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1. Introduction.

Doubly transitive permutation groups of degree »n and order 2(n—1)n were
determined by N. Ito ((9]). Some doubly transitive permutation groups of
degree n and order 4(n—1)n were studied in [10].

The object of this paper is to prove the following result.

THEOREM. Let 2 be the set of symbols 1,2, ---,n. Let & be a doubly transi-
tive group on 2 of order 2"(n—n (I >1) not containing a regular normal sub-
group and let ® be the stabilizer of symbols 1 and 2. Assume that & is cyclic.
Then & is isomorphic to one of the groups PGL(2, x), PSL(2, x), PSU(3, 3% and
PSUG, 5%.

We use the standard notation. Cy(¥) denotes the centralizer of a subset
T in a group X and Ny(®) stands for the normalizer of ¥ in X. (S, T, -
denotes the subgroup of X generated by elements S, 7T, --- of ¥%.

2. On the degree of the permutation group .

1. Let © be the stabilizer of the symbol 1. R is of order 2' and it is
generated by a permutation K. Let us denote the unique involution K?'' of
® by z. Since @& is doubly transitive on £ it contains an involution I with
the cyclic structure (1 2)-.-. Then we have the following decomposition of & ;

S=9+9I9.

Since I is contained in Ng(®), it induces an automorphism of § and (i) K=K
or Kz, (ii) K'=K"'r or (iii) KI=K"'. (For the case [=2, (i) K'=K or (iii)
KI=K"1) 1If an element H'IH of a coset $/H of  is an involution, then
IHH'I=(HH")"! is contained in & Hence, in the case (i) the coset $IH con-
tains just two involutions, namely H 'IH and H-'tIH, in the case (ii) it con-
tains just 2'-! involutions, namely H'K'IH for K’ (K?), and in the case
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(iii), it contains just 2! involutions, namely H*K'IH for K’ € & Let g(2) and
h(2) denote the numbers of involutions in & and ©, respectively. Then the
following equality is obtained;

¢ay) g@)=h@)+dn-1),

where d=2, 2-* and 2' for cases (i), (ii) and (iii), respectively.

2. For a set T of permutations of &, the set of all symbols fixed by %
is denoted by 3(®) and we denote the number of symbols in J&) by «(T).
Let K277 denote the permutation of £ such that a(r)= a(K* %) > a(K* ™)
and let ®, be the subgroup of & generated by K? /. Then the order of &,
is equal to 27. Let &, keep ¢ (1=2) symbols of £, say 1,2, ---, i, unchanged.
It is trivial that Ng(®,) = Cg(z). Put I=I®)=1{1,2, ---,i}. We denote the
factor group Ng(®)/®, by &,. By a theorem of Witt ([15, Theorem 9.47), &,
can be considered as a doubly transitive permutation group on I. The
stabilizer of symbols 1 and 2 in § is the cyclic 2-group £/&,. Thus the
orders of Ng(®,) and N\ Ng(R, are equal to 2%i(i—1) and 2'(i—1), respectively.
Hence there exist n(n—1)/i(i—1) involutions in & each of which is conjugate
to 7.

At first, let us assume that n is odd. Let A*(2) be the number of involu-
tions in § leaving only the symbol 1 fixed. Then from [2.I] and above argu-
ment the following equality is obtained;

2.2) R @Qn-n(n—1)/iGi—1) = (n—1)/G—1D)+h*Q)+d(n—1).

Since ¢ is less than n, it follows from that A*(2)<d and hence n=
i(fi—pB+1), where S=d—h*(2). Since n is odd, i must be odd.

Next let us assume that n is even. Let g*(2) be the number of involu-
tions in & leaving no symbol of £ fixed. Then corresponding to the
following equality is obtained from ((2.1);

2.3 g*@)+n(n—1/i(t—1)=0—-1)/G—D+dn—1).

It is easily proved that g*(2) is a multiple of n—1 (see or [9]. It follows
from that g*2) <d(n—1). Thus we have n=i(8i—pS+1), where f=
d—g*(2)/(n—1). Since n is even, 1 must be even.

3. We prove the theorem by induction on the degree n. Let SL(2, 8)
denote the two-dimensional special linear group over the field GF(8) of eight
elements, and let o be the automorphism of GF(8) of order three such that
o(x)= X? for every element x of GF(8). Then ¢ can be considered in a usual
way an automorphism of SL(2, 8). Let SL*(2, 8) be the splitting extension of
SL(2, 8) by the group (o). Then SL*(2, 8) has doubly transitive permutation
representation on the set of Sylow 3-subgroups and its degree is equal to 28.
The stabilizer of two symbols leaves four Sylow 3-subgroups fixed and every
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involution is conjugate (see [8).

THEOREM 1 (N. Ito, [8]). Let & be a doubly transitive permutation group
on 2 of order 2n(n—1) not containing a regular normal subgroup. Then & is
isomorphic to either PSL(2,5) or SL*(2, 8).

If & contains a regular normal subgroup, then its degree is equal to a
power of a prime number. Thus, by [Theorem 1|, if /=1, then n is equal to
6, 28 or a power of a prime number.

