On some doubly transitive permutation groups of degree n and order $2^{l}(n-1)n$

By Hiroshi KIMURA¹⁾

(Received Jan. 27, 1969) (Revised Nov. 22, 1969)

1. Introduction.

Doubly transitive permutation groups of degree n and order 2(n-1)n were determined by N. Ito ([9]). Some doubly transitive permutation groups of degree n and order 4(n-1)n were studied in [10].

The object of this paper is to prove the following result.

THEOREM. Let Ω be the set of symbols $1, 2, \dots, n$. Let \mathfrak{G} be a doubly transitive group on Ω of order $2^{l}(n-1)n$ (l > 1) not containing a regular normal subgroup and let \mathfrak{R} be the stabilizer of symbols 1 and 2. Assume that \mathfrak{R} is cyclic. Then \mathfrak{G} is isomorphic to one of the groups PGL(2, *), PSL(2, *), $PSU(3, 3^{2})$ and $PSU(3, 5^{2})$.

We use the standard notation. $C_{\mathfrak{X}}(\mathfrak{T})$ denotes the centralizer of a subset \mathfrak{T} in a group \mathfrak{X} and $N_{\mathfrak{X}}(\mathfrak{T})$ stands for the normalizer of \mathfrak{T} in \mathfrak{X} . $\langle S, T, \cdots \rangle$ denotes the subgroup of \mathfrak{X} generated by elements S, T, \cdots of \mathfrak{X} .

2. On the degree of the permutation group (§.

1. Let \mathfrak{H} be the stabilizer of the symbol 1. \mathfrak{R} is of order 2^{i} and it is generated by a permutation K. Let us denote the unique involution $K^{2^{l-1}}$ of \mathfrak{R} by τ . Since \mathfrak{G} is doubly transitive on \mathfrak{Q} it contains an involution I with the cyclic structure (1 2).... Then we have the following decomposition of \mathfrak{G} ;

$$\mathfrak{G} = \mathfrak{H} + \mathfrak{H} \mathfrak{H}$$

Since I is contained in $N_{\mathfrak{G}}(\mathfrak{R})$, it induces an automorphism of \mathfrak{R} and (i) $K^{I} = K$ or $K\tau$, (ii) $K^{I} = K^{-1}\tau$ or (iii) $K^{I} = K^{-1}$. (For the case l = 2, (i) $K^{I} = K$ or (iii) $K^{I} = K^{-1}$.) If an element H'IH of a coset $\mathfrak{H}IH$ of \mathfrak{H} is an involution, then $IHH'I = (HH')^{-1}$ is contained in \mathfrak{R} . Hence, in the case (i) the coset $\mathfrak{H}IH$ contains just two involutions, namely $H^{-1}IH$ and $H^{-1}\tau IH$, in the case (ii) it contains just 2^{l-1} involutions, namely $H^{-1}K'IH$ for $K' \in \langle K^2 \rangle$, and in the case

¹⁾ This work was supported by The Sakkokai Foundation.

(iii), it contains just 2^l involutions, namely $H^{-1}K'IH$ for $K' \in \Re$. Let g(2) and h(2) denote the numbers of involutions in \mathfrak{G} and \mathfrak{H} , respectively. Then the following equality is obtained;

(2.1)
$$g(2) = h(2) + d(n-1)$$
,

where d=2, 2^{l-1} and 2^{l} for cases (i), (ii) and (iii), respectively.

2. For a set \mathfrak{T} of permutations of \mathfrak{G} , the set of all symbols fixed by \mathfrak{T} is denoted by $\mathfrak{J}(\mathfrak{T})$ and we denote the number of symbols in $\mathfrak{J}(\mathfrak{T})$ by $\alpha(T)$. Let $K^{2^{l-j}}$ denote the permutation of \mathfrak{R} such that $\alpha(\tau) = \alpha(K^{2^{l-j}}) > \alpha(K^{2^{l-j-1}})$ and let \mathfrak{R}_1 be the subgroup of \mathfrak{R} generated by $K^{2^{l-j}}$. Then the order of \mathfrak{R}_1 is equal to 2^j . Let \mathfrak{R}_1 keep i $(i \geq 2)$ symbols of \mathcal{Q} , say 1, 2, \cdots , i, unchanged. It is trivial that $N_{\mathfrak{G}}(\mathfrak{R}_1) = C_{\mathfrak{G}}(\tau)$. Put $\mathfrak{Z} = \mathfrak{Z}(\mathfrak{R}_1) = \{1, 2, \cdots, i\}$. We denote the factor group $N_{\mathfrak{G}}(\mathfrak{R}_1)/\mathfrak{R}_1$ by \mathfrak{G}_1 . By a theorem of Witt ([15, Theorem 9.4]), \mathfrak{G}_1 can be considered as a doubly transitive permutation group on \mathfrak{Z} . Thus the orders of symbols 1 and 2 in \mathfrak{Z} is the cyclic 2-group $\mathfrak{R}/\mathfrak{R}_1$. Thus the orders of $N_{\mathfrak{G}}(\mathfrak{R}_1)$ and $\mathfrak{H} \cap N_{\mathfrak{G}}(\mathfrak{R}_1)$ are equal to $2^l i(i-1)$ and $2^l(i-1)$, respectively. Hence there exist n(n-1)/i(i-1) involutions in \mathfrak{G} each of which is conjugate to τ .

At first, let us assume that n is odd. Let $h^*(2)$ be the number of involutions in \mathfrak{H} leaving only the symbol 1 fixed. Then from (2.1) and above argument the following equality is obtained;

$$(2.2) h^{*}(2)n + n(n-1)/i(i-1) = (n-1)/(i-1) + h^{*}(2) + d(n-1)$$

Since *i* is less than *n*, it follows from (2.2) that $h^*(2) < d$ and hence $n = i(\beta i - \beta + 1)$, where $\beta = d - h^*(2)$. Since *n* is odd, *i* must be odd.

Next let us assume that n is even. Let $g^*(2)$ be the number of involutions in \mathfrak{G} leaving no symbol of Ω fixed. Then corresponding to (2.2) the following equality is obtained from (2.1);

(2.3)
$$g^{*}(2) + n(n-1)/i(i-1) = (n-1)/(i-1) + d(n-1).$$

It is easily proved that $g^{*}(2)$ is a multiple of n-1 (see [8] or [9]). It follows from (2.3) that $g^{*}(2) < d(n-1)$. Thus we have $n = i(\beta i - \beta + 1)$, where $\beta = d-g^{*}(2)/(n-1)$. Since n is even, i must be even.

3. We prove the theorem by induction on the degree *n*. Let SL(2, 8) denote the two-dimensional special linear group over the field GF(8) of eight elements, and let σ be the automorphism of GF(8) of order three such that $\sigma(x) = X^2$ for every element x of GF(8). Then σ can be considered in a usual way an automorphism of SL(2, 8). Let $SL^*(2, 8)$ be the splitting extension of SL(2, 8) by the group $\langle \sigma \rangle$. Then $SL^*(2, 8)$ has doubly transitive permutation representation on the set of Sylow 3-subgroups and its degree is equal to 28. The stabilizer of two symbols leaves four Sylow 3-subgroups fixed and every

involution is conjugate (see [8]).

THEOREM 1 (N. Ito, [8]). Let \mathfrak{G} be a doubly transitive permutation group on Ω of order 2n(n-1) not containing a regular normal subgroup. Then \mathfrak{G} is isomorphic to either PSL(2, 5) or SL*(2, 8).

If \mathfrak{G} contains a regular normal subgroup, then its degree is equal to a power of a prime number. Thus, by Theorem 1, if l=1, then n is equal to 6, 28 or a power of a prime number.

