Abstract homotopy neighborhoods and Hauptvermutung

By Shigeo ICHIRAKU

(Received June 6, 1969) (Revised Jan. 16, 1970)

1. Introduction and statement of results.

In this note, we shall show some examples of non-simply-connected manifolds for which Hauptvermutung holds. Mitsuyoshi Kato introduced the concept of homotopy neighborhoods and proved the classification theorem ([1]). This concept is the basis for this note.

DEFINITION 1. Let P be a finite connected (simplicial) complex, then an abstract homotopy neighborhood M of P is a compact pl. manifold satisfying the following conditions:

- 1.) P is a subcomplex of M and contained in Int M.
- 2.) (M, bM) is 2-connected.
- 3.) P is a deformation retract of M.

In the following, all manifolds are to be (orientable and) oriented and homeomorphisms are to be orientation preserving, we denote by N(K, X) a regular neighborhood of a subcomplex K in a pl. manifold X, \cong represents a pl. homeomorphism, and the Whitehead torsion of a homotopy equivalence $f: P \rightarrow Q$ will be denoted by $\tau(f)$ and considered as an element of Wh $(\pi_1(P))$ as in [1].

Our results are as follows.

THEOREM 1. Let M^n be an abstract homotopy neighborhood of a finite acyclic complex P^p , and M'^n a pl. manifold. Suppose $n \ge 6$, $n \ge 2p+2$ and there exists a homeomorphism $f: M^n \to M'^n$ with $\tau(f) = 0$. Then there exists a pl. homeomorphism $g: M^n \to M'^n$ such that g is homotopic to f.

COROLLARY 1. Let M^n be an abstract homotopy neighborhood of a finite acyclic complex P^p of which 3-skelton P^s is r-simple for $3 \le r < p$. If $n \ge 6$, $n \ge 2p+2$, then Hauptvermutung holds for M^n .

Let M^n be a compact connected pl. manifold and let $\eta: k_{PL}(M) \rightarrow k_{TOP}(M)$ be the natural map.

THEOREM 2. Let W^{n+k} be an abstract homotopy neighborhood of a connected closed pl. manifold M^n such that $\eta: k_{PL}(M) \to k_{TOP}(M)$ is injective and W'^{n+k} a pl. manifold. Suppose $k \ge n+2$, $n+k \ge 6$ and there exists a homeomorphism $f: W \to W'$ with $\tau(f)=0$. Then there exists a pl. homeomorphism g: W

 $\rightarrow W'$ such that g is homotopic to f.

COROLLARY 2. Let W^{n+k} be an abstract homotopy neighborhood of a connected closed pl. manifold M^n . If $n+k \ge 6$, $k \ge n+2$, and $\eta : k_{PL}(M) \rightarrow k_{TOP}(M)$ is injective and $Wh(\pi_1(M)) = 0$, then Hauptvermutung holds for W^{n+k} .

COROLLARY 3. Let W^n be an abstract homotopy neighborhood of a connected closed pl. manifold M^p . If $n \ge 6$, $p \le 3$ and $n \ge 2p+2$, then Hauptvermutung holds for W^n . In particular, Hauptvermutung holds for $M^3 \times D^k$, for $k \ge 5$.

THEOREM 3. Let W^{p+k} be a pl. π -manifold such that $\eta : k_{PL}(W) \to k_{TOP}(W)$ is injective and an abstract homotopy neighborhood of a finite connected complex P^p . Suppose $p+k \ge 6$, $k \ge p+2$ and W'^{p+k} is a pl. manifold and there exists a homeomorphism $f: W \to W'$ with $\tau(f) = 0$. Then there exists a pl. homeomorphism $g: W \to W'$ such that g is homotopic to f.

Combining the recent result of D. Sullivan ([2]) and the theorem of B. Mazur ([3]), we can see that $\eta: k_{PL}(M) \to k_{TOP}(M)$ is injective provided $H_{s}(M:Z)$ has no 2-torsion. Thus we obtain the following corollaries of Theorems 2 and 3.

COROLLARY 4. Let W^{n+k} be an abstract homotopy neighborhood of a connected closed pl. manifold M^n . If $n+k \ge 6$, $k \ge n+2$ and $H_s(M:Z)$ has no two torsion and $Wh(\pi_1(M)) = 0$, then Hauptvermutung holds for W^{n+k} .

COROLLARY 5. Let W^{p+k} be a pl. π -manifold and an abstract homotopy neighborhood of a finite connected complex P^p . If $p+k \ge 6$, $k \ge p+2$ and $H_s(W:Z)$ has no two torsion and $Wh(\pi_1(W)) = 0$, then Hauptvermutung holds for W^{p+k} .

The author wishes to express his hearty thanks to Professor I. Tamura for his guidance and valuable suggestions, to M. Kato and H. Sato for many useful discussions and advices.

2. Proof of Theorem 1.

We use the following theorem due to Mitsuyoshi Kato.