3. The case n is odd.

1. Since n=1(Bi—p+1) is odd, i must be odd. The group &= NgR)/R,
is a doubly transitive permutation group on J(f,) and the stabilizer of sym-
bols 1 and 2 is the subgroup K/8, of &, of order 2-9. By the inductive
hypothesis, (, contains a regular normal subgroup and, in particular; 7 is
equal to a power of an odd prime number, say p™. Let 8 be a Sylow p-
subgroup of Ng(&, of order i=p™ Since PK,/K, is a regular normal sub-
group of &,, B is elementary abelian and normal in Ng(®,). Let ¥ denote
the subgroup $ "\ Ng(®,). Then the order of B is equal to 2'(p™—1).

2. Case n=12=p" It can be proved in the same way as in [9, Case
A7 that there exists no group satisfying the conditions of the theorem in
this case.

3. Case n=p™(Bp™—pB+1) with g>1 and B3, B—1+0 (mod. p). In this
case it can be proved in the same way as in [10, § 2.57 that there is no group
satisfying the conditions of the theorem in this case.

4. Case n=p™Bp™—p+1) with 8>1 and B3=0 (mod. p). Since =3, d
must be greater than 2 and hence (K, I> is dihedral or semi-dihedral.

Consider the cyclic structure of K and it can be seen that n—i=g8p™(p"—1)
is divisible by 2. Set p=2%+1, where ¢(>0) is odd. Since 2'=p=p, B is
not divisible by 2'-* and therefore p™—1 must be divisible by 2**'. Hence m
is even.

At first assume that the order of Ng(®) is divisible by 22, Since Ng(®)/®
is a complete Frobenius group on J(R®), any Sylow subgroup of a complement
DN Ng(R)/® is cyclic or quaternion (ordinary or generalized). Hence there
exists a subgroup & of Ng(®) such that &2 (], K> and &/f is a cyclic group
of order 4. & contains S such that S*=I(®), S induces an automorphism of
® of order 4 and S? and [ induce the same automorphism. But it is easily
seen that, for any automorphism ¢ of & of order 4, K**=<¢K. This is a
contradiction since (K, ') is dihedral or semi-dihedral.

Next assume that the order of Ng(®) is not divisible by 2% Let & be
a Sylow 2-subgroup of Ng(®,) containing <{I, K). Since m is even, the order
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of © is greater than 2'*2. By the assumption of the order of Ng(®), © N Ng(®)
= (K, I) is a Sylow 2-subgroup of Ng(®). Therefore Ng((K, I)) is greater
than Ng(®). Let S (#1) be a permutation of Ng({( K, I))—< K, I>. Since K% is
contained in <K, I)>, we have K%=K’'I, where K’ is a permutation of .
Hence, if (K, I) is dihedral, then (K%)?=1 and the order of K equals 2 and,
if <K, I> is semi-dihedral, then (K%)*=1 and the order of K equals 4. This
is a contradiction.

Thus there exists no group satisfying the conditions of the theorem in
this case.

5. Case n=p™Bp"—B+1) with f—1=0 (mod. p).

At first we shall prove that the order of Cy(B) is equal to 27'p™ ™y, where
J’=j, m>0 and y is a factor of Bp™—(B8—1) and not divisible by p. Assume
that the order of Cg(R) is equal to 27'p™ Let & be a Sylow 2-subgroup of
Ce(B). Every element (1) of P leaves no symbol of 2 fixed. Then & must
leave at least two symbols of 2 fixed. Therefore & is conjugate to a sub-
group of & containing ®,. Since Cg(B) is a direct product of & and P, K/
is normal in Ng(). Since the order of Ng(®’) is a factor of the order of
Ng(®), the order of Ng(®,) is greater than or equal to the order of Ng().
This contradicts the order of Ng(B). Hence the order of Cg(B) is equal to
27p™y, where y is odd and y>1. Let ¢ (#2,p) be a prime factor of the
order of Cg(B) and let Q be a permutation of Cgx(B) of order ¢. If ¢ is a
factor of n—1, then Q leaves just one symbol of 2 fixed and hence @ cannot
be contained in Cg(B). Thus ¢ is a factor of n and so is y. Next assume
that y is not divisible by p. Let 2’ be a normal p-complement in Cg(R).
Since &’ is cyclic, A has a normal 2-complement ¥). Since ¥)’ is a normal
Hall subgroup of A/, 9’ is normal even in Ng(B). Let Y’ (+1) be a permuta-
tion of ¥)’. Then Y’ does not leave any symbol of 2 fixed. If B\ Gg(Y")
contains an involution z’/, then ¢’ is conjugate to r under & and, since Cg(z’)
contains Y’, the order of Cg(z’) is divisible by the order of Y’. But since
Cg(zr’) is conjugate to Cg(r) = Ng(R®,) and the order of Ng(®,) and y are rela-
tively prime, the order of B\ Ceg(Y’) is odd. Let g be a prime factor of the
order of BN\ Cey(Y’) and let Q be a permutation of B\ Ce(Y’) of order gq.
Then () leaves at least one symbol of £ fixed and hence it leaves at least
two symbols of £ fixed, which is a contradiction. Thus B\ Ce(Y") = ).
Hence we have the following relation;

y—1=[¥|-1=B],
ie, y=2(pm—1)+1=2pm—(2—1).