3. The case n is odd.

1. Since $n = i(\beta i - \beta + 1)$ is odd, *i* must be odd. The group $\mathfrak{G}_1 = N_{\mathfrak{G}}(\mathfrak{R}_1)/\mathfrak{R}_1$ is a doubly transitive permutation group on $\mathfrak{I}(\mathfrak{R}_1)$ and the stabilizer of symbols 1 and 2 is the subgroup $\mathfrak{R}/\mathfrak{R}_1$ of \mathfrak{G}_1 of order 2^{l-j} . By the inductive hypothesis, \mathfrak{G}_1 contains a regular normal subgroup and, in particular, *i* is equal to a power of an odd prime number, say p^m . Let \mathfrak{P} be a Sylow *p*subgroup of $N_{\mathfrak{G}}(\mathfrak{R}_1)$ of order $i = p^m$. Since $\mathfrak{PR}_1/\mathfrak{R}_1$ is a regular normal subgroup of \mathfrak{G}_1 , \mathfrak{P} is elementary abelian and normal in $N_{\mathfrak{G}}(\mathfrak{R}_1)$. Let \mathfrak{P} denote the subgroup $\mathfrak{H} \cap N_{\mathfrak{G}}(\mathfrak{R}_1)$. Then the order of \mathfrak{P} is equal to $2^l(p^m-1)$.

2. Case $n = i^2 = p^{2m}$. It can be proved in the same way as in [9, Case A] that there exists no group satisfying the conditions of the theorem in this case.

3. Case $n = p^m(\beta p^m - \beta + 1)$ with $\beta > 1$ and β , $\beta - 1 \neq 0 \pmod{p}$. In this case it can be proved in the same way as in [10, § 2.5] that there is no group satisfying the conditions of the theorem in this case.

4. Case $n = p^m(\beta p^m - \beta + 1)$ with $\beta > 1$ and $\beta \equiv 0 \pmod{p}$. Since $\beta \ge 3$, d must be greater than 2 and hence $\langle K, I \rangle$ is dihedral or semi-dihedral.

Consider the cyclic structure of K and it can be seen that $n-i=\beta p^m(p^m-1)$ is divisible by 2^l . Set $p=2^kq+1$, where q(>0) is odd. Since $2^l \ge \beta \ge p$, β is not divisible by 2^{l-k} and therefore p^m-1 must be divisible by 2^{k+1} . Hence m is even.

At first assume that the order of $N_{\mathfrak{G}}(\mathfrak{R})$ is divisible by 2^{l+2} . Since $N_{\mathfrak{G}}(\mathfrak{R})/\mathfrak{R}$ is a complete Frobenius group on $\mathfrak{I}(\mathfrak{R})$, any Sylow subgroup of a complement $\mathfrak{H} \cap N_{\mathfrak{G}}(\mathfrak{R})/\mathfrak{R}$ is cyclic or quaternion (ordinary or generalized). Hence there exists a subgroup \mathfrak{S} of $N_{\mathfrak{G}}(\mathfrak{R})$ such that $\mathfrak{S} \supseteq \langle I, K \rangle$ and $\mathfrak{S}/\mathfrak{R}$ is a cyclic group of order 4. \mathfrak{S} contains S such that $S^2 \equiv I(\mathfrak{R})$, S induces an automorphism of \mathfrak{R} of order 4 and S^2 and I induce the same automorphism. But it is easily seen that, for any automorphism ζ of \mathfrak{R} of order 4, $K^{\zeta^2} = \tau K$. This is a contradiction since $\langle K, I \rangle$ is dihedral or semi-dihedral.

Next assume that the order of $N_{\mathfrak{G}}(\mathfrak{K})$ is not divisible by 2^{l+2} . Let \mathfrak{S} be a Sylow 2-subgroup of $N_{\mathfrak{G}}(\mathfrak{K}_1)$ containing $\langle I, K \rangle$. Since *m* is even, the order of \mathfrak{S} is greater than 2^{l+2} . By the assumption of the order of $N_{\mathfrak{S}}(\mathfrak{R}), \mathfrak{S} \cap N_{\mathfrak{S}}(\mathfrak{R})$ = $\langle K, I \rangle$ is a Sylow 2-subgroup of $N_{\mathfrak{S}}(\mathfrak{R})$. Therefore $N_{\mathfrak{S}}(\langle K, I \rangle)$ is greater than $N_{\mathfrak{S}}(\mathfrak{R})$. Let $S \ (\neq 1)$ be a permutation of $N_{\mathfrak{S}}(\langle K, I \rangle) - \langle K, I \rangle$. Since K^s is contained in $\langle K, I \rangle$, we have $K^s = K'I$, where K' is a permutation of \mathfrak{R} . Hence, if $\langle K, I \rangle$ is dihedral, then $(K^s)^2 = 1$ and the order of K equals 2 and, if $\langle K, I \rangle$ is semi-dihedral, then $(K^s)^4 = 1$ and the order of K equals 4. This is a contradiction.

Thus there exists no group satisfying the conditions of the theorem in this case.

5. Case $n = p^m(\beta p^m - \beta + 1)$ with $\beta - 1 = 0 \pmod{p}$.

At first we shall prove that the order of $C_{\mathfrak{G}}(\mathfrak{P})$ is equal to $2^{j'}p^{m+m'}y$, where $j' \ge j$, m' > 0 and y is a factor of $\beta p^m - (\beta - 1)$ and not divisible by p. Assume that the order of $C_{\mathfrak{G}}(\mathfrak{P})$ is equal to $2^{j'}p^m$. Let \mathfrak{R}' be a Sylow 2-subgroup of $C_{\mathfrak{g}}(\mathfrak{P})$. Every element $(\neq 1)$ of \mathfrak{P} leaves no symbol of Ω fixed. Then \mathfrak{R}' must leave at least two symbols of Ω fixed. Therefore \Re' is conjugate to a subgroup of \Re containing \Re_1 . Since $C_{\mathfrak{g}}(\mathfrak{P})$ is a direct product of \Re' and \mathfrak{P} , \Re' is normal in $N_{\mathfrak{G}}(\mathfrak{P})$. Since the order of $N_{\mathfrak{G}}(\mathfrak{P}')$ is a factor of the order of $N_{\mathfrak{G}}(\mathfrak{R}_1)$, the order of $N_{\mathfrak{G}}(\mathfrak{R}_1)$ is greater than or equal to the order of $N_{\mathfrak{G}}(\mathfrak{R})$. This contradicts the order of $N_{\mathfrak{G}}(\mathfrak{P})$. Hence the order of $C_{\mathfrak{G}}(\mathfrak{P})$ is equal to $2^{j'}p^m y$, where y is odd and y > 1. Let $q \ (\neq 2, p)$ be a prime factor of the order of $C_{\mathfrak{G}}(\mathfrak{P})$ and let Q be a permutation of $C_{\mathfrak{G}}(\mathfrak{P})$ of order q. If q is a factor of n-1, then Q leaves just one symbol of Ω fixed and hence Q cannot be contained in $C_{\mathfrak{g}}(\mathfrak{P})$. Thus q is a factor of n and so is y. Next assume that y is not divisible by p. Let \mathfrak{A}' be a normal p-complement in $C_{\mathfrak{G}}(\mathfrak{P})$. Since \Re' is cyclic, \Re' has a normal 2-complement \Im' . Since \Im' is a normal Hall subgroup of \mathfrak{A}' , \mathfrak{Y}' is normal even in $N_{\mathfrak{G}}(\mathfrak{P})$. Let $Y' \ (\neq 1)$ be a permutation of \mathfrak{Y}' . Then Y' does not leave any symbol of \mathcal{Q} fixed. If $\mathfrak{B} \cap G_{\mathfrak{G}}(Y')$ contains an involution τ' , then τ' is conjugate to τ under \mathfrak{G} and, since $C_{\mathfrak{G}}(\tau')$ contains Y', the order of $C_{\mathfrak{G}}(\tau')$ is divisible by the order of Y'. But since $C_{\mathfrak{G}}(\tau')$ is conjugate to $C_{\mathfrak{G}}(\tau) = N_{\mathfrak{G}}(\mathfrak{R}_1)$ and the order of $N_{\mathfrak{G}}(\mathfrak{R}_1)$ and y are relatively prime, the order of $\mathfrak{V} \cap C_{\mathfrak{G}}(Y')$ is odd. Let q be a prime factor of the order of $\mathfrak{V} \cap C_{\mathfrak{G}}(Y')$ and let Q be a permutation of $\mathfrak{V} \cap C_{\mathfrak{G}}(Y')$ of order q. Then Q leaves at least one symbol of Ω fixed and hence it leaves at least two symbols of Ω fixed, which is a contradiction. Thus $\mathfrak{V} \cap C_{\mathfrak{G}}(Y') = (1)$. Hence we have the following relation;

$$y-1 = |\mathfrak{Y}'| - 1 \ge |\mathfrak{Y}|,$$

i. e., $y \ge 2^{l}(p^{m}-1) + 1 = 2^{l}p^{m} - (2^{l}-1)$

On the other hand y is a factor of $\beta p^{m-1} - (\beta - 1)p^{-1}$. This is a contradiction. Hence y is divisible by p.