THEOREM K. Let M^n and M'^n be abstract homotopy neighborhoods of P^p and P'^p , respectively. Let $i: P^p \to M^n$ and $i': P'^p \to M'^n$ be natural inclusions. Suppose $n \ge 6$, $n-p \ge 3$ and there exist N(P, M) and N(P', M') and a pl. homeomorphism $f: (N(P, M), P) \to (N(P', M'), P')$. Then f can be extended to a pl. homeomorphism $g: (M, P) \to (M', P')$ if and only if $\tau(i)$ corresponds to $\tau(i')$ by the isomorphism of Whitehead groups induced by f|P.

The proof of this theorem can be done by applying the s-cobordism theorem. For the proof, see [1].

PROOF OF THEOREM 1. According to T. Homma ([4]), since $n \ge 2p+2$, f

326

is homotopic to a homeomorphism which, when restricted to P, is a pl. embedding into Int M'. Thus suppose that f itself has this property, and let $i: P \to M$ and $i': f(P) \to M'$ be inclusions. By Definition 1, M' is also an abstract homotopy neighborhood of f(P). Let $f': P \to f(P)$ be a pl. homeomorphism obtained from f | P by restricting the range to f(P). By the hypothesis, $\tau(f) = 0$. Since f' is an onto pl. homeomorphism, $\tau(f') = 0$. Hence $f'_*\tau(i) = f'_*(i_*^{-1}\tau(f) + \tau(i)) = f'_*\tau(f \circ i) = f'_*\tau(i' \circ f') = f'_*(f'_*^{-1}\tau(i') + \tau(f')) = \tau(i')$.

Since P is acyclic, we can see that bM and bM' are (n-1)-homology spheres by computing the homology groups. It is known that every (n-1)homology sphere bounds the unique contractible manifold provided $n \ge 5$. Let V^n and V'^n be the contractible manifolds bounded by bM and bM', respectively. Glueing V^n to M^n along their boundaries by the identity map, we obtain a closed manifold W^n . Let W'^n be a closed manifold obtained by glueing V^{n} to M^{n} . Since $n-p \ge 3$, we can see that $\pi_1(bM)$ is isomorphic to $\pi_1(M)$ by general position argument. Then, it is not hard to see that W^n and W^{n} are also *n*-homology spheres and that W^{n} and W^{n} are simply-connected. Thus W^n and W'^n are *n*-spheres and M^n and M'^n can be embedded in S^n . Since $n \ge 2p+2$, applying Gugenheim's theorem ([5]), we can extend f' to a pl. homeomorphism $h: S^n \to S^n$. Let N(P, M) be a small regular neighborhood of P in M such that h(N(P, M)) is contained in Int M'. Clearly, h(N(P, M)) is a regular neighborhood of f(P) in M'. Put N(f(P), M') =h(N(P, M)), then N(P, M) is pl. homeomorphic to N(f(P), M') by a pl. homeomorphism which extends f'.

Thus, by Theorem K, we can extend f' to a pl. homeomorphism $g:(M, P) \rightarrow (M', f(P))$. Since P and f(P) are deformation retracts of M and M' respectively, g is homotopic to f. This proves the theorem.

PROOF OF COROLLARY 1. Let M' be a pl. manifold and $f: M \to M'$ a homeomorphism. Let $j: P^2 \to P^3$ be the natural inclusion. By the hypothesis, P^p is acyclic and P^3 is r-simple for $3 \leq r < p$. Then by using the usual obstruction theory we can extend j to a map $\overline{j}: P^p \to P^3$. Let $\overline{r}: M^n \to P^3$ be the composition of the retraction $r: M^n \to P^p$ and $\overline{j}: P^p \to P^3$, then \overline{r} induces the isomorphism of the fundamental groups.

According to Siebenmann [6], when M^n admits a map to a 3-complex inducing an isomorphism of fundamental groups, $\tau(f)$ vanishes. Therefore applying Theorem 1, we get a pl. homeomorphism $g: M \to M'$ such that g is homotopic to f, which completes the proof.

3. Proof of Theorem 2.

PROOF OF THEOREM 2. Since $k \ge n+2$, we can assume that $f|M: M \to W'$ is a pl. embedding. Let $i: M \to W$ and $i': f(M) \to W'$ be the natural inclusions

and f' a pl. homeomorphism obtained from f|M by restricting the range to f(M). Note that W' is also an abstract homotopy neighborhood and that $\tau(i') = f'_*\tau(i)$. Therefore, by Theorem K, we need only show that there exist N(M, W) and N(f(M), W') which are pl. homeomorphic by a pl. homeomorphism which extends f'.