On the other hand y is a factor of gp™'—(f—1)p~*. This is a contradiction.
Hence y is divisible by p.
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Let us assume p™ < 2. Let %A be a normal 2-complement of CgP. Then
A is normal in Ng(B). Let P’ be a Sylow p-subgroup of A. By the Frattini
argument Ng(PB) =ANsB’ N Ne(PB)). Since the order of ¥ is odd, we may
assume that & is a subgroup of Ng(B) N\ Neg(B). Thus there exists a homo-
morphism 7 of & into Aut®P’/B. If ¢ is contained in ker z, then t acts
trivially on,EB’/S,B and B. Therefore 7 acts also trivially on $’ and Cgr con-
tains P’ ([4, Theorem 5.3.2]). Hence we have ker z=1 and AutP’/P contains
a cyclic subgroup of order 2. But the order (=p™) of P’/P is less than 2.
This is a contradiction. If m/<m, then p™ < 2. Thus we may assume
p™ >2. Then m’' > m.

Assume y > 1. Since % is solvable, there exists a subgroup 9 of 9 of
order y. Now Y is a factor of 3—(8—1)p™™ By the Frattini argument it
can be assumed that & is a subgroup of Ng®). Thus there exists a homo-
morphism n/ of & into Aut¥). Since the orders of Cg(z) and ) are relatively
prime, any elements (1) of 9 are not fixed by n/(z). Therefore we have
y>2. This is impossible and hence y=1. P’ is normal in Ng(P). Let P’
(1) be an element of P’. It can be seen that B\ Ce(P’) is a subgroup of
. Hence we have the following relation;

prrm ] = x(pm—1), x> 1.

From this it is easily seen that m’ is divisible by m.

If gp™—pB+1 is divisible by p°™ (9 > 1) exactly, then f—1 must be equal
to pPmz+p@ M o £p™ (2> 1) or pOPT4 o 4p™  If B—1 is equal to pmz+-
p@-vm L Lp™ (z>1), then 2> p°™ (=p™). Therefore we may assume
B=pC V"4 oo fpm 1= (p"™—1)/(p™—1) and m’'=0m. P’ is a Sylow p-sub-
group of .

Next we shall prove that m=1 and K has only 2-cycles in its cyclic
decomposition, i.e., Ng(®) = Cg(z) and "\ R¢=1 or & for every element G of
. From it can be seen that the number of involutions with the cyclic
structures (1, 2) --- which are conjugate to 7 is equal to B. If (K, I) is
dihedral, then every involution in I/ is conjugate to [ or K and if (K, I)
is semi-dihedral, then every involution in I® is conjugate to I. Since all
involutions with the cyclic structures (1, 2) --- are contained in IR, 8 is equal
to d/2 or d. Thus p™+1 is a power of two and hence m=1. Therefore &,
is a complete Frobenius group, J(zr)=J(K), Ng(® = Cg(z) and Cgx(®) contains
PB. Therefore the number of elements which leave only the symbol 1 fixed
is equal to 2/(n—1)—1—(2'—1)(Bi+1) and the number of elements which leave
i symbols of 2 fixed is equal to (2'—1)(fi—p+1)(Bi+1). Let G be an element
of & of order 2"p(l’ =1). Then a(G)=0 and a(G?)=1i. Therefore the number
of cyclic Subgfoups of & of order 2'p is equal to (Bi—p+1)(Bi+1) and those
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groups are independent. Thus the number of elements of order 2'p(l’ = 1)
which leave no symbol of £ fixed is equal to (2'—1)(—DL)(Bi—p+1D(Bi+D).
Therefore we have

18] — (1@ (n—1)—1—@—1)(Bi-+ D)+ —1)(Bi— B+ D(Bi+1)
+@—1)—1)(i— D+ =n—1.

Hence 3/ is a regular normal subgroup of .
Thus there exists no group satisfying the conditions of the theorem in

this case.

4. The case n is even and Ng(R,)/R, contains a regular normal subgroup.

1. Since n=1i(Bi—p3+1) is even, ¢ must be even. ;= Ng&,)/K, is a
doubly transitive permutation group on J(®,) containing a regular normal
subgroup. In particular, ¢ is equal to a power of 2, say 2™

Let © be the normal 2-subgroup of Ng(®,) containing &, such that &/f,
is a regular normal subgroup of &, = Ng(f®,)/8,. Since the order of H\Ng(R,)
is equal to 2'(2™—1), & is a Sylow 2-subgroup of H "\ Ng&®,). Let B be a
normal 2-complement of "\ Ng(®,). The group BS/K, is a complete Fro-
benius group on J(®,) with kernel &/®, and complement BR,/K, (= V). Since
Ce(®)NBS is normal in VS, Ce(R) NBS contains & or is contained in &
([13, 12.6.8]). If @ is greater than Cg(®,) N\BS, since the index of € in VS
must be equal to a power of two, we have m=1. Hence & is a Zassenhaus
group. Thus we have that ¢ is isomorphic to either PGL(2, 2"+1) or
PSL(2, 2"*+1), where 2'4+1 and 2"!'41 are powers of prime numbers for
PGL(2, 22+1) and PSL(2, 2+'41), respectively (1], [8] and [18]). Thus
it will be assumed that & is contained in Cg(®,) VS and m is greater than
one.

