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1. Introduction.

Doubly transitive permutation groups of degree $n$ and order $2(n-1)n$ were
determined by N. Ito ([9]). Some doubly transitive permutation groups of
degree $n$ and order $4(n-1)n$ were studied in [10].

The object of this paper is to prove the following result.
THEOREM. Let $\Omega$ be the set of symbols 1, 2, $\cdot$ .. , $n$ . Let $\mathfrak{G}$ be a doubly transi-

tive group on $\Omega$ of order $2^{\iota}(n-1)n(l>1)$ not containing a regular normal sub-
group and let ge be the stabilizer of symbols 1 and 2. Assume that ge is cyclic.
Then $\mathfrak{G}$ is isomorphic to one of the groups $PGL(2, *),$ $PSL(2, *),$ $PSU(3,3^{2})$ and
$PSU(3,5^{2})$ .

We use the standard notation. $C_{x}(7\sim)$ denotes the centralizer of a subset
$\mathfrak{T}$ in a group ee and $N_{x}(\mathfrak{T})$ stands for the normalizer of $\mathfrak{B}$ in $\chi$ . $\langle S, T, \rangle$

denotes the subgroup of X generated by elements $S,$ $T,$ $\cdots$ of $\mathfrak{X}$ .

2. On the degree of the permutation group $\mathfrak{G}$

1. Let $\mathfrak{H}$ be the stabilizer of the symbol 1. ge is of order $2^{\iota}$ and it is
generated by a permutation $K$. Let us denote the unique involution $K^{z\iota-1}$ of
$R$ by $\tau$ . Since $\mathfrak{G}$ is doubly transitive on $\Omega$ it contains an involution $I$ with
the cyclic structure (12) $\cdots$ . Then we have the following decomposition of $\mathfrak{G}$ ;

$\mathfrak{G}=\mathfrak{H}+\mathfrak{H}I\mathfrak{H}$ .
Since $I$ is contained in $N_{\mathfrak{G}}(ff)$ , it induces an automorphism of ff and (i) $K^{I}=K$

or $ K\tau$ , (ii) $ K^{I}=K^{-1}\tau$ or (iii) $K^{I}=K^{-1}$ . (For the case $l=2,$ $(i)K^{r}=K$ or (iii)
$K^{I}=K^{-1}.)$ If an element $H^{\prime}IH$ of a coset $\mathfrak{H}IH$ of $\mathfrak{H}$ is an involution, then
$IHH^{\prime}I=(HH^{\prime})^{-1}$ is contained in $\theta$ . Hence, in the case (i) the coset $\mathfrak{H}IH$ con-
tains just two involutions, namely $H^{-1}IH$ and $H^{-1}\tau IH$, in the case (ii) it con-
tains just $2^{l-1}$ involutions, namely $H^{-1}K^{\prime}IH$ for $ K^{\prime}\in\langle K^{2}\rangle$ , and in the case
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(iii), it contains just $2^{\iota}$ involutions, namely $H^{-1}K^{\prime}IH$ for $ K^{\prime}\in\Omega$ . Let $g(2)$ and
$h(2)$ denote the numbers of involutions in $\mathfrak{G}$ and $\mathfrak{H}$ , respectively. Then the
following equality is obtained;

(2.1) $g(2)=h(2)+d(n-1)$ ,

where $d=2,2^{l-1}$ and $2^{\iota}$ for cases (i), (ii) and (iii), respectively.
2. For a set $\mathfrak{T}$ of permutations of $\mathfrak{G}$ , the set of all symbols fixed by $\mathfrak{T}$

is denoted by $s^{\alpha}(\underline{\tau})$ and we denote the number of symbols in $s^{\alpha}(\mathfrak{T})$ by $\alpha(T)$ .
Let $K^{2^{l- j}}$ denote the permutation of $\theta$ such that $\alpha(\tau)=\alpha(K^{2^{l- j}})>\alpha(K^{2^{l- j- 1}})$

and let $ff_{1}$ be the subgroup of 9 generated by $K^{2^{l- j}}$ . Then the order of $R_{1}$

is equal to $2^{j}$ . Let $\Omega_{1}$ keep $i(i\geqq 2)$ symbols of $\Omega$ , say 1, 2, $\cdot$ .. , $i$ , unchanged.
It is trivial that $N_{\mathfrak{G}}(\theta_{1})=C_{\mathfrak{G}}(\tau)$ . Put $\delta^{\alpha}=s^{\alpha}(ff_{1})=\{1,2, \cdot.., i\}$ . We denote the
factor group $N_{\mathfrak{G}}(\theta_{1})/R_{1}$ by $\mathfrak{G}_{1}$ . By a theorem of Witt ([15, Theorem 9.4]), $\mathfrak{G}_{1}$

can be considered as a doubly transitive permutation group on $s^{\alpha}$ The
stabilizer of symbols 1 and 2 in $s^{\alpha}$ is the cyclic 2-group $9/f\partial_{1}$ . Thus the
orders of $N_{\mathfrak{G}}(ff_{1})$ and $\mathfrak{H}\cap N_{\mathfrak{G}}(f\S_{1})$ are equal to $2^{\iota}i(i-1)$ and $2^{\iota}(i-1)$ , respectively.
Hence there exist $n(n-1)/i(i-1)$ involutions in $\mathfrak{G}$ each of which is conjugate
to $\tau$ .

At first, let us assume that $n$ is odd. Let $h^{*}(2)$ be the number of involu-
tions in $\mathfrak{H}$ leaving only the symbol 1 fixed. Then from (2.1) and above argu-
ment the following equality is obtained;

(2.2) $h^{*}(2)n+n(n-1)/i(i-1)=(n-1)/(i-1)+h^{*}(2)+d(n-1)$ .
Since $i$ is less than $n$ , it follows from (2.2) that $h^{*}(2)<d$ and hence $n=$

$i(\beta i-\beta+1)$ , where $\beta=d-h^{*}(2)$ . Since $n$ is odd, $i$ must be odd.
Next let us assume that $n$ is even. Let $g^{*}(2)$ be the number of involu-

tions in $\mathfrak{G}$ leaving no symbol of $\Omega$ fixe’. Then corresponding to (2.2) the
following equality is obtained from (2.1);

(2.3) $g^{*}(2)+n(n-1)/i(i-1)=(n-1)/(i-1)+d(n-1)$ .

It is easily proved that $g^{*}(2)$ is a multiple of $n-1$ (see [8] or [9]). It follows
from (2.3) that $g^{*}(2)<d(n-1)$ . Thus we have $n=i(\beta i-\beta+1)$ , where $\beta=$

$d-g^{*}(2)/(n-1)$ . Since $n$ is even, $i$ must be even.
3. We prove the theorem by induction on the degree $n$ . Let $SL(2,8)$

denote the two-dimensional special linear group over the field $GF(8)$ of eight
elements, and let $\sigma$ be the automorphism of $GF(8)$ of order three such that
$o(x)=X^{2}$ for every element $x$ of $GF(8)$ . Then $\sigma$ can be considered in a usual
way an automorphism of $SL(2,8)$ . Let $SL^{*}(2,8)$ be the splitting extension of
$SL(2,8)$ by the group $\langle\sigma\rangle$ . Then $SL^{*}(2,8)$ has doubly transitive permutation
representation on the set of Sylow 3-subgroups and its degree is equal to 28.
Th $e$ stabilizer of two symbols leaves four Sylow 3-subgroups fixed and every
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involution is conjugate (see [8]).

THEOREM 1 (N. Ito, [8]). Let $\mathfrak{G}$ be a doubly transitive permutation group
on $\Omega$ of order $2n(n-1)$ not containing a regular normal subgroup. Then $\mathfrak{G}$ is
isomorphic to either $PSL(2,5)$ or $SL^{*}(2,8)$ .

If $\mathfrak{G}$ contains a regular normal subgroup, then its degree is equal to a
power of a prime number. Thus, by Theorem 1, if $1=1$ , then $n$ is equal to
6, 28 or a power of a prime number.

3. The case $n$ is odd.

1. Since $n=i(\beta i-\beta+1)$ is odd, $i$ must be odd. The group $\mathfrak{G}_{1}=N_{\mathfrak{G}}(\zeta\S_{1})/\theta_{1}$

is a doubly transitive permutation group on $s^{\alpha}(ff_{1})$ and the stabilizer of sym-
bols 1 and 2 is the subgroup $R/\theta_{1}$ of $G_{1}$ of order $2^{l-j}$ . By the inductive
hypothesis, $\mathfrak{G}_{1}$ contains a regular normal subgroup and, in particular, $i$ is
equal to a power of an odd prime number, say $p^{m}$ . Let $\mathfrak{P}$ be a Sylow p-
subgroup of $N_{\mathfrak{G}}(\theta_{1})$ of order $i=p^{m}$ . Since $\mathfrak{P}t\S_{1}/\beta\S_{1}$ is a regular normal sub-
group of $\mathfrak{G}_{1}$ , $\mathfrak{P}$ is elementary abelian and normal in $N_{\mathfrak{G}}(P_{1})$ . Let $\mathfrak{B}$ denote
the subgroup $\mathfrak{H}\cap N_{\mathfrak{G}}(f?_{1})$ . Then the order of $\mathfrak{B}$ is equal to $2^{\iota}(p^{m}-1)$ .

2. Case $n=i^{2}=p^{2m}$ . It can be proved in the same way as in [9, Case
$A]$ that there exists no group satisfying the conditions of the theorem in
this case.

3. Case $n=p^{m}(\beta p^{m}-\beta+1)$ with $\beta>1$ and $\beta,$ $\beta-1\not\equiv 0(mod. p)$ . In this
case it can be proved in the same way as in [10, \S 2.5] that there is no group
satisfying the conditions of the theorem in this case.

