Some class of doubly transitive groups of degree nand order 4q(n-1)n where q is an odd number

By Hiroshi KIMURA¹⁾ and Hiroyoshi YAMAKI²⁾

(Received Sept. 30, 1969) (Revised Nov. 20, 1969)

1. Introduction.

In this paper we shall consider the following situation (*):

(*) A simple group \mathfrak{G} is doubly transitive on $\Omega = \{1, 2, \dots, n\}$ of order aq(n-1)n where a = 2 or 4 and q is an odd number. The stabilizer \mathfrak{R} of two points in Ω is cyclic and $\mathfrak{R} \cap A^{-1}\mathfrak{R}A = 1$ or \mathfrak{R} for every element A in \mathfrak{G} .

Our purpose is to prove the following theorem.

THEOREM. In our situation (*) \otimes is isomorphic to the projective special linear group PSL(2, 4q+1) or PSL(2, 8q+1).

REMARK. This theorem was proved by Ito [9] and Kimura [10] in the case of q=1. Thus we assume that $q \ge 3$ in the following.

The problem of characterization of doubly transitive groups by the structure of the stabilizer of two points was presented by Bender [1], Ito [9] and Kimura [11], [12], [13].

NOTATION. The stabilizer of points i, j, \dots, k in \mathfrak{G} is denoted by $\mathfrak{G}_{ij\cdots k}$. On the other hand $\mathfrak{G}_{(ij\cdots k)}$ will denote the stabilizer in \mathfrak{G} of a set $\{i, j, \dots, k\}$ of points. For the subset \mathfrak{X} of \mathfrak{G} , $\mathfrak{I}(\mathfrak{X})$ will denote the set of all the fixed points of \mathfrak{X} . For the elements A, B, \dots of $\mathfrak{G}, \langle A, B, \dots \rangle$ is the subgroup of \mathfrak{G} generated by A, B, \dots and $A \sim B$ means that A is conjugate with B. For a group $\mathfrak{W}, Z(\mathfrak{W})$ and \mathfrak{W}' denote respectively the center of \mathfrak{W} and the commutator subgroup of \mathfrak{W} . If \mathfrak{S} is a 2-group, $\Omega_1(\mathfrak{S})$ denote the subgroup of \mathfrak{S} generated by all involutions in \mathfrak{S} .

ACKNOWLEDGEMENT. The second author proved our theorem for a=4 with an additional condition. The first author found that this additional condition is unnecessary and that the case a=2 can be proved in the same way.

¹⁾ This work was partially supported by The Sakkokai Foundation.

²⁾ This work was partially supported by The Yukawa fellowship.

2. The case a = 4.

Let \mathfrak{G} be the stabilizer of the points 1 and let \mathfrak{R} be the stabilizer of the set of points 1 and 2. Then \mathfrak{R} is of order 4q and it is generated by an element K of order 4q whose cycle structure has the form $(1)(2) \cdots$. Since \mathfrak{G} is doubly transitive on Ω , it contains an involution I with the cycle structure $(1, 2) \cdots$. Then we have the following decomposition of \mathfrak{G} .

$$\mathfrak{G} = \mathfrak{H} \cup \mathfrak{H} \mathfrak{H} \mathfrak{H} \tag{2.1}$$

Since *I* is contained in $N_{\mathfrak{G}}(\mathfrak{R})$ it induces an automorphism of \mathfrak{R} . If an element H'IH in a coset $\mathfrak{H}IH$, $H \in \mathfrak{H}$, is of order 2, then $I(HH')I = (HH')^{-1}$. Since $HH' = (1) \cdots$ and $I = (1, 2) \cdots$, we have $HH' = (1)(2) \cdots$ and hence HH' is contained in \mathfrak{R} . Thus the number *d* of involutions in a coset $\mathfrak{H}IH$ is equal to that of the elements in \mathfrak{R} inverted by *I*. Put $\langle K' \rangle = \{K \in \mathfrak{R} \ IKI = K^{-1}\}$. Then $\langle K' \rangle$ is of order *d* and $\langle I, K' \rangle$ is a dihedral group of order 2*d*. Now we have

$$I \sim IK^{\prime 2} \sim IK^{\prime 4} \sim \cdots \tag{2.2}$$

and

$$IK' \sim IK'^{3} \sim IK'^{5} \sim \cdots . \tag{2.3}$$

Let g(2) and h(2) denote the number of involutions in \mathfrak{G} and in \mathfrak{H} , respectively. Then the following equality is obtained from (2.1).