266

Let us assume $p^{m'} < 2^l$. Let \mathfrak{A} be a normal 2-complement of $C_{\mathfrak{G}}\mathfrak{P}$. Then \mathfrak{A} is normal in $N_{\mathfrak{G}}(\mathfrak{P})$. Let \mathfrak{P}' be a Sylow *p*-subgroup of \mathfrak{A} . By the Frattini argument $N_{\mathfrak{G}}(\mathfrak{P}) = \mathfrak{A}(N_{\mathfrak{G}}\mathfrak{P}' \cap N_{\mathfrak{G}}(\mathfrak{P}))$. Since the order of \mathfrak{A} is odd, we may assume that \mathfrak{R} is a subgroup of $N_{\mathfrak{G}}(\mathfrak{P}') \cap N_{\mathfrak{G}}(\mathfrak{P})$. Thus there exists a homomorphism π of \mathfrak{R} into Aut $\mathfrak{P}'/\mathfrak{P}$. If τ is contained in ker π , then τ acts trivially on $\mathfrak{P}'/\mathfrak{P}$ and \mathfrak{P} . Therefore τ acts also trivially on \mathfrak{P}' and $C_{\mathfrak{G}}\tau$ contains \mathfrak{P}' ([4, Theorem 5.3.2]). Hence we have ker $\pi = 1$ and Aut $\mathfrak{P}'/\mathfrak{P}$ contains a cyclic subgroup of order 2^l . But the order $(=p^{m'})$ of $\mathfrak{P}'/\mathfrak{P}$ is less than 2^l . This is a contradiction. If $m' \leq m$, then $p^{m'} < 2^l$. Thus we may assume $p^{m'} > 2^l$. Then m' > m.

Assume y > 1. Since \mathfrak{A} is solvable, there exists a subgroup \mathfrak{Y} of \mathfrak{A} of order y. Now Y is a factor of $\beta - (\beta - 1)p^{-m}$. By the Frattini argument it can be assumed that \mathfrak{R} is a subgroup of $N_{\mathfrak{G}}(\mathfrak{Y})$. Thus there exists a homomorphism π' of \mathfrak{R} into Aut \mathfrak{Y} . Since the orders of $C_{\mathfrak{G}}(\tau)$ and \mathfrak{Y} are relatively prime, any elements ($\neq 1$) of \mathfrak{Y} are not fixed by $\pi'(\tau)$. Therefore we have $y > 2^{l}$. This is impossible and hence y = 1. \mathfrak{P}' is normal in $N_{\mathfrak{G}}(\mathfrak{P})$. Let P'($\neq 1$) be an element of \mathfrak{P}' . It can be seen that $\mathfrak{V} \cap C_{\mathfrak{G}}(\mathfrak{P}')$ is a subgroup of \mathfrak{R} . Hence we have the following relation;

$$p^{m+m'}-1 = x(p^m-1)$$
, $x > 1$.

From this it is easily seen that m' is divisible by m.

If $\beta p^m - \beta + 1$ is divisible by $p^{\delta m}$ ($\delta > 1$) exactly, then $\beta - 1$ must be equal to $p^{\delta m} z + p^{(\delta - 1)m} + \cdots + p^m$ (z > 1) or $p^{(\delta - 1)m} + \cdots + p^m$. If $\beta - 1$ is equal to $p^{\delta m} z + p^{(\delta - 1)m} + \cdots + p^m$ (z > 1), then $2^l > p^{\delta m}$ ($\ge p^{m'}$). Therefore we may assume $\beta = p^{(\delta - 1)m} + \cdots + p^m + 1 = (p^{\delta m} - 1)/(p^m - 1)$ and $m' = \delta m$. \mathfrak{P}' is a Sylow *p*-subgroup of \mathfrak{G} .

Next we shall prove that m=1 and K has only 2^i -cycles in its cyclic decomposition, i. e., $N_{\mathfrak{G}}(\mathfrak{R}) = C_{\mathfrak{G}}(\tau)$ and $\mathfrak{R} \cap \mathfrak{R}^G = 1$ or \mathfrak{R} for every element G of \mathfrak{G} . From (2.2) it can be seen that the number of involutions with the cyclic structures $(1, 2) \cdots$ which are conjugate to τ is equal to β . If $\langle K, I \rangle$ is dihedral, then every involution in $I\mathfrak{R}$ is conjugate to I or IK and if $\langle K, I \rangle$ is semi-dihedral, then every involution in $I\mathfrak{R}$ is conjugate to I. Since all involutions with the cyclic structures $(1, 2) \cdots$ are contained in $I\mathfrak{R}$, β is equal to d/2 or d. Thus p^m+1 is a power of two and hence m=1. Therefore \mathfrak{G}_1 is a complete Frobenius group, $\mathfrak{I}(\tau) = \mathfrak{I}(K)$, $N_{\mathfrak{G}}(\mathfrak{R}) = C_{\mathfrak{G}}(\tau)$ and $C_{\mathfrak{G}}(\mathfrak{R})$ contains \mathfrak{P} . Therefore the number of elements which leave only the symbol 1 fixed is equal to $2^i(n-1)-1-(2^i-1)(\beta i+1)$ and the number of elements which leave i symbols of Ω fixed is equal to $(2^i-1)(\beta i-\beta+1)(\beta i+1)$. Let G be an element of \mathfrak{G} of order $2^{l'}p(l' \geq 1)$. Then $\alpha(G) = 0$ and $\alpha(G^p) = i$. Therefore the number of cyclic subgroups of \mathfrak{G} of order $2^{l}p$ is equal to $(\beta i-\beta+1)(\beta i+1)$ and those

groups are independent. Thus the number of elements of order $2^{i'}p(l' \ge 1)$ which leave no symbol of Ω fixed is equal to $(2^{i}-1)(i-1)(\beta i-\beta+1)(\beta i+1)$. Therefore we have

$$\begin{split} | \circledast | -(n(2^{i}(n-1)-1-(2^{i}-1)(\beta i+1))+(2^{i}-1)(\beta i-\beta+1)(\beta i+1) \\ +(2^{i}-1)(n-1)(\beta i-\beta+1)+1) = n-1 \, . \end{split}$$

Hence \mathfrak{P}' is a regular normal subgroup of \mathfrak{G} .

Thus there exists no group satisfying the conditions of the theorem in this case.

4. The case *n* is even and $N_{\mathfrak{G}}(\mathfrak{R}_1)/\mathfrak{R}_1$ contains a regular normal subgroup.

1. Since $n = i(\beta i - \beta + 1)$ is even, *i* must be even. $\mathfrak{G}_1 = N_{\mathfrak{G}}(\mathfrak{K}_1)/\mathfrak{K}_1$ is a doubly transitive permutation group on $\mathfrak{I}(\mathfrak{K}_1)$ containing a regular normal subgroup. In particular, *i* is equal to a power of 2, say 2^m .

