On some doubly transitive permutation groups of degree n and order $2^{l(n-1) n}$

By Hiroshi Kimura ${ }^{1)}$

(Received Jan. 27, 1969)
(Revised Nov. 22, 1969)

1. Introduction.

Doubly transitive permutation groups of degree n and order $2(n-1) n$ were determined by N. Ito ([9]). Some doubly transitive permutation groups of degree n and order $4(n-1) n$ were studied in [10].

The object of this paper is to prove the following result.
Theorem. Let Ω be the set of symbols $1,2, \cdots, n$. Let \mathbb{B} be a doubly transitive group on Ω of order $2^{l}(n-1) n(l>1)$ not containing a regular normal subgroup and let \mathfrak{R} be the stabilizer of symbols 1 and 2 . Assume that \mathfrak{R} is cyclic. Then $\left(\mathbb{S}\right.$ is isomorphic to one of the groups $\operatorname{PGL}(2, *), \operatorname{PSL}(2, *), \operatorname{PSU}\left(3,3^{2}\right)$ and $\operatorname{PSU}\left(3,5^{2}\right)$.

We use the standard notation. $C_{X}(\mathfrak{T})$ denotes the centralizer of a subset \mathfrak{I} in a group \mathfrak{X} and $N_{\mathfrak{X}}(\mathfrak{I})$ stands for the normalizer of \mathfrak{I} in \mathfrak{X}. $\langle S, T, \cdots\rangle$ denotes the subgroup of \mathfrak{X} generated by elements S, T, \cdots of \mathfrak{X}.

2. On the degree of the permutation group ©

1. Let $\mathscr{5}$ be the stabilizer of the symbol $1 . \Omega$ is of order 2^{l} and it is generated by a permutation K. Let us denote the unique involution $K^{2 l-1}$ of \mathscr{R} by τ. Since \mathscr{B} is doubly transitive on Ω it contains an involution I with the cyclic structure (12)… Then we have the following decomposition of \mathbb{B};

$$
\mathfrak{G}=\mathfrak{5}+\mathfrak{2} I \mathfrak{I} .
$$

Since I is contained in $N_{\Theta}(\Omega)$, it induces an automorphism of Ω and (i) $K^{I}=K$ or $K \tau$, (ii) $K^{I}=K^{-1} \tau$ or (iii) $K^{I}=K^{-1}$. (For the case $l=2$, (i) $K^{I}=K$ or (iii) $K^{I}=K^{-1}$.) If an element $H^{\prime} I H$ of a coset $\$_{\Omega} I H$ of $\$ 2$ is an involution, then $I H H^{\prime} I=\left(H H^{\prime}\right)^{-1}$ is contained in \Re. Hence, in the case (i) the coset $\oiint_{\Omega} I H$ contains just two involutions, namely $H^{-1} I H$ and $H^{-1} \tau I H$, in the case (ii) it contains just 2^{l-1} involutions, namely $H^{-1} K^{\prime} I H$ for $K^{\prime} \in\left\langle K^{2}\right\rangle$, and in the case

1) This work was supported by The Sakkokai Foundation.
(iii), it contains just 2^{l} involutions, namely $H^{-1} K^{\prime} I H$ for $K^{\prime} \in \Omega$. Let $g(2)$ and $h(2)$ denote the numbers of involutions in \mathscr{A} and \mathfrak{K}, respectively. Then the following equality is obtained;

$$
\begin{equation*}
g(2)=h(2)+d(n-1), \tag{2.1}
\end{equation*}
$$

where $d=2,2^{l-1}$ and 2^{l} for cases (i), (ii) and (iii), respectively.
2. For a set \mathfrak{I} of permutations of \mathfrak{G}, the set of all symbols fixed by \mathfrak{I} is denoted by $\mathfrak{J}(\mathfrak{T})$ and we denote the number of symbols in $\mathfrak{J}(\mathfrak{T})$ by $\alpha(T)$. Let $K^{2 l-j}$ denote the permutation of $\mathfrak{\Omega}$ such that $\alpha(\tau)=\alpha\left(K^{2 l-j}\right)>\alpha\left(K^{2 l-j-1}\right)$ and let Ω_{1} be the subgroup of Ω generated by $K^{2 l-j}$. Then the order of Ω_{1} is equal to 2^{j}. Let Ω_{1} keep $i(i \geqq 2)$ symbols of Ω, say $1,2, \cdots, i$, unchanged. It is trivial that $N_{\mathscr{\Theta}}\left(\mathscr{R}_{1}\right)=C_{\mathscr{\Theta}}(\tau)$. Put $\mathfrak{J}=\mathfrak{J}\left(\mathscr{R}_{1}\right)=\{1,2, \cdots, i\}$. We denote the factor group $N_{\mathbb{B}}\left(\Omega_{1}\right) / \Omega_{1}$ by \mathscr{G}_{1}. By a theorem of Witt ([15, Theorem 9.4]), \mathscr{G}_{1} can be considered as a doubly transitive permutation group on $\mathfrak{\Im}$. The stabilizer of symbols 1 and 2 in \mathfrak{J} is the cyclic 2 -group Ω / \Re_{1}. Thus the orders of $N_{\mathbb{G}}\left(\Omega_{1}\right)$ and $\mathscr{S} \cap N_{\mathbb{B}}\left(\Omega_{1}\right)$ are equal to $2^{l} i(i-1)$ and $2^{l}(i-1)$, respectively. Hence there exist $n(n-1) / i(i-1)$ involutions in \mathscr{G} each of which is conjugate to τ.

At first, let us assume that n is odd. Let $h^{*}(2)$ be the number of involutions in \mathfrak{S} leaving only the symbol 1 fixed. Then from (2.1) and above argument the following equality is obtained;

$$
\begin{equation*}
h^{*}(2) n+n(n-1) / i(i-1)=(n-1) /(i-1)+h^{*}(2)+d(n-1) . \tag{2.2}
\end{equation*}
$$

Since i is less than n, it follows from (2.2) that $h^{*}(2)<d$ and hence $n=$ $i(\beta i-\beta+1)$, where $\beta=d-h^{*}(2)$. Since n is odd, i must be odd.

Next let us assume that n is even. Let $g^{*}(2)$ be the number of involutions in \mathbb{B} leaving no symbol of Ω fixer?. Then corresponding to (2.2) the following equality is obtained from (2.1);

$$
\begin{equation*}
g^{*}(2)+n(n-1) / i(i-1)=(n-1) /(i-1)+d(n-1) . \tag{2.3}
\end{equation*}
$$

It is easily proved that $g *(2)$ is a multiple of $n-1$ (see [8] or [9]). It follows from (2.3) that $g^{*}(2)<d(n-1)$. Thus we have $n=i(\beta i-\beta+1)$, where $\beta=$ $d-g^{*}(2) /(n-1)$. Since n is even, i must be even.
3. We prove the theorem by induction on the degree n. Let $S L(2,8)$ denote the two-dimensional special linear group over the field $G F(8)$ of eight elements, and let σ be the automorphism of $G F(8)$ of order three such that $\sigma(x)=X^{2}$ for every element x of $G F(8)$. Then σ can be considered in a usual way an automorphism of $S L(2,8)$. Let $S L *(2,8)$ be the splitting extension of $S L(2,8)$ by the group $\langle\sigma\rangle$. Then $S L^{*}(2,8)$ has doubly transitive permutation representation on the set of Sylow 3 -subgroups and its degree is equal to 28 . The stabilizer of two symbols leaves four Sylow 3-subgroups fixed and every
involution is conjugate (see [8]).
Theorem 1 (N. Ito, [8]). Let \mathbb{B} be a doubly transitive permutation group on Ω of order $2 n(n-1)$ not containing a regular normal subgroup. Then \mathbb{B} is isomorphic to either $\operatorname{PSL}(2,5)$ or $S L *(2,8)$.

If $(\mathscr{S}$ contains a regular normal subgroup, then its degree is equal to a power of a prime number. Thus, by Theorem 1, if $l=1$, then n is equal to 6,28 or a power of a prime number.

3. The case n is odd.

1. Since $n=i(\beta i-\beta+1)$ is odd, i must be odd. The group $\left(\mathbb{G}_{1}=N_{\Theta}\left(\Omega_{1}\right) / \Omega_{1}\right.$ is a doubly transitive permutation group on $\Im\left(\Omega_{1}\right)$ and the stabilizer of symbols 1 and 2 is the subgroup Ω / Ω_{1} of \mathscr{E}_{1} of order 2^{l-j}. By the inductive hypothesis, \mathbb{B}_{1} contains a regular normal subgroup and, in particular, i is equal to a power of an odd prime number, say p^{m}. Let \mathfrak{P} be a Sylow p subgroup of $N_{\mathbb{G}}\left(\Omega_{1}\right)$ of order $i=p^{m}$. Since $\mathfrak{P} \Re_{1} / \Omega_{1}$ is a regular normal subgroup of $\mathfrak{C}_{1}, \mathfrak{B}$ is elementary abelian and normal in $N_{\mathbb{B}}\left(\mathbb{R}_{1}\right)$. Let \mathfrak{B} denote the subgroup $\mathfrak{K} \cap N_{\mathscr{G}}\left(\Omega_{1}\right)$. Then the order of \mathfrak{B} is equal to $2^{l}\left(p^{m}-1\right)$.
2. Case $n=i^{2}=p^{2 m}$. It can be proved in the same way as in [9, Case A] that there exists no group satisfying the conditions of the theorem in this case.
3. Case $n=p^{m}\left(\beta p^{m}-\beta+1\right)$ with $\beta>1$ and $\beta, \beta-1 \neq 0(\bmod . p)$. In this case it can be proved in the same way as in [10, § 2.5] that there is no group satisfying the conditions of the theorem in this case.
4. Case $n=p^{m}\left(\beta p^{m}-\beta+1\right)$ with $\beta>1$ and $\beta \equiv 0$ (mod. p). Since $\beta \geqq 3, d$ must be greater than 2 and hence $\langle K, I\rangle$ is dihedral or semi-dihedral.

