1,2) \cdots$. Then we have the following decomposition of \mathfrak{G}.

$$
\begin{equation*}
\mathfrak{B}=\mathfrak{S} \cup \mathfrak{S} I \mathscr{A} \tag{2.1}
\end{equation*}
$$

Since I is contained in $N_{\mathscr{S}}(\Re)$ it induces an automorphism of Ω. If an element $H^{\prime} I H$ in a coset $\mathscr{S} I H, H \in \mathscr{F}$, is of order 2 , then $I\left(H H^{\prime}\right) I=\left(H H^{\prime}\right)^{-1}$. Since $H H^{\prime}$ $=(1) \cdots$ and $I=(1,2) \cdots$, we have $H H^{\prime}=(1)(2) \cdots$ and hence $H H^{\prime}$ is contained in Ω. Thus the number d of involutions in a coset $\mathscr{S}_{\Omega} I H$ is equal to that of the elements in \Re inverted by I. Put $\left\langle K^{\prime}\right\rangle=\left\{K \in \Omega I K I=K^{-1}\right\}$. Then $\left\langle K^{\prime}\right\rangle$ is of order d and $\left\langle I, K^{\prime}\right\rangle$ is a dihedral group of order $2 d$. Now we have

$$
\begin{equation*}
I \sim I K^{\prime 2} \sim I K^{\prime 4} \sim \cdots \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
I K^{\prime} \sim I K^{\prime 3} \sim I K^{\prime 5} \sim \cdots \tag{2.3}
\end{equation*}
$$

Let $g(2)$ and $h(2)$ denote the number of involutions in \mathscr{A} and in \mathscr{S}, respectively. Then the following equality is obtained from (2.1).

$$
\begin{equation*}
g(2)=h(2)+d(n-1) \tag{2.4}
\end{equation*}
$$

Put $\Im(\Re)=\{1,2, \cdots, i\}$. By the theorem of Witt [16], $N_{\mathscr{S}}(\Re) / \Omega$ can be considered as a doubly transitive group on $\Im(\Omega)$. Since every permutation of $N_{\Theta}(\Re) / \Omega$ distinct from Ω leaves by the definition of Ω at most one point of $\Im(\Re)$ fixed, $N_{\mathscr{G}}(\Re) / \Omega$ is a complete Frobenius group on $\Im(\Re)$.

Lemma 1. Let \mathscr{A} satisfy $(*)$. Then \Re is semi-regular on $\Omega-\Im(\Re)$.
Proof. Assume that K^{j} fixes a point v in $\Omega-\Im(\Re)$. Since $\mathscr{S}^{(S)}$ is doubly transitive on Ω, there exists an element $W=\left(\begin{array}{lll}1 & 2 & \ldots \\ 1 & v & \ldots\end{array}\right)$ in Θ. Now we have $W^{-1} \Re W=\mathscr{S}_{1 v}$ and $K^{j} \in \mathscr{\Re} \cap W^{-1} \mathfrak{\Re} W$. It follows from $\Re \neq W^{-1} \mathscr{R} W$ that K^{j} must be identity. This proves our lemma.

Lemma 2. Let \mathfrak{F} satisfy $(*)$. Then $N_{\mathscr{G}}(\Re) \supset C_{\mathbb{B}}\left(K^{j}\right)$ for $1 \leqq j \leqq 4 q-1$ and in particular $N_{\mathscr{G}}(\Re)=C_{\mathscr{G}}\left(K^{2 q}\right)$.

Proof. Obviously we have $\mathscr{G}_{(12 \cdots i)} \supset C_{\mathscr{G}}\left(K^{j}\right)$ for $1 \leqq j \leqq 4 q-1$. Let G be an element in $\mathfrak{S}_{(12 \cdots i)}$. Then $G^{-1} \mathfrak{R} G \subset \mathfrak{S}_{12 \cdots i}=\mathfrak{\Re}_{1,2}=\mathfrak{R}$. This implies that $G \in N_{\mathscr{G}}(\mathscr{R})$ and hence $\mathscr{S}_{\{12 \cdots i\}} \subset N_{\mathscr{G}}(\mathscr{R})$. The proof is complete.