Let \mathfrak{S} be the normal 2-subgroup of $N_{\mathfrak{S}}(\mathfrak{R}_1)$ containing \mathfrak{R}_1 such that $\mathfrak{S}/\mathfrak{R}_1$ is a regular normal subgroup of $\mathfrak{G}_1 = N_{\mathfrak{S}}(\mathfrak{R}_1)/\mathfrak{R}_1$. Since the order of $\mathfrak{H} \cap N_{\mathfrak{S}}(\mathfrak{R}_1)$ is equal to $2^l(2^m-1)$, \mathfrak{R} is a Sylow 2-subgroup of $\mathfrak{H} \cap N_{\mathfrak{S}}(\mathfrak{R}_1)$. Let \mathfrak{B} be a normal 2-complement of $\mathfrak{H} \cap N_{\mathfrak{S}}(\mathfrak{R}_1)$. The group $\mathfrak{BS}/\mathfrak{R}_1$ is a complete Frobenius group on $\mathfrak{Z}(\mathfrak{R}_1)$ with kernel $\mathfrak{S}/\mathfrak{R}_1$ and complement $\mathfrak{BR}_1/\mathfrak{R}_1 \ (\cong \mathfrak{B})$. Since $C_{\mathfrak{S}}(\mathfrak{R}_1) \cap \mathfrak{BS}$ is normal in \mathfrak{BS} , $C_{\mathfrak{S}}(\mathfrak{R}_1) \cap \mathfrak{BS}$ contains \mathfrak{S} or is contained in \mathfrak{S} ([13, 12.6.8]). If \mathfrak{S} is greater than $C_{\mathfrak{S}}(\mathfrak{R}_1) \cap \mathfrak{BS}$, since the index of \mathfrak{S} in \mathfrak{BS} must be equal to a power of two, we have m = 1. Hence \mathfrak{S} is a Zassenhaus group. Thus we have that \mathfrak{S} is is isomorphic to either $PGL(2, 2^l+1)$ or $PSL(2, 2^{l+1}+1)$, where 2^l+1 and $2^{l+1}+1$ are powers of prime numbers for $PGL(2, 2^l+1)$ and $PSL(2, 2^{l+1}+1)$, respectively ([1], [8], [14] and [18]). Thus it will be assumed that \mathfrak{S} is contained in $C_{\mathfrak{S}}(\mathfrak{R}_1) \cap \mathfrak{BS}$ and m is greater than one.

Since the index of $\mathfrak{VS} \cap C_{\mathfrak{g}}(\mathfrak{K}_1)$ in \mathfrak{VS} is odd and the order of Aut \mathfrak{K}_1 is equal to 2^{j-1} , $\mathfrak{VS} \cap C_{\mathfrak{g}}(\mathfrak{K}_1)$ is equal to \mathfrak{VS} . Hence $C_{\mathfrak{g}}(\mathfrak{K}_1)$ is equal to $N_{\mathfrak{g}}(\mathfrak{K}_1)$ since $N_{\mathfrak{g}}(\mathfrak{K}_1) = \mathfrak{RVS}$.

PROPOSITION 4.1. Let \mathfrak{G} be as in Theorem and let \mathfrak{R}_1 and \mathfrak{G}_1 as above. Assume that \mathfrak{G}_1 contains a regular normal subgroup and $N_{\mathfrak{G}}(\mathfrak{R}_1)$ is equal to $C_{\mathfrak{G}}(\mathfrak{R}_1)$. Let \mathfrak{S} be as above. Then \mathfrak{S} contains an involution ($\neq \tau$).

PROOF. If \Re_1 is equal to \Re , then \mathfrak{S} is a normal Sylow 2-subgroup of $N_{\mathfrak{S}}(\mathfrak{R})$ and hence it contains I. Therefore it can be assumed that \Re_1 is less than \mathfrak{R} and $I \oplus \mathfrak{S}$. Assume that τ is the unique involution in \mathfrak{S} . Since $\mathfrak{S}/\mathfrak{R}_1$ is an elementary abelian group of order 2^m and $m \ge 2$, \mathfrak{S} is a quaternion group (ordinary or generalized) and hence m = 2 (and i = 4). Thus we have $\alpha(K) = \cdots = \alpha(K^{2^{l-j-1}}) = 2 < \alpha(K^{2^{l-j}}) = 4$. Since $\mathfrak{R}\mathfrak{S}$ is a Sylow 2-subgroup of

 $N_{\mathfrak{G}}(\mathfrak{R}_1)$, it may be assumed that I is contained in the coset $K^{2^{l-j-1}}\mathfrak{S}$ and hence we have $IK^{2^{l-j-1}} = S$, where S is an element $(\oplus K_1)$ of \mathfrak{S} . Thus $(K^{2^{l-j-1}})^I = S^2 K^{-2^{l-j-1}}$. Since $N_{\mathfrak{G}}(\mathfrak{R}_1) = C_{\mathfrak{G}}(\mathfrak{R}_1)$, we have $K^{2^{l-j}} = S^4 K^{-2^{l-j}}$ and $S^4 = K^{2^{l-j+1}}$. At first assume that $S^4 = 1$. Then j = 1 and $(K^{2^{l-2}})^I = K^{-2^{l-2}}\tau = K^{2^{l-2}}$. This implies d = 2. Hence n = 16 or 28. Since n-i and $i-\alpha(K)$ are divisible by 2^l and 2^{l-1} , respectively, the order of \mathfrak{R} is equal to four. It can easily be seen that there exists no group satisfying the conditions of Proposition in these cases. Next assume that $S^4 \neq 1$ (i. e., $j \neq 1$). Then $(K^{2^{l-j-1}})^I = K^{2^{l-j-1}}$ or $K^{2^{l-j-1}\tau}$ and hence d = 2. This implies n = 16 or 28. Since n-i is divisible by 2^l and j > 1, we have n = 28, l = 3 and j = 2. By [15] \mathfrak{S} must be isomorphic to $PSU(3, 3^2)$. But a Sylow 2-subgroup of $PSU(3, 3^2)$ is isomorphic to $Z_4 \sim Z_2$ and it does not contain a quaternion group of order 16. This is a contradiction. Thus the proof is completed.

COROLLARY 4.2. Let \mathfrak{G} , \mathfrak{S} be as in Proposition 4.1. If d is equal to two, then \mathfrak{S} contains an involution τ' such that it is conjugate to τ .

PROOF. By Proposition, \mathfrak{S} contains an involution $\eta(\neq \tau)$ with the cyclic structure $(1 \ a) \cdots$, where a is a symbol of $\mathfrak{Z}(\mathfrak{R}_1)$. Then $\eta \tau$ has also the cyclic structure $(1 \ a) \cdots$. Hence since \mathfrak{S} is doubly transitive, there exist two involutions with the cyclic structure (1, b), where b is any symbol of Ω , such that those are conjugate to η or $\eta \tau$. If τ is neither conjugate to η nor $\eta \tau$, then $g^*(2)$ is greater than (n-1). This contradicts the inequality $g^*(2) < d(n-1)$.

By the above proposition, since $N_{\mathfrak{G}}(\mathfrak{R}_1)/\mathfrak{R}_1$ is doubly transitive, we may assume that I is contained in S. Since $\mathfrak{WS}/\mathfrak{R}_1$ is complete Frobenius group, all elements $(\neq 1)$ of $\mathfrak{S}/\mathfrak{R}_1$ are conjugate under $\mathfrak{WR}_1/\mathfrak{R}_1$. Thus every permutation $(\neq \mathfrak{R}_1)$ of S can be represented in the form $V^{-1}IVK'$, where V and K' are permutations of \mathfrak{V} and \mathfrak{R}_1 , respectively.