Consider the cyclic structure of K and it can be seen that $n-i=\beta p^{m}\left(p^{m}-1\right)$ is divisible by 2^{l}. Set $p=2^{k} q+1$, where $q(>0)$ is odd. Since $2^{l} \geqq \beta \geqq p, \beta$ is not divisible by 2^{l-k} and therefore $p^{m}-1$ must be divisible by 2^{k+1}. Hence m is even.

At first assume that the order of $N_{\mathscr{G}}(\mathscr{\Omega})$ is divisible by 2^{l+2}. Since $N_{\mathbb{G}}(\Omega) / \Omega$ is a complete Frobenius group on $\Im(\Re)$, any Sylow subgroup of a complement $\mathfrak{J} \cap N_{\Theta}(\Omega) / \Omega$ is cyclic or quaternion (ordinary or generalized). Hence there exists a subgroup \mathfrak{S} of $N_{\mathscr{G}}(\Omega)$ such that $\subseteq \supseteq\langle I, K\rangle$ and \subseteq / Ω is a cyclic group of order 4. © contains S such that $S^{2} \equiv I(\Re), S$ induces an automorphism of Ω of order 4 and S^{2} and I induce the same automorphism. But it is easily seen that, for any automorphism ζ of Ω of order $4, K^{\zeta^{2}}=\tau K$. This is a contradiction since $\langle K, I\rangle$ is dihedral or semi-dihedral.

Next assume that the order of $N_{\mathbb{G}}(\mathscr{R})$ is not divisible by 2^{l+2}. Let \mathbb{S} be a Sylow 2 -subgroup of $N_{\Theta}\left(\Re_{1}\right)$ containing $\langle I, K\rangle$. Since m is even, the order
of \mathbb{S} is greater than 2^{l+2}. By the assumption of the order of $N_{\mathbb{\Theta}}(\mathscr{R}), ~ \subseteq \subseteq N_{\Theta}(\Omega)$ $=\langle K, I\rangle$ is a Sylow 2 -subgroup of $N_{\mathbb{B}}(\mathbb{R})$. Therefore $N_{\Xi}(\langle K, I\rangle)$ is greater than $N_{\Omega}(\mathscr{R})$. Let $S(\neq 1)$ be a permutation of $N_{\Xi}(\langle K, I\rangle)-\langle K, I\rangle$. Since K^{s} is contained in $\langle K, I\rangle$, we have $K^{s}=K^{\prime} I$, where K^{\prime} is a permutation of Ω. Hence, if $\langle K, I\rangle$ is dihedral, then $\left(K^{S}\right)^{2}=1$ and the order of K equals 2 and, if $\langle K, I\rangle$ is semi-dihedral, then $\left(\mathrm{K}^{s}\right)^{4}=1$ and the order of K equals 4 . This is a contradiction.

Thus there exists no group satisfying the conditions of the theorem in this case.
5. Case $n=p^{m}\left(\beta p^{m}-\beta+1\right)$ with $\beta-1=0(\bmod . p)$.

At first we shall prove that the order of $C_{\Phi}(\mathfrak{P})$ is equal to $2^{j^{\prime}} p^{m+m^{\prime}} y$, where $j^{\prime} \geqq j, m^{\prime}>0$ and y is a factor of $\beta p^{m}-(\beta-1)$ and not divisible by p. Assume that the order of $C_{B}(\mathfrak{P})$ is equal to $2^{j^{\prime}} p^{m}$. Let Ω^{\prime} be a Sylow 2 -subgroup of $C_{\Omega}(\mathfrak{P})$. Every element ($\neq 1$) of \mathfrak{P} leaves no symbol of Ω fixed. Then Ω^{\prime} must leave at least two symbols of Ω fixed. Therefore Ω^{\prime} is conjugate to a subgroup of Ω containing Ω_{1}. Since $C_{\mathbb{B}}(\mathfrak{P})$ is a direct product of Ω^{\prime} and $\mathfrak{B}, \Omega^{\prime}$ is normal in $N_{\Theta}(\mathfrak{R})$. Since the order of $N_{\Theta}\left(\Omega^{\prime}\right)$ is a factor of the order of $N_{\mathcal{G}}\left(\Omega_{1}\right)$, the order of $N_{\Theta}\left(\Omega_{1}\right)$ is greater than or equal to the order of $N_{\Theta}(\mathfrak{P})$. This contradicts the order of $N_{\mathscr{S}}(\mathfrak{P})$. Hence the order of $C_{\mathscr{B}}(\mathfrak{B})$ is equal to $2^{j^{\prime}} p^{m} y$, where y is odd and $y>1$. Let $q(\neq 2, p)$ be a prime factor of the order of $C_{\mathbb{B}}(\mathfrak{P})$ and let Q be a permutation of $C_{\mathbb{G}}(\mathfrak{P})$ of order q. If q is a factor of $n-1$, then Q leaves just one symbol of Ω fixed and hence Q cannot be contained in $C_{\mathbb{\Theta}}(\mathfrak{B})$. Thus q is a factor of n and so is y. Next assume that y is not divisible by p. Let \mathfrak{Y}^{\prime} be a normal p-complement in $C_{\Theta}(\mathfrak{F})$. Since \mathscr{R}^{\prime} is cyclic, \mathfrak{K}^{\prime} has a normal 2 -complement \mathfrak{Y}^{\prime}. Since \mathfrak{Y}^{\prime} is a normal Hall subgroup of $\mathfrak{X}^{\prime}, \mathfrak{Y}^{\prime}$ is normal even in $N_{\mathbb{G}}(\mathfrak{P})$. Let $Y^{\prime}(\neq 1)$ be a permutation of \mathfrak{Y}^{\prime}. Then Y^{\prime} does not leave any symbol of Ω fixed. If $\mathfrak{F} \cap G_{\mathscr{G}}\left(Y^{\prime}\right)$ contains an involution τ^{\prime}, then τ^{\prime} is conjugate to τ under © and, since $C_{⿷}\left(\tau^{\prime}\right)$ contains Y^{\prime}, the order of $C_{\mathbb{Q}}\left(\tau^{\prime}\right)$ is divisible by the order of Y^{\prime}. But since $C_{\mathscr{G}}\left(\tau^{\prime}\right)$ is conjugate to $C_{\mathbb{G}}(\tau)=N_{\mathbb{G}}\left(\mathscr{R}_{1}\right)$ and the order of $N_{\Phi}\left(\mathscr{R}_{1}\right)$ and y are relatively prime, the order of $\mathfrak{B} \cap C_{\mathbb{G}}\left(Y^{\prime}\right)$ is odd. Let q be a prime factor of the order of $\mathfrak{B} \cap C_{\mathbb{G}}\left(Y^{\prime}\right)$ and let Q be a permutation of $\mathfrak{B} \cap C_{\mathbb{G}}\left(Y^{\prime}\right)$ of order q. Then Q leaves at least one symbol of Ω fixed and hence it leaves at least two symbols of Ω fixed, which is a contradiction. Thus $\mathfrak{B} \cap C_{\mathbb{G}}\left(Y^{\prime}\right)=(1)$. Hence we have the following relation;

$$
\begin{gathered}
y-1=\left|\mathfrak{Y}^{\prime}\right|-1 \geqq|\mathfrak{Y}|, \\
\text { i. e., } y \geqq 2^{l}\left(p^{m}-1\right)+1=2^{l} p^{m}-\left(2^{l}-1\right) .
\end{gathered}
$$

On the other hand y is a factor of $\beta p^{m-1}-(\beta-1) p^{-1}$. This is a contradiction. Hence y is divisible by p.

Let us assume $p^{m^{\prime}}<2^{l}$. Let $\mathfrak{A l}$ be a normal 2 -complement of $C_{\mathbb{G}} \mathfrak{F}$. Then \mathfrak{U} is normal in $N_{\mathbb{G}}(\mathfrak{F})$. Let \mathfrak{B}^{\prime} be a Sylow p-subgroup of \mathfrak{N}. By the Frattini argument $N_{\mathcal{G}}(\mathfrak{P})=\mathfrak{A}\left(N_{G} \mathfrak{B}^{\prime} \cap N_{\mathbb{G}}(\mathfrak{F})\right)$. Since the order of \mathfrak{A} is odd, we may assume that \mathfrak{R} is a subgroup of $N_{\mathscr{G}}\left(\mathcal{P}^{\prime}\right) \cap N_{\mathbb{G}}(\mathfrak{B})$. Thus there exists a homomorphism π of Ω into Aut $\Re_{\beta}^{\prime} / \mathfrak{B}$. If τ is contained in ker π, then τ acts trivially on $\mathfrak{P}^{\prime} / \Re$ and \mathfrak{P}. Therefore τ acts also trivially on \mathfrak{F}^{\prime} and $C_{ब} \tau$ contains \mathfrak{B}^{\prime} ([4, Theorem 5.3.2]). Hence we have ker $\pi=1$ and Aut $\mathfrak{B}^{\prime} / \mathfrak{F}$ contains a cyclic subgroup of order 2^{l}. But the order $\left(=p^{m}\right)$ of $\mathfrak{B}^{\prime} / \mathfrak{B}$ is less than 2^{l}. This is a contradiction. If $m^{\prime} \leqq m$, then $p^{m^{\prime}}<2^{l}$. Thus we may assume $p^{m^{\prime}}>2^{l}$. Then $m^{\prime}>m$.