4. Case $n=p^{m}(\beta p^{m}-\beta+1)$ with $\beta>1$ and $\beta\equiv 0(mod. p)$ . Since $\beta\geqq 3,$ $d$

must be greater than 2 and hence $\langle K, I\rangle$ is dihedral or semi-dihedral.
Consider the cyclic structure of $K$ and it can be seen that $n-i=\beta p^{m}(p^{m}-1)$

is divisible by $2^{\iota}$ . Set $p=2^{k}q+1$ , where $q(>0)$ is odd. Since $2^{\iota}\geqq\beta\geqq p,$ $\beta$ is
not divisible by $2^{\iota- k}$ and therefore $p^{m}-1$ must be divisible by $2^{k\succ 1}$ . Hence $m$

is even.
At first assume that the order of $N_{\mathfrak{G}}(ff)$ is divisible by $2^{\iota+2}$ . Since $N_{\mathfrak{G}}(R)/P$

is a complete Frobenius group on $s^{\alpha}(\theta)$ , any Sylow subgroup of a complement
$\mathfrak{H}\cap N_{\mathfrak{G}}(9)/\Phi$ is cyclic or quaternion (ordinary or generalized). Hence there
exists a subgroup $\mathfrak{S}$ of $N_{\mathfrak{G}}(ff)$ such that $\mathfrak{S}\supseteqq\langle I, K\rangle$ and $\mathfrak{S}/ff$ is a cyclic group
of order 4. $\mathfrak{S}$ contains $S$ such that $S^{2}\equiv I(ff),$ $S$ induces an automorphism of
$\theta$ of order 4 and $S^{2}$ and $I$ induce the same automorphism. But it is easily
seen that, for any automorphism $\zeta$ of ge of order 4, $K^{\zeta^{2}}=\tau K$. This is a
contradiction since $\langle K, I\rangle$ is dihedral or semi-dihedral.

Next assume that the order of $N_{\mathfrak{G}}(\Omega)$ is not divisible by $2^{l+2}$ . Let $\mathfrak{S}$ be
a Sylow 2-subgroup of $N_{\mathfrak{G}}(ff_{1})$ containing \langle I, $ K\rangle$ . Since $m$ is even, the order
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of $\mathfrak{S}$ is greater than $2^{\iota-\vdash 2}$ . By the assumption of the order of $N_{\mathfrak{G}}(P),$ $\mathfrak{S}\cap N_{\mathfrak{G}}(\Omega)$

$=\langle K, I\rangle$ is a Sylow 2-subgroup of NG(\mbox{\boldmath $\beta$}\S ). Therefore $N_{\mathfrak{S}}(\langle K, I\rangle)$ is greater

than $N_{\mathfrak{S}}(ff)$ . Let $S(\neq 1)$ be a permutation of $ N_{\mathfrak{S}}(\langle K, I\rangle)-\langle K, I\rangle$ . Since $K^{s}$ is
contained in $\langle K, I\rangle$ , we have $K^{s}=K^{\prime}I$, where $K^{\prime}$ is a permutation of $\Omega$ .
Hence, if $\langle K, I\rangle$ is dihedral, then $(K^{s})^{2}=1$ and the order of $K$ equals 2 and,

if $\langle K, I\rangle$ is semi-dihedral, then $(K^{s})^{4}=1$ and the order of $K$ equals 4. This
is a contradiction.

Thus there exists no group satisfying the conditions of the theorem in
this case.

5. Case $n=p^{m}(\beta p^{m}-\beta+1)$ with $\beta-1=0(mod. p)$ .
At first we shall prove that the order of $C_{\mathfrak{G}}(\mathfrak{P})$ is equal to $2^{j^{}}p^{m+m^{}}y$ , where

$j^{\prime}\geqq j,$ $m^{\prime}>0$ and $y$ is a factor of $\beta p^{m}-(\beta-1)$ and not divisible by $p$ . Assume
that the order of $C_{\mathfrak{G}}(\mathfrak{P})$ is equal to $2^{j^{\prime}}p^{m}$ . Let $ff^{\prime}$ be a Sylow 2-subgroup of
$C_{\mathfrak{G}}(\mathfrak{P})$ . Every element $(\neq 1)$ of $\mathfrak{P}$ leaves no symbol of $\Omega$ fixed. Then $ff^{f}$ must
leave at least two symbols of $\Omega$ fixed. Therefore $\Omega^{\prime}$ is conjugate to a sub-
group of $P$ containing $\Omega_{1}$ . Since $C_{\mathfrak{G}}(\mathfrak{P})$ is a direct product of $ff^{\prime}$ and $\mathfrak{P}ff^{\prime}$

is normal in $N_{\mathfrak{G}}(\mathfrak{P})$ . Since the order of $N_{\mathfrak{G}}(t\partial^{\prime})$ is a factor of the order of
$N_{\mathfrak{G}}(l\S_{1})$ , the order of $N_{\mathfrak{G}}(\Omega_{1})$ is greater than or equal to the order of $N_{\mathfrak{G}}(\mathfrak{P})$ .
This contradicts the order of $N_{\mathfrak{G}}(\mathfrak{P})$ . Hence the order of $C_{\mathfrak{G}}(\mathfrak{P})$ is equal to
$2^{j^{\prime}}p^{m}y$ , where $y$ is odd and $y>1$ . Let $q(\neq 2, p)$ be a prime factor of the
order of $C_{\mathfrak{G}}(\mathfrak{P})$ and let $Q$ be a permutation of $C_{\mathfrak{G}}(\mathfrak{P})$ of order $q$ . If $q$ is a
factor of $n-1$ , then $Q$ leaves just one symbol of $\Omega$ fixed and hence $Q$ cannot
be contained in $C_{\mathfrak{G}}(\mathfrak{P})$ . Thus $q$ is a factor of $n$ and so is $y$ . Next assume
that $y$ is not divisible by $p$ . Let $\mathfrak{A}^{\prime}$ be a normal $p$-complement in $C_{\mathfrak{G}}(\mathfrak{P})$ .
Since $R^{\prime}$ is cyclic, $\mathfrak{A}^{\prime}$ has a normal 2-complement $\mathfrak{Y}$ ‘. Since $\mathfrak{Y}^{\prime}$ is a normal
Hall subgroup of $\mathfrak{A}^{\prime},$ $\mathfrak{Y}^{\prime}$ is normal even in $N_{\mathfrak{G}}(\mathfrak{P})$ . Let $Y^{\prime}(\neq 1)$ be a permuta-
tion of $\mathfrak{Y}^{\prime}$ . Then $Y^{\prime}$ does not leave any symbol of $\Omega$ fixed. If $\mathfrak{B}\cap G_{\mathfrak{G}}(Y^{\prime})$

contains an involution $\tau^{\prime}$ , then $\tau^{\prime}$ is conjugate to $\tau$ under $\mathfrak{G}$ and, since $C_{\mathfrak{G}}(\tau^{\prime})$

contains $Y^{\prime}$ , the order of $C_{\mathfrak{G}}(\tau^{\prime})$ is divisible by the order of $Y^{\prime}$ . But since
$C_{\mathfrak{G}}(\tau^{\prime})$ is conjugate to $C_{\mathfrak{G}}(\tau)=N_{\mathfrak{G}}(\Omega_{1})$ and the order of $N_{\mathfrak{G}}(\Omega_{1})$ and $y$ are rela-
tively prime, the order of $\mathfrak{B}\cap C_{\mathfrak{G}}(Y^{\prime})$ is odd. Let $q$ be a prime factor of the
order of $\mathfrak{B}\cap C_{\mathfrak{G}}(Y^{\prime})$ and let $Q$ be a permutation of $\mathfrak{B}\cap C_{\mathfrak{G}}(Y^{\prime})$ of order $q$ .
Then $Q$ leaves at least one symbol of $\Omega$ fixed and hence it leaves at least
two symbols of $\Omega$ fixed, which is a contradiction. Thus $\mathfrak{B}\cap C_{\mathfrak{G}}(Y^{\prime})=(1)$ .
Hence we have the following relation;

$y-1=|\mathfrak{Y}^{\prime}|-1\geqq|\mathfrak{B}|$ ,

i. e., $y\geqq 2^{\iota}(p^{m}-1)+1=2^{\iota}p^{m}-(2^{\iota}-1)$ .

On the other hand $y$ is a factor of $\beta p^{m- 1}-(\beta-1)p^{-1}$ . This is a contradiction.
Hence $y$ is divisible by $p$ .
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Let us assume $p^{m^{}}<2^{\iota}$ . Let $\mathfrak{A}$ be a normal 2-complement of $c_{\mathfrak{G}}\mathfrak{P}$ . Then
$\backslash JI$ is normal in $N_{\mathfrak{G}}(\mathfrak{P})$ . Let $\mathfrak{P}^{\prime}$ be a Sylow $p$-subgroup of $\mathfrak{A}$ . By the Frattini
argument $N_{\mathfrak{G}}(\mathfrak{P})=\mathfrak{A}(N_{\mathfrak{G}}\mathfrak{P}^{\prime}\cap N_{\mathfrak{G}}(\mathfrak{P}))$ . Since the order of $\mathfrak{A}$ is odd, we may
assume that ge is a subgroup of $N_{\mathfrak{G}}(\mathfrak{P}^{\prime})\cap N_{\mathfrak{G}}(\mathfrak{P})$ . Thus there exists a homo-
morphism $\pi$ of ge into Aut $\mathfrak{P}^{\prime}/\mathfrak{P}$ . If $\tau$ is contained in $ker\pi$ , then $\tau$ acts
trivially on $\mathfrak{P}^{\prime}/\mathfrak{P}$ and $\mathfrak{P}$ . Therefore $\tau$ acts also trivially on $\mathfrak{P}^{\prime}$ and $ C_{\mathfrak{G}}\tau$ con-
tains $\mathfrak{P}^{\prime}$ ([4, Theorem 5.3.2]). Hence we have $ker\pi=1$ and Aut $\mathfrak{P}^{\prime}/\mathfrak{P}$ contains
a cyclic subgroup of order $2^{l}$ . But the order $(=p^{m^{\prime}})$ of $\mathfrak{P}^{\prime}/\mathfrak{P}$ is less than $2^{l}$ .
This is a contradiction. If $m^{\prime}\leqq m$ , then $p^{m^{\prime}}<2^{\iota}$ . Thus we may assume
$p^{m^{\prime}}>2^{\iota}$ . Then $m^{\prime}>m$ .