2. Case $\Re_1 = \Re$. In this case \mathfrak{S} is a normal Sylow 2-subgroup of $N_{\mathfrak{G}}(\mathfrak{R})$. Let S be an element of order 2^l in \mathfrak{S} . Since S^2 is contained in \Re , $S^{2^{l-1}}$ is equal to τ . Assume that I is conjugate to τ . Since $C_{\mathfrak{G}}(\mathfrak{R})$ and $C_{\mathfrak{G}}(I)$ are conjugate and K is contained in $C_{\mathfrak{G}}(I)$, $K^{2^{l-1}}$ must be equal to I. This is a contradiction.

Thus there exists no group satisfying the conditions of the theorem in this case.

3. Case $\Re \supseteq \Re_1 \supseteq \langle \tau \rangle$. Since \Re_1 is greater than $\langle \tau \rangle$, a group $\langle K, I \rangle$ is neither dihedral nor semi-dihedral and therefore *d* is equal to two. By Corollary 4.2 it may be assumed that *I* is conjugate to τ .

LEMMA 4.3. If \Re_1 is greater than $\langle \tau \rangle$ and less than \Re , then the order of \Re_1 is equal to four and I is not contained in $C_{\mathfrak{g}}(\Re)$.

PROOF. At first assume that the order of \Re_1 is greater than four. Let \mathfrak{S}' be a Sylow 2-subgroup of $N_{\mathfrak{G}}(\mathfrak{R}_1)$. Let S be an element of \mathfrak{S}' of order

H. KIMURA

 2^{l-1} . The index of \mathfrak{S} in \mathfrak{S}' is equal to 2^{l-j} . Therefore $S^{2^{l-j}}$ is contained in \mathfrak{S} and, since $\mathfrak{S}/\mathfrak{R}_1$ is elementary abelian, $S^{2^{l-j+1}}$ is contained in \mathfrak{R}_1 . Since j is greater than 2, $S^{2^{l-j+1}}$ is not identity element. Thus we have that $S^{2^{l-2}}$ is equal to τ . Since IKI is equal to K or $K\tau$, I is contained in $C_{\mathfrak{S}}(K^2)$ and hence K^2 is contained in $C_{\mathfrak{S}}(I)$. Since $N_{\mathfrak{S}}(\mathfrak{R}_1) = C_{\mathfrak{S}}(\tau)$ is conjugate to $C_{\mathfrak{S}}(I)$, we have that $(K^2)^{2^{l-2}} = \tau$ must be equal to I. This is a contradiction.

Next assume that I is contained in $C_{\mathfrak{G}}\mathfrak{R}$. Let \mathfrak{S}' be as above. Let S be an element of \mathfrak{S}' of order 2^l . Then $S^{2^{l-j}}$ is contained in \mathfrak{S} , $S^{2^{l-j+1}}$ is contained in K_1 and finally $S^{2^{l-1}}$ is equal to τ . Since K is contained in $C_{\mathfrak{G}}(I)$ and $C_{\mathfrak{G}}(I)$ is conjugate to $C_{\mathfrak{G}}(\tau)$, $K^{2^{l-1}}$ must be equal to I. This is a contradiction. Thus the proof is completed.

LEMMA 4.4. Let \Re_1 be as in Lemma 4.3. Then the order of \Re is equal to 8. PROOF. Assume that the order of \Re is greater than 8. Then $\langle K^{2l-3}, I \rangle$ is abelian since d=2 and l>3. Let η be an involution of $N_{\bigotimes}(\langle K^{2l-3} \rangle)$. Then $\langle K^{2l-3}, \eta \rangle$ must be abelian, for if it is not abelian, then $\langle K^{2l-3}, I \rangle$ is dihedral and hence $d \neq 2$.

At first we shall prove that a coset $K^{2^{l-3}}$ does not contain an element of order 4. By Lemma 4.3 the order of \Re_1 is equal to 4. Let $K^{2^{l-3}}S$ be an element of order 4 in $K^{2^{l-3}}$, where S is an element of \mathfrak{S} . Then S is not contained in $C_{\mathfrak{G}}(K^{2^{l-3}})$. Set $S = I^{\nu}K_1$, where K_1 and V are elements of \Re_1 and \mathfrak{R} , respectively. Then $K^{2^{l-3}}I^{\nu}$ must be of order 4. Thus it may be assumed that S is equal to I^{ν} not contained in $C_{\mathfrak{G}}(K^{2^{l-3}})$, where V is an element of \mathfrak{R} . $(K^{2^{l-3}}S)^2$ is an element of \mathfrak{S} and therefore is equal to τ , $I^{\mathfrak{W}}$ or $I^{\mathfrak{W}}\tau$, where W is an element of \mathfrak{R} . If $(K^{2^{l-3}}S)^2 = \tau$, then $(K^{2^{l-3}})^S = (K^{-2^{l-3}})\tau$ and hence $S \in N_{\mathfrak{G}}(\langle K^{2^{l-3}} \rangle)$. Thus $\langle K^{2^{l-3}}, S \rangle$ must be abelian. This is a contradiction. If $(K^{2^{l-3}}S)^2 = I^{\mathfrak{W}}$ or $I^{\mathfrak{W}}\tau$, then $(K^{2^{l-3}})^S = K^{-2^{l-3}}I^{\mathfrak{W}}$ or $K^{-2^{l-3}}I^{\mathfrak{W}}\tau$, respectively. Hence

$$K^{2^{l-2}} = (K^{2^{l-2}})^{s} = (K^{-2^{l-3}}I^{w})^{2}$$

and

$$(K^{-2l-3})IW - K^{2l-2}K^{2l-3}$$

Thus I^w is contained in $N_{\mathfrak{G}}(\langle K^{2^{l-3}} \rangle)$ and therefore $\langle I^w, K^{2^{l-3}} \rangle$ must be abelian. Hence $K^{2^{l-2}}K^{2^{l-3}} = K^{-2^{l-3}}$. Thus the order of \mathfrak{R} must be equal to l-1. This is a contradiction.

Next let S be an element of order 2^{l-1} in $\Re \mathfrak{S}$, and let \overline{S} be the image of S by the natural homomorphism of $\Re \mathfrak{S}$ onto $\Re \mathfrak{S}/\mathfrak{S}$. If the order of \overline{S} is equal to 2^{l-2} , then $S^{2^{l-3}}$ is contained in a coset $K^{2^{l-3}}S$. This contradicts the first part in the proof. Hence we have that the order of \overline{S} is less than 2^{l-2} and hence $S^{2^{l-3}}$ is contained in S. Therefore $S^{2^{l-2}}$ is equal to τ . Since $C_{\mathfrak{G}}(I)$ is conjugate to $N_{\mathfrak{G}}(\mathfrak{K}_1)$ and K^2 is contained in $C_{\mathfrak{G}}(I)$, $K^{2^{l-1}} = I$. This is a contradiction. Thus the proof is completed.

By two lemmas the orders of \Re and \Re_1 are equal to 8 and 4, respectively. Clearly $N_{\mathfrak{G}}(\Re)/\Re$ is a complete Frobenius group on $\mathfrak{J}(\mathfrak{R})$. Apply the argument in §2 to $N_{\mathfrak{G}}(\Re_1)/\Re_1$ and we obtain that $\alpha(\Re)$ must be a power of two and $i = \alpha(\Re)^2$. Thus a Frobenius kernel of $N_{\mathfrak{G}}(\Re)/\Re$ is a Sylow 2-subgroup of $N_{\mathfrak{G}}(\Re)/\Re$. Since, by Lemma 4.3, *I* is not contained in $C_G(K)$, a Sylow 2-subgroup of $N_G(K)$ is greater than $C_{\mathfrak{G}}(\Re)$ ([13, 12.6.8]). Since the order of $N_{\mathfrak{G}}(\Re)/C_{\mathfrak{G}}(\Re)$ is a power of two, $\alpha(K)-1$ must be equal to one and hence $\alpha(K) = 2$. Thus we have i = 4 and n = 16 or 28. Since n-i must be divisible by the order of \Re , we have n = 28. \mathfrak{G} satisfies the conditions of the theorem in [15] and hence \mathfrak{G} is isomorphic to $PSU(3, 3^2)$.