Since the index of B& N Ce(®,) in BS is odd and the order of Autf, is
equal to 2771 BS N Ceg(R,) is equal to BS. Hence Cx(],) is equal to Ng(®))
since Ng(&,) = KBS,

PROPOSITION 4.1. Let & be as in Theorem and let & and &, as above.
Assume that &, contains a regular normal subgroup and Ng(®) 1is equal to
Ceg(R). Let © be as above. Then & contains an itnvolution (7).

Proor. If &, is equal to &, then & is a normal Sylow 2-subgroup of
Ng(®) and hence it contains /. Therefore it can be assumed that &, is less
than & and /& &. Assume that ¢ is the unique involution in &. Since &/{,
is an elementary abelian group of order 2™ and m=2, © is a quaternion
group (ordinary or generalized) and hence m =2 (and i=4). Thus we have
a(K)= - =aE * 7" =2 < a(K? ) =4. Since & is a Sylow 2-subgroup of
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Ng(®), it may be assumed that I is contained in the coset K* /~'& and hence
we have IK? 7 '=S, where S is an element (& K,) of & Thus (K 7'y
= StK-*7"1 Since Ng(R®,) = Cg(®), we have K?/=S*K27 and S*= K?* 7,
At first assume that S*=1. Then j=1 and (K* *)!=K"?**c=K?"* This
implies d=2. Hence n=16 or 28. Since n—i and i—a(K) are divisible by 2!
and 2'°!, respectively, the order of & is equal to four. It can easily be seen
that there exists no group satisfying the conditions of Proposition in these
cases. Next assume that S*#1 (i.e, j#1). Then (K*» 7 ) =K»7" or
K?777'z and hence d=2. This implies n=16 or 28. Since n—i is divisible
by 2‘ and j>1, we have n=28, [=3 and j=2. By & must be isomor-
phic to PSU(3, 3%. But a Sylow 2-subgroup of PSU(S, 3% is isomorphic to
Z,~Z, and it does not contain a quaternion group of order 16. This is a
contradiction. Thus the proof is completed.

COROLLARY 4.2. Let &, © be as wn Proposition 4.1. If d is equal to two,
then & contains an involution ¢’ such that it is conjugate to <.

ProOF. By Proposition, © contains an involution 5(s z) with the cyclic
structure (1 a) ---, where a is a symbol of J(&;). Then nz has also the cyclic
structure (1 a@)---. Hence since ® is doubly transitive, there exist two involu-
tions with the cyclic structure (1, b), where b is any symbol of £, such that
those are conjugate to » or »z. If r is neither conjugate to » nor yr, then
g*(2) is greater than (n—1). This contradicts the inequality g*(2) < d(n—1).

By the above proposition, since Ng(R®,)/&, is doubly transitive, we may
assume that [ is contained in &. Since BS/K, is complete Frobenius group,
all elements (1) of &/, are conjugate under BR,/R,. Thus every permuta-
tion (&, of © can be represented in the form V- IVK’, where V and K’
are permutations of B and &,, respectively.

2. Case ®,=8. In this case & is a normal Sylow 2Z-subgroup of Ng(R).
Let S be an element of order 2! in ©. Since S? is contained in &, S¥**' is
equal to 7. Assume that [/ is conjugate to z. Since Cg(®) and Cg(/) are
conjugate and K is contained in Cg(/), K* ' must be equal to /. This is a
contradiction.

Thus there exists no group satisfying the conditions of the theorem in
this case.

3. Case 28, 2{r). Since &, is greater than {(z), a group (K, I> is
neither dihedral nor semi-dihedral and therefore d is equal to two. By Corol-
lary 4.2 it may be assumed that I is conjugate to .

LEMMA 4.3. If R, is greater than {t) and less than R, then the order of
R, is equal to four and I is not contained in Cg(®).

PrROOF. At first assume that the order of &, is greater than four. Let
&’ be a Sylow 2-subgroup of Ng(®,). Let S be an element of &’ of order
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2!-1 The index of © in &’ is equal to 2:-/. Therefore S?77 is contained in
& and, since ©/8, is elementary abelian, S**"7*' is contained in ®,. Since j
is greater than 2, S?*7*! is not identity element. Thus we have that S%7% is
equal to . Since IKI is equal to K or Kz, I is contained in Cg(K®) and hence
K? is contained in Cg(l). Since Ng(f®, = Cg(z) is conjugate to Cg(l), we have
that (K%)?*=r must be equal to I. This is a contradiction.

Next assume that I is contained in Cg®. Let & be as above. Let S be
an element of &’ of order 2. Then S%*7/ is contained in &, S¥ 7' is con-
tained in K, and finally S®' is equal to 7. Since K is contained in Cg(I)
and Cg() is conjugate to Cg(z), K* ' must be equal to I. This is a contra-
diction. Thus the proof is completed.

LEMMA 44. Let & be as in Lemma 4.C. Then the order of R is equal to 8.

PrROOF. Assume that the order of § is greater than 8. Then (K I)
is abelian since d=2 and [>3. Let 5 be an involution of Ng(( K?'"*)). Then
{K?»"*, »> must be abelian, for if it is not abelian, then {K?*, I> is dihedral
and hence d = 2.