$$g(2) = h(2) + d(n-1) \tag{2.4}$$

Put $\mathfrak{J}(\mathfrak{R}) = \{1, 2, \dots, i\}$. By the theorem of Witt [16], $N_{\mathfrak{G}}(\mathfrak{R})/\mathfrak{R}$ can be considered as a doubly transitive group on $\mathfrak{J}(\mathfrak{R})$. Since every permutation of $N_{\mathfrak{G}}(\mathfrak{R})/\mathfrak{R}$ distinct from \mathfrak{R} leaves by the definition of \mathfrak{R} at most one point of $\mathfrak{J}(\mathfrak{R})$ fixed, $N_{\mathfrak{G}}(\mathfrak{R})/\mathfrak{R}$ is a complete Frobenius group on $\mathfrak{J}(\mathfrak{R})$.

LEMMA 1. Let \otimes satisfy (*). Then \Re is semi-regular on $\Omega - \Im(\Re)$.

PROOF. Assume that K^j fixes a point v in $\Omega - \Im(\Re)$. Since \mathfrak{G} is doubly transitive on Ω , there exists an element $W = \begin{pmatrix} 1 & 2 & \cdots \\ 1 & v & \cdots \end{pmatrix}$ in \mathfrak{G} . Now we have $W^{-1}\mathfrak{R}W = \mathfrak{G}_{1v}$ and $K^j \in \mathfrak{R} \cap W^{-1}\mathfrak{R}W$. It follows from $\mathfrak{R} \neq W^{-1}\mathfrak{R}W$ that K^j must be identity. This proves our lemma.

LEMMA 2. Let \mathfrak{G} satisfy (*). Then $N_{\mathfrak{G}}(\mathfrak{R}) \supset C_{\mathfrak{G}}(K^{j})$ for $1 \leq j \leq 4q-1$ and in particular $N_{\mathfrak{G}}(\mathfrak{R}) = C_{\mathfrak{G}}(K^{2q})$.

PROOF. Obviously we have $\mathfrak{G}_{(12\cdots i)} \supset C_{\mathfrak{G}}(K^{j})$ for $1 \leq j \leq 4q-1$. Let G be an element in $\mathfrak{G}_{(12\cdots i)}$. Then $G^{-1}\mathfrak{R}G \subset \mathfrak{G}_{12\cdots i} = \mathfrak{G}_{1,2} = \mathfrak{R}$. This implies that $G \in N_{\mathfrak{G}}(\mathfrak{R})$ and hence $\mathfrak{G}_{(12\cdots i)} \subset N_{\mathfrak{G}}(\mathfrak{R})$. The proof is complete.

Let us assume that n is even. Then applying Lemma 1, it follows from Kantor's theorem [10] that \mathfrak{G} is isomorphic to one of the so called Zassenhaus groups. A complete classification of the Zassenhaus groups has been achieved

by the combined effort of Zassenhaus [18], Feit [4], Ito [8] and Suzuki [15]. Hence \bigotimes is isomorphic to the projective special linear group PSL(2, 8q+1).

REMARK. In the following we assume that n is odd and prove that there exists no group satisfying (*).

Since \mathfrak{G} is doubly transitive on Ω any involution in \mathfrak{G} which leaves at least two points in Ω fixed is conjugate to K^{2q} and by Lemma 2 the number of such involutions is equal to $|\mathfrak{G}|/|C_{\mathfrak{G}}(K^{2q})| = |\mathfrak{G}|/|N_{\mathfrak{G}}(\mathfrak{R})| = n(n-1)/i(i-1)$. Similarly any involution in \mathfrak{F} which leaves at least two points in Ω fixed is conjugate to K^{2q} in \mathfrak{F} and its number is equal to $|\mathfrak{F}|/|C_{\mathfrak{F}}(K^{2q})| = n-1/i-1$. Because *n* is odd, every involution fixes at least one point in Ω . Let $h^*(2)$ be the number of involutions in \mathfrak{F} leaving only one point 1 fixed. Since $\mathfrak{F} = \mathfrak{G}_1, \mathfrak{G}_2, \dots, \mathfrak{G}_n$ are conjugate each other, the following equality is obtained from (2.4).

$$h^{*}(2)n + n(n-1)/i(i-1) = h^{*}(2) + n-1/i-1 + d(n-1)$$
 (2.5)