Assume $y>1$. Since \mathfrak{U} is solvable, there exists a subgroup \mathfrak{y}) of \mathfrak{X} of order y. Now Y is a factor of $\beta-(\beta-1) p^{-m}$. By the Frattini argument it can be assumed that \Re is a subgroup of $N_{\mathbb{G}}(\mathfrak{Y})$. Thus there exists a homomorphism π^{\prime} of \mathbb{R} into Aut \mathfrak{Y}. Since the orders of $C_{\mathbb{Q}}(\tau)$ and \mathfrak{Y} are relatively prime, any elements $(\neq 1)$ of \mathfrak{y}) are not fixed by $\pi^{\prime}(\tau)$. Therefore we have $y>2^{l}$. This is impossible and hence $y=1$. \mathfrak{P}^{\prime} is normal in $N_{\Phi}(\mathfrak{P})$. Let P^{\prime} $(\neq 1)$ be an element of \mathfrak{B}^{\prime}. It can be seen that $\mathfrak{B} \cap C_{\mathbb{Q}}\left(\mathfrak{B}^{\prime}\right)$ is a subgroup of \Re. Hence we have the following relation;

$$
p^{m+m^{\prime}}-1=x\left(p^{m}-1\right), \quad x>1 .
$$

From this it is easily seen that m^{\prime} is divisible by m.
If $\beta p^{m}-\beta+1$ is divisible by $p^{\delta m}(\delta>1)$ exactly, then $\beta-1$ must be equal to $p^{\grave{o} m} z+p^{(\hat{o}-1) m}+\cdots+p^{m}(z>1)$ or $p^{(\hat{\partial}-1) m}+\cdots+p^{m}$. If $\beta-1$ is equal to $p^{\bar{\partial} m} z+$ $p^{(\dot{\delta}-1) m}+\cdots+p^{m}(z>1)$, then $2^{l}>p^{o m}\left(\geqq p^{m^{\prime}}\right)$. Therefore we may assume $\beta=p^{(\delta-1) m}+\cdots+p^{m}+1=\left(p^{\partial m}-1\right) /\left(p^{m}-1\right)$ and $m^{\prime}=\delta m$. \mathfrak{B}^{\prime} is a Sylow p-subgroup of $\mathfrak{C b}$.

Next we shall prove that $m=1$ and K has only 2^{l}-cycles in its cyclic decomposition, i. e., $N_{\mathscr{G}}(\Re)=C_{\mathscr{\Omega}}(\tau)$ and $\Omega \cap \Re^{G}=1$ or Ω for every element G of (8. From (2.2) it can be seen that the number of involutions with the cyclic structures $(1,2) \cdots$ which are conjugate to τ is equal to β. If $\langle K, I\rangle$ is dihedral, then every involution in $I \Omega$ is conjugate to I or $I K$ and if $\langle K, I\rangle$ is semi-dihedral, then every involution in $I \Omega$ is conjugate to I. Since all involutions with the cyclic structures $(1,2) \cdots$ are contained in $I \Omega, \beta$ is equal to $d / 2$ or d. Thus $p^{m}+1$ is a power of two and hence $m=1$. Therefore \mathscr{E}_{1} is a complete Frobenius group, $\mathfrak{J}(\tau)=\mathfrak{J}(K), N_{\mathbb{G}}(\Re)=C_{\mathscr{\Omega}}(\tau)$ and $C_{\mathbb{G}}(\Re)$ contains \mathfrak{F}. Therefore the number of elements which leave only the symbol 1 fixed is equal to $2^{l}(n-1)-1-\left(2^{l}-1\right)(\beta i+1)$ and the number of elements which leave i symbols of Ω fixed is equal to $\left(2^{l}-1\right)(\beta i-\beta+1)(\beta i+1)$. Let G be an element of \mathscr{E} of order $2^{l^{\prime}} p\left(l^{\prime} \geqq 1\right)$. Then $\alpha(G)=0$ and $\alpha\left(G^{p}\right)=i$. Therefore the number of cyclic subgroups of \mathbb{A} of order $2^{l} p$ is equal to $(\beta i-\beta+1)(\beta i+1)$ and those
groups are independent. Thus the number of elements of order $2^{l^{\prime}} p\left(l^{\prime} \geqq 1\right)$ which leave no symbol of Ω fixed is equal to $\left(2^{l}-1\right)(i-1)(\beta i-\beta+1)(\beta i+1)$. Therefore we have

$$
\begin{aligned}
|\mathscr{S}|- & \left(n\left(2^{l}(n-1)-1-\left(2^{l}-1\right)(\beta i+1)\right)+\left(2^{2}-1\right)(\beta i-\beta+1)(\beta i+1)\right. \\
& \left.+\left(2^{l}-1\right)(n-1)(\beta i-\beta+1)+1\right)=n-1 .
\end{aligned}
$$

Hence \mathfrak{P}^{\prime} is a regular normal subgroup of \mathfrak{G}.
Thus there exists no group satisfying the conditions of the theorem in this case.

4. The case n is even and $N_{\mathbb{B}}\left(\Omega_{1}\right) / \mathscr{R}_{1}$ contains a regular normal subgroup.

1. Since $n=i(\beta i-\beta+1)$ is even, i must be even. $\mathscr{B}_{1}=N_{\mathbb{G}}\left(\mathscr{R}_{1}\right) / \mathscr{R}_{1}$ is a doubly transitive permutation group on $\Im\left(\Omega_{1}\right)$ containing a regular normal subgroup. In particular, i is equal to a power of 2 , say 2^{m}.

Let \mathfrak{S} be the normal 2 -subgroup of $N_{\mathbb{G}}\left(\Omega_{1}\right)$ containing Ω_{1} such that \mathbb{S} / Ω_{1} is a regular normal subgroup of $\mathscr{B}_{1}=N_{\mathscr{\Theta}}\left(\mathscr{R}_{1}\right) / \mathbb{R}_{1}$. Since the order of $\mathscr{S}_{\Omega} \cap N_{\mathscr{G}}\left(\mathscr{R}_{1}\right)$ is equal to $2^{l}\left(2^{m}-1\right), \Omega$ is a Sylow 2 -subgroup of $\mathscr{\Omega} \cap N_{\mathbb{G}}\left(\mathscr{R}_{1}\right)$. Let \mathfrak{B} be a normal 2 -complement of $\mathfrak{S} \cap N_{\Theta}\left(\Omega_{1}\right)$. The group $\mathfrak{B} \subseteq / \Omega_{1}$ is a complete Frobenius group on $\mathfrak{J}\left(\mathscr{\Re}_{1}\right)$ with kernel \subseteq / Ω_{1} and complement $\mathfrak{V} \Omega_{1} / \Omega_{1}(\cong \mathfrak{B})$. Since $C_{\mathbb{G}}\left(\Omega_{1}\right) \cap \mathfrak{B C}$ is normal in $\mathfrak{B C}, C_{\mathbb{G}}\left(\mathscr{\Omega}_{1}\right) \cap \mathfrak{B C}$ contains \mathbb{S} or is contained in \mathfrak{S} ($[13,12.6 .8]$). If \mathbb{S} is greater than $C_{\mathscr{B}}\left(\mathscr{R}_{1}\right) \cap \mathfrak{B} \mathfrak{S}$, since the index of \mathfrak{S} in $\mathfrak{B S}$ must be equal to a power of two, we have $m=1$. Hence $\mathscr{E S}$ is a Zassenhaus group. Thus we have that \mathbb{B} is isomorphic to either $P G L\left(2,2^{l}+1\right)$ or $\operatorname{PSL}\left(2,2^{l+1}+1\right)$, where $2^{l}+1$ and $2^{l+1}+1$ are powers of prime numbers for $\operatorname{PGL}\left(2,2^{l}+1\right)$ and $\operatorname{PSL}\left(2,2^{l+1}+1\right)$, respectively ([1], [8], [14] and [18]). Thus it will be assumed that \mathbb{S} is contained in $C_{\mathbb{B}}\left(\mathscr{R}_{1}\right) \cap \mathfrak{B} \subseteq$ and m is greater than one.

Since the index of $\mathfrak{B C} \cap C_{\mathbb{Q}}\left(\mathscr{R}_{1}\right)$ in $\mathfrak{B C}$ is odd and the order of Aut \mathscr{R}_{1} is equal to $2^{j-1}, \mathfrak{B} \subseteq \cap C_{\mathbb{G}}\left(\mathscr{R}_{1}\right)$ is equal to $\mathfrak{B S}$. Hence $C_{\mathbb{G}}\left(\Omega_{1}\right)$ is equal to $N_{\mathbb{G}}\left(\mathbb{\Omega}_{1}\right)$ since $N_{\mathbb{\Theta}}\left(\mathbb{R}_{1}\right)=\Re \mathfrak{B}$ S.

Proposition 4.1. Let \mathscr{G}_{3} be as in Theorem and let \mathscr{R}_{1} and \mathbb{B}_{1} as above. Assume that \mathscr{G}_{1} contains a regular normal subgroup and $N_{\mathbb{\Theta}}\left(\Omega_{1}\right)$ is equal to $C_{\mathbb{\Theta}}\left(\Omega_{1}\right)$. Let \mathbb{S} be as above. Then \mathfrak{S} contains an involution $(\neq \tau)$.