Assume $y>1$ . Since $\backslash $){ is solvable, there exists a subgroup $\mathfrak{Y}$ of ${}^{t}JI$ of
order $y$ . Now $Y$ is a factor of $\beta-(\beta-1)p^{-m}$ . By the Frattini argument it
can be assumed that se is a subgroup of $N_{\mathfrak{G}}(\mathfrak{Y})$ . Thus there exists a homo-
morphism $\pi^{\prime}$ of $l$? into Aut V). Since the orders of $C_{\mathfrak{G}}(\tau)$ and $\mathfrak{Y}$ are relatively
prime, any elements $(\neq 1)$ of $\mathfrak{Y}$ are not fixed by $\pi^{\prime}(\tau)$ . Therefore we have
$y>2^{\iota}$ . This is impossible and hence $y=1$ . $\mathfrak{P}^{\prime}$ is normal in $N_{\mathfrak{G}}(\mathfrak{P})$ . Let $P^{\prime}$

$(\neq 1)$ be an element of $\mathfrak{P}^{\prime}$ . It can be seen that $\mathfrak{B}\cap C_{\mathfrak{G}}(\mathfrak{P}^{\prime})$ is a subgroup of
R. Hence we have the following relation;

$p^{m+m^{i}}-1=x(p^{m}-1)$ , $x>1$ .

From this it is easily seen that $m^{\prime}$ is divisible by $m$ .
If $\beta p^{m}-\beta+1$ is divisible by $p^{\delta m}(\partial>1)$ exactly, then $\beta-1$ must be equal

to $p^{\delta m}z+p^{(\partial- 1)m}+\cdots+p^{m}(z>1)$ or $p^{(\delta- 1)m}+\cdots+p^{m}$. If $\beta-1$ is equal to $p^{\delta m}z+$

$p^{(\delta- 1)m}+$ $+p^{m}$ $(z>1)$ , then $2^{\iota}>p^{\delta m}$ $(\geqq p^{m}‘)$ . Therefore we may assume
$\beta=p^{(\delta- 1)m}+\cdots+p^{m}+1=(p^{\delta m}-1)/(p^{m}-1)$ and $m^{\prime}=\delta m$ . $\mathfrak{P}^{\prime}$ is a Sylow p-sub-
group of $\mathfrak{G}$ .

Next we shall prove that $m=1$ and $K$ has only $2^{\iota}$ -cycles in its cyclic
decomposition, $i$ . $e.,$ $N_{\mathfrak{G}}(f?)=C_{\mathfrak{G}}(\tau)$ and f\S \cap ff $=1$ or $ge$ for every element $G$ of
G. From (2.2) it can be seen that the number of involutions with the cyclic
structures $(1, 2)$ $\cdots$ which are conjugate to $\tau$ is equal to $\beta$ . If $\langle K, I\rangle$ is
dihedral, then every involution in Iff is conjugate to $I$ or $IK$ and if $\langle K, I\rangle$

is semi-dihedral, then every involution in $I9$ is conjugate to $I$. Since all
involutions with the cyclic structures $(1, 2)$ $\ldots$ are contained in Ige, $\beta$ is equal
to $d/2$ or $d$ . Thus $p^{m}+1$ is a power of two and hence $m=1$ . Therefore $\mathfrak{G}_{1}$

is a complete Frobenius group, $o^{\alpha}(\tau)=s^{\alpha}(K),$ $N_{\mathfrak{G}}(ff)=C_{\mathfrak{G}}(\tau)$ and $C_{\mathfrak{G}}(R)$ contains
$\mathfrak{P}$ . Therefore the number of elements which leave only the symbol 1 fixed
is equal to $2^{\iota}(n-1)-1-(2^{\iota}-1)(\beta i+1)$ and the number of elements which leave
$i$ symbols of $\Omega$ fixed is equal to $(2^{\iota}-1)(\beta i-\beta+1)(\beta i+1)$ . Let $G$ be an element
of $\mathfrak{G}$ of order $2^{l^{\prime}}p(l^{\prime}\geqq 1)$ . Then $\alpha(G)=0$ and $\alpha(G^{p})=i$ . Therefore the number
of cyclic subgroups of $\mathfrak{G}$ of order $2^{\iota}p$ is equal to $(\beta i-\beta+1)(\beta i+1)$ and those
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groups are independent. Thus the number of elements of order $ 2^{l^{\prime}}p(l^{\prime}\geqq 1\rangle$

which leave no symbol of $\Omega$ fixed is equal to $(2^{\iota}-1)(i-1)(\beta i-\beta+1)(\beta i+1)$ .
Therefore we have

$|\mathfrak{G}|-(n(2^{\iota}(n-1)-1-(2^{\iota}-1)(\beta i+1))+(2^{\iota}-1)(\beta i-\beta+1)(\beta i+1)$

$+(2^{\iota}-1)(n-1)(\beta i-\beta+1)+1)=n-1$ .

Hence $\mathfrak{P}^{f}$ is a regular normal subgroup of $\mathfrak{G}$ .
Thus there exists no group satisfying the conditions of the theorem in

this case.

4. The case $n$ is even and $N_{\mathfrak{G}}(\mathfrak{R}_{1})/\mathfrak{R}_{1}$ contains a regular normal subgroup.

1. Since $n=i(\beta i-\beta+1)$ is even, $i$ must be even. $\mathfrak{G}_{1}=N_{\mathfrak{G}}(R_{1})/\theta_{1}$ is a
doubly transitive permutation group on $s^{\alpha}(9_{1})$ containing a regular normal
subgroup. In particular, $i$ is equal to a power of 2, say $2^{m}$ .

Let $\mathfrak{S}$ be the normal 2-subgroup of $N_{\mathfrak{G}}(\Phi_{1})$ containing $\Omega_{1}$ such that $\mathfrak{S}/\mathfrak{R}$

is a regular normal subgroup of $\mathfrak{G}_{1}=N_{\mathfrak{G}}(li_{1})/\Omega_{1}$ . Since the order of $\mathfrak{H}\cap N_{\mathfrak{G}}(\mathfrak{R}\rangle$

is equal to $2^{l}(2^{m}-1),$ $\Omega$ is a Sylow 2-subgroup of $\mathfrak{H}\cap N_{\mathfrak{G}}(R_{1})$ . Let $\mathfrak{B}$ be a
normal 2-complement of $\mathfrak{H}\cap N_{\mathfrak{G}}(ff_{1})$ . The group $\mathfrak{B}\mathfrak{S}/R_{1}$ is a complete Fro-
benius group on $s^{\alpha}(\theta_{1})$ with kernel $\mathfrak{S}/ff_{1}$ and complement $\mathfrak{B}9_{1}/ff_{1}(\cong \mathfrak{B})$ . Since
$C_{\mathfrak{G}}(\theta_{1})\cap \mathfrak{B}\mathfrak{S}$ is normal in $\mathfrak{B}\mathfrak{S},$ $C_{\mathfrak{G}}(ff_{1})\cap \mathfrak{B}\mathfrak{S}$ contains $\mathfrak{S}$ or is contained in $\mathfrak{S}$

([13, 12.6.8]). If $\mathfrak{S}$ is greater than $C_{\mathfrak{G}}(\theta_{1})\cap \mathfrak{B}\mathfrak{S}$ , since the index of $\mathfrak{S}$ in $\mathfrak{B}\mathfrak{S}$

must be equal to a power of two, we have $m=1$ . Hence $\mathfrak{G}$ is a Zassenhaus
group. Thus we have that $\mathfrak{G}$ is isomorphic to either $PGL(2,2^{l}+1)$ or
$PSL(2,2^{l+1}+1)$ , where $2^{\iota}+1$ and $2^{\iota\leftarrow\vdash 1}+1$ are powers of prime numbers for
$PGL(2,2^{\iota}+1)$ and $PSL(2,2^{l-\vdash 1}+1)$ , respectively ([1], [8], [14] and [18]). Thus
it will be assumed that $\mathfrak{S}$ is contained in $C_{\mathfrak{G}}(ff_{1})\cap \mathfrak{B}\mathfrak{S}$ and $m$ is greater than
one.

Since the index of $\mathfrak{B}\mathfrak{S}\cap C_{\mathfrak{G}}(\theta_{1})$ in $\mathfrak{B}\mathfrak{S}$ is odd and the order of Aut $f\S_{1}$ is
equal to $2^{j- 1},$ $\mathfrak{B}\mathfrak{S}\cap C_{\mathfrak{G}}(ff_{1})$ is equal to $\mathfrak{B}\mathfrak{S}$ . Hence $C_{\mathfrak{G}}(F_{1})$ is equal to $ N_{\mathfrak{G}}(R_{1}\rangle$

since $N_{\mathfrak{G}}(ff_{1})=ff\mathfrak{B}\mathfrak{S}$ .
PROPOSITION 4.1. Let $\mathfrak{G}$ be as in Theorem and let $\theta_{1}$ and $\mathfrak{G}_{1}$ as above.

Assume that $\mathfrak{G}_{1}$ contains a regular normal subgroup and $N_{\mathfrak{G}}(9_{1})$ is equal to
$C_{\mathfrak{G}}(\theta_{1})$ . Let $\mathfrak{S}$ be as above. Then $\mathfrak{S}$ contains an involution $(\neq\tau)$ .