At first we shall prove that a coset K* *& does not contain an element
of order 4. By Lemma 4.3 the order of &, is equal to 4. Let K?*S be an
element of order 4 in K* °S, where S is an element of &. Then S is not
contained in Cg(K*™®). Set S=IVK,, where K, and V are elements of & and
B, respectively. Then K27’ must be of order 4. Thus it may be assumed
that S is equal to IV not contained in Cg(K?™*), where V is an element of
B. (K*7°S)? is an element of & and therefore is equal to 7, I¥ or ¥z, where
W is an element of B. If (K*°S)>=17, then (K* %)%= (K"?"%z and hence
Se Ng({ K*™*Y). Thus (K*7°, S> must be abelian. This is a contradiction.
If (K*°S)*=1I" or [%r, then (K °)S=K2°IW or K-* *IWr, respectively.
Hence

K22 — (ng—z)s — (K_zl—3IW)2
and
(K_zl—3)IW: Kel-tgel=s

Thus /¥ is contained in Ng({ K2*7*}) and therefore (I%, K*~*> must be abelian.
Hence K2 *K**= K-*""*. Thus the order of ® must be equal to [—1. This
is a contradiction.

Next let S be an element of order 2-! in ®&, and let S be the image of
S by the natural homomorphism of & onto §&/&. If the order of S is equal
to 2:-2, then S?*°° is contained in a coset K?"®S. This contradicts the first
part in the proof. Hence we have that the order of S is less than 2-? and
hence S?*"* is contained in S. Therefore S*7* is equal to r. Since Cg(I) is
conjugate to Ng(®,) and K? is contained in Cg(/), K?"'=1. This is a contra-
diction. Thus the proof is completed.
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By two lemmas the orders of & and &, are equal to 8 and 4, respectively.
Clearly Ng(®)/® is a complete Frobenius group on J(®). Apply the argument
in §2 to Ng®R,)/®, and we obtain that «a(f) must be a power of two and
i=a(®)?® Thus a Frobenius kernel of Ng@®)/® is a Sylow 2-subgroup of
Ng(®)/R. Since, by I is not contained in Cg4(K), a Sylow 2-sub-
group of Ng(K) is greater than Cg®) ([13, 12.6.87). Since the order of
Ng(®)/Cs(®) is a power of two, a(A)—1 must be equal to one and hence
a(K)=2. Thus we have i=4 and n=16 or 28. Since n—: must be divisible
by the order of ®, we have n=28. & satisfies the conditions of the theorem
in and hence ¢ is isomorphic to PSU(S, 3?).

4. Case ®,=<{7). We shall prove that d=2 or the order of & is equal
to four, <K, I) is dihedral and i=4. In this case every permutation (& &,)
of © can be represented uniquely in the form /¥ or [¥z, where V is any
permutation of B. Thus every permutation (#1) of & is of order 2 and
hence © is elementary abelian. Set ®,=<(K? 7>, where a(r)> a(K* %) =
o= (K2 > a7, Set i = a(K,). Then we may assume J(R,) = {1, 2,
-+, 1}, Apply the argument in § 2 to Ng(®,)/8®,, and we have i1 =1/(8'1'—'+1).
Hence ¢/ is equal to a power of two, say 2™. By the inductive hypothesis
Ng(®,)/8, contains a regular normal subgroup. Let &, be a normal 2-subgroup
of Ng(®,) containing &, such that &,/®, is a regular normal subgroup of
Ng(®,)/®, and let B, be a 2-complement of H "\ Ng(R®,). Then B,S,/K, is a
complete Frobenius group on J(®,). Thus Cg(R,) NB,S, contains &, or is less
than &,.

If Ce(®)NB,S, is less than &, then [ is not contained in Cg(®,) and,
since the order of B,8,/Cg(R,) MBS, is a power of two, m’ must be equal
to one. Thus /=2 and ®,=8&. On the one hand, it is trivial that :—2 must
be divisible by 2-*. On the other hand, i is of a form 2(28’—p’+1) where
B’ is less than or equal to 2-* and hence 3’ is odd. Therefore we have
[=2, =1 and 1=4.

If Cy(®,) N\B,S, contains &,, then K?=K or K, and hence d=2.

5. Case |[R]|=4, & =(z) and K=K Let & and &, be as in §4.4.
Since &, =8, &,/ is a regular normal subgroup of Ng(®)/® and Ng®)=8+IK.
Since (K, I)> is dihedral, involutions with the cyclic structure (12) --- are I,
IK, IK? and IK?® and I and IK are conjugate to IK? and IK® respectively.
Therefore g*(2)=0 or 2(n—1).

If g*(2)=0, then n=4(4-4—-3)=4.13. Let B,, be a Sylow 13-subgroup of
&. Since every involution leaves four symbols of £ fixed, the order of Cg(R.y)
is equal to 13. Thus the index of Ng($,,) in & is a multiple of 17.-4. This
contradicts the Sylow’s theorem.

If g*(2)=2(n—1), then n=4(2-4—1)=4-7. Let 5 be an involution leaving
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no symbol of £ fixed. Then, since g*(2)=2(n—1), Gg7 must be equal to 2n.
Let B, be a Sylow 7-subgroup of & contained in Cgy. Using Sylow’s theorem
$, is normal in Cgy. Hence the order of Ng(,) is a multiple of 8-7. This
contradicts the Sylow’s theorem.