Proof. If Ω_{1} is equal to \mathscr{R}, then \mathbb{S} is a normal Sylow 2 -subgroup of $N_{\Theta}(\Omega)$ and hence it contains I. Therefore it can be assumed that Ω_{1} is less than Ω and $I \notin \mathbb{S}$. Assume that τ is the unique involution in \mathbb{S}. Since \mathbb{S} / Ω_{1} is an elementary abelian group of order 2^{m} and $m \geqq 2$, \mathbb{S} is a quaternion group (ordinary or generalized) and hence $m=2$ (and $i=4$). Thus we have $\alpha(K)=\cdots=\alpha\left(K^{2 l-j-1}\right)=2<\alpha\left(K^{2 l-j}\right)=4$. Since $\mathbb{P} \subseteq$ is a Sylow 2-subgroup of
$N_{\Theta}\left(\Omega_{1}\right)$, it may be assumed that I is contained in the coset $K^{2 l-j-1} \subseteq$ and hence we have $I K^{2 l-j-1}=S$, where S is an element ($\ddagger K_{1}$) of \mathbb{S}. Thus ($\left.K^{2 l-j-1}\right)^{I}$ $=S^{2} K^{-2 l-j-1}$. Since $N_{\mathbb{\Theta}}\left(\Omega_{1}\right)=C_{\mathbb{G}}\left(\mathbb{R}_{1}\right)$, we have $K^{2 l-j}=S^{4} K^{-2 l-j}$ and $S^{4}=K^{2 l-j+1}$. At first assume that $S^{4}=1$. Then $j=1$ and $\left(K^{2 l-2}\right)^{I}=K^{-2 l-2} \tau=K^{2 l-2}$. This implies $d=2$. Hence $n=16$ or 28 . Since $n-i$ and $i-\alpha(K)$ are divisible by 2^{l} and 2^{l-1}, respectively, the order of Ω is equal to four. It can easily be seen that there exists no group satisfying the conditions of Proposition in these cases. Next assume that $S^{4} \neq 1$ (i. e., $j \neq 1$). Then ($\left.K^{2 l-j-1}\right)^{I}=K^{2 l-j-1}$ or $K^{2 l-j-1} \tau$ and hence $d=2$. This implies $n=16$ or 28 . Since $n-i$ is divisible by 2^{l} and $j>1$, we have $n=28, l=3$ and $j=2$. By [15] (6 must be isomorphic to $\operatorname{PSU}\left(3,3^{2}\right)$. But a Sylow 2-subgroup of $\operatorname{PSU}\left(3,3^{2}\right)$ is isomorphic to $Z_{4} \sim Z_{2}$ and it does not contain a quaternion group of order 16 . This is a contradiction. Thus the proof is completed.

Corollary 4.2. Let 8 8, \mathfrak{S} be as in Proposition 4.1. If d is equal to two, then \mathfrak{S} contains an involution τ^{\prime} such that it is conjugate to τ.

Proof. By Proposition, © contains an involution $\eta(\neq \tau)$ with the cyclic structure ($1 a$) \cdots, where a is a symbol of $\Im\left(\Re_{1}\right)$. Then $\eta \tau$ has also the cyclic structure ($1 a$) \cdots. Hence since \mathbb{E} is doubly transitive, there exist two involutions with the cyclic structure $(1, b)$, where b is any symbol of Ω, such that those are conjugate to η or $\eta \tau$. If τ is neither conjugate to η nor $\eta \tau$, then $g *(2)$ is greater than $(n-1)$. This contradicts the inequality $g *(2)<d(n-1)$.

By the above proposition, since $N_{\mathbb{G}}\left(\Omega_{1}\right) / \Omega_{1}$ is doubly transitive, we may assume that I is contained in \subseteq. Since $\mathfrak{B C} / \Omega_{1}$ is complete Frobenius group, all elements $(\neq 1)$ of $\subseteq / \mathscr{R}_{1}$ are conjugate under $\mathfrak{B} \mathscr{\Omega}_{1} / \Omega_{1}$. Thus every permutation $\left(\neq \Omega_{1}\right)$ of \mathbb{S} can be represented in the form $V^{-1} I V K^{\prime}$, where V and K^{\prime} are permutations of \mathfrak{F} and Ω_{1}, respectively.
2. Case $\Omega_{1}=\Omega$. In this case \mathbb{S} is a normal Sylow 2 -subgroup of $N_{\mathbb{G}}(\mathbb{R})$. Let S be an element of order 2^{l} in \mathbb{S}. Since S^{2} is contained in $\Omega, S^{2 l-1}$ is equal to τ. Assume that I is conjugate to τ. Since $C_{\mathbb{\Theta}}(\Omega)$ and $C_{\mathbb{\Theta}}(I)$ are conjugate and K is contained in $C_{\mathscr{E}}(I), K^{2 l-1}$ must be equal to I. This is a contradiction.

Thus there exists no group satisfying the conditions of the theorem in this case.
3. Case $\Re_{\Re} \supseteq \mathscr{R}_{1} \supsetneq\langle\tau\rangle$. Since Ω_{1} is greater than $\langle\tau\rangle$, a group $\langle K, I\rangle$ is neither dihedral nor semi-dihedral and therefore d is equal to two. By Corollary 4.2 it may be assumed that I is conjugate to τ.

Lemma 4.3. If Ω_{1} is greater than $\langle\tau\rangle$ and less than Ω, then the order of Ω_{1} is equal to four and I is not contained in $C_{\mathbb{G}}(\Omega)$.

Proof. At first assume that the order of Ω_{1} is greater than four. Let \mathbb{S}^{\prime} be a Sylow 2 -subgroup of $N_{\circlearrowleft}\left(\Omega_{1}\right)$. Let S be an element of \mathbb{S}^{\prime} of order
2^{l-1}. The index of \mathbb{S} in \mathbb{S}^{\prime} is equal to 2^{l-j}. Therefore $S^{2 l-j}$ is contained in S and, since $\mathbb{S} / \mathscr{R}_{1}$ is elementary abelian, $S^{2 l-j+1}$ is contained in Ω_{1}. Since j is greater than $2, S^{2 l-j+1}$ is not identity element. Thus we have that $S^{2 l-2}$ is equal to τ. Since $I K I$ is equal to K or $K \tau, I$ is contained in $C_{\Theta}\left(K^{2}\right)$ and hence K^{2} is contained in $C_{\mathscr{\Theta}}(I)$. Since $N_{\circlearrowleft \subseteq}\left(\mathscr{R}_{1}\right)=C_{\mathscr{\Theta}}(\tau)$ is conjugate to $C_{\mathscr{\Theta}}(I)$, we have that $\left(K^{2}\right)^{2 l-2}=\tau$ must be equal to I. This is a contradiction.

Next assume that I is contained in $C_{\mathbb{G}} \mathscr{R}$. Let \mathbb{S}^{\prime} be as above. Let S be an element of \mathfrak{S}^{\prime} of order 2^{l}. Then $S^{2 l-j}$ is contained in $\varsigma^{2}, S^{2 l-j+1}$ is contained in K_{1} and finally $S^{2 l-1}$ is equal to τ. Since K is contained in $C_{\mathbb{G}}(I)$ and $C_{\mathscr{G}}(I)$ is conjugate to $C_{\mathscr{G}}(\tau), K^{2 l-1}$ must be equal to I. This is a contradiction. Thus the proof is completed.

Lemma 4.4. Let Ω_{1} be as in Lemma 4.兀. Then the order of Ω is equal to 8.
Proof. Assume that the order of Ω is greater than 8 . Then $\left\langle K^{2 l-3}, I\right\rangle$ is abelian since $d=2$ and $l>3$. Let η be an involution of $N_{\Theta}\left(\left\langle K^{2 l-3}\right\rangle\right)$. Then $\left\langle K^{2 l-3}, \eta\right\rangle$ must be abelian, for if it is not abelian, then $\left\langle K^{2 l-3}, I\right\rangle$ is dihedral and hence $d \neq 2$.

At first we shall prove that a coset $K^{2 l-3} \subseteq$ does not contain an element of order 4. By Lemma 4.3 the order of Ω_{1} is equal to 4 . Let $K^{2 l-3} S$ be an element of order 4 in $K^{2 l-3} \subseteq$, where S is an element of \subseteq. Then S is not contained in $C_{\mathscr{E}}\left(K^{2 l-3}\right)$. Set $S=I^{v} K_{1}$, where K_{1} and V are elements of Ω_{1} and \mathfrak{V}, respectively. Then $K^{2 l-3} I^{V}$ must be of order 4 . Thus it may be assumed that S is equal to I^{V} not contained in $C_{\mathbb{G}}\left(K^{2 l-3}\right)$, where V is an element of \mathfrak{B}. $\left(K^{2 l-3} S\right)^{2}$ is an element of © and therefore is equal to τ, I^{W} or $I^{W} \tau$, where W is an element of \mathfrak{V}. If $\left(K^{2 l-3} S\right)^{2}=\tau$, then $\left(K^{2 l-3}\right)^{s}=\left(K^{-2 l-3}\right) \tau$ and hence $S \in N_{\Theta}\left(\left\langle K^{2 l-3}\right\rangle\right)$. Thus $\left\langle K^{2 l-3}, S\right\rangle$ must be abelian. This is a contradiction. If $\left(K^{2 l-3} S\right)^{2}=I^{W}$ or $I^{W} \tau$, then $\left(K^{2 l-3}\right)^{S}=K^{-2 l-3} I^{W}$ or $K^{-2 l-3} I^{W} \tau$, respectively. Hence

$$
K^{2 l-2}=\left(K^{2 l-2}\right)^{S}=\left(K^{-2 l-3} I^{W}\right)^{2}
$$

and

$$
\left(K^{-2 l-3}\right)^{I W}=K^{2 l-2} K^{2 l-3} .
$$

Thus I^{W} is contained in $N_{\Theta}\left(\left\langle K^{2 l-3}\right\rangle\right)$ and therefore $\left\langle I^{W}, K^{2 l-3}\right\rangle$ must be abelian. Hence $K^{2 l-2} K^{2 l-3}=K^{-2 l-3}$. Thus the order of Ω must be equal to $l-1$. This is a contradiction.