PROOF. If $\Omega_{1}$ is equal to 9, then $\mathfrak{S}$ is a normal Sylow 2-subgroup of
$\Lambda^{\tau_{\mathfrak{G}}}(\theta)$ and hence it contains $I$ . Therefore it can be assumed that $\mathfrak{R}$ is less
than ff and $I\not\in \mathfrak{S}$ . Assume that $\tau$ is the unique involution in S. Since $\mathfrak{S}/\mathfrak{R}$

is an elementary abelian group of order $2^{m}$ and $m\geqq 2,$ $\mathfrak{S}$ is a quaternion
group (ordinary or generalized) and hence $m=2$ (and $i=4$). Thus we have
$\alpha(K)=\ldots=\alpha(K^{2^{l-j-1}})=2<\alpha(K^{2^{l- j}})=4$ . Since $\theta \mathfrak{S}$ is a Sylow 2-subgroup of
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$N_{\mathfrak{G}}(9_{1})$ , it may be assumed that $I$ is contained in the coset $K^{2^{l- j- 1}}\mathfrak{S}$ and hence
we have $IK^{2^{l- j- 1}}=S$ , where $S$ is an element $(\not\in K_{1})$ of S. Thus $(K^{2^{l- j- 1}})^{I}$

$=S^{2}K^{-2^{l- j- 1}}$ . Since $N_{\mathfrak{G}}(\theta_{1})=C_{\mathfrak{G}}(f\S_{1})$ , we have $K^{2^{l- j}}=S^{4}K^{-2l-j}$ and $S^{4}=K^{2^{l- j+1}}$ .
At first assume that $S^{4}=1$ . Then $j=1$ and $(K^{2^{l- 2}})^{I}=K^{-2^{l-2}}\tau=K^{2^{l- 2}}$ . This
implies $d=2$ . Hence $n=16$ or 28. Since $n-i$ and $i-\alpha(K)$ are divisible by $2^{\iota}$

and $2^{l-1}$ , respectively, the order of ff is equal to four. It can easily be seen
that there exists no group satisfying the conditions of Proposition in these
cases. Next assume that $S^{4}\neq 1$ (i. e., $j\neq 1$). Then $(K^{2^{l-j-1}})^{I}=K^{2^{l- j- 1}}$ or
$ K^{2^{l- j- 1}}\tau$ and hence $d=2$ . This implies $n=16$ or 28. Since $n-i$ is divisible
by $2^{l}$ and $j>1$ , we have $n=28,$ $l=3$ and $j=2$ . By [15] $\mathfrak{G}$ must be isomor-
phic to $PSU(3,3^{2})$ . But a Sylow 2-subgroup of $PSU(3,3^{2})$ is isomorphic to
$Z_{4}\sim Z_{2}$ and it does not contain a quaternion group of order 16. This is a
contradiction. Thus the proof is completed.

COROLLARY 4.2. Let $\mathfrak{G},$ $\mathfrak{S}$ be as in Proposition 4.1. If $d$ is equal to two,

then $\mathfrak{S}$ contains an involution $\tau^{\prime}$ such that it is conjugate to $\tau$ .
PROOF. By Proposition, $\mathfrak{S}$ contains an involution $\eta(\neq\tau)$ with the cyclic

structure (1 a) $\cdots$ , where $a$ is a symbol of $s^{\alpha}(ff_{1})$ . Then $\eta\tau$ has also the cyclic
structure (1 a) $\ldots$ Hence since $\mathfrak{G}$ is doubly transitive, there exist two involu-
tions with the cyclic structure $(1, b)$ , where $b$ is any symbol of $\Omega$ , such that
those are conjugate to $\eta$ or $\eta\tau$ . If $\tau$ is neither conjugate to $\eta$ nor $\eta\tau$ , then
$g^{*}(2)$ is greater than $(n-1)$ . This contradicts the inequality $g^{*}(2)<d(n-1)$ .

By the above proposition, since $N_{\mathfrak{G}}(ff_{1})/9_{1}$ is doubly transitive, we may
assume that $I$ is contained in S. Since $\mathfrak{B}\mathfrak{S}/ff_{1}$ is complete Frobenius group,
all elements $(\neq 1)$ of $\mathfrak{S}/\mathbb{R}_{1}$ are conjugate under $\mathfrak{B}ff_{1}/ff_{1}$ . Thus every permuta-
tion $(\neq S_{1})$ of $\mathfrak{S}$ can be represented in the form $V^{-1}IVK^{\prime}$ , where $V$ and $K^{\prime}$

are permutations of $\mathfrak{B}$ and $\beta\S_{1}$ , respectively.
2. Case $f\partial_{1}=\theta$ . In this case $\mathfrak{S}$ is a normal Sylow 2-subgroup of $lV_{\mathfrak{G}}(ff)$ .

Let $S$ be an element of order $2^{l}$ in S. Since $S^{2}$ is contained in $\theta,$ $S^{2^{l-1}}$ is
equal to $\tau$ . Assume that $I$ is conjugate to $\tau$ . Since $C_{\mathfrak{G}}(ff)$ and $C_{\mathfrak{G}}(I)$ are
conjugate and $K$ is contained in $C_{\mathfrak{G}}(I),$

$K^{2^{l- 1}}$ must be equal to $I$. This is a
contradiction.

Thus there exists no group satisfying the conditions of the theorem in
this case.

3. Case $ ff\supsetneqq\Omega_{1}\supsetneqq\langle\tau\rangle$ . Since $A_{1}$ is greater than $\langle\tau\rangle$ , a group $\langle K, I\rangle$ is
neither dihedral nor semi-dihedral and therefore $d$ is equal to two. By Corol-
lary 4.2 it may be assumed that $I$ is conjugate to $\tau$ .

LEMMA 4.3. If $ff_{1}$ is greater than $\langle\tau\rangle$ and less than ff, then the order of
$\theta_{1}$ is equal to four and I is not contained in $C_{\mathfrak{G}}(f\S)$ .

PROOF. At first assume that the order of $ff_{1}$ is greater than four. Let
$\mathfrak{S}^{\prime}$ be a Sylow 2-subgroup of $N_{\mathfrak{g}}(\theta_{1})$ . Let $S$ be an element of $\mathfrak{S}^{\prime}$ of order
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$2^{l- 1}$ . The index of $\mathfrak{S}$ in $\mathfrak{S}^{\prime}$ is equal to $2^{l-j}$ . Therefore $S^{2^{l- j}}$ is contained in
$\mathfrak{S}$ and, since $\mathfrak{S}/\theta_{1}$ is elementary abelian, $S^{2^{l- j\cdot\vdash 1}}$ is contained in $ff_{1}$ . Since $j$

is greater than 2, $S^{2^{l- j+1}}$ is not identity element. Thus we have that $S^{2^{l- 2}}$ is
equal to $\tau$ . Since $IKI$ is equal to $K$ or $K\tau,$ $I$ is contained in $C_{\mathfrak{G}}(K^{2})$ and hence
$K^{2}$ is contained in $C_{\mathfrak{G}}(I)$ . Since $N_{\mathfrak{G}}(f\partial_{1})=C_{\mathfrak{G}}(\tau)$ is conjugate to $C_{\mathfrak{G}}(I)$ , we have
$\iota$ hat $(K^{2})^{z^{\iota- 2}}=\tau$ must be equal to $I$. This is a contradiction.

Next assume that $I$ is contained in $C_{\mathfrak{G}}9$ . Let $\mathfrak{S}^{\prime}$ be as above. Let $S$ be
an element of $\mathfrak{S}^{\prime}$ of order $2^{\iota}$ . Then $S^{2^{l- j}}$ is contained in $\mathfrak{S},$ $S^{2l-j+1}$ is con-
tained in $K_{1}$ and finally $S^{2^{l- 1}}$ is equal to $\tau$ . Since $K$ is contained in $C_{\mathfrak{G}}(I)$

and $C_{\mathfrak{G}}(I)$ is conjugate to $C_{\mathfrak{G}}(\tau),$ $K^{2}l-1$ must be equal to $I$. This is a contra-
diction. Thus the proof is completed.

LEMMA 4.4. Let $St_{1}$ be as in Lemma 4. $-\cap$ Then the order of $\theta$ is equal to 8.
PROOF. Assume that the order of A is greater than 8. Then $\langle K^{2^{l- 3}}, I\rangle$

is abelian since $d=2$ and $l>3$ . Let $\eta$ be an involution of $N_{\mathfrak{G}}(\langle K^{2^{l- 3}}\rangle)$ . Then
$\langle K^{2^{\downarrow- 3}}, \eta\rangle$ must be abelian, for if it is not abelian, then $\langle K^{2^{l-3}}, I\rangle$ is dihedral
and hence $d\neq 2$ .

At first we shall prove that a coset $K^{2^{l- 3}}\mathfrak{S}$ does not contain an element
of order 4. By Lemma 4.3 the order of $R_{1}$ is equal to 4. Let $K^{2l- 3}S$ be an
element of order 4 in $K^{2^{l- 3}}\mathfrak{S}$ , where $S$ is an element of S. Then $S$ is not
contained in $C_{\mathfrak{G}}(K^{2^{l-3}})$ . Set $S=I^{V}K_{1}$ , where $K_{1}$ and $V$ are elements of $se_{1}$ and
$\mathfrak{B}$ , respectively. Then $K^{2^{l- 3}}I^{Y}$ must be of order 4. Thus it may be assumed
that $S$ is equal to $I^{V}$ not contained in $C_{\mathfrak{G}}(K^{2^{l- 3}})$ , where $V$ is an element of

$\mathfrak{B}$ . $(K^{2^{l-3}}S)^{2}$ is an element of $\mathfrak{S}$ and therefore is equal to $\tau,$
$I^{W}$ or $ I^{W}\tau$ , where

$W$ is an element of $\mathfrak{B}$ . If $(K^{2^{l-3}}S)^{2}=\tau$ , then $(K^{2l- 3})^{S}=(K^{-2^{l- 3}})\tau$ and hence
$S\in N_{\mathfrak{G}}(\langle K^{2^{l- 3}}\rangle)$ . Thus $\langle K^{z^{\iota- 3}}, S\rangle$ must be abelian. This is a contradiction.
If $(K^{2^{l-3}}S)^{2}=I^{W}$ or $I^{W_{T}}$ , then $(K^{2^{l- 3}})^{S}=K^{-2^{l-3}}I^{W}$ or $ K^{-2^{l- 3}}I^{W}\tau$ , respectively.
Hence

$K^{2^{l- 2}}=(K^{2^{l- 2}})^{S}=(K^{-2^{l- 3}}I^{W})^{2}$

and
$(K^{-2^{l- 3}})^{I^{W}}=K^{2^{l- 2}}K^{2^{l- 3}}$

Thus $I^{W}$ is contained in $N_{\mathfrak{G}}(\langle K^{2^{l- 3}}\rangle)$ and therefore \langle I, $ K^{2^{l- 3}}\rangle$ must be abelian.
Hence $K^{2^{l-2}}K^{2^{l- 8}}=K^{-2^{l-3}}$ . Thus the order of ff must be equal to 1–1. This
is a contradiction.