Now we have $n = i\{1+(i-1)(d-h^*(2))\}$ and then

$$|G| = 4qi\{1 + (i-1)(d - h^{*}(2))\}\{(d - h^{*}(2))i + 1\}(i-1).$$
(2.6)

LEMMA 3. Let \mathfrak{G} satisfy (*). Then $h^*(2) = 0$ or d/2. PROOF. (2.5) implies that

$$n(n-1)/i(i-1) = (d-h^*(2))(n-1) + n-1/i-1.$$
 (2.7)

We have $d > h^*(2)$. Put $I = (1, 2)(a) \cdots$ and $\mathfrak{Z}(I) = \{a\}$. Then $a \in \mathfrak{Z}(\mathfrak{R})$. The number of elements of the form IK^{2j} is d/2. Thus it follows from (2.2), (2.3), (2.7) that $d-h^*(2)=d$ or d/2 because every involution in a coset $\mathfrak{P}IH$ is of the form $H^{-1}(K'^{j}I)H$. Hence $h^*(2)=0$ or d/2. This proves our lemma.

LEMMA 4. Let \mathfrak{G} satisfy (*). Then $IK^qI = K^q$.

PROOF. Assume by way of contradiction that $IK^q I \neq K^q$. Then we have $IK^q I = K^{-q}$. Lemma 2 yields $N_{\mathfrak{G}}(\mathfrak{R}) \supset C_{\mathfrak{G}}(K^q)$ and so $N_{\mathfrak{G}}(\mathfrak{R}) = \langle I \rangle C_{\mathfrak{G}}(K^q)$. Since $N_{\mathfrak{G}}(\mathfrak{R})/\mathfrak{R}$ is a Frobenius group of odd degree *i*, every involution is conjugate each other in $N_{\mathfrak{G}}(\mathfrak{R})/\mathfrak{R}$. Therefore $(C_{\mathfrak{G}}(K^q):\mathfrak{R})$ is odd and $\langle I, K^q \rangle$ is a Sylow 2-subgroup of $N_{\mathfrak{G}}(\mathfrak{R})$. Since $\langle I, K^q \rangle$ is a dihedral group of order 8, *d* is divisible by 4 and then Lemma 3 implies that $d-h^*(2)$ is divisible by 2. Hence it follows from (2.6) that $\langle I, K^q \rangle$ is a dihedral Sylow 2-subgroup of \mathfrak{G} . Now applying the theorem of Gorenstein and Walter [7], \mathfrak{G} is isomorphic to either PSL(2, r) where *r* is odd or the alternating group A_7 . By Lüneburg's theorem [14] the former cannot happen. Since A_7 contains no element of order 4*q* for $q \geq 3$, the latter cannot also happen. Thus we get a contradiction.

LEMMA 5. Let \bigotimes satisfy (*). Then $h^*(2) \neq d/2$.

PROOF. Assume by way of contradiction that $h^*(2) = d/2$. Since \mathfrak{G} is doubly transitive on \mathcal{Q} we may assume that $\mathfrak{J}(I) = \{a\}$ for some $a \in \mathcal{Q}$.

Because *i* is odd $\mathfrak{I}(I) \cap \mathfrak{R}(\mathfrak{R}) = \{a\}$. It follows from Lemma 4 that *d* is not divisible by 4. Now $d-h^*(2)$ is odd and then by (2.6) K^{2q} is a non-central involution. We may assume that *I* is a central involution of some Sylow 2-subgroup \mathfrak{S} of \mathfrak{G} . Since \mathfrak{G}_a is conjugate to $\mathfrak{G}_1 = \mathfrak{H}$, the number of involutions in \mathfrak{G}_a which fixes only one point *a* is equal to $d/2 = h^*(2)$. Since IK'^2 , IK'^4 , ... for $K'^{2j} \neq 1$ are not in $C_{\mathfrak{G}}(I)$ it follows from (2.2) that *I* is the only involution in $C_{\mathfrak{G}}(I)$ which fixes only one point. Now we have $\{G^{-1}IG; G \in \mathfrak{G}\} \cap \mathfrak{S} = \{I\}$ and by the Z*-theorem of Glauberman [**6**] we have $I \in Z(\mathfrak{G} \mod O_{2'}(\mathfrak{G}))$ where $O_{2'}(\mathfrak{G})$ is the maximal normal subgroup of odd order of \mathfrak{G} . Thus \mathfrak{G} is non-simple. This contradicts (*). The proof is complete.