Next let S be an element of order 2^{l-1} in $\Omega \subseteq$, and let \bar{S} be the image of S by the natural homomorphism of $\Omega \subseteq$ onto $\Omega \subseteq / \subseteq$. If the order of \bar{S} is equal to 2^{l-2}, then $S^{2 l-3}$ is contained in a coset $K^{2 l-3} S$. This contradicts the first part in the proof. Hence we have that the order of \bar{S} is less than 2^{l-2} and hence $S^{2 l-3}$ is contained in S. Therefore $S^{2 l-2}$ is equal to τ. Since $C_{\mathscr{G}}(I)$ is conjugate to $N_{\mathbb{\Theta}}\left(\mathbb{R}_{1}\right)$ and K^{2} is contained in $C_{G}(I), K^{2 l-1}=I$. This is a contradiction. Thus the proof is completed.

By two lemmas the orders of Ω and \mathscr{R}_{1} are equal to 8 and 4 , respectively. Clearly $N_{\mathscr{F}}(\mathscr{R}) / \Omega$ is a complete Frobenius group on $\Im(\Omega)$. Apply the argument in $\S 2$ to $N_{\mathbb{G}}\left(\mathscr{R}_{1}\right) / \mathscr{R}_{1}$ and we obtain that $\alpha(\mathscr{\Re})$ must be a power of two and $i=\alpha(\Omega)^{2}$. Thus a Frobenius kernel of $N_{\mathscr{G}}(\Re) / \mathscr{R}$ is a Sylow 2-subgroup of $N_{\mathbb{G}}(\mathscr{R}) / \Omega$. Since, by Lemma 4.3, I is not contained in $C_{G}(K)$, a Sylow 2-subgroup of $N_{G}(K)$ is greater than $C_{\mathbb{G}}(\Omega)([13,12.6 .8])$. Since the order of $N_{\mathbb{\Theta}}(\mathscr{R}) / C_{\mathbb{G}}(\mathscr{R})$ is a power of two, $\alpha(K)-1$ must be equal to one and hence $\alpha(K)=2$. Thus we have $i=4$ and $n=16$ or 28 . Since $n-i$ must be divisible by the order of \mathscr{R}, we have $n=28$. © satisfies the conditions of the theorem in [15] and hence \mathscr{B} is isomorphic to $\operatorname{PSU}\left(3,3^{2}\right)$.
4. Case $\Omega_{1}=\langle\tau\rangle$. We shall prove that $d=2$ or the order of Ω is equal to four, $\langle K, I\rangle$ is dihedral and $i=4$. In this case every permutation ($\ddagger \mathscr{R}_{1}$) of \subseteq can be represented uniquely in the form I^{V} or $I^{V} \tau$, where V is any permutation of \mathfrak{B}. Thus every permutation $(\neq 1)$ of \mathbb{S} is of order 2 and hence \mathbb{S} is elementary abelian. Set $\Omega_{2}=\left\langle K^{2 l-j^{\prime}}\right\rangle$, where $\left.\alpha(\tau)\right\rangle \alpha\left(K^{2 l-2}\right)=$ $\cdots=\alpha\left(K^{2 l-j^{\prime}}\right)>\alpha\left(K^{2 l-j^{\prime-1}}\right)$. Set $i^{\prime}=\alpha\left(K_{2}\right)$. Then we may assume $\mathfrak{J}\left(\Omega_{2}\right)=\{1,2$, $\left.\cdots, i^{\prime}\right\}$. Apply the argument in $\S 2$ to $N_{\circlearrowleft}\left(\mathscr{R}_{1}\right) / \Omega_{1}$, and we have $i=i^{\prime}\left(\beta^{\prime} i^{\prime}-\beta^{\prime}+1\right)$. Hence i^{\prime} is equal to a power of two, say $2^{m^{\prime}}$. By the inductive hypothesis $N_{\mathbb{G}}\left(\mathscr{R}_{2}\right) / \mathscr{R}_{2}$ contains a regular normal subgroup. Let \mathbb{S}_{2} be a normal 2 -subgroup of $N_{\mathbb{G}}\left(\Omega_{2}\right)$ containing Ω_{2} such that $\mathbb{S}_{2} / \Omega_{2}$ is a regular normal subgroup of $N_{\mathbb{G}}\left(\mathscr{R}_{2}\right) / \mathscr{R}_{2}$ and let \mathfrak{B}_{2} be a 2 -complement of $\mathscr{S} \cap \mathfrak{R}_{\mathbb{G}}\left(\Re_{2}\right)$. Then $\mathfrak{V}_{2} \Xi_{2} / \mathscr{R}_{2}$ is a complete Frobenius group on $\Im\left(\Omega_{2}\right)$. Thus $C_{\mathbb{\Theta}}\left(\Omega_{2}\right) \cap \mathfrak{B}_{2} \mathscr{S}_{2}$ contains \mathfrak{S}_{2} or is less than $⿷_{2}$.

If $C_{\circledast}\left(\mathscr{R}_{2}\right) \cap \mathfrak{B}_{2} \Xi_{2}$ is less than \mathbb{S}_{2}, then I is not contained in $C_{\mathbb{B}}\left(\mathscr{R}_{2}\right)$ and, since the order of $\mathfrak{N}_{2} \Im_{2} / C_{\mathbb{Q}}\left(\mathfrak{R}_{2}\right) \cap \mathfrak{N}_{2} \Im_{2}$ is a power of two, m^{\prime} must be equal to one. Thus $i^{\prime}=2$ and $\AA_{2}=\Omega$. On the one hand, it is trivial that $i-2$ must be divisible by 2^{l-1}. On the other hand, i is of a form $2\left(2 \beta^{\prime}-\beta^{\prime}+1\right)$ where β^{\prime} is less than or equal to 2^{l-1} and hence β^{\prime} is odd. Therefore we have $l=2, \beta^{\prime}=1$ and $i=4$.

If $C_{\mathscr{G}}\left(\mathfrak{R}_{2}\right) \cap \mathfrak{B}_{2} \mathbb{S}_{2}$ contains \mathfrak{S}_{2}, then $K^{I}=K$ or K_{τ} and hence $d=2$.
5. Case $|\mathscr{R}|=4, \Omega_{1}=\langle\tau\rangle$ and $K^{I}=K^{-1}$. Let \Re_{2} and \Im_{2} be as in §4.4. Since $\mathscr{R}_{2}=\mathscr{R}, \mathbb{S}_{2} / \mathbb{R}$ is a regular normal subgroup of $N_{\mathbb{G}}(\mathbb{R}) / \mathbb{R}$ and $N_{\mathbb{G}}(\mathbb{R})=\mathbb{R}+I \Omega$. Since $\langle K, I\rangle$ is dihedral, involutions with the cyclic structure (12) \cdots are I, $I K, I K^{2}$ and $I K^{3}$, and I and $I K$ are conjugate to $I K^{2}$ and $I K^{3}$, respectively. Therefore $g^{*}(2)=0$ or $2(n-1)$.

If $g^{*}(2)=0$, then $n=4(4 \cdot 4-3)=4 \cdot 13$. Let \mathfrak{P}_{13} be a Sylow 13 -subgroup of ©. Since every involution leaves four symbols of Ω fixed, the order of $C_{\mathbb{G}}\left(\mathfrak{B}_{13}\right)$ is equal to 13. Thus the index of $N_{\mathbb{G}}\left(\mathfrak{P}_{13}\right)$ in \mathscr{C} is a multiple of 17.4. This contradicts the Sylow's theorem.

If $g^{*}(2)=2(n-1)$, then $n=4(2 \cdot 4-1)=4 \cdot 7$. Let η be an involution leaving
no symbol of Ω fixed. Then, since $g *(2)=2(n-1), G_{\mathscr{O}} \eta$ must be equal to $2 n$.
 \mathfrak{B}_{7} is normal in $C_{\mathscr{C}} \eta$. Hence the order of $N_{\mathscr{G}}\left(\Re_{7}\right)$ is a multiple of 8.7. This contradicts the Sylow's theorem.

Thus there exists no group satisfying the conditions of the theorem in this case.
6. Case $\mathscr{R}_{1}=\langle\tau\rangle, d=2$ and $n=i^{2}$. In this case a normal subgroup \mathbb{S} of $N_{\mathbb{\Theta}}\left(\mathscr{R}_{1}\right)$ is an elementary abelian 2 -group. We shall prove several lemmas.