Next let $S$ be an element of order $2^{l- 1}$ in $\theta \mathfrak{S}$ , and let $\overline{S}$ be the image of
$S$ by the natural homomorphism of $\Omega \mathfrak{S}$ onto $\theta \mathfrak{S}/\mathfrak{S}$ . If the order of $\overline{S}$ is equal
to $2^{\iota- 2}$ , then $S^{2^{l- 3}}$ is contained in a coset $K^{2^{l- 3}}S$ . This contradicts the first
part in the proof. Hence we have that the order of $\overline{S}$ is less than $2^{l-2}$ and
hence $S^{2^{l-3}}$ is contained in $S$ . Therefore $S^{2^{l- 2}}$ is equal to $\tau$ . Since C((I) is
conjugate to $N_{\mathfrak{G}}(ff_{1})$ and $K^{2}$ is contained in $C_{\mathfrak{G}}(I),$ $K^{2^{l- 1}}=I$. This is a contra-
diction. Thus the proof is completed.
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By two lemmas the orders of ge and $ff_{1}$ are equal to 8 and 4, respectively.
Clearly $N_{\mathfrak{G}}(R)/R$ is a complete Frobenius group on $\mathfrak{J}(ff)$ . Apply the argument

in \S 2 to $N_{\mathfrak{G}}(ff_{1})/ii_{1}$ and we obtain that $\alpha(\Re)$ must be a power of two and
$i=\alpha(ff)^{2}$ . Thus a Frobenius kernel of $N_{\mathfrak{G}}(ff)/ff$ is a Sylow 2-subgroup of
$N_{\mathfrak{G}}(li)/ff$ . Since, by Lemma 4.3, $I$ is not contained in $C_{G}(K)$ , a Sylow 2-sub-
group of $N_{G}(K)$ is greater than $C_{\mathfrak{G}}(ff)$ ([13, 12.6.8]). Since the order of
$N_{\mathfrak{G}}(ff)/C_{\mathfrak{G}}(ff)$ is a power of two, $\alpha(K)-1$ must be equal to one and hence
$\alpha(K)=2$ . Thus we have $i=4$ and $n=16$ or 28. Since $n-i$ must be divisible
by the order of $R$ , we have $n=28$ . $\mathfrak{G}$ satisfies the conditions of the theorem
in [15] and hence $\mathfrak{G}$ is isomorphic to $PSU(3,3^{2})$ .

4. Case $R_{1}=\langle\tau\rangle$ . We shall prove that $d=2$ or the order of $P$ is equal
to four, $\langle K, I\rangle$ is dihedral and $i=4$ . In this case every permutation $(\not\in l?_{1})$

of $\mathfrak{S}$ can be represented uniquely in the form $I^{V}$ or $ I^{V}\tau$ , where $V$ is any
permutation of $\mathfrak{B}$ . Thus every permutation $(\neq 1)$ of $\mathfrak{S}$ is of order 2 and
hence $\mathfrak{S}$ is elementary abelian. Set $f\S_{2}=\langle K^{2^{l-J^{i}}}\rangle$ , where $\alpha(\tau)>\alpha(K^{2^{l-2}})=$

$...=\alpha(K^{2^{l- j\prime}})>\alpha(K^{2^{l-J^{\prime}-l}})$ . Set $i^{\prime}=\alpha(K_{2})$ . Then we may assume $s^{\alpha}(\theta_{2})=\{1,2$ ,
... , $i^{\prime}$ }. Apply the argument in \S 2 to $N_{\mathfrak{G}}(R_{1})/R_{1}$ , and we have $i=i^{\prime}(\beta^{\prime}i^{\prime}-\beta^{\prime}+1)$ .
Hence $i^{\prime}$ is equal to a power of two, say $2^{m^{\prime}}$ . By the inductive hypothesis
$N_{\mathfrak{G}}(ff_{2})/R_{2}$ contains a regular normal subgroup. Let $\mathfrak{S}_{2}$ be a normal 2-subgroup
of $N_{\mathfrak{G}}(ff_{2})$ containing $ff_{2}$ such that $\mathfrak{S}_{2}/R_{2}$ is a regular normal subgroup of
$N_{\mathfrak{G}}(R_{2})/ff_{2}$ and let $\mathfrak{B}_{2}$ be a 2-complement of $\mathfrak{H}\cap \mathfrak{R}_{\mathfrak{G}}(\theta_{2})$ . Then $\mathfrak{B}_{2}\mathfrak{S}_{2}/ff_{2}$ is a
complete Frobenius group on $s^{\alpha}(\Omega_{2})$ . Thus $C_{\mathfrak{G}}(\theta_{2})\cap \mathfrak{B}_{2}\mathfrak{S}_{2}$ contains $\mathfrak{S}_{2}$ or is less
than $\mathfrak{S}_{2}$ .

If $C_{\mathfrak{G}}(\Omega_{2})\cap \mathfrak{B}_{2}\mathfrak{S}_{2}$ is less than $\mathfrak{S}_{2}$ , then $I$ is not contained in $C_{\mathfrak{G}}(ff_{2})$ and,

since the order of $\mathfrak{V}_{2}\mathfrak{S}_{2}/C_{\mathfrak{G}}(ff_{2})\cap \mathfrak{B}_{2}\mathfrak{S}_{2}$ is a power of two, $m^{\prime}$ must be equal
to one. Thus $i^{\prime}=2$ and $\Omega_{2}=9$ . On the one hand, it is trivial that $i-2$ must
be divisible by $2^{l-1}$ . On the other hand, $i$ is of a form $2(2\beta^{\prime}-\beta^{\prime}+1)$ where
$\beta^{\prime}$ is less than or equal to $2^{l-1}$ and hence $\beta^{\prime}$ is odd. Therefore we have
$l=2,$ $\beta^{\prime}=1$ and $i=4$ .

If $C_{\mathfrak{G}}(\theta_{2})\cap \mathfrak{B}_{2}\mathfrak{S}_{2}$ contains $\mathfrak{S}_{2}$ , then $K^{I}=K$ or $K_{r}$ and hence $d=2$ .
5. Case $|ff|=4,$ $\Omega_{1}=\langle\tau\rangle$ and $K^{I}=K^{-1}$ . Let $ff_{2}$ and $\mathfrak{S}_{2}$ be as in \S 4.4.

Since $\theta_{2}=ff,$ $\mathfrak{S}_{2}/ff$ is a regular normal subgroup of $N_{\mathfrak{G}}(ff)/ff$ and $N_{\mathfrak{G}}(ff)=ff+Iff$ .
Since $\langle K, I\rangle$ is dihedral, involutions with the cyclic structure (12) $\ldots$ are $I$,
$IK,$ $IK^{2}$ and $IK$ ’, and $I$ and $IK$ are conjugate to $IK^{2}$ and $IK^{3}$ , respectively.
Therefore $g^{*}(2)=0$ or $2(n-1)$ .

If $g^{*}(2)=0$ , then $n=4(4\cdot 4-3)=4\cdot 13$ . Let $\mathfrak{P}_{13}$ be a Sylow 13-subgroup of
G. Since every involution leaves four symbols of $\Omega$ fixed, the order of $C_{\mathfrak{G}}(\mathfrak{P}_{13})$

is equal to 13. Thus the index of $N_{\mathfrak{G}}(\mathfrak{P}_{13})$ in $\mathfrak{G}$ is a multiple of $17\cdot 4$ . This
contradicts the Sylow’s theorem.

If $g^{*}(2)=2(n-1)$ , then $n=4(2\cdot 4-1)=4\cdot 7$ . Let $\eta$ be an involution leaving
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no symbol of $\Omega$ fixed. Then, since $g^{*}(2)=2(n-1),$ $ G_{\mathfrak{G}}\eta$ must be equal to $2n$ .
Let $\mathfrak{P}_{7}$ be a Sylow 7-subgroup of $\mathfrak{G}$ contained in $ C_{\mathfrak{G}}\eta$ . Using Sylow’s theorem
$\mathfrak{P}_{7}$ is normal in $ C_{\mathfrak{G}}\eta$ Hence the order of $N_{\mathfrak{G}}(\mathfrak{P}_{7})$ is a multiple of 8.7. This
contradicts the Sylow’s theorem.

Thus there exists no group satisfying the conditions of the theorem in
this case.

6. Case $\Omega_{1}=\langle\tau\rangle,$ $d=2$ and $n=i^{2}$ . In this case a normal subgroup $\mathfrak{S}$ of
$N_{\mathfrak{G}}(f\S_{1})$ is an elementary abelian 2-group. We shall prove several lemmas.