LEMMA 6. Let \mathfrak{S} be a group of order 2^{m+2} containing a cyclic normal subgroup \mathfrak{V} of order 4. Let \mathfrak{S} be a finite group containing \mathfrak{S} as a Sylow 2-subgroup. Assume that all involutions are conjugate in \mathfrak{S} .

(i) If $\mathfrak{S}/\mathfrak{V}$ is cyclic and \mathfrak{S} is non-abelian, then $|\mathfrak{S}|=8$ and \mathfrak{S} is isomorphic to a dihedral group or a quaternion group.

(ii) If $\mathfrak{S}/\mathfrak{V}$ is isomorphic to a generalized quaternion group, then \mathfrak{S} is non-simple.

PROOF. (i) Put $\mathfrak{B} = \langle V \rangle$ and $\mathfrak{S}/\mathfrak{B} = \langle A\mathfrak{B} \rangle$. Then $V^4 = 1$ and $A^{2^m} \in \mathfrak{B}$. If $A^{2^m} = V$ or V^{-1} , then $\mathfrak{S} = \langle A \rangle$ is cyclic. This is impossible. Thus $A^{2^m} = 1$ or V^2 . The group \mathfrak{S} is non-abelian, so that $A^{-1}VA = V^{-1}$ and A^2 , V^2 are in $Z(\mathfrak{S})$. Assume that $A^{2^m} = 1$. If m = 1, then $A^2 = 1$ and \mathfrak{S} is isomorphic to a dihedral group of order 8. If m > 1, then $A^{2^{m-1}}$ is of order 2 and contained in $Z(\mathfrak{S})$. By our assumption $A^{2^{m-1}}$ is fused with V^2 in \mathfrak{S} and thus Burnside's argument implies that $A^{2^{m-1}}$ is fused with V^2 in $N_{\mathfrak{S}}(\mathfrak{S})$. On the other hand since \mathfrak{S}' is contained in \mathfrak{B} and $\mathcal{Q}_1(\mathfrak{S}') = \langle V^2 \rangle$ is a characteristic subgroup of \mathfrak{S} , V^2 is not fused with $A^{2^{m-1}}$ in $N_{\mathfrak{S}}(\mathfrak{S})$. This is a contradiction. Assume that $A^{2^m} = V^2$. Then $\langle A \rangle$ is a cyclic normal subgroup of index 2 in \mathfrak{S} . Since $Z(\mathfrak{S}) = \langle A^2 \rangle$ and $(\mathfrak{S}: Z(\mathfrak{S})) = 4$, \mathfrak{S} is isomorphic to a quaternion group or a pseudo semi-dihedral group $\langle X, Y; X^{2^{m+1}} = Y^2 = 1$, $Y^{-1}XY = X^{1+2^m} \rangle$. The latter cannot happen because in this case \mathfrak{S} has a normal 2-complement by Wong's theorem [17] and then the number of conjugacy classes of involutions in \mathfrak{S} is the same as that in \mathfrak{S} . Now $|\mathfrak{S}| = 8$ and \mathfrak{S} is isomorphic to a quaternion group.

(ii) Put $\mathfrak{B} = \langle V \rangle$ and $\mathfrak{S} = \langle A, B, V \rangle$ with $A^{2^{m-1}} \equiv 1 \pmod{\mathfrak{B}}, B^{-1}AB \equiv A^{-1} \pmod{\mathfrak{B}}, B^2 \equiv A^{2^{m-2}} \pmod{\mathfrak{B}}, m \geq 3$. Put $A^{2^{m-2}} = J$ and so J^2 is in \mathfrak{B} . We have $(A^i B^j V^k)^2 = J$, JV, JV^2 or JV^3 for j = 1 or 3. The element A^2 centralizes V, so that J also centralizes V. Thus the order of the elements $A^i B^j V^k$ for j=1 or 3 are at most 8. Every involution of \mathfrak{S} is in cosets \mathfrak{B} or $J\mathfrak{B}$ and so the number of involutions in \mathfrak{S} is 3. Now assume by way of contradiction that \mathfrak{B} is simple. If $A^{2^{m-1}} = V$, then \mathfrak{S} contains a cyclic normal subgroup A of index 2 and it follows from the result of Brauer and Suzuki [3], Wong