Let us assume that n is even. Then applying Lemma 1 , it follows from Kantor's theorem [10] that © \mathfrak{F} is isomorphic to one of the so called Zassenhaus groups. A complete classification of the Zassenhaus groups has been achieved
by the combined effort of Zassenhaus [18], Feit [4], Ito [8] and Suzuki [15]. Hence \mathbb{G} is isomorphic to the projective special linear group $\operatorname{PSL}(2,8 q+1)$.

Remark. In the following we assume that n is odd and prove that there exists no group satisfying (*).

Since \mathscr{S} is doubly transitive on Ω any involution in \mathscr{S} which leaves at least two points in Ω fixed is conjugate to $K^{2 q}$ and by Lemma 2 the number of such involutions is equal to $|\mathbb{G}| /\left|C_{\mathbb{G}}\left(K^{2 q}\right)\right|=|\mathbb{S}| /\left|N_{\mathbb{G}}(\mathbb{R})\right|=n(n-1) / i(i-1)$. Similarly any involution in \mathscr{J} which leaves at least two points in Ω fixed is conjugate to $K^{2 q}$ in \mathfrak{g} and its number is equal to $|\mathfrak{g}| /\left|C_{\mathfrak{\S}}\left(K^{2 q}\right)\right|=n-1 / i-1$. Because n is odd, every involution fixes at least one point in Ω. Let $h^{*}(2)$ be the number of involutions in \mathfrak{K} leaving only one point 1 fixed. Since $\mathfrak{K}=\mathscr{E}_{1}, \mathscr{E}_{2}, \cdots, \mathscr{S}_{n}$ are conjugate each other, the following equality is obtained from (2.4).

$$
\begin{equation*}
h^{*}(2) n+n(n-1) / i(i-1)=h^{*}(2)+n-1 / i-1+d(n-1) \tag{2.5}
\end{equation*}
$$

Now we have $n=i\left\{1+(i-1)\left(d-h^{*}(2)\right)\right\}$ and then

$$
\begin{equation*}
|G|=4 q i\left\{1+(i-1)\left(d-h^{*}(2)\right)\right\}\left\{\left(d-h^{*}(2)\right) i+1\right\}(i-1) . \tag{2.6}
\end{equation*}
$$

Lemma 3. Let \mathbb{G} satisfy $(*)$. Then $h^{*}(2)=0$ or $d / 2$.
Proof. (2.5) implies that

$$
\begin{equation*}
n(n-1) / i(i-1)=\left(d-h^{*}(2)\right)(n-1)+n-1 / i-1 . \tag{2.7}
\end{equation*}
$$

We have $d>h^{*}(2)$. Put $I=(1,2)(a) \cdots$ and $\mathfrak{J}(I)=\{a\}$. Then $a \in \mathfrak{J}(\Omega)$. The number of elements, of the form $I K^{\prime 2 j}$ is $d / 2$. Thus it follows from (2.2), (2.3), (2.7) that $d-h^{*}(2)=d$ or $d / 2$ because every involution in a coset $\$ 2 I H$ is of the form $H^{-1}\left(K^{\prime j} I\right) H$. Hence $h^{*}(2)=0$ or $d / 2$. This proves our lemma.