LEMMA 4.5. $\mathfrak{S}$ contains every involution of $N_{\mathfrak{G}}(f\S_{1})$ .
PROOF. Set $\mathfrak{S}^{\prime}=ff\mathfrak{S}$ . Then $\mathfrak{S}^{\prime}$ be a Sylow 2-subgroup of $N_{\mathfrak{G}}(B_{1})$ . If a

coset $K^{2}l- 2\mathfrak{S}$ does not contain an involution, then the proof is complete. Let
$K^{2l- 2}S$ be an involution in a coset $K^{2^{l- 2}}\mathfrak{S}$ , where $S$ is a permutation of S.
Then $(K^{2^{l- 2}})^{S}=K^{-2^{l-2}}$ . Therefore, since $S$ is an involution, $d$ must be greater

than two. This is a contradiction.
LEMMA 4.6. Let $G$ be an element of $\mathfrak{G}$ . Then $\mathfrak{S}^{G}\cap \mathfrak{S}=1$ or S.
PROOF. Let $\tau^{\prime}$ be an involution of $\mathfrak{S}^{G}\cap \mathfrak{S}$ . If $\tau^{\prime}$ is conjugate to $\tau$ , then,

since $C_{\mathfrak{G}}(\tau^{\prime})$ contains $\mathfrak{S}^{G}$ and $\mathfrak{S},$
$\mathfrak{S}^{G}$ coincide with $\mathfrak{S}$ by Lemma 4.5. Thus an

involution of $\mathfrak{S}$ which is conjugate to $\tau$ in $\mathfrak{G}$ is conjugate to $\tau$ in $N_{\mathfrak{G}}(\mathfrak{S})$ . By
Corollary 4.2, $I$ or $ I\tau$ is conjugate to $\tau$ in $G$ . On the other hand.I or $ I\tau$ is
not conjugate to $\tau$ in $\mathfrak{G}$, since $g^{*}(2)=n-1$ . Hence the number of involutions
of $\mathfrak{S}$ each of which is conjugate to $\tau$ is equal to $i$ and the number of involu-
tions of $\mathfrak{S}$ each of which leaves no symbol of $\Omega$ fixed is equal to $i-1$ . Hence
the order of $N_{\mathfrak{G}}(\mathfrak{S})$ is equal to $2^{\iota}i^{2}(i-1)$ and the following relation is obtained;

$n-1=g^{*}(2)\leqq(i-1)[\mathfrak{G}:N_{\mathfrak{G}}(\mathfrak{S})]=n-1$ .

Thus $\mathfrak{S}^{G}\cap \mathfrak{S}=1$ or S.
LEMMA 4.7. Let $\eta$ and $\zeta$ be different involutions. If $\alpha(\eta)=\alpha(\zeta)=0$ , then

$\alpha(\eta\zeta)=0$ .
PROOF. Let $a$ be a symbol of $s^{\alpha}(\eta\zeta)$ . Let $(a, b)\cdots$ and $(b, c^{\prime})\cdots$ be the

cyclic structure of $\eta$ and $\zeta$ , respectively. Then $a=c^{\prime}$ . Since $g^{*}(2)=n-1$ ,

there exists just one involution leaving no symbol of $\Omega$ fixed with the cyclic
structure $(a, b)\cdots$ and hence $\eta=\zeta$ .

COROLLARY 4.8. A set $\mathfrak{S}_{1}$ consisting of all involutions of $\mathfrak{S}$ each of which
is not conjugate to $\tau$ and identity element is a characteristic subgroup of S.
In particular $N_{\mathfrak{G}}(\mathfrak{S}_{1})=N_{\mathfrak{G}}(\mathfrak{S})$ .

By Corollary 4.8, there exists just $i+1$ subgroups $\mathfrak{S}_{1},$ $\mathfrak{S}_{2},$ $\mathfrak{S}_{i+1}$ which
are conjugate in $\mathfrak{G}$ and $\mathfrak{S}_{s}\cap \mathfrak{S}_{t}=1$ for $s\neq t$.

LEMMA 4.9. Let $\tau^{\prime}$ be an involution of $N_{\mathfrak{G}}(\mathfrak{S})$ . If $\tau^{\prime}$ is conjugate to $\tau$ , then
$\tau^{\prime}$ is contained in S.

PROOF. Set $\tau^{G}=\tau^{\prime}$ . Since the order of $\mathfrak{S}$ is even, it is trivial that there
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exists an element $\zeta$ of $\mathfrak{S}$ with $\zeta\tau^{\prime}=\zeta$ . $\mathfrak{S}^{G}$ is normal in $C_{\mathfrak{G}}(\tau^{\prime})$ and it contains
$\zeta$ and $\rightarrow’\vee$ by Lemma 4.5. Thus $\mathfrak{S}\cap \mathfrak{S}^{G}$ contains $\zeta$ and hence $\mathfrak{S}=\mathfrak{S}^{G}$ by Lemma
4.6. Finally $\tau^{\prime}$ is an element of S.

LEMMA 4.10. Let $\eta$ be an involution which is not contained in $\mathfrak{S}$ . If $\alpha(\eta)$

$=0$ , then $\alpha(\tau\eta)=0$ and the order of $\tau(\eta)$ is equal to $2^{r}$ with $r>1$ .
PROOF. Assume $\alpha(\tau\eta)\neq 0$ . Let $a$ be a symbol of $s^{\alpha}(\tau\eta)$ . It is trivial that

$a$ is not a symbol of $\mathfrak{J}(\tau)$ . Thus let $(a, b)\cdots$ and $(b, c^{\prime})\cdots$ be the cyclic struc-
tures of $\tau$ and $\eta$ , respectively. Then $a=c^{\prime}$ and $\tau\eta\tau=(a, b)\ldots$ Since $g^{*}(2)$

$=n-1$ , there exists just one involution with the cyclic structure $(a, b)\cdots$ such
that it leaves no symbol of $\Omega$ fixed. Thus we have $\tau\eta\tau=\eta$ . Therefore $\eta$

must be contained in $\mathfrak{S}$ and hence $\alpha(\tau\eta)=0$ . Next assume that the order of
$\tau\eta$ is not equal to $2^{?}$ . Let $p$ be an odd prime factor of the order of $\tau\eta$ and
let $pq$ be the order of $\tau\eta$ Then the order of $(\tau\eta)^{q}$ is equal to $p$ and hence
$\alpha((\tau\eta)^{q})=1$ . Therefore $\alpha(\tau\eta)=1$ . Thus the order of $\tau\eta$ is equal to a power of
two.

LEMMA 4.11. Let $\eta$ be an involution which is not conjugate to $\tau$ . Then $\eta$

is contained in $N_{\mathfrak{G}}(\mathfrak{S})$ .
PROOF. Let us assume that $\eta$ is not contained in S. By Lemma 4.10,

the order of $\tau\eta$ is equal to $2^{r}$ with $r>1$ . Thus $\tau(\tau\eta)^{2}r=\tau$ . Set $\gamma_{\tau,\eta}(s)=\tau(\tau\eta)^{2^{\theta}}$

$=\tau^{-\cdot/_{s}^{\tau^{\rho}}}\vee$ . Then $\gamma_{r,\eta}(r-1)$ is contained in $C_{\mathfrak{G}}(\tau)$ and hence by Lemma 4.5, it is
contained in S. Since $\gamma_{\tau,\eta}(r-1)=\tau^{\gamma_{\tau.\eta^{(\gamma- 2)}}},$ $\gamma_{\tau,\eta}(r-2)$ is contained in $N_{\mathfrak{G}}(\mathfrak{S})$ by
Lemma 4.6. By Lemma 4.9 it is contained in S. Continuing in the similar
way, it can be shown that $\gamma_{\tau,\eta}(1)=\tau^{\eta}$ is contained in $S$ . By Lemma 4.6, $\eta$ is
contained in $N_{\mathfrak{G}}(\mathfrak{S})$ .

By Lemma 4.11, $N_{\mathfrak{G}}(\mathfrak{S})=N_{\mathfrak{G}}(\mathfrak{S}_{1})$ contains $\mathfrak{S}_{t}(2\leqq t\leqq i+1)$ . Similarly $N_{\mathfrak{G}}(\mathfrak{S}_{l})$

contains $\mathfrak{S}_{1}$ . Therefore $\mathfrak{S}_{1}\mathfrak{S}_{t}$ is the direct product $\mathfrak{S}_{1}\times \mathfrak{S}_{t}$ . In the similar
way it can be proved that every element of $\mathfrak{S}_{t}$ is commutative with any ele-
ment of $\mathfrak{S}_{l},$ $(1\leqq t, t^{\prime}\leqq i+1)$ . Thus $\mathfrak{R}=\mathfrak{S}_{1}U\cdots U\mathfrak{S}_{i\dashv-1}$ is a group. Hence $\mathfrak{R}$

is a regular normal subgroup of G.
Thus there exists no group satisfying the conditions of the theorem in

this case.
7. Case $ff_{1}=\langle\tau\rangle,$ $d=2$ and $n=i(2i-1)$ . In this case $g^{*}(2)=0$ . Hence

every involution is conjugate to $\tau$ . The order of $\mathfrak{G}$ is equal to $2^{lxm}(2^{m+1}-1)$

$(2^{m^{\llcorner}1}+1)(2^{m}-1)$ .
$set\mathfrak{S}^{\prime}=ff\mathfrak{S}$ . $Since\mathfrak{S}^{\prime}/\mathfrak{S}isacyclicSylow2- subgroupofN_{\mathfrak{G}}(\mathfrak{S})/\mathfrak{S},$ $N_{\mathfrak{G}}(\mathfrak{S})/\mathfrak{S}$

is solvable and hence $N_{\mathfrak{G}}(\mathfrak{S})$ is solvable. We shall prove that the order of
$N_{\mathfrak{G}}(\mathfrak{S})$ is equal to $2^{l+m}(2^{m}-1)(2^{m+1}-1)$ . Remark that Lemma 4.5 is also true
for this case. Let $\tau^{\prime}=\tau^{G}$ be an element of $\mathfrak{S}$ , where $G$ is an element of $\mathfrak{G}$ .
The same argument as in the proof of Lemma 4.6 shows that $G$ is contained
in $N_{\mathfrak{G}}(\mathfrak{S})$ . Thus every element $(\neq 1)$ of $\mathfrak{S}$ is conjugate to $\tau$ under $N_{\mathfrak{G}}(\mathfrak{S})$ .
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Hence the index of $C_{\mathfrak{G}}(\tau)$ in $N_{\mathfrak{G}}(\overline{e})$ is equal to $2^{m\prime\succ 1}-1$ .
Let $\mathfrak{B}$ be a normal 2-complement of $\mathfrak{H}\cap N_{\mathfrak{G}}(R_{1})$ . Since $N_{\mathfrak{G}}(\mathfrak{S})$ is solvable,