4. Case $\Re_1 = \langle \tau \rangle$. We shall prove that d = 2 or the order of \Re is equal to four, $\langle K, I \rangle$ is dihedral and i = 4. In this case every permutation $(\oplus \Re_1)$ of \mathfrak{S} can be represented uniquely in the form I^V or $I^V \tau$, where V is any permutation of \mathfrak{B} . Thus every permutation $(\neq 1)$ of \mathfrak{S} is of order 2 and hence \mathfrak{S} is elementary abelian. Set $\Re_2 = \langle K^{2l-j'} \rangle$, where $\alpha(\tau) > \alpha(K^{2l-2}) =$ $\cdots = \alpha(K^{2l-j'}) > \alpha(K^{2l-j'-1})$. Set $i' = \alpha(K_2)$. Then we may assume $\mathfrak{I}(\mathfrak{R}_2) = \{1, 2, \dots, i'\}$. Apply the argument in § 2 to $N_{\mathfrak{G}}(\mathfrak{R}_1)/\mathfrak{R}_1$, and we have $i = i'(\beta'i' - \beta' + 1)$. Hence i' is equal to a power of two, say $2^{\mathfrak{m}'}$. By the inductive hypothesis $N_{\mathfrak{G}}(\mathfrak{R}_2)/\mathfrak{R}_2$ contains a regular normal subgroup. Let \mathfrak{S}_2 be a normal 2-subgroup of $N_{\mathfrak{G}}(\mathfrak{R}_2)/\mathfrak{R}_2$ and let \mathfrak{B}_2 be a 2-complement of $\mathfrak{H} \cap \mathfrak{R}_{\mathfrak{G}}(\mathfrak{R}_2)$. Then $\mathfrak{B}_2\mathfrak{S}_2/\mathfrak{R}_2$ is a complete Frobenius group on $\mathfrak{I}(\mathfrak{R}_2)$. Thus $C_{\mathfrak{G}}(\mathfrak{R}_2) \cap \mathfrak{B}_2\mathfrak{S}_2$ contains \mathfrak{S}_2 or is less than \mathfrak{S}_2 .

If $C_{\mathfrak{G}}(\mathfrak{R}_2) \cap \mathfrak{B}_2 \mathfrak{S}_2$ is less than \mathfrak{S}_2 , then *I* is not contained in $C_{\mathfrak{G}}(\mathfrak{R}_2)$ and, since the order of $\mathfrak{B}_2 \mathfrak{S}_2 / C_{\mathfrak{G}}(\mathfrak{R}_2) \cap \mathfrak{B}_2 \mathfrak{S}_2$ is a power of two, m' must be equal to one. Thus i' = 2 and $\mathfrak{R}_2 = \mathfrak{R}$. On the one hand, it is trivial that i-2 must be divisible by 2^{l-1} . On the other hand, *i* is of a form $2(2\beta' - \beta' + 1)$ where β' is less than or equal to 2^{l-1} and hence β' is odd. Therefore we have $l=2, \beta'=1$ and i=4.

If $C_{\mathfrak{g}}(\mathfrak{R}_2) \cap \mathfrak{V}_2 \mathfrak{S}_2$ contains \mathfrak{S}_2 , then $K^I = K$ or K_{τ} and hence d = 2.

5. Case $|\Re| = 4$, $\Re_1 = \langle \tau \rangle$ and $K^I = K^{-1}$. Let \Re_2 and \mathfrak{S}_2 be as in §4.4. Since $\Re_2 = \Re$, \mathfrak{S}_2/\Re is a regular normal subgroup of $N_{\mathfrak{G}}(\Re)/\Re$ and $N_{\mathfrak{G}}(\Re) = \Re + I\Re$. Since $\langle K, I \rangle$ is dihedral, involutions with the cyclic structure (12) \cdots are *I*, *IK*, *IK*² and *IK*³, and *I* and *IK* are conjugate to *IK*² and *IK*³, respectively. Therefore $g^*(2) = 0$ or 2(n-1).

If $g^{*}(2) = 0$, then $n = 4(4 \cdot 4 - 3) = 4 \cdot 13$. Let \mathfrak{P}_{13} be a Sylow 13-subgroup of \mathfrak{G} . Since every involution leaves four symbols of Ω fixed, the order of $C_{\mathfrak{G}}(\mathfrak{P}_{13})$ is equal to 13. Thus the index of $N_{\mathfrak{G}}(\mathfrak{P}_{13})$ in \mathfrak{G} is a multiple of 17.4. This contradicts the Sylow's theorem.

If $g^{*}(2) = 2(n-1)$, then $n = 4(2 \cdot 4 - 1) = 4 \cdot 7$. Let η be an involution leaving

no symbol of Ω fixed. Then, since $g^*(2) = 2(n-1)$, $G_{\mathfrak{G}}\eta$ must be equal to 2n. Let \mathfrak{P}_7 be a Sylow 7-subgroup of \mathfrak{G} contained in $C_{\mathfrak{G}}\eta$. Using Sylow's theorem \mathfrak{P}_7 is normal in $C_{\mathfrak{G}}\eta$. Hence the order of $N_{\mathfrak{G}}(\mathfrak{P}_7)$ is a multiple of 8.7. This contradicts the Sylow's theorem.

Thus there exists no group satisfying the conditions of the theorem in this case.

6. Case $\Re_1 = \langle \tau \rangle$, d = 2 and $n = i^2$. In this case a normal subgroup \mathfrak{S} of $N_{\mathfrak{S}}(\Re_1)$ is an elementary abelian 2-group. We shall prove several lemmas.

LEMMA 4.5. \mathfrak{S} contains every involution of $N_{\mathfrak{G}}(\mathfrak{R}_1)$.

PROOF. Set $\mathfrak{S}' = \mathfrak{R}\mathfrak{S}$. Then \mathfrak{S}' be a Sylow 2-subgroup of $N_{\mathfrak{S}}(\mathfrak{R}_1)$. If a coset $K^{2^{l-2}}\mathfrak{S}$ does not contain an involution, then the proof is complete. Let $K^{2^{l-2}}S$ be an involution in a coset $K^{2^{l-2}}\mathfrak{S}$, where S is a permutation of \mathfrak{S} . Then $(K^{2^{l-2}})^{\mathfrak{S}} = K^{-2^{l-2}}$. Therefore, since S is an involution, d must be greater than two. This is a contradiction.

LEMMA 4.6. Let G be an element of \mathfrak{G} . Then $\mathfrak{S}^{\mathfrak{G}} \cap \mathfrak{S} = 1$ or \mathfrak{S} .

PROOF. Let τ' be an involution of $\mathfrak{S}^{G} \cap \mathfrak{S}$. If τ' is conjugate to τ , then, since $C_{\mathfrak{S}}(\tau')$ contains \mathfrak{S}^{G} and \mathfrak{S} , \mathfrak{S}^{G} coincide with \mathfrak{S} by Lemma 4.5. Thus an involution of \mathfrak{S} which is conjugate to τ in \mathfrak{S} is conjugate to τ in $N_{\mathfrak{S}}(\mathfrak{S})$. By Corollary 4.2, I or $I\tau$ is conjugate to τ in G. On the other hand I or $I\tau$ is not conjugate to τ in \mathfrak{S} , since $g^*(2) = n-1$. Hence the number of involutions of \mathfrak{S} each of which is conjugate to τ is equal to i and the number of involutions of \mathfrak{S} each of which leaves no symbol of Ω fixed is equal to i-1. Hence the order of $N_{\mathfrak{S}}(\mathfrak{S})$ is equal to $2^{l}i^{2}(i-1)$ and the following relation is obtained;

$$n-1=g*(2) \leq (i-1)[\&: N_{\&}(\Im)] = n-1$$
.