Lemma 4. Let \mathbb{E}^{5} satisfy $(*)$. Then $I K^{q} I=K^{q}$.
Proof. Assume by way of contradiction that $I K^{q} I \neq K^{q}$. Then we have $I K^{q} I=K^{-q}$. Lemma 2 yields $N_{\mathbb{G}}(\mathscr{R}) \supset C_{\mathbb{G}}\left(K^{q}\right)$ and so $N_{\mathbb{G}}(\mathbb{R})=\langle I\rangle C_{\mathbb{G}}\left(K^{q}\right)$. Since $N_{\Theta}(\Omega) / \Omega$ is a Frobenius group of odd degree i, every involution is conjugate each other in $N_{\circlearrowleft}(\Omega) / \Omega$. Therefore ($\left.C_{\Theta}\left(K^{q}\right): \Omega\right)$ is odd and $\left\langle I, K^{q}\right\rangle$ is a Sylow 2 -subgroup of $N_{\mathbb{E}}(\mathscr{R})$. Since $\left\langle I, K^{q}\right\rangle$ is a dihedral group of order $8, d$ is divisible by 4 and then Lemma 3 implies that $d-h^{*}(2)$ is divisible by 2 . Hence it follows from (2.6) that $\left\langle I, K^{q}\right\rangle$ is a dihedral Sylow 2 -subgroup of \mathbb{E}. Now applying the theorem of Gorenstein and Walter [7], ©8 is isomorphic to either $\operatorname{PSL}(2, r)$ where r is odd or the alternating group A_{7}. By Lüneburg's theorem [14] the former cannot happen. Since A_{7} contains no element of order $4 q$ for $q \geqq 3$, the latter cannot also happen. Thus we get a contradiction.

Lemma 5. Let \mathbb{G} satisfy $(*)$. Then $h^{*}(2) \neq d / 2$.
Proof. Assume by way of contradiction that $h^{*}(2)=d / 2$. Since ${ }^{(3)}$ is doubly transitive on Ω we may assume that $\Im(I)=\{a\}$ for some $a \in \Omega$.

Because i is odd $\Im(I) \cap \Im(\Re)=\{a\}$. It follows from Lemma 4 that d is not divisible by 4. Now $d-h^{*}(2)$ is odd and then by (2.6) $K^{2 q}$ is a non-central involution. We may assume that I is a central involution of some Sylow 2 subgroup \mathbb{S} of \mathfrak{G}. Since \mathscr{G}_{a} is conjugate to $\mathscr{G}_{1}=\mathfrak{F}$, the number of involutions in \mathscr{S}_{a} which fixes only one point a is equal to $d / 2=h^{*}(2)$. Since $I K^{\prime 2}, I K^{\prime 4}, \ldots$ for $K^{\prime 2 j} \neq 1$ are not in $C_{\mathbb{Q}}(I)$ it follows from (2.2) that I is the only involution in $C_{\mathbb{B}}(I)$ which fixes only one point. Now we have $\left\{G^{-1} I G ; G \in \mathscr{B}\right\} \cap \mathbb{S}=\{I\}$ and by the Z^{*}-theorem of Glauberman [6] we have $I \in Z\left(\mathbb{C} \bmod . O_{2^{\prime}}(\mathbb{(})\right)$ where $O_{2^{\prime}}(\mathbb{B})$ is the maximal normal subgroup of odd order of \mathbb{E}. Thus \mathbb{E} is nonsimple. This contradicts (*). The proof is complete.

Lemma 6. Let \mathfrak{S} be a group of order 2^{m+2} containing a cyclic normal subgroup \mathfrak{B} of order 4. Let \mathfrak{C} be a finite group containing \mathfrak{S} as a Sylow 2-subgroup. Assume that all involutions are conjugate in ©s.
(i) If $\mathfrak{S} / \mathfrak{B}$ is cyclic and \mathfrak{S} is non-abelian, then $|\mathfrak{S}|=8$ and \mathfrak{S} is isomorphic to a dihedral group or a quaternion group.
(ii) If $\mathbb{S} / \mathfrak{B}$ is isomorphic to a generalized quaternion group, then \mathbb{S} is non-simple.