Since $k \ge n+2$, there are normal pl. microbundles $\nu(i)$ and $\nu(i')$ unique up to isotopy ([7]). By the hypothesis, *i* and *i'* are topologically equivalent embeddings, hence $\eta(\{\nu(i)\}) = f'*\eta(\{\nu(i')\})$, where $\eta: k_{PL} \to k_{TOP}$ is a natural transformation and $\{\nu\}$ represents the stable equivalence class of ν . By the hypothesis η is injective, $\{\nu(i)\} = f'*\{\nu(i')\}$ holds. Since $k \ge n+2$, $\nu(i)$ is isomorphic to $\nu(i')$ as pl. microbundles ([7]). This means that there exist neighborhoods N of M in W and N' of f(M) in W' and a pl. homeomorphism $\hat{f}: (N, M) \to (N', f(M))$ whose restriction to M is f'. This proves the theorem.

Corollary 2 is a direct consequence of Theorem 2.

Recall that B. Mazur proved the following theorem ([3]).

THEOREM M. Let M^n be a compact pl. manifold. Then $\eta : k_{PL}(M) \rightarrow k_{TOP}(M)$ is injective if and only if the stable Hauptvermutung is true for M^n .

PROOF OF COROLLARY 3. Since $p \leq 3$, Hauptvermutung holds for M^p , hence $\eta: k_{PL}(M) \to k_{TOP}(M)$ is injective. M^p is a deformation retract of W^n , hence the Whitehead torsion of the homeomorphism of W^n vanishes by Siebenmann's result [6]. Applying Theorem 2, we get the result.

4. Proof of Theorem 3 and Corollaries 4, 5.

PROOF OF THEOREM 3. As in Proof of Theorem 2, we can assume that f|P is pl. embedding and we need only show that there exist N(P, W) and N(f(P), W') which are pl. homeomorphic by a pl. homeomorphism which extends f|P.

Since $n \ge 2p+2$ and W is a pl. π -manifold, we can get a p-connected manifold W_s by surgery on W. (For surgery on pl. manifolds, see [8].) By general position argument, we can assume $N(P, W) = N(P, W_s)$. Let D^n be a pl. n-disk in W_s . Since W_s is p-connected, $\pi_r(W_s, \operatorname{Int} D^n) = 0$ for $r \le p$. Then applying Engulfing Theorem ([9]), we can assume $P \subset \operatorname{Int} D^n$. Therefore $N(P, W) = N(P, W_s) \cong N(P, \operatorname{Int} D^n)$.

Let τ_W and $\tau_{W'}$ are tangent pl. microbundles of W and W', respectively. Since f is a homeomorphism, $\eta(\{\tau_W\}) = f*\eta(\{\tau_{W'}\}) = \eta(f*\{\tau_{W'}\})$. By the hypothesis η is injective, hence $\{\tau_W\} = f*\{\tau_{W'}\}$ holds. Since f* is an isomorphism, $\tau_{W'} = 0$, i. e. W' is also a pl. π -manifold. Therefore, by the same argument as above, we can see $N(f(P), W') \cong N(f(P), \operatorname{Int} D^n)$. Applying Gugenheim's theorem, we get a pl. homeomorphism $\hat{f}: N(P, W) \to N(f(P), W')$ which extends f|P. This proves the theorem. PROOF OF COROLLARIES 3 AND 4. According to D. Sullivan [2], the stable Hauptvermutung is true for M^n , provided $H_3(M:Z)$ has no two torsion. Therefore $\eta: k_{PL}(M) \rightarrow k_{TOP}(M)$ is injective by Theorem M. Then we obtain directly Corollaries 3 and 4 from Theorems 2 and 3.

Added in proof. Recently, Kirby and Siebenmann have obtained a general solution of Hauptvermutung ([10]), which indicates most of our results.

Osaka University

References

- [1] M. Kato, Geometrical operations of Whitehead groups, J. Math. Soc. Japan, 21 (1969), 523-542.
- [2] D. Sullivan, Triangulating and smoothing homotopy equivalences and homeomorphisms, Geometric Topology Seminar Notes, Princeton, 1967, (mimeographed).
- [3] B. Mazur, The method of infinite repetition in pure topology: II Stable applications, Ann. of Math., 83 (1966), 387-401.
- [4] T. Homma, On the imbeddings of polyhedra into manifolds, Yokohama Math. J., 10 (1962), 5-10.
- [5] V. K. A. M. Gugenheim, Piecewise linear isotopy and embedding of elements and spheres (I), Proc. London Math. Soc., (3) 3 (1953), 29-53.
- [6] L.C. Siebenmann, On the homotopy type of compact topological manifolds, Bull. Amer. Math. Soc., 74 (1968), 738-742.
- [7] A. Haefliger and C. T. C. Wall, Piecewise linear bundles in the stable range, Topology, 4 (1965), 209-214.
- [8] W. Browder and M. W. Hirsch, Surgery on piecewise linear manifolds and applications, Bull. Amer. Math. Soc., 72 (1966), 959-964.
- [9] J. Stallings, The topology of high-dimensional piecewise linear manifolds, (mimeographed), Princeton.
- [10] R. C. Kirby and L. C. Siebenmann, On the triangulation of manifolds and Hauptvermutung, Bull. Amer. Math. Soc., 75 (1969), 742-749.