Thus there exists no group satisfying the conditions of the theorem in
this case.

6. Case ® =(r), d=2 and n=1% In this case a normal subgroup & of
Ng(®,)) is an elementary abelian 2-group. We shall prove several lemmas.

LEMMA 4.5. & contains every involution of Ng(&)).

PROOF. Set & =®8S. Then &’ be a Sylow 2-subgroup of Ng(®). If a
coset A% %S does not contain an involution, then the proof is complete. Let
K?7%S be an involution in a coset K*°S, where S is a permutation of &.
Then (K**)S= K*"* Therefore, since S is an involution, d must be greater
than two. This is a contradiction.

LEMMA 4.6. Let G be an element of & Then & N"&=1 or &.

ProoOF. Let ¢/ be an involution of &% ~&. If 7’/ is conjugate to z, then,
since Cg(z’) contains ©&¢ and &, &¢ coincide with © by Lemma 4.5, Thus an
involution of © which is conjugate to z in @ is conjugate to ¢ in Ng(&). By
Corollary 4.2, I or Ir is conjugate to z in G. On the other hand.l or Iz is
not conjugate to ¢ in @&, since g*(2)=n—1. Hence the number of involutions
of © each of which is conjugate to z is equal to : and the number of involu-
tions of & each of which leaves no symbol of 2 fixed is equal to i—1. Hence
the order of Ng(®) is equal to 2%*(i—1) and the following relation is obtained ;

n—1=g*2)=(—D[G: Neg(&)J=n—1.

Thus & "&=1 or &,

LEMMA 4.7. Let 5 and { be different involutions. If a(yp)=a()=0, then
a(nl)=0.

PrRoOF. Let a be a symbol of JI(»{). Let (a, b)--- and (b, ¢’) --- be the
cyclic structure of » and {, respectively. Then a=c¢’. Since g*2)=n—1,
there exists just one involution leaving no symbol of £ fixed with the cyclic
structure (a, b) --- and hence y ={_.

COROLLARY 4.8. A set S, consisting of all involutions of & each of which
is not conjugate to v and identity element is a characteristic subgroup of .
In particular Ng(S,) = Ng(©).

By there exists just i+1 subgroups &,, &,, .-+, ©,,, which
are conjugate in & and &,"\&S, =1 for s+ 1.

LEMMA 4.9. Let ¢’ be an wmvolution of Ng(&). If ¢’ is conjugate to z, then
7/ 1s contained in .

PROOF. Set z9=1’. Since the order of & is even, it is trivial that there
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exists an element { of & with {r/={. &€ is normal in Cg(z’) and it contains
¢ and t’/ by Thus & "\ &¢ contains ¢ and hence & =&°¢ by
4.6. Finally 7/ is an element of &.

LEMMA 4.10. Let n be an involution which is not contained in ©. If a(n)
=0, then a(tn)=0 and the order of t(y) is equal to 2" with r > 1.

PrOOF. Assume a(rn)#0. Let a be a symbol of J(zx). It is trivial that
a is not a symbol of J(z). Thus let (a, b)--- and (b, ¢’) --- be the cyclic struc-
tures of ¢ and 7, respectively. Then a=c¢’ and zyr=(q, b)---. Since g*(2)
=n—1, there exists just one involution with the cyclic structure (q, b) --- such
that it leaves no symbol of £ fixed. Thus we have rpc=7. Therefore 7
must be contained in & and hence a(r7)=0. Next assume that the order of
77 is not equal to 2. Let p be an odd prime factor of the order of r» and
let pg be the order of z7. Then the order of (z%)? is equal to p and hence
a{(zn)y)=1. Therefore a(ry)=1. Thus the order of r7 is equal to a power of
two.

LeEMMA 4.11. Let 5 be an involution which is not conjugate to v. Then x
is contained in Ng(©).

ProoOF. Let us assume that 7 is not contained in €. By Lemma 4.10,
the order of ¢y is equal to 2" with > 1. Thus t(z7)* =17. Set y.,(s)=c(zn?*

:rf'f'.f . Then y.,(r—1) is contained in Cg(r) and hence by Lemma 4.5, it is
contained in &. Since y,,(r—1)=177%1""?, y_,(r—2) is contained in Ng(®) by
Lemma 4.6. By Lemma 4.9 it is contained in &. Continuing in the similar
way, it can be shown that y.,(1) =77 is contained in S. By Lemma 4.6, 7 is
contained in Ng(®).

By Lemma 4.11, Ng@©)= Ng(©,) contains &, (2 <t <i+1). Similarly Ng(&,)
contains &,. Therefore &,&,; is the direct product &, x&,. In the similar
way it can be proved that every element of ©, is commutative with any ele-
ment of &, (1<t V<141, Thus =6, ... U&,,, is a group. Hence N
is a regular normal subgroup of &.

Thus there exists no group satisfying the conditions of the theorem in
this case.

7. Case ® =<(7), d=2 and n=1(2i—1). In this case g*(2)=0. Hence
every involution is conjugate to r. The order of & is equal to 2Mm™(2m*+!—1)
@2me - )H(2m—1).