Proof. (i) Put $\mathfrak{B}=\langle V\rangle$ and $\mathfrak{S} / \mathfrak{B}=\langle A \mathfrak{B}\rangle$. Then $V^{4}=1$ and $A^{2 m} \in \mathfrak{B}$. If $A^{2 m}=V$ or V^{-1}, then $\mathbb{S}=\langle A\rangle$ is cyclic. This is impossible. Thus $A^{2 m}=1$ or V^{2}. The group \mathfrak{S} is non-abelian, so that $A^{-1} V A=V^{-1}$ and A^{2}, V^{2} are in $Z(\mathbb{S})$. Assume that $A^{2 m}=1$. If $m=1$, then $A^{2}=1$ and \mathfrak{S} is isomorphic to a dihedral group of order 8. If $m>1$, then $A^{2 m-1}$ is of order 2 and contained in $Z(\subseteq)$. By our assumption $A^{2 m-1}$ is fused with V^{2} in (\mathscr{S}^{3} and thus Burnside's argument implies that $A^{2 m-1}$ is fused with V^{2} in $N_{\Phi}(\subseteq)$. On the other hand since \mathbb{S}^{\prime} is contained in \mathfrak{B} and $\Omega_{1}\left(\mathbb{S}^{\prime}\right)=\left\langle V^{2}\right\rangle$ is a characteristic subgroup of \mathbb{S}, V^{2} is not fused with $A^{2 m-1}$ in $N_{\mathbb{\Theta}}(\subseteq)$. This is a contradiction. Assume that $A^{2 m}=V^{2}$. Then $\langle A\rangle$ is a cyclic normal subgroup of index 2 in \subseteq. Since $Z(\mathbb{S})=\left\langle A^{2}\right\rangle$ and $(\varsigma: Z(\subseteq))=4$, ऽ is isomorphic to a quaternion group or a pseudo semidihedral group $\left\langle X, Y ; X^{2 m+1}=Y^{2}=1, \quad Y^{-1} X Y=X^{1+2^{m}}\right\rangle$. The latter cannot happen because in this case © ${ }^{8}$ has a normal 2 -complement by Wong's theorem [17] and then the number of conjugacy classes of involutions in © is the same as that in \mathfrak{S}. Now $|\mathfrak{S}|=8$ and \mathfrak{S} is isomorphic to a quaternion group.
(ii) Put $\mathfrak{V}=\langle V\rangle$ and $\mathfrak{S}=\langle A, B, V\rangle$ with $A^{2 m-1} \equiv 1(\bmod . \mathfrak{V}), B^{-1} A B \equiv A^{-1}$ (mod. $\mathfrak{F}), B^{2} \equiv A^{2 m-2}(\bmod . \mathfrak{F}), m \geqq 3$. Put $A^{2 m-2}=J$ and so J^{2} is in \mathfrak{F}. We have $\left(A^{i} B^{j} V^{k}\right)^{2}=J, J V, J V^{2}$ or $J V^{3}$ for $j=1$ or 3 . The element A^{2} centralizes V, so that J also centralizes V. Thus the order of the elements $A^{i} B^{j} V^{k}$ for $j=1$ or 3 are at most 8 . Every involution of \mathbb{S} is in cosets \mathfrak{B} or $J \mathfrak{F}$ and so the number of involutions in \mathbb{S} is 3 . Now assume by way of contradiction that © $\mathbb{E S}^{\text {is }}$ simple. If $A^{2 m-1}=V$, then \mathbb{S} contains a cyclic normal subgroup A of index 2 and it follows from the result of Brauer and Suzuki [3], Wong.
[17] that \mathbb{S} is isomorphic to a dihedral group or a semi-dihedral group. Clearly they are not our case. If $A^{2 m-1}=V^{2}$, then the exponent of \mathbb{S} is 2^{m}. Therefore Fong's theorem [5] implies that \subseteq is isomorphic to the wreath product $Z_{4} \sim Z_{2}$. This is not the case because $Z_{4} \sim Z_{2}$ contains 7 involutions. Assume that $A^{2 m-1}=1$ and $m>4$. Now for odd i we have

$$
\begin{aligned}
\left(A^{i} V^{j}\right)^{2 m-2} & =\left(A^{i} V^{j}\right)\left(A^{i} V^{j}\right) \cdots\left(A^{i} V^{j}\right)\left(A^{i} V^{j}\right) \\
& =A^{i}\left(V^{j} A^{i} V^{j}\right) A^{i} \cdots A^{i}\left(V^{j} A^{i} V^{j}\right)=\left(A^{i}\right)^{2 m-2}=J^{i}=J .
\end{aligned}
$$