[17] that \mathfrak{S} is isomorphic to a dihedral group or a semi-dihedral group. Clearly they are not our case. If $A^{2m-1} = V^2$, then the exponent of \mathfrak{S} is 2^m . Therefore Fong's theorem [5] implies that \mathfrak{S} is isomorphic to the wreath product $Z_4 \sim Z_2$. This is not the case because $Z_4 \sim Z_2$ contains 7 involutions. Assume that $A^{2^{m-1}} = 1$ and m > 4. Now for odd *i* we have

$$(A^{i}V^{j})^{2^{m-2}} = (A^{i}V^{j})(A^{i}V^{j}) \cdots (A^{i}V^{j})(A^{i}V^{j})$$
$$= A^{i}(V^{j}A^{i}V^{j})A^{i} \cdots A^{i}(V^{j}A^{i}V^{j}) = (A^{i})^{2^{m-2}} = J^{i} = J.$$

Hence J is in $Z(\mathfrak{S})$ and $\langle J \rangle$ is a characteristic subgroup of \mathfrak{S} . Since V^2 is in $Z(\mathfrak{S})$ and J is fused with V^2 in \mathfrak{S} by our assumption, Burnside's argument implies that J is fused with V^2 in $N_{\mathfrak{S}}(\mathfrak{S})$. This is a contradiction. Now $m \leq 4$ and $|\mathfrak{S}| = 32$ or 64. Since \mathfrak{S} is simple, we may apply the theorem of Fong [5]. If $|\mathfrak{S}| = 32$, then \mathfrak{S} is dihedral, semi-dihedral or $Z_4 \sim Z_2$. If $|\mathfrak{S}| = 64$, then \mathfrak{S} is dihedral, semi-dihedral, the Sylow 2-subgroup of the Mathieu group on 12 symbols or the direct product of four group and semi-dihedral group of order 16. It is easily checked that they are not our case. The proof of Lemma 6 is complete.

By Lemmas 3 and 5 we must have $h^*(2) = 0$. Therefore all involutions are fused with K^{2q} in \mathfrak{G} . Now let \mathfrak{S} be a Sylow 2-subgroup of \mathfrak{G} contained in $N_{\mathfrak{G}}(\mathfrak{R})$ and containing $\langle I, K^q \rangle$. Since $N_{\mathfrak{G}}(\mathfrak{R})/\mathfrak{R}$ is a Frobenius group of odd degree $i, \mathfrak{S}\mathfrak{R}/\mathfrak{R} \cong \mathfrak{S}/\mathfrak{S} \cap \mathfrak{R} = \mathfrak{S}/\langle K^q \rangle$ is cyclic or a generalized quaternion group. It follows from Lemma 6 that \mathfrak{S} must be abelian because $\langle I, K^q \rangle$ is isomorphic to an abelian group of type $(2, 2^2)$. Let \mathfrak{S} be an abelian group of type $(2^m, 2^2)$. Since $h^*(2) = 0$, we have m = 2. Now the result of Brauer [2] implies that \mathfrak{S} is non-simple. In the case a = 4 the proof of our theorem is complete.

3. The case a = 2.

If n is even, then Kantor's theorem [10] implies that \mathfrak{G} is isomorphic to the Zassenhaus groups. If n is odd, then by the same way as in the case a=4 we have $h^*(2)=0$.

LEMMA 7. Let \mathfrak{S} be a group of order 2^{m+1} and \mathfrak{V} a cyclic normal subgroup of order 2. Let \mathfrak{S} be a finite group containing \mathfrak{S} as a Sylow 2-subgroup. Assume that all involutions are conjugate in \mathfrak{S} .

(i) If $\mathfrak{S}/\mathfrak{B}$ is cyclic and \mathfrak{S} is non-cyclic, then \mathfrak{S} is isomorphic to a four group.

(ii) If $\mathfrak{S}/\mathfrak{B}$ is isomorphic to a generalized quaternion group, then \mathfrak{G} is non-simple.

PROOF. (i) Now $\mathfrak{V} \subset Z(\mathfrak{S})$, so that \mathfrak{S} is abelian. Since all involutions are conjugate in \mathfrak{S} , the result follows immediately from Burnside's argument.