Set © =R&. Since &'/& is a cyclic Sylow 2-subgroup of Ng(©)/S, Ng(©)/S
is solvable and hence Ng(®) is solvable. We shall prove that the order of
Ng(©) is equal to 2M™(2™—1)(2™+*'—1). Remark that Lemma 4.5 is also true
for this case. Let z/=17% be an element of &, where G is an element of .
The same argument as in the proof of Lemma 4.6 shows that G is contained
in Ng(©). Thus every element (+1) of © is conjugate to ¢ under Ng®).



274 H. KiMUrRA

Hence the index of Cg(r) in Ng(®) is equal to 2™+ —1.

Let B be a normal 2-complement of "\ Ng(®,). Since Ng(®) is solvable,
there exists a Hall subgroup A of order 2™—1)(2™*'—1) of Ng(&) containing
B. Since SB/R, is a complete Frobenius group of degree 2™, all Sylow sub-
groups of B are cyclic. Let r be the least prime factor of the order of .
Let R be a Sylow 7-subgroup of ®B. Then % is cyclic and leaves only the
symbol 1 fixed. Hence Ng(®) is contained in . Let &’ be a Sylow Z2-sub-
group of Cg(R). Since ® is a Sylow 2-subgroup of  and Cg(%) is a subgroup
of , & is conjugate to a subgroup of & Thus it may be assumed that &’
is a subgroup of §&. Using Sylow’s theorem, we obtain that Ng(%) = Ce(R)(NVe(R)
N Ng(®")) = Ce(R)(Ng(B) N Ne(R))) = Co()(Ne(R) N BR) since &, is a subgroup
of ®'. Let CVK’ be an element of Ng®R) of odd order u, where C, V and K’
are elements of Cy(R), B and K, respectively. Then (CVE)*= C'(VK’)", where
C’ is an element of Cg(R), and (VK)*=C""'. Set s=|(VK)"|/|K'|, where
[(VK’)*| and |K’| are orders of (VK’)* and K’, respectively. Then s is an
odd integer and (VK’)* is contained in a Sylow 2-subgroup of Cg(®) and
hence so is VK’. In particular CVK’ is an element of Cg(R). Hence we ob-
tain that Ng(R) N\ A = Ce(R)(NVe(R) N BR) N A= Ce(R)(Ng(R) N B)NNA = Ce(R)NN.
By the splitting theorem of Burnside % has the normal 7-complement. Con-
tinuing in the similar way, it can be shown that % has the normal subgroup
B of order 2™*'—1, which is a complement of B. Every permutation (= 1)
of B leaves no symbol of £ fixed and hence it is not commutative with any
permutation (1) of B. Let B be a permutation of B of a prime order, say
g. Then all the permutations are conjugate to either B or B! under 9.
This implies that B is an elementary abelian ¢g-group of order ¢°. Then it
follows that 2™ —1=4¢* Hence s=1 and B is cyclic of order ¢. % is also
cyclic.

Let the order of Ng(®B) be equal to % x{(g—1)q. If the order of Cyx(B) is
even, then there exists an involution z/ in Cg(B) which is conjugate to r and
such that Cy(z’) contains B. But the orders of Cg(z) and B are relatively prime.
Hence, since Cg(z’) is conjugate to Cg(z), the order of Cg(B) is odd. Therefore,
since the order of the automorphism group of B is equal to ¢—1=2"*"1-2,
the order of Ng(B) is not divisible by four.

Using Sylow’s theorem we obtain the following congruence;

21 g+ 1)(g+2)/x=1 (mod. q) .

This implies that 2-(g+1)(¢+2) = x(vg-+1), where y is positive since x is less
than 2°-'(g+1)(¢+2). Then we have that x=z¢-+2,, where 22"'=2z=0. It can
be proved that z must be equal to 0 or 2¢-%, If z=0, then the order of Ng(®®)

is equal to 2g 1 (¢—1) and hence, since [ > 1, it is divisible by four. If z=2!"1,
2
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then the order of Ng®B) is equal to 2'-*(g-+2) % glg—1). Let Y be a permuta-

tion (# 1) of odd prime order dividing (q+2)—% (¢—1) which is contained in

Ng(B). Since Y leaves just one symbol of £ fixed, Y is not contained in
Ce(B). Hence we obtain the following ;

q—1=|Ng@®)/Ce(B)| > é (¢+2)(q—1).

But this is impossible. .

Thus there exists no group satisfying the conditions of the theorem in
this case.

5. The case n is even and Ng(®)/®, does not contain a
regular normal subgroup.

1. Since Ng(®)/® is a complete Frobenius group and hence it contains a
regular normal subgroup, &, is a proper subgroup of .

2. Case ®,=(r) and 2'<8. By inductive hypothesis, if 2'=4, then
&, = Ng(®,)/R, is isomorphic to either PSL(2, 5) or SL*(2, 8) and, if 2'=8, then
®, is isomorphic either PGL(2,5) or PSL(2,9).

At first assume that d=2. If 22=28, then i=6 or 10. Hence n—i=pi(i—1)
(B=1 or 2) is not divisible by 8. But n—: must be divisible by the order of
®. This is a contradiction. If &, is isomorphic to PSL(2, 5), then i=6 and,
since n—i must be divisible by 4, n is equal to 6(2-6—1)=06-11. Let B,, be
a Sylow 11-subgroup of &. It is trivial that, since g*(2)=0 and the order of
Ng(®,) is equal to 6-5-4, the order of Cg($,,) is odd. Since the order of Cg(,,)
and n—1 are relatively prime, the order of Cg(B,,) is equal to 11 or 33. The
index of Cg(B,,) in Ng(®,) is a factor of 10. Thus this contradicts the
Sylow’s theorem.