Thus $\mathfrak{S}^{a} \cap \mathfrak{S} = 1$ or \mathfrak{S} .

LEMMA 4.7. Let η and ζ be different involutions. If $\alpha(\eta) = \alpha(\zeta) = 0$, then $\alpha(\eta\zeta) = 0$.

PROOF. Let a be a symbol of $\Im(\eta\zeta)$. Let $(a, b) \cdots$ and $(b, c') \cdots$ be the cyclic structure of η and ζ , respectively. Then a = c'. Since $g^*(2) = n-1$, there exists just one involution leaving no symbol of Ω fixed with the cyclic structure $(a, b) \cdots$ and hence $\eta = \zeta$.

COROLLARY 4.8. A set \mathfrak{S}_1 consisting of all involutions of \mathfrak{S} each of which is not conjugate to τ and identity element is a characteristic subgroup of \mathfrak{S} . In particular $N_{\mathfrak{S}}(\mathfrak{S}_1) = N_{\mathfrak{S}}(\mathfrak{S})$.

By Corollary 4.8, there exists just i+1 subgroups $\mathfrak{S}_1, \mathfrak{S}_2, \dots, \mathfrak{S}_{i+1}$ which are conjugate in \mathfrak{G} and $\mathfrak{S}_s \cap \mathfrak{S}_t = 1$ for $s \neq t$.

LEMMA 4.9. Let τ' be an involution of $N_{\mathfrak{G}}(\mathfrak{S})$. If τ' is conjugate to τ , then τ' is contained in \mathfrak{S} .

PROOF. Set $\tau^{a} = \tau'$. Since the order of \mathfrak{S} is even, it is trivial that there

exists an element ζ of \mathfrak{S} with $\zeta \tau' = \zeta$. \mathfrak{S}^{a} is normal in $C_{\mathfrak{S}}(\tau')$ and it contains ζ and τ' by Lemma 4.5. Thus $\mathfrak{S} \cap \mathfrak{S}^{a}$ contains ζ and hence $\mathfrak{S} = \mathfrak{S}^{a}$ by Lemma 4.6. Finally τ' is an element of \mathfrak{S} .

LEMMA 4.10. Let η be an involution which is not contained in \mathfrak{S} . If $\alpha(\eta) = 0$, then $\alpha(\tau \eta) = 0$ and the order of $\tau(\eta)$ is equal to 2^r with r > 1.

PROOF. Assume $\alpha(\tau\eta) \neq 0$. Let *a* be a symbol of $\mathfrak{Z}(\tau\eta)$. It is trivial that *a* is not a symbol of $\mathfrak{Z}(\tau)$. Thus let $(a, b) \cdots$ and $(b, c') \cdots$ be the cyclic structures of τ and η , respectively. Then a = c' and $\tau\eta\tau = (a, b) \cdots$. Since $g^*(2) = n-1$, there exists just one involution with the cyclic structure $(a, b) \cdots$ such that it leaves no symbol of Ω fixed. Thus we have $\tau\eta\tau = \eta$. Therefore η must be contained in \mathfrak{S} and hence $\alpha(\tau\eta) = 0$. Next assume that the order of $\tau\eta$ and let pq be the order of $\tau\eta$. Then the order of $(\tau\eta)^q$ is equal to p and hence $\alpha((\tau\eta)^q) = 1$. Therefore $\alpha(\tau\eta) = 1$. Thus the order of $\tau\eta$ is equal to a power of two.

LEMMA 4.11. Let η be an involution which is not conjugate to τ . Then η is contained in $N_{\mathfrak{S}}(\mathfrak{S})$.

PROOF. Let us assume that η is not contained in \mathfrak{S} . By Lemma 4.10, the order of $\tau\eta$ is equal to 2^r with r > 1. Thus $\tau(\tau\eta)^{2^r} = \tau$. Set $\gamma_{\tau,\eta}(s) = \tau(\tau\eta)^{2^s} = \tau^{\tau} \cdot \gamma_s^{\tau,\eta}(s)$. Then $\gamma_{\tau,\eta}(r-1)$ is contained in $C_{\mathfrak{G}}(\tau)$ and hence by Lemma 4.5, it is contained in \mathfrak{S} . Since $\gamma_{\tau,\eta}(r-1) = \tau^{\gamma_{\tau,\eta}(r-2)}$, $\gamma_{\tau,\eta}(r-2)$ is contained in $N_{\mathfrak{G}}(\mathfrak{S})$ by Lemma 4.6. By Lemma 4.9 it is contained in \mathfrak{S} . Continuing in the similar way, it can be shown that $\gamma_{\tau,\eta}(1) = \tau^{\eta}$ is contained in S. By Lemma 4.6, η is contained in $N_{\mathfrak{G}}(\mathfrak{S})$.

By Lemma 4.11, $N_{\mathfrak{G}}(\mathfrak{S}) = N_{\mathfrak{G}}(\mathfrak{S}_1)$ contains \mathfrak{S}_t $(2 \leq t \leq i+1)$. Similarly $N_{\mathfrak{G}}(\mathfrak{S}_t)$ contains \mathfrak{S}_1 . Therefore $\mathfrak{S}_1\mathfrak{S}_t$ is the direct product $\mathfrak{S}_1 \times \mathfrak{S}_t$. In the similar way it can be proved that every element of \mathfrak{S}_t is commutative with any element of $\mathfrak{S}_{t'}$ $(1 \leq t, t' \leq i+1)$. Thus $\mathfrak{N} = \mathfrak{S}_1 \cup \cdots \cup \mathfrak{S}_{i+1}$ is a group. Hence \mathfrak{N} is a regular normal subgroup of \mathfrak{G} .

Thus there exists no group satisfying the conditions of the theorem in this case.

7. Case $\Re_1 = \langle \tau \rangle$, d = 2 and n = i(2i-1). In this case $g^*(2) = 0$. Hence every involution is conjugate to τ . The order of \mathfrak{G} is equal to $2^{l+m}(2^{m+1}-1)(2^{m+1}+1)(2^m-1)$.

Set $\mathfrak{S}' = \mathfrak{K}\mathfrak{S}$. Since $\mathfrak{S}'/\mathfrak{S}$ is a cyclic Sylow 2-subgroup of $N_{\mathfrak{S}}(\mathfrak{S})/\mathfrak{S}$, $N_{\mathfrak{S}}(\mathfrak{S})/\mathfrak{S}$ is solvable and hence $N_{\mathfrak{S}}(\mathfrak{S})$ is solvable. We shall prove that the order of $N_{\mathfrak{S}}(\mathfrak{S})$ is equal to $2^{l+m}(2^m-1)(2^{m+1}-1)$. Remark that Lemma 4.5 is also true for this case. Let $\tau' = \tau^G$ be an element of \mathfrak{S} , where G is an element of \mathfrak{S} . The same argument as in the proof of Lemma 4.6 shows that G is contained in $N_{\mathfrak{S}}(\mathfrak{S})$. Thus every element $(\neq 1)$ of \mathfrak{S} is conjugate to τ under $N_{\mathfrak{S}}(\mathfrak{S})$. Hence the index of $C_{\mathfrak{G}}(\tau)$ in $N_{\mathfrak{G}}(\mathfrak{S})$ is equal to $2^{m+1}-1$.