392

(ii) Put $\mathfrak{B} = \langle V \rangle$ and $\mathfrak{S} = \langle A, B, V \rangle$ with $A^{2^{m-1}} \equiv 1 \pmod{\mathfrak{B}}, B^{-1}AB \equiv A^{-1} \pmod{\mathfrak{B}}, B^2 \equiv A^{2^{m-2}} \pmod{\mathfrak{B}}, m \geq 3$. Put $A^{2^{m-2}} = J$. We have $(A^i B^j V^k)^2 = J$ or JV for j = 1 or 3. Thus the order of the elements $A^i B^j V^k$ for j = 1 or 3 are four. Every involution of \mathfrak{S} is in cosets \mathfrak{B} or $J\mathfrak{B}$ and so the number of involutions in \mathfrak{S} is equal to 3. Now assume by way of contradiction that \mathfrak{S} is simple. If $A^{2^{m-1}} = V$, then \mathfrak{S} contains a cyclic normal subgroup $\langle A \rangle$ of index 2. This is impossible. Thus $A^{2^{m-1}} = 1$. If $m \geq 4$, then $\langle J \rangle$ is a characteristic subgroup of \mathfrak{S} . Since J is fused with V in \mathfrak{S} , Burnside's argument implies that J is fused with V in $N_{\mathfrak{S}}(\mathfrak{S})$. This is impossible. Therefore m=3 and so $|\mathfrak{S}| = 16$. Fong's theorem [5] yields a contradiction.

Let \mathfrak{S} be a Sylow 2-subgroup of \mathfrak{S} contained in $N_{\mathfrak{S}}(\mathfrak{R})$. Applying the theorem of Gorenstein and Walter [7], Lemma 7 implies that \mathfrak{S} is isomorphic to either PSL(2, r) where r is odd or the alternating group A_7 . By the same way as in the proof of Lemma 4 they are not our case. Thus the proof of our theorem is complete.

Hokkaido University and Osaka University

References

- [1] H. Bender, Doubly transitive groups with no involution fixing two points, (to appear).
- [2] R. Brauer, Some applications of the theory of blocks of characters of finite groups II, J. Algebra, 1 (1964), 307-334.
- [3] R. Brauer and M. Suzuki, On finite groups of even order whose 2-Sylow group is a quaternion group, Proc. Nat. Acad. Sci. U.S. A., 45 (1959), 1757-1759.
- [4] W. Feit, On a class of doubly transitive permutation groups, Illinois J. Math., 4 (1960), 170-186.
- [5] P. Fong, Sylow 2-subgroups of small order, I, II, (to appear).
- [6] G. Glauberman, Central elements in core-free groups, J. Algebra, 4 (1966), 403-420.
- [7] D. Gorenstein and J. H. Walter, The characterization of finite groups with dihedral Sylow 2-subgroups, I, II, III, J. Algebra, 2 (1965), 85-151, 218-270, 334-393.
- [8] N. Ito, On a class of doubly transitive permutation groups, Illinois J. Math., 6 (1962), 341-352.
- [9] N. Ito, On doubly transitive groups of degree n and order 2(n-1)n, Nagoya Math. J., 27 (1966), 409-417.
- [10] W. M. Kantor, On 2-transitive groups in which the stabilizer of two points fixes additional points, (to appear).
- [11] H. Kimura, On doubly transitive permutation groups of degree n and order 4(n-1)n, J. Math. Soc. Japan, 21 (1969), 234-243.
- [12] H. Kimura, On some doubly transitive permutation groups of degree n and order $2^{l}(n-1)n$, J. Math. Soc. Japan, 22 (1970), 263-277.

- [13] H. Kimura, On doubly transitive permutation groups of degree n and order 2p(n-1)n, I, II, (to appear).
- [14] H. Lüneburg, Charakterisierungen der endlichen desarguesschen projectiven Ebenen, Math. Z., 85 (1964), 419-450.
- [15] M. Suzuki, On a class of doubly transitive groups, Ann. of Math., 75 (1962), 105-145.
- [16] E. Witt, Die 5-fach transitiven Gruppen von Mathieu, Abh. Math. Sem. Univ. Hamburg, 12 (1938), 256-264.
- [17] W. J. Wong, On finite groups whose 2-Sylow subgroups have cyclic subgroups of index 2, J. Austral. Math. Soc., 4 (1964), 90-112.
- [18] H. Zassenhaus, Kennzeichnung endlicher linearer Gruppen als Permutationsgruppen, Abh. Math. Sem. Univ. Hamburg, 11 (1936), 17-40.