there exists a Hall subgroup A of order $(2^{m}-1)(2^{m\succ 1}-1)$ of $N_{\mathfrak{G}}(\mathfrak{S})$ containing
$\mathfrak{B}$ . Since $\mathfrak{S}\mathfrak{B}/R_{1}$ is a complete Frobenius group of degree $2^{m}$ , all Sylow sub-
groups of $\mathfrak{B}$ are cyclic. Let $r$ be the least prime factor of the order of $\mathfrak{B}$ .
Let $\Re$ be a Sylow r-subgroup of $\mathfrak{B}$ . Then $\Re$ is cyclic and leaves only the
symbol 1 fixed. Hence $N_{\mathfrak{G}}(\Re)$ is contained in $\mathfrak{H}$ Let $P^{\prime}$ be a Sylow 2-sub-
group of $C_{\mathfrak{G}}(\Re)$ . Since se is a Sylow 2-subgroup of $\mathfrak{H}$ and $C_{\mathfrak{G}}(\Re)$ is a subgroup
of $\mathfrak{H},$ $\$?^{\prime}$ is conjugate to a subgroup of $\Omega$ . Thus it may be assumed that $ff^{\prime}$

isasubgroup of H. Using Sylow‘stheorem, $weobtainthatN_{\mathfrak{G}}(\Re)=C_{\mathfrak{G}}(\Re)(\Lambda^{r_{\mathfrak{G}}}(\Re)$

$\cap N_{\mathfrak{G}}(R^{\prime}))=C_{\mathfrak{G}}(\Re)(N_{\mathfrak{G}}(\Re)\cap N_{\mathfrak{G}}(f?_{1}))=C_{\mathfrak{G}}(\Re)(N_{\mathfrak{G}}(\Re)\cap \mathfrak{B}ff)$ since $St_{1}$ is a subgroup
of $\Re^{\prime}$ . Let $CVK^{\prime}$ be an element of $N_{\mathfrak{G}}(\Re)$ of odd order $u$ , where $C,$ $V$ and $K^{\prime}$

are elements of $C_{\backslash S_{J}}(\Re),$
$\mathfrak{B}$ and St, respectively. Then $(CVK^{\prime})^{u}=C^{\prime}(VK^{\prime})^{u}$ , where

C’ is an element of $C_{G}(R)$ , and $(VK^{\prime})^{\tau\iota}=C^{\gamma- 1}$ . Set $s=|(VK^{\prime})^{?l}|/|K^{\prime}|$ , where
$|(VK^{\prime})^{?\iota}|$ and $|K^{\prime}|$ are orders of $(VK^{\prime})^{u}$ and $K^{\prime}$ , respectively. Then $s$ is an
odd integer and $(VK^{\prime})^{us}$ is contained in a Sylow 2-subgroup of $C_{\mathfrak{G}}(\Re)$ and
hence so is $VK^{\prime}$ . In particular $CVK^{\prime}$ is an element of $C_{\mathfrak{G}}(\Re)$ . Hence we ob-
tain that $N_{\mathfrak{G}}(\Re)\cap \mathfrak{A}=C_{\mathfrak{G}}(\Re)(N_{\mathfrak{G}}(\Re)\cap \mathfrak{B}R^{\prime})\cap \mathfrak{A}=C_{\mathfrak{G}}(\Re)(N_{\mathfrak{G}}(\Re)\cap \mathfrak{B})\cap \mathfrak{A}=C_{\mathfrak{G}}(\Re)\cap \mathfrak{A}$ .
By the splitting theorem of Burnside $\mathfrak{A}$ has the normal r-complement. Con-
tinuing in the similar way, it can be shown that $\mathfrak{A}$ has the normal subgroup

$\mathfrak{B}$ of order $2^{m+1}-1$ , which is a complement of $\mathfrak{B}$ . Every permutation $(\neq 1)$

of $\mathfrak{B}$ leaves no symbol of $\Omega$ fixed and hence it is not commutative with any
permutation $(\neq 1)$ of $\mathfrak{B}$ . Let $B$ be a permutation of $\mathfrak{B}$ of a prime order, say
$q$ . Then all the permutations are conjugate to either $B$ or $B^{-1}$ under $\mathfrak{B}$ .
This implies that $\mathfrak{B}$ is an elementary abelian q-group of order $q^{s}$ . Then it
follows that $2^{m\leftarrow\succ 1}-1=q^{s}$ . Hence $s=1$ and $\mathfrak{B}$ is cyclic of order $q$ . $\mathfrak{B}$ is also
cyclic.

Let the order of $N_{\mathfrak{G}},(\mathfrak{B})$ be equal to $12x(q-1)q$ . If the order of $C_{\mathfrak{G}}(\mathfrak{B})$ is
even, then there exists an involution $\tau^{\prime}$ in $C_{\mathfrak{G}}(\mathfrak{B})$ which is conjugate to $\tau$ and
$suchthatC_{G}(\tau^{\prime})contains\mathfrak{B}$ . $ButtheordersofC_{\mathfrak{G}}(\tau)and\mathfrak{B}$ are relatively prime.
Hence, since $C_{\mathfrak{G}}(\tau^{\prime})$ is conjugate to $C_{\mathfrak{G}}(\tau)$ , the order of $C_{\mathfrak{G}}(\mathfrak{B})$ is odd. Therefore,
since the order of the automorphism group of $\mathfrak{B}$ is equal to $q-1=2^{?7t+1}-2$ ,

the order of $N_{\mathfrak{G}}(\mathfrak{B})$ is not divisible by four.
Using Sylow’s theorem we obtain the following congruence;

$2^{l-1}(q+1)(q+2)/x\equiv 1(mod. q)$ .
This implies that $2^{l-1}(q+1)(q+2)=x(yq+1)$ , where $y$ is positive since $\gamma$ is less
than $2^{l-1}(q+1)(q+2)$ . Then we have that $x=zq+2^{\iota}$ , where $2^{l- 1}\geqq z\geqq 0$ . It can
be proved that $z$ must be equal to $0$ or $2^{l-1}$ . If $z=0$ , then the order of $N_{\mathfrak{G}}(\mathfrak{B})$

1is equal to $2^{\iota}q2(q-1)$ and hence, since $1>1$ , it is divisible by four. If $z=2^{l- 1}$ ,
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then the order of $\Lambda^{r_{\mathfrak{G}^{\prime_{\backslash }}}}\mathfrak{B}$) is equal to $2^{l-1}(q+2)21q(q-1)$ . Let $Y$ be a permuta-

tion $(\neq 1)$ of odd prime order dividing $(q+2)2^{-}1(q-1)$ which is contained in
$N_{\mathfrak{G}\backslash }^{(}\mathfrak{B})$ . Since $Y$ leaves just one symbol of $\Omega$ fixed, $V$ is not contained in
$C_{\mathfrak{G}}(\mathfrak{B})$ . Hence we obtain the following;

$q-1\geqq|N_{\mathfrak{G}\backslash }^{(}\mathfrak{B})/C_{\mathfrak{G}}(\mathfrak{B})|>21(q+2)(q-1)$ .
But this is impossible.

Thus there exists no group satisfying the conditions of the theorem in
this case.

5. The case $n$ is even and $N_{\mathfrak{G}}(\mathfrak{R}_{1})/\mathfrak{R}_{1}$ does not contain a
regular normal subgroup.

1. Since $N_{\mathfrak{G}}(f8)/ff$ is a complete Frobenius group and hence it contains a
regular normal subgroup, $t\S_{1}$ is a proper subgroup of $\theta$ .

2. Case $ ff_{1}=\langle\tau\rangle$ and $2^{\iota}\leqq 8$ . By inductive hypothesis, if $2^{\iota}=4$ , then
$\mathfrak{G}_{1}=N_{\mathfrak{G}}(\theta_{1})/f\S_{1}$ is isomorphic to either $PSL(2,5)$ or $SL^{*}(2,8)$ and, if $2^{\iota}=8$ , then
$\mathfrak{G}_{1}$ is isomorphic either $PGL(2,5)$ or $PSL(2,9)$ .

At first assume that $d=2$ . If $2^{\iota}=8$ , then $i=6$ or 10. Hence $n-i=\beta i(i-1)$

($\beta=1$ or 2) is not divisible by 8. But $n-i$ must be divisible by the order of
9. This is a contradiction. If $\mathfrak{G}_{1}$ is isomorphic to $PSL(2,5)$ , then $i=6$ and,
since $n-i$ must be divisible by 4, $n$ is equal to $6(2\cdot 6-1)=6\cdot 11$ . Let $\mathfrak{P}_{11}$ be
a Sylow ll-subgroup of C. It is trivial that, since $g^{*}(2)=0$ and the order of
$N_{\mathfrak{G}}(\Omega_{1})$ is equal to 6.5.4, the order of $C_{\mathfrak{G}}(\mathfrak{P}_{11})$ is odd. Since the order of $C_{\mathfrak{G}}(\mathfrak{P}_{11})$

and $n-1$ are relatively prime, the order of $C_{\mathfrak{G}}(\mathfrak{P}_{11})$ is equal to 11 or 33. The
index of $C_{\mathfrak{G}}(\mathfrak{P}_{11})$ in $N_{\mathfrak{G}}(\mathfrak{P}_{11})$ is a factor of 10. Thus this contradicts the
Sylow’s theorem.