LEMMA 4.5. \subseteq contains every involution of $N_{\mathfrak{G}}\left(\Re_{1}\right)$.
Proof. Set $\mathbb{S}^{\prime}=\mathbb{\AA} \subseteq$. Then \mathbb{S}^{\prime} be a Sylow 2 -subgroup of $N_{\mathscr{G}}\left(\mathscr{R}_{1}\right)$. If a coset $K^{2 l-2} \subseteq$ does not contain an involution, then the proof is complete. Let $K^{2 l-2} S$ be an involution in a coset $K^{2 l-2} \mathbb{S}$, where S is a permutation of \mathbb{S}. Then $\left(K^{2 l-2}\right)^{S}=K^{-2 l-2}$. Therefore, since S is an involution, d must be greater than two. This is a contradiction.

Lemma 4.6. Let G be an element of $\left(\mathbb{S}\right.$. Then $\mathfrak{S}^{a} \cap \mathfrak{S}=1$ or \mathfrak{S}.
Proof. Let τ^{\prime} be an involution of $\varsigma^{G} \cap \subseteq$. If τ^{\prime} is conjugate to τ, then, since $C_{\mathscr{B}}\left(\tau^{\prime}\right)$ contains \mathfrak{S}^{a} and $\mathfrak{S}, \mathfrak{S}^{a}$ coincide with \mathfrak{S} by Lemma 4.5. Thus an involution of \mathscr{S} which is conjugate to τ in \mathbb{S} is conjugate to τ in $N_{\mathbb{C}}(\mathbb{S})$. By Corollary $4.2, I$ or $I \tau$ is conjugate to τ in G. On the other hand. I or $I \tau$ is not conjugate to τ in \mathscr{A}, since $g^{*}(2)=n-1$. Hence the number of involutions of \mathbb{S} each of which is conjugate to τ is equal to i and the number of involutions of \subseteq each of which leaves no symbol of Ω fixed is equal to $i-1$. Hence the order of $N_{\mathscr{G}}(\Im)$ is equal to $2^{l} i^{2}(i-1)$ and the following relation is obtained;

$$
n-1=g *(2) \leqq(i-1)\left[\left(\$: N_{\circlearrowleft}(\mathbb{S})\right]=n-1 .\right.
$$

Thus $\mathbb{S}^{G} \cap \mathfrak{S}=1$ or \mathfrak{S}.
Lemma 4.7. Let η and ζ be different involutions. If $\alpha(\eta)=\alpha(\zeta)=0$, then $\alpha(\eta \zeta)=0$.

Proof. Let a be a symbol of $\Im(\eta \zeta)$. Let $(a, b) \cdots$ and $\left(b, c^{\prime}\right) \cdots$ be the cyclic structure of η and ζ, respectively. Then $a=c^{\prime}$. Since $g *(2)=n-1$, there exists just one involution leaving no symbol of Ω fixed with the cyclic structure $(a, b) \cdots$ and hence $\eta=\zeta$.

COROLLARY 4.8. A set \mathfrak{S}_{1} consisting of all involutions of \mathfrak{S} each of which is not conjugate to τ and identity element is a characteristic subgroup of $\mathfrak{\subseteq}$. In particular $N_{\mathscr{G}}\left(\mathfrak{S}_{1}\right)=N_{\mathscr{G}}(\mathfrak{S})$.

By Corollary 4.8, there exists just $i+1$ subgroups $\mathfrak{S}_{1}, \mathfrak{S}_{2}, \ldots, \mathfrak{S}_{i+1}$ which are conjugate in $\left(\mathbb{S}\right.$ and $\mathbb{S}_{s} \cap \mathbb{S}_{t}=1$ for $s \neq t$.

Lemma 4.9. Let τ^{\prime} be an involution of $N_{\mathbb{G}}(\mathfrak{S})$. If τ^{\prime} is conjugate to τ, then τ^{\prime} is contained in \mathfrak{S}.

Proof. Set $\tau^{G}=\tau^{\prime}$. Since the order of \mathbb{S} is even, it is trivial that there
exists an element ζ of \mathfrak{S} with $\zeta \tau^{\prime}=\zeta$. \mathbb{S}^{G} is normal in $C_{\mathbb{G}}\left(\tau^{\prime}\right)$ and it contains ζ and τ^{\prime} by Lemma 4.5. Thus $\mathfrak{S} \cap \mathbb{S}^{G}$ contains ζ and hence $\mathbb{S}=\mathbb{S}^{G}$ by Lemma 4.6. Finally τ^{\prime} is an element of $\mathfrak{\Im}$.

Lemma 4.10. Let η be an involution which is not contained in \mathbb{S}. If $\alpha(\eta)$ $=0$, then $\alpha(\tau \eta)=0$ and the order of $\tau(\eta)$ is equal to 2^{r} with $r>1$.

Proof. Assume $\alpha(\tau \eta) \neq 0$. Let a be a symbol of $\mathfrak{\Im}(\tau \eta)$. It is trivial that a is not a symbol of $\Im(\tau)$. Thus let $(a, b) \cdots$ and $\left(b, c^{\prime}\right) \cdots$ be the cyclic structures of τ and η, respectively. Then $a=c^{\prime}$ and $\tau \eta \tau=(a, b) \cdots$. Since $g^{*}(2)$ $=n-1$, there exists just one involution with the cyclic structure $(a, b) \cdots$ such that it leaves no symbol of Ω fixed. Thus we have $\tau \eta \tau=\eta$. Therefore η must be contained in \mathfrak{S} and hence $\alpha(\tau \eta)=0$. Next assume that the order of $\tau \eta$ is not equal to 2^{r}. Let p be an odd prime factor of the order of $\tau \eta$ and let $p q$ be the order of $\tau \eta$. Then the order of $(\tau \eta)^{q}$ is equal to p and hence $\alpha\left((\tau \eta)^{q}\right)=1$. Therefore $\alpha(\tau \eta)=1$. Thus the order of $\tau \eta$ is equal to a power of two.

Lemma 4.11. Let η be an involution which is not conjugate to τ. Then η is contained in $N_{\circlearrowleft}(\mathbb{S})$.

Proof. Let us assume that η is not contained in ©. By Lemma 4.10, the order of $\tau \eta$ is equal to 2^{r} with $r>1$. Thus $\tau(\tau \eta)^{2 r}=\tau$. Set $\gamma_{\tau, \eta}(s)=\tau(\tau \eta)^{2^{s}}$ $=\tau^{\tau \cdots \gamma_{s} \eta}$. Then $\gamma_{\tau, \eta}(r-1)$ is contained in $C_{\mathbb{G}}(\tau)$ and hence by Lemma 4.5, it is
 Lemma 4.6. By Lemma 4.9 it is contained in \mathbb{S}. Continuing in the similar way, it can be shown that $\gamma_{\tau, \eta}(1)=\tau^{\eta}$ is contained in S. By Lemma 4.6, η is contained in $N_{\mathrm{s}}(\varsigma)$.

By Lemma 4.11, $\quad N_{\circlearrowleft}(\mathbb{S})=N_{\Theta}\left(\mathbb{S}_{1}\right)$ contains $\mathbb{S}_{t}(2 \leqq t \leqq i+1)$. Similarly $N_{\Theta}\left(\mathbb{S}_{t}\right)$ contains \mathbb{S}_{1}. Therefore $\mathbb{S}_{1} \mathbb{S}_{t}$ is the direct product $\mathbb{S}_{1} \times \mathbb{S}_{t}$. In the similar way it can be proved that every element of \Im_{t} is commutative with any element of $\mathbb{S}_{l^{\prime}}\left(1 \leqq t, t^{\prime} \leqq i+1\right)$. Thus $\mathfrak{R}=\mathbb{S}_{1} \cup \ldots \cup \mathbb{S}_{i+1}$ is a group. Hence \mathfrak{N} is a regular normal subgroup of (\mathfrak{C}.

Thus there exists no group satisfying the conditions of the theorem in this case.
7. Case $\Omega_{1}=\langle\tau\rangle, d=2$ and $n=i(2 i-1)$. In this case $g^{*}(2)=0$. Hence every involution is conjugate to τ. The order of \mathfrak{B} is equal to $2^{l+m}\left(2^{m+1}-1\right)$ $\left(2^{m+1}+1\right)\left(2^{m}-1\right)$.
 is solvable and hence $N_{G}(\varsigma)$ is solvable. We shall prove that the order of $N_{\mathscr{G}}(\mathbb{S})$ is equal to $2^{l+m}\left(2^{m}-1\right)\left(2^{m+1}-1\right)$. Remark that Lemma 4.5 is also true for this case. Let $\tau^{\prime}=\tau^{G}$ be an element of \mathbb{S}, where G is an element of © . The same argument as in the proof of Lemma 4.6 shows that G is contained in $N_{\circlearrowleft}(\subseteq)$. Thus every element ($\neq 1$) of \mathfrak{S} is conjugate to τ under $N_{\Phi}(\subseteq)$.