Hence J is in $Z(\mathbb{S})$ and $\langle J\rangle$ is a characteristic subgroup of \mathbb{S}. Since V^{2} is in $Z(\mathbb{S})$ and J is fused with V^{2} in \mathbb{S}^{5} by our assumption, Burnside's argument implies that J is fused with V^{2} in $N_{\Phi}(\varsigma)$. This is a contradiction. Now $m \leqq 4$ and \mid ऽ $\mid=32$ or 64 . Since $\mathbb{S S}^{5}$ is simple, we may apply the theorem of Fong [5]. If $|\subseteq|=32$, then \subseteq is dihedral, semi-dihedral or $Z_{4} \sim Z_{2}$. If $|\subseteq|=64$, then \mathbb{S} is dihedral, semi-dihedral, the Sylow 2 -subgroup of the Mathieu group on 12 symbols or the direct product of four group and semi-dihedral group of order 16. It is easily checked that they are not our case. The proof of Lemma 6 is complete.

By Lemmas 3 and 5 we must have $h^{*}(2)=0$. Therefore all involutions are fused with $K^{2 q}$ in \mathbb{G}. Now let \mathbb{S} be a Sylow 2 -subgroup of \mathbb{B} contained in $N_{\Theta}(\Omega)$ and containing $\left\langle I, K^{q}\right\rangle$. Since $N_{\mathbb{G}}(\Omega) / \Omega$ is a Frobenius group of odd degree i, $\subseteq \Re / \Omega \cong \subseteq / \subseteq \cap \Omega=\subseteq /\left\langle K^{q}\right\rangle$ is cyclic or a generalized quaternion group. It follows from Lemma 6 that \subseteq must be abelian because $\left\langle I, K^{q}\right\rangle$ is isomorphic to an abelian group of type ($2,2^{2}$). Let \mathbb{S} be an abelian group of type $\left(2^{m}, 2^{2}\right)$. Since $h^{*}(2)=0$, we have $m=2$. Now the result of Brauer [2] implies that \mathbb{B} is non-simple. In the case $a=4$ the proof of our theorem is complete.

3. The case $a=2$.

If n is even, then Kantor's theorem [10] implies that $\mathbb{C S}$ is isomorphic to the Zassenhaus groups. If n is odd, then by the same way as in the case $a=4$ we have $h^{*}(2)=0$.

LEMMA 7. Let \mathfrak{S} be a group of order 2^{m+1} and \mathfrak{B} a cyclic normal subgroup of order 2. Let $\mathfrak{(S}$ be a finite group containing \subseteq as a Sylow 2-subgroup. Assume that all involutions are conjugate in © .
(i) If $\mathfrak{S} / \mathfrak{B}$ is cyclic and \mathfrak{S} is non-cyclic, then \mathfrak{S} is isomorphic to a four group.
(ii) If $\mathbb{S} / \mathfrak{B}$ is isomorphic to a generalized quaternion group, then \mathfrak{G} is non-simple.