If $\mathfrak{G}_{1}$ is isomorphic to $SL^{*}(2,8)$ , then $i=28$ . Since every involution of $\mathfrak{G}_{1}$

leaves just four symbols of $s^{\alpha}(\theta_{1})$ , we obtain that $\alpha(I)\neq 0$ . Therefore, since
every involution of $\mathfrak{G}$ is conjugate to a permutation with the cyclic structure
(12)..., we have that $g^{*}(2)=0$ and hence $n=i(2i-1)$ . Thus the order of $\mathfrak{H}$ is
equal to 4 $\cdot$

$3^{4}\cdot 19$ . Since ff is cyclic, $\mathfrak{H}$ has a normal 2-complement $\mathfrak{Q}$ of order
$3^{4}\cdot 19$ . Let $\mathfrak{P}_{19}$ be Sylow 19-subgroup of Q. By Sylow’s theorem $\mathfrak{P}_{19}$ is normal
in Q. $\mathfrak{P}_{19}$ is normal even in $\mathfrak{H}$ . Since the order of the automorphism group
of $\mathfrak{P}_{19}$ is equal to 18, $\tau$ must be contained in $C_{\mathfrak{H}}(\mathfrak{P}_{19})$ . This is a contradiction.

Next we shall consider the case $d\neq 2$ . If $2^{\iota}=4$ , then $\langle K, I\rangle$ is dihedral.
If $\mathfrak{G}_{1}$ is isomorphic to $PSL(2,5)$ , then $i=6$ and, since $n-i=i\beta(i-1)$ must be
divisible by 4, $\beta=2$ or 4. Therefore $\langle K, I\rangle$ is a Sylow 2-subgroup of G. By
[4, Theorem 7.7.3] $C_{\mathfrak{G}}(\tau)$ has a normal 2-complement and hence $C_{\mathfrak{G}}(\tau)$ is solvable.
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Thus $\mathfrak{G}_{1}=C_{\mathfrak{G}}(\tau)/\langle\tau\rangle$ must be solvable and this is a contradiction. If $\mathfrak{G}_{1}$

is isomorphic to $SL^{*}(2,8)$ , then, since for every involution $\eta$ of $SL^{*}(2,8)a(\eta)$

$=4,$ $\alpha(R)=4$ . Hence the order of $N_{\mathfrak{G}}(P)/ff$ is equal to $4\cdot 3$ . Since $I$ is not
contained in $C_{\mathfrak{G}}(ff)$ and $N_{\mathfrak{G}}(ff)/f$? is a complete Frobenius group, $C_{\mathfrak{G}}(\Re)$ is con-
tained in a Sylow 2-subgroup. Thus the order of $N_{\mathfrak{G}}(f\partial)/C_{\mathfrak{G}}(\theta)$ is divisible by
3. This is a contradiction.

If $2^{l}=8$ , then $i=6$ or 10. Since $n-i=\beta i(i-1)$ must be divisible by 8, $\beta$

is equal to 4 or 8. If $\langle K, I\rangle$ is dihedral, then $\langle K, I\rangle$ is a Sylow 2-subgroup
of $\mathfrak{G}$ . Thus $C_{\mathfrak{G}}(\tau)$ is solvable and also $ C_{\mathfrak{G}}(\tau)/\langle\tau\rangle$ is solvable. Hence $\langle K, I\rangle$

must be semi-dihedral and $d=4$ . Since $g^{*}(2)=0$ and $\mathfrak{G}_{1}$ is a Zassenhaus
group, all involutions are conjugate and a permutation leaving at least three
symbols of $\Omega$ fixed is an involution. Thus $\mathfrak{G}$ satisfies the conditions in [12].

Hence by [6] and [12] $\mathfrak{G}$ is isomorphic to either $PSU(3,5^{2})$ or one of the
groups of Ree type (see [16]). Since a Sylow 2-subgroup of a group of Ree
type is elementary abelian of order 8, $G$ is isomorphic to $PSU(3,5^{2})$ .

3. Case $\zeta?_{1}=\langle\tau\rangle$ and $2^{\iota}>8$ . $\mathfrak{G}_{1}$ is isomorphic to one of the groups
$PSU(3,3^{2}),$ $PSU(3,5^{2}),$ $PGL(2, *)$ and $PSL(2, *)$ . Then $i$ is not divisible by 8.
Since $n-i=\beta i(i-1)$ is divisible by $2^{\iota},$

$\beta$ is divisible by 4. Thus we have that
$d>2$ and hence $\langle K, I\rangle$ is dihedral or semi-dihedral and in particular $\langle K, I\rangle/\langle\tau\rangle$

is dihedral. Therefore $\mathfrak{G}_{1}$ is isomorphic to either $PGL(2, *)$ or $PSL(2, *)$ and $i$

is divisible by 2 exactly. Thus we have that $\beta=2^{l-1}$ or $2^{\iota}$ . Thus $\langle K, I\rangle$ is
a Sylow 2-subgroup of $\mathfrak{G}$ . If $\langle K, I\rangle$ is dihedral, then $C_{\mathfrak{G}}(\tau)$ is solvable and
hence $ C_{\mathfrak{G}}(\tau)/\langle\tau\rangle$ is solvable. If $\langle K, I\rangle$ is semi-dihedral, then $\beta=2^{l- 1}$ and
$g^{*}(2)=0$ . Again by [6] and [12], $G$ must be isomorphic to either $PSU(3,5^{2})$

or one of the groups of Ree type. This is a contradiction.
Thus there exists no group satisfying the conditions of the theorem in

this case.
4. Case $ ff_{1}>\langle\tau\rangle$ . Since $\Phi_{1}$ is a proper subgroup of 5?, the order of $R$ is

greater than 4. At first assume that $d=2$ . By inductive hypothesis $i$ is
not divisible by 8. Since $n-i=\beta i(i-1)$ is divisible by $2^{l},$ $\beta=2,2^{l}=8$ and $i$

is divisible by 4. Thus we obtain that $\mathfrak{G}_{1}$ is isomorphic to $SL^{*}(2,8)$ and
$n=2^{2}\cdot 7\cdot 5\cdot 11$ . If we consider a Sylow 19-subgroup of $\mathfrak{H}$ , likewise in 5.2, we
can obtain a contradiction.

Next we assume that $d>2$ . Then $\langle K, I\rangle/ff_{1}$ is dihedral. Hence ($S3_{1}$ is
isomorphic to either $PGL(2, *)$ or $PSL(2, *)$ . Since $n-i$ is divisible by $2^{\iota}$ , we
have that $\beta=2^{\iota}$ or $2^{l-1}$ . Therefore $\langle K, I\rangle$ is a Sylow 2-subgroup of $\mathfrak{G}$ . If
$\langle K, I\rangle$ is dihedral, then $C_{\mathfrak{G}}(\tau)$ is solvable and hence $C_{\mathfrak{G}}(\tau)/f\S_{1}$ must be solvable.
Thus $\langle K, I\rangle$ is semi-dihedral. Set $\mathfrak{G}_{0}=C_{G}(\tau)/\langle\tau\rangle(=N_{\mathfrak{G}}(\theta_{1})/\langle\tau\rangle)$ . Then,
since $\langle K, I\rangle/R_{1}$ is a Sylow 2-subgroup of $\mathfrak{G}_{0}$ and a dihedral group. Let
$\eta=K^{2^{l- 2}}\langle\tau\rangle$ be the involution in the center of $\langle K, I\rangle/\langle\tau\rangle$ . It can be easily
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proved that $\eta$ is contained in the center of $\mathfrak{G}_{0}$ . Thus, by [4, Theorem 7.7.3],
$\mathfrak{G}_{0}$ has a normal 2-complement and hence $\mathfrak{G}_{0}$ is solvable. Hence $\mathfrak{G}_{1}$ must be
solvable. This is a contradiction.

Thus there exists no group satisfying the conditions of the theorem in
this case.

Thus Theorem is proved.
Hokkaido University

References

[1] W. Feit, On class of doubly transitive permutation groups, Illinois J. Math., 4
(1960), 170-186.

[2] W. Feit and J. G. Thompson, Solvability of groups of odd order, Pacific J. Math.,
13 (1963), 775-1029.

[3] P. Fong, Some Sylow subgroups of order 32 and a characterization of $U(3,3)$ ,

J. Algebra, 6 (1967), 65-76.
[4] D. Gorenstein, Finite groups, Harper and Row, New York, 1968.
[5] D. Gorenstein and J. H. Walter, The characterization of finite groups with di-

hedral Sylow $2$ -subgroups, I, II, III, J. Algebra, 2 (1965), 85-151, 218-270, 334-393.
[6] K. Harada, A characterization of the simple group $U_{3}$ (5), Nagoya Math. J. (to

appear).
[7] B. Huppert, Endliche Gruppen I, Springer, Berlin, 1968.
[8] N. Ito, On a class of doubly transitive permutation groups, Illinois J. Math., 6

(1962), 341-352.
[9] N. Ito, On doubly transitive groups of degree n and order $2(n-1)n$ , Nagoya

Math. J., 27 (1966), 409-417.
[10] H. Kimura, On doubly transitive permutation groups of degree $n$ and order

$4(n-1)n$ , J. Math. Soc. Japan, 21 (1969), 234-243.
[11] H. L\"uneburg, Charakterisierungen der endlichen desarguesschen projektiven

Ebenen, Math. Z., 85 (1964), 419-450.
[12] R. Ree, Sur une famille de groupes de permutations doublement transitifs, Canad.

J. Math., 16 (1964), 797-819.
[13] W. R. Scott, Group theory, Prentice-Hall, Englewood Cliffs, N. J., 1964.
[14] M. Suzuki, On a class of doubly transitive groups, Ann. of Math., 75 (1962),

105-145.
[15] M. Suzuki, A characterization of the 3-dimensional proiective unitary group

over a finite field of odd characteristic, J. Algebra, 2 (1965), 1-14.
[16] H. N. Ward, On Ree’s series of simple groups, Trans. Amer. Math. Soc., 121

(1966), 62-89.
[17] H. Wielandt, Finite permutation groups, Academic Press, New York, 1964.
[18] H. Zassenhaus, Kennzeichung endlicher linearer Gruppen als Permutations-

gruppen, Abh. Math. Sem. Univ. Hamburg, 11 (1936), 17-40.


	On some doubly transitive ...
	1. Introduction.
	THEOREM. Let ...

	2. On the degree of the ...
	THEOREM 1 ...

	3. The case $n$ is odd.
	4. The case $n$ is even ...
	5. The case $n$ is even ...
	References