Hence the index of $C_{\mathbb{B}}(\tau)$ in $N_{\mathbb{G}}(\mathbb{S})$ is equal to $2^{m+1}-1$.
Let \mathfrak{B} be a normal 2 -complement of $\mathscr{S}^{\cap} N_{\circlearrowleft}\left(\mathscr{R}_{1}\right)$. Since $N_{\Theta}(\mathbb{S})$ is solvable, there exists a Hall subgroup $\mathfrak{A t}$ of order $\left(2^{m}-1\right)\left(2^{m+1}-1\right)$ of $N_{\mathbb{G}}(\subseteq)$ containing \mathfrak{B}. Since $\mathfrak{C} \mathfrak{B} / \mathscr{R}_{1}$ is a complete Frobenius group of degree 2^{m}, all Sylow subgroups of \mathfrak{B} are cyclic. Let r be the least prime factor of the order of \mathfrak{B}. Let \Re be a Sylow r-subgroup of \mathfrak{B}. Then \Re is cyclic and leaves only the symbol 1 fixed. Hence $N_{\mathbb{G}}(\Re)$ is contained in \mathscr{S}. Let \Re^{\prime} be a Sylow 2 -subgroup of $C_{\mathscr{G}}(\Re)$. Since \mathbb{R} is a Sylow 2 -subgroup of $\left\{\right.$ and $C_{\mathscr{G}}(\Re)$ is a subgroup of $\mathfrak{F}, \mathfrak{K}^{\prime}$ is conjugate to a subgroup of \mathfrak{R}. Thus it may be assumed that \mathfrak{K}^{\prime} is a subgroup of $\mathfrak{\Re}$. Using Sylow's theorem, we obtain that $N_{\circlearrowleft}(\Re)=C_{\mathbb{G}}(\Re)\left(N_{\circlearrowleft}(\Re)\right.$ $\left.\cap N_{\mathscr{S}}\left(\mathfrak{R}^{\prime}\right)\right)=C_{\mathscr{G}}(\Re)\left(N_{\mathscr{G}}(\Re) \cap N_{\mathscr{\Theta}}\left(\mathscr{R}_{1}\right)\right)=C_{\mathscr{G}}(\Re)\left(N_{\mathscr{\Theta}}(\Re) \cap \mathfrak{B} \mathfrak{\Re}\right)$ since Ω_{1} is a subgroup of Ω^{\prime}. Let $C V K^{\prime}$ be an element of $N_{\mathbb{B}}(\Re)$ of odd order u, where C, V and K^{\prime} are elements of $C_{刃}(\Re), \mathfrak{B}$ and $\mathfrak{\Re}$, respectively. Then $\left(C V K^{\prime}\right)^{u}=C^{\prime}\left(V K^{\prime}\right)^{u}$, where C^{\prime} is an element of $C_{G}(R)$, and $\left(V K^{\prime}\right)^{u}=C^{\prime-1}$. Set $s=\left|\left(V K^{\prime}\right)^{u}\right| /\left|K^{\prime}\right|$, where $\left|\left(V K^{\prime}\right)^{n}\right|$ and $\left|K^{\prime}\right|$ are orders of $\left(V K^{\prime}\right)^{x}$ and K^{\prime}, respectively. Then s is an odd integer and $\left(V K^{\prime}\right)^{u s}$ is contained in a Sylow 2-subgroup of $C_{\mathbb{g}}(\Re)$ and hence so is $V K^{\prime}$. In particular $C V K^{\prime}$ is an element of $C_{\odot}(\Re)$. Hence we obtain that $N_{\mathbb{G}}(\mathfrak{R}) \cap \mathfrak{H}=C_{\mathbb{G}}(\mathfrak{R})\left(N_{\mathbb{G}}(\mathfrak{R}) \cap \mathfrak{B} \mathfrak{R}^{\prime}\right) \cap \mathfrak{H}=C_{\mathbb{G}}(\mathfrak{R})\left(N_{\mathbb{G}}(\mathfrak{R}) \cap \mathfrak{B}\right) \cap \mathfrak{H}=C_{\mathbb{G}}(\mathfrak{R}) \cap \mathfrak{N}$. By the splitting theorem of Burnside \mathfrak{A} has the normal r-complement. Continuing in the similar way, it can be shown that \mathfrak{A} has the normal subgroup \mathfrak{B} of order $2^{m+1}-1$, which is a complement of \mathfrak{B}. Every permutation ($\neq 1$) of \mathfrak{B} leaves no symbol of Ω fixed and hence it is not commutative with any permutation $(\neq 1$) of \mathfrak{B}. Let B be a permutation of \mathfrak{B} of a prime order, say q. Then all the permutations are conjugate to either B or B^{-1} under \mathfrak{B}. This implies that \mathfrak{B} is an elementary abelian q-group of order q^{s}. Then it follows that $2^{m+1}-1=q^{s}$. Hence $s=1$ and \mathfrak{B} is cyclic of order q. \mathfrak{B} is also cyclic.

Let the order of $N_{\mathscr{G}}(\mathfrak{B})$ be equal to ${ }_{2}^{1} x(q-1) q$. If the order of $C_{\mathcal{B}}(\mathfrak{B})$ is even, then there exists an involution τ^{\prime} in $C_{\mathscr{G}}(\mathfrak{B})$ which is conjugate to τ and such that $C_{G}\left(\tau^{\prime}\right)$ contains \mathfrak{B}. But the orders of $C_{\mathbb{G}}(\tau)$ and \mathfrak{B} are relatively prime. Hence, since $C_{\mathbb{B}}\left(\tau^{\prime}\right)$ is conjugate to $C_{\mathbb{Q}}(\tau)$, the order of $C_{\mathbb{Q}}(\mathfrak{B})$ is odd. Therefore, since the order of the automorphism group of \mathfrak{B} is equal to $q-1=2^{m+1}-2$, the order of $N_{\mathcal{G}}(\mathfrak{B})$ is not divisible by four.

Using Sylow's theorem we obtain the following congruence;

$$
2^{l-1}(q+1)(q+2) / x \equiv 1(\bmod . q) .
$$

This implies that $2^{l-1}(q+1)(q+2)=x(y q+1)$, where y is positive since x is less than $2^{l-1}(q+1)(q+2)$. Then we have that $x=z q+2^{l}$, where $2^{l-1} \geqq z \geqq 0$. It can be proved that z must be equal to 0 or 2^{l-1}. If $z=0$, then the order of $N_{\mathbb{G}}(\mathfrak{B})$ is equal to $2^{l} q^{\frac{1}{2}}(q-1)$ and hence, since $l>1$, it is divisible by four. If $z=2^{l-1}$,
then the order of $N_{\mathscr{G}}\left(\mathfrak{B)}\right.$ is equal to $2^{l-1}(q+2) \frac{1}{2} q(q-1)$. Let Y be a permutation $(\neq 1)$ of odd prime order dividing $(q+2) \frac{1}{2}(q-1)$ which is contained in $N_{\mathscr{O}}(\mathfrak{B})$. Since Y leaves just one symbol of Ω fixed, Y is not contained in $C_{\mathbb{G}}(\mathfrak{B})$. Hence we obtain the following;

$$
q-1 \geqq\left|N_{\mathscr{O}}(\mathfrak{B}) / C_{\mathscr{G}}(\mathfrak{B})\right|>{ }_{2}^{1}(q+2)(q-1) .
$$

But this is impossible.
Thus there exists no group satisfying the conditions of the theorem in this case.

5. The case n is even and $N_{6}\left(\mathscr{R}_{1}\right) / \mathscr{R}_{1}$ does not contain a

 regular normal subgroup.1. Since $N_{\mathscr{G}}(\Re) / \Omega$ is a complete Frobenius group and hence it contains a regular normal subgroup, \AA_{1} is a proper subgroup of \AA.
2. Case $\Omega_{1}=\langle\tau\rangle$ and $2^{l} \leqq 8$. By inductive hypothesis, if $2^{l}=4$, then $\oiint_{1}=N_{\mathscr{G}}\left(\mathscr{R}_{1}\right) / \Omega_{1}$ is isomorphic to either $\operatorname{PSL}(2,5)$ or $S L *(2,8)$ and, if $2^{l}=8$, then \mathscr{G}_{1} is isomorphic either $\operatorname{PGL}(2,5)$ or $\operatorname{PSL}(2,9)$.

At first assume that $d=2$. If $2^{l}=8$, then $i=6$ or 10 . Hence $n-i=\beta i(i-1)$ ($\beta=1$ or 2) is not divisible by 8 . But $n-i$ must be divisible by the order of Ω. This is a contradiction. If \mathbb{B}_{1} is isomorphic to $\operatorname{PSL}(2,5)$, then $i=6$ and, since $n-i$ must be divisible by $4, n$ is equal to $6(2 \cdot 6-1)=6 \cdot 11$. Let $\mathfrak{\Re}_{11}$ be a Sylow 11-subgroup of ($\$$. It is trivial that, since $g *(2)=0$ and the order of $N_{\mathscr{G}}\left(\mathscr{R}_{1}\right)$ is equal to $6 \cdot 5 \cdot 4$, the order of $C_{\mathscr{B}}\left(\mathfrak{P}_{11}\right)$ is odd. Since the order of $C_{\mathbb{B}}\left(\mathfrak{P}_{11}\right)$ and $n-1$ are relatively prime, the order of $C_{\mathscr{E}}\left(\Re_{11}\right)$ is equal to 11 or 33 . The index of $C_{\mathscr{G}}\left(\mathfrak{P}_{11}\right)$ in $N_{\mathbb{G}}\left(\mathfrak{P}_{11}\right)$ is a factor of 10 . Thus this contradicts the Sylow's theorem.

If \mathscr{G}_{1} is isomorphic to $S L^{*}(2,8)$, then $i=28$. Since every involution of \mathbb{B}_{1} leaves just four symbols of $\Im\left(\mathscr{R}_{1}\right)$, we obtain that $\alpha(I) \neq 0$. Therefore, since every involution of \mathbb{G} is conjugate to a permutation with the cyclic structure (12) \cdots, we have that $g *(2)=0$ and hence $n=i(2 i-1)$. Thus the order of \mathscr{S} is equal to $4 \cdot 3^{4} \cdot 19$. Since \mathscr{R} is cyclic, \mathscr{S} has a normal 2 -complement \mathfrak{R} of order $3^{4} \cdot 19$. Let \mathfrak{P}_{19} be Sylow 19 -subgroup of \mathfrak{D}. By Sylow's theorem \mathfrak{P}_{19} is normal in $\mathfrak{\Omega}$. \mathfrak{P}_{19} is normal even in \mathfrak{F}. Since the order of the automorphism group of \mathfrak{F}_{19} is equal to $18, \tau$ must be contained in $C_{\mathfrak{\S}}\left(\mathfrak{P}_{19}\right)$. This is a contradiction.