Proof. (i) Now $\mathfrak{B C} \subset Z(\mathbb{S})$, so that \subseteq is abelian. Since all involutions are conjugate in \mathfrak{G}, the result follows immediately from Burnside's argument.
(ii) Put $\mathfrak{B}=\langle V\rangle$ and $\mathfrak{S}=\langle A, B, V\rangle$ with $A^{2 m-1} \equiv 1(\bmod \mathfrak{B}), B^{-1} A B \equiv A^{-1}$ (mod. \mathfrak{F}), $B^{2} \equiv A^{2 m-2}(\bmod . \mathfrak{V}), m \geqq 3$. Put $A^{2 m-2}=J$. We have $\left(A^{i} B^{j} V^{k}\right)^{2}=J$ or $J V$ for $j=1$ or 3 . Thus the order of the elements $A^{i} B^{j} V^{k}$ for $j=1$ or 3 are four. Every involution of \mathfrak{S} is in cosets \mathfrak{B} or $J \mathfrak{F}$ and so the number of involutions in \mathfrak{S} is equal to 3 . Now assume by way of contradiction that \mathfrak{G} is simple. If $A^{2 m-1}=V$, then \mathbb{S} contains a cyclic normal subgroup $\langle A\rangle$ of index 2. This is impossible. Thus $A^{2 m-1}=1$. If $m \geqq 4$, then $\langle J\rangle$ is a characteristic subgroup of \mathbb{S}. Since J is fused with V in \mathscr{B}, Burnside's argument implies that J is fused with V in $N_{\mathbb{G}}(\subseteq)$. This is impossible. Therefore $m=3$ and so $|\subseteq|=16$. Fong's theorem [5] yields a contradiction.

Let \mathbb{S} be a Sylow 2 -subgroup of \mathscr{B} contained in $N_{\mathbb{G}}(\mathscr{R})$. Applying the theorem of Gorenstein and Walter [7], Lemma 7 implies that © ${ }^{(3)}$ is isomorphic to either $\operatorname{PSL}(2, r)$ where r is odd or the alternating group A_{7}. By the same way as in the proof of Lemma 4 they are not our case. Thus the proof of our theorem is complete.

Hokkaido University
and
Osaka University

References

[1] H. Bender, Doubly transitive groups with no involution fixing two points, (to appear).
[2] R. Brauer, Some applications of the theory of blocks of characters of finite groups II, J. Algebra, 1 (1964), 307-334.
[3] R. Brauer and M. Suzuki, On finite groups of even order whose 2-Sylow group is a quaternion group, Proc. Nat. Acad. Sci. U.S. A., 45 (1959), 1757-1759.
[4] W. Feit, On a class of doubly transitive permutation groups, Illinois J. Math., 4 (1960), 170-186.
[5] P. Fong, Sylow 2-subgroups of small order, I, II, (to appear).
[6] G. Glauberman, Central elements in core-free groups, J. Algebra, 4 (1966), 403-420.
[7] D. Gorenstein and J.H. Walter, The characterization of finite groups with dihedral Sylow 2 -subgroups, I, II, III, J. Algebra, 2 (1965), 85-151, 218-270, 334-393.
[8] N. Ito, On a class of doubly transitive permutation groups, Illinois J. Math., 6 (1962), 341-352.
[9] N. Ito, On doubly transitive groups of degree n and order $2(n-1) n$, Nagoya Math. J., 27 (1966), 409-417.
[10] W.M. Kantor, On 2-transitive groups in which the stabilizer of two points fixes additional points, (to appear).
[11] H. Kimura, On doubly transitive permutation groups of degree n and order $4(n-1) n$, J. Math. Soc. Japan, 21 (1969), 234-243.
[12] H. Kimura, On some doubly transitive permutation groups of degree n and order $2^{l}(n-1) n$, J. Math. Soc. Japan, 22 (1970), 263-277.
[13] H. Kimura, On doubly transitive permutation groups of degree n and order $2 p(n-1) n$, I, II, (to appear).
[14] H. Lüneburg, Charakterisierungen der endlichen desarguesschen projectiven Ebenen, Math. Z., 85 (1964), 419-450.
[15] M. Suzuki, On a class of doubly transitive groups, Ann. of Math., 75 (1962), 105-145.
[16] E. Witt, Die 5-fach transitiven Gruppen von Mathieu, Abh. Math. Sem. Univ. Hamburg, 12 (1938), 256-264.
[17] W.J. Wong, On finite groups whose 2-Sylow subgroups have cyclic subgroups of index 2, J. Austral. Math. Soc., 4 (1964), 90-112.
[18] H. Zassenhaus, Kennzeichnung endlicher linearer Gruppen als Permutationsgruppen, Abh. Math. Sem. Univ. Hamburg, 11 (1936), 17-40.