Let \mathfrak{V} be a normal 2-complement of $\mathfrak{H} \cap N_{\mathfrak{G}}(\mathfrak{R}_1)$. Since $N_{\mathfrak{G}}(\mathfrak{S})$ is solvable, there exists a Hall subgroup \mathfrak{A} of order $(2^m-1)(2^{m+1}-1)$ of $N_{\mathfrak{G}}(\mathfrak{S})$ containing \mathfrak{V} . Since $\mathfrak{SV}/\mathfrak{R}_1$ is a complete Frobenius group of degree 2^m , all Sylow subgroups of \mathfrak{V} are cyclic. Let r be the least prime factor of the order of \mathfrak{V} . Let \mathfrak{R} be a Sylow r-subgroup of \mathfrak{V} . Then \mathfrak{R} is cyclic and leaves only the symbol 1 fixed. Hence $N_{\mathfrak{G}}(\mathfrak{R})$ is contained in \mathfrak{H} . Let \mathfrak{R}' be a Sylow 2-subgroup of $C_{\mathfrak{G}}(\mathfrak{R})$. Since \mathfrak{R} is a Sylow 2-subgroup of \mathfrak{H} and $C_{\mathfrak{G}}(\mathfrak{R})$ is a subgroup of \mathfrak{H} , \mathfrak{R}' is conjugate to a subgroup of \mathfrak{R} . Thus it may be assumed that \mathfrak{R}' is a subgroup of \Re . Using Sylow's theorem, we obtain that $N_{\mathfrak{G}}(\mathfrak{R}) = C_{\mathfrak{G}}(\mathfrak{R})(N_{\mathfrak{G}}(\mathfrak{R}))$ $(\Lambda \otimes (\Re')) = C_{\otimes}(\Re)(N_{\otimes}(\Re) \cap N_{\otimes}(\Re_1)) = C_{\otimes}(\Re)(N_{\otimes}(\Re) \cap \mathfrak{VR}) \text{ since } \Re_1 \text{ is a subgroup}$ of \Re' . Let CVK' be an element of $N_{\mathfrak{G}}(\mathfrak{R})$ of odd order u, where C, V and K' are elements of $C_{\mathfrak{A}}(\mathfrak{R})$, \mathfrak{V} and \mathfrak{R} , respectively. Then $(CVK')^u = C'(VK')^u$, where C' is an element of $C_G(R)$, and $(VK')^u = C'^{-1}$. Set $s = |(VK')^u|/|K'|$, where $|(VK')^u|$ and |K'| are orders of $(VK')^u$ and K', respectively. Then s is an odd integer and $(VK')^{us}$ is contained in a Sylow 2-subgroup of $C_{\mathfrak{g}}(\mathfrak{R})$ and hence so is VK'. In particular CVK' is an element of $C_{\infty}(\mathfrak{R})$. Hence we obtain that $N_{\mathfrak{G}}(\mathfrak{R}) \cap \mathfrak{A} = C_{\mathfrak{G}}(\mathfrak{R})(N_{\mathfrak{G}}(\mathfrak{R}) \cap \mathfrak{R}\mathfrak{R}') \cap \mathfrak{A} = C_{\mathfrak{G}}(\mathfrak{R})(N_{\mathfrak{G}}(\mathfrak{R}) \cap \mathfrak{V}) \cap \mathfrak{A} = C_{\mathfrak{G}}(\mathfrak{R}) \cap \mathfrak{A}$. By the splitting theorem of Burnside \mathfrak{A} has the normal r-complement. Continuing in the similar way, it can be shown that \mathfrak{A} has the normal subgroup \mathfrak{B} of order $2^{m+1}-1$, which is a complement of \mathfrak{B} . Every permutation $(\neq 1)$ of \mathfrak{B} leaves no symbol of Ω fixed and hence it is not commutative with any permutation $(\neq 1)$ of \mathfrak{B} . Let B be a permutation of \mathfrak{B} of a prime order, say q. Then all the permutations are conjugate to either B or B^{-1} under \mathfrak{B} . This implies that \mathfrak{B} is an elementary abelian q-group of order q^s . Then it follows that $2^{m+1}-1=q^s$. Hence s=1 and \mathfrak{B} is cyclic of order q. \mathfrak{V} is also cyclic.

Let the order of $N_{\mathfrak{G}}(\mathfrak{B})$ be equal to $\frac{1}{2} x(q-1)q$. If the order of $C_{\mathfrak{G}}(\mathfrak{B})$ is even, then there exists an involution τ' in $C_{\mathfrak{G}}(\mathfrak{B})$ which is conjugate to τ and such that $C_G(\tau')$ contains \mathfrak{B} . But the orders of $C_{\mathfrak{G}}(\tau)$ and \mathfrak{B} are relatively prime. Hence, since $C_{\mathfrak{G}}(\tau')$ is conjugate to $C_{\mathfrak{G}}(\tau)$, the order of $C_{\mathfrak{G}}(\mathfrak{B})$ is odd. Therefore, since the order of the automorphism group of \mathfrak{B} is equal to $q-1=2^{m+1}-2$, the order of $N_{\mathfrak{G}}(\mathfrak{B})$ is not divisible by four.

Using Sylow's theorem we obtain the following congruence;

$$2^{l-1}(q+1)(q+2)/x \equiv 1 \pmod{q}$$
.

This implies that $2^{l-1}(q+1)(q+2) = x(yq+1)$, where y is positive since x is less than $2^{l-1}(q+1)(q+2)$. Then we have that $x = zq+2^l$, where $2^{l-1} \ge z \ge 0$. It can be proved that z must be equal to 0 or 2^{l-1} . If z = 0, then the order of $N_{\mathfrak{G}}(\mathfrak{B})$ is equal to $2^l q \cdot \frac{1}{2}$ (q-1) and hence, since l > 1, it is divisible by four. If $z = 2^{l-1}$, then the order of $N_{\mathfrak{G}}(\mathfrak{B})$ is equal to $2^{l-1}(q+2) \frac{1}{2} q(q-1)$. Let Y be a permutation $(\neq 1)$ of odd prime order dividing $(q+2) \frac{1}{2} (q-1)$ which is contained in $N_{\mathfrak{G}}(\mathfrak{B})$. Since Y leaves just one symbol of Ω fixed, Y is not contained in $C_{\mathfrak{G}}(\mathfrak{B})$. Hence we obtain the following;

$$q-1 \ge |N_{\rm G}(\mathfrak{B})/C_{\rm G}(\mathfrak{B})| > \ \frac{1}{2} \ (q+2)(q-1) \, .$$

But this is impossible.

Thus there exists no group satisfying the conditions of the theorem in this case.

5. The case *n* is even and $N_{\mathfrak{G}}(\mathfrak{R}_1)/\mathfrak{R}_1$ does not contain a regular normal subgroup.

1. Since $N_{\mathfrak{G}}(\mathfrak{K})/\mathfrak{K}$ is a complete Frobenius group and hence it contains a regular normal subgroup, \mathfrak{K}_1 is a proper subgroup of \mathfrak{K} .

2. Case $\Re_1 = \langle \tau \rangle$ and $2^l \leq 8$. By inductive hypothesis, if $2^l = 4$, then $\mathfrak{G}_1 = N_\mathfrak{G}(\mathfrak{R}_1)/\mathfrak{R}_1$ is isomorphic to either PSL(2, 5) or $SL^*(2, 8)$ and, if $2^l = 8$, then \mathfrak{G}_1 is isomorphic either PGL(2, 5) or PSL(2, 9).

At first assume that d=2. If $2^{i}=8$, then i=6 or 10. Hence $n-i=\beta i(i-1)$ $(\beta=1 \text{ or } 2)$ is not divisible by 8. But n-i must be divisible by the order of \mathfrak{R} . This is a contradiction. If \mathfrak{G}_{1} is isomorphic to PSL(2, 5), then i=6 and, since n-i must be divisible by 4, n is equal to $6(2 \cdot 6-1)=6 \cdot 11$. Let \mathfrak{P}_{11} be a Sylow 11-subgroup of \mathfrak{G} . It is trivial that, since $g^{*}(2)=0$ and the order of $N_{\mathfrak{G}}(\mathfrak{R}_{1})$ is equal to $6 \cdot 5 \cdot 4$, the order of $C_{\mathfrak{G}}(\mathfrak{P}_{11})$ is odd. Since the order of $C_{\mathfrak{G}}(\mathfrak{P}_{11})$ and n-1 are relatively prime, the order of $C_{\mathfrak{G}}(\mathfrak{P}_{11})$ is equal to 11 or 33. The index of $C_{\mathfrak{