Next we shall consider the case $d \neq 2$. If $2^{l}=4$, then $\langle K, I\rangle$ is dihedral. If \mathscr{G}_{1} is isomorphic to $P S L(2,5)$, then $i=6$ and, since $n-i=i \beta(i-1)$ must be divisible by $4, \beta=2$ or 4 . Therefore $\langle K, I\rangle$ is a Sylow 2 -subgroup of © . By [4, Theorem 7.7.3] $C_{\mathscr{G}}(\tau)$ has a normal 2-complement and hence $C_{\mathscr{G}}(\tau)$ is solvable.

Thus $\mathscr{H}_{1}=C_{\mathbb{G}}(\tau) /\langle\tau\rangle$ must be solvable and this is a contradiction. If \mathscr{F}_{1} is isomorphic to $S L^{*}(2,8)$, then, since for every involution η of $S L^{*}(2,8) \alpha(\eta)$ $=4, \alpha(\Re)=4$. Hence the order of $N_{\Omega}(\Re) / \Omega$ is equal to $4 \cdot 3$. Since I is not contained in $C_{\mathscr{G}}(\mathscr{R})$ and $N_{\mathbb{G}}(\mathbb{R}) / \mathbb{R}$ is a complete Frobenius group, $C_{\mathbb{G}}(\mathscr{R})$ is contained in a Sylow 2 -subgroup. Thus the order of $N_{\Theta}(\Omega) / C_{\mathbb{\Theta}}(\Omega)$ is divisible by 3. This is a contradiction.

If $2^{l}=8$, then $i=6$ or 10 . Since $n-i=\beta i(i-1)$ must be divisible by $8, \beta$ is equal to 4 or 8 . If $\langle K, I\rangle$ is dihedral, then $\langle K, I\rangle$ is a Sylow 2 -subgroup of \mathbb{G}. Thus $C_{\mathbb{G}}(\tau)$ is solvable and also $C_{\mathbb{\Theta}}(\tau) /\langle\tau\rangle$ is solvable. Hence $\langle K, I\rangle$ must be semi-dihedral and $d=4$. Since $g^{*}(2)=0$ and \mathscr{B}_{1} is a Zassenhaus group, all involutions are conjugate and a permutation leaving at least three symbols of Ω fixed is an involution. Thus \mathbb{B} satisfies the conditions in [12], Hence by [6] and [12] (6 is isomorphic to either $\operatorname{PSU}\left(3,5^{2}\right)$ or one of the groups of Ree type (see [16]). Since a Sylow 2-subgroup of a group of Ree type is elementary abelian of order $8, G$ is isomorphic to $\operatorname{PSU}\left(3,5^{2}\right)$.
3. Case $\Re_{1}=\langle\tau\rangle$ and $2^{l}>8 . \mathscr{G}_{1}$ is isomorphic to one of the groups $\operatorname{PSU}\left(3,3^{2}\right), \operatorname{PSU}\left(3,5^{2}\right), \operatorname{PGL}(2, *)$ and $\operatorname{PSL}(2, *)$. Then i is not divisible by 8. Since $n-i=\beta i(i-1)$ is divisible by $2^{2}, \beta$ is divisible by 4 . Thus we have that $d\rangle 2$ and hence $\langle K, I\rangle$ is dihedral or semi-dihedral and in particular $\langle K, I\rangle /\langle\tau\rangle$ is dihedral. Therefore \mathfrak{B}_{1} is isomorphic to either $\operatorname{PGL}(2, *)$ or $\operatorname{PSL}(2, *)$ and i is divisible by 2 exactly. Thus we have that $\beta=2^{l-1}$ or 2^{l}. Thus $\langle K, I\rangle$ is a Sylow 2 -subgroup of \mathbb{E}. If $\langle K, I\rangle$ is dihedral, then $C_{\S}(\tau)$ is solvable and hence $C_{\mathscr{G}}(\tau) /\langle\tau\rangle$ is solvable. If $\langle K, I\rangle$ is semi-dihedral, then $\beta=2^{l-1}$ and $g^{*}(2)=0$. Again by [6] and [12], G must be isomorphic to either $\operatorname{PSU}\left(3,5^{2}\right)$ or one of the groups of Ree type. This is a contradiction.

Thus there exists no group satisfying the conditions of the theorem in this case.
4. Case $\left.\Omega_{1}\right\rangle\langle\tau\rangle$. Since Ω_{1} is a proper subgroup of Ω, the order of Ω is greater than 4. At first assume that $d=2$. By inductive hypothesis i is not divisible by 8 . Since $n-i=\beta i(i-1)$ is divisible by $2^{l}, \beta=2,2^{l}=8$ and i is divisible by 4. Thus we obtain that \mathscr{B}_{1} is isomorphic to $S L^{*}(2,8)$ and $n=2^{2} \cdot 7 \cdot 5 \cdot 11$. If we consider a Sylow 19 -subgroup of \mathscr{F}, likewise in 5.2 , we can obtain a contradiction.

Next we assume that $d\rangle 2$. Then $\langle K, I\rangle / \Omega_{1}$ is dihedral. Hence \mathfrak{B}_{1} is isomorphic to either $\operatorname{PGL}(2, *)$ or $\operatorname{PSL}(2, *)$. Since $n-i$ is divisible by 2^{l}, we have that $\beta=2^{l}$ or 2^{l-1}. Therefore $\langle K, I\rangle$ is a Sylow 2 -subgroup of © . If $\langle K, I\rangle$ is dihedral, then $C_{\mathbb{®}}(\tau)$ is solvable and hence $C_{\mathbb{B}}(\tau) / \mathscr{R}_{1}$ must be solvable. Thus $\langle K, I\rangle$ is semi-dihedral. Set $\mathscr{B}_{0}=C_{G}(\tau) /\langle\tau\rangle\left(=N_{\mathscr{G}}\left(\mathbb{R}_{1}\right) /\langle\tau\rangle\right)$. Then, since $\langle K, I\rangle / \mathscr{R}_{1}$ is a Sylow 2 -subgroup of \mathscr{B}_{0} and a dihedral group. Let $\eta=K^{2 l-2}\langle\tau\rangle$ be the involution in the center of $\langle K, I\rangle /\langle\tau\rangle$. It can be easily
proved that η is contained in the center of \mathscr{G}_{0}. Thus, by [4, Theorem 7.7.3], \mathscr{G}_{0} has a normal 2 -complement and hence \mathscr{G}_{0} is solvable. Hence \mathscr{G}_{1} must be solvable. This is a contradiction.

Thus there exists no group satisfying the conditions of the theorem in this case.

Thus Theorem is proved.

Hokkaido University

References

[1] W. Feit, On class of doubly transitive permutation groups, Illinois J. Math., 4 (1960), 170-186.
[2] W. Feit and J. G. Thompson, Solvability of groups of odd order, Pacific J. Math., 13 (1963), 775-1029.
[3] P. Fong, Some Sylow subgroups of order 32 and a characterization of $U(3,3)$, J. Algebra, 6 (1967), 65-76.
[4] D. Gorenstein, Finite groups, Harper and Row, New York, 1968.
[5] D. Gorenstein and J.H. Walter, The characterization of finite groups with dihedral Sylow 2-subgroups, I, II, III, J. Algebra, 2 (1965), 85-151, 218-270, 334-393.
[6] K. Harada, A characterization of the simple group $U_{3}(5)$, Nagoya Math. J. (to appear).
[7] B. Huppert, Endliche Gruppen I, Springer, Berlin, 1968.
[8] N. Ito, On a class of doubly transitive permutation groups, Illinois J. Math., 6 (1962), 341-352.
[9] N. Ito, On doubly transitive groups of degree n and order $2(n-1) n$, Nagoya Math. J., 27 (1966), 409-417.
[10] H. Kimura, On doubly transitive permutation groups of degree n and order $4(n-1) n$, J. Math. Soc. Japan, 21 (1969), 234-243.
[11] H. Lüneburg, Charakterisierungen der endlichen desarguesschen projektiven Ebenen, Math. Z., 85 (1964), 419-450.
[12] R. Ree, Sur une famille de groupes de permutations doublement transitifs, Canad. J. Math., 16 (1964), 797-819.
[13] W. R. Scott, Group theory, Prentice-Hall, Englewood Cliffs, N. J., 1964.
[14] M. Suzuki, On a class of doubly transitive groups, Ann. of Math., 75 (1962), 105-145.
[15] M. Suzuki, A characterization of the 3-dimensional projective unitary grcup over a finite field of odd characteristic, J. Algebra, 2 (1965), 1-14.
[16] H. N. Ward, On Ree's series of simple groups, Trans. Amer. Math. Soc., 121 (1966), 62-89.
[17] H. Wielandt, Finite permutation groups, Academic Press, New York, 1964.
[18] H. Zassenhaus, Kennzeichung endlicher linearer Gruppen als Permutationsgruppen, Abh. Math. Sem. Univ. Hamburg, 11 (1936), 17-40.