If @, is isomorphic to SL*(2, 8), then i=28. Since every involution of ,
leaves just four symbols of J(®,), we obtain that a(/)+0. Therefore, since
every involution of & is conjugate to a permutation with the cyclic structure
(12) ---, we have that g*(2)=0 and hence n =1:(2¢t—1). Thus the order of § is
equal to 4-3*-19. Since ® is cyclic,  has a normal 2-complement {Q of order
3%.19. Let B,, be Sylow 19-subgroup of Q. By Sylow’s theorem PB,, is normal
in Q. PB,, is normal even in . Since the order of the automorphism group
of B,, is equal to 18, - must be contained in Cy($,,). This is a contradiction.

Next we shall consider the case d+ 2. If 2'=4, then (K, I) is dihedral.
If &, is isomorphic to PSL(2,5), then i=6 and, since n—i=18(i—1) must be
divisible by 4, =2 or 4. Therefore (K, I) is a Sylow 2-subgroup of &. By
[4, Theorem 7.7.3] Cg(z) has a normal 2-complement and hence Cg(z) is solvable.
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Thus &, = Cg(r)/{z)> must be solvable and this is a contradiction. If &,
is isomorphic to SL*(2, 8), then, since for every involution » of SL*(2, 8)a(x)
=4, a(®) =4. Hence the order of Ng@®)/® is equal to 4-3. Since [ is not
contained in Cg(®) and Ng(®)/® is a complete Frobenius group, Cg(®) is con-
tained in a Sylow 2-subgroup. Thus the order of Ng(R)/Cs(®) is divisible by
3. This is a contradiction.

If 22=8, then 1=6 or 10. Since n—i= Fi(i—1) must be divisible by 8, j3
is equal to 4 or 8. If (K, I) is dihedral, then (K, I) is a Sylow 2-subgroup
of @ Thus Cg(z) is solvable and also Cg(7)/{7)> is solvable. Hence (K, I)
must be semi-dihedral and d=4. Since g*@2)=0 and &, is a Zassenhaus
group, all involutions are conjugate and a permutation leaving at least three
symbols of £ fixed is an involution. Thus @& satisfies the conditions in [12]
Hence by and & is isomorphic to either PSU(3, 5°) or one of the
groups of Ree type (see [16]). Since a Sylow 2-subgroup of a group of Ree
type is elementary abelian of order 8, G is isomorphic to PSU(3, 5%).

3. Case ® ={(r)> and 2!>8. &, is isomorphic to one of the groups
PSU@, 3%, PSUQ, 5%, PGL(2, x) and PSL(2, x). Then i is not divisible by 8.
Since n—i= Bi(i—1) is divisible by 2!, § is divisible by 4. Thus we have that
d>?2 and hence (K, I) is dihedral or semi-dihedral and in particular (K, I>/{z)
is dihedral. Therefore &, is isomorphic to either PGL(Z, *) or PSL(2, %) and ¢
is divisible by 2 exactly. Thus we have that §=2""* or 2. Thus (K, I) is
a Sylow 2-subgroup of &. If (K, I)> is dihedral, then Cg(z) is solvable and
hence Cg(r)/{7 ) is solvable. If (K, I) is semi-dihedral, then 8=2""! and
£2%2)=0. Again by [6] and [127], G must be isomorphic to either PSU(3, 5%
or one of the groups of Ree type. This is a contradiction.

Thus there exists no group satisfying the conditions of the theorem in
this case.

4. Case ®,>{zr). Since ®, is a proper subgroup of &, the order of R is
greater than 4. At first assume that d=2. By inductive hypothesis i is
not divisible by 8. Since n—i= fi(i—1) is divisible by 2!, =2, 2?=8 and 1
is divisible by 4. Thus we obtain that &, is isomorphic to SL*(2, 8 and
n=2%7-5-11. If we consider a Sylow 19-subgroup of 9, likewise in 5.2, we
can obtain a contradiction.

Next we assume that d>2. Then (K, I)/® is dihedral. Hence &, is
isomorphic to either PGL(2, *) or PSL(2Z, %). Since n—i is divisible by 2!, we
have that =2' or 2'-*. Therefore (K, I) is a Sylow 2-subgroup of &. If
(K, Iy is dihedral, then Cg(z) is solvable and hence Cg(7)/®; must be solvable.
Thus (K, I) is semi-dihedral. Set &,=Cgs(z)/{t> (= Ng(®)/{z)). Then,
since (K, I)/®, is a Sylow 2-subgroup of &, and a dihedral group. Let
n=K?*"*(t) be the involution in the center of (K, I>/{z). It can be easily
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proved that 7 is contained in the center of &, Thus, by [4, Theorem 7.7.3],
&, has a normal 2-complement and hence &, is solvable. Hence &, must be
solvable. This is a contradiction.
Thus there exists no group satisfying the conditions of the theorem in
this case.
Thus is proved.
Hokkaido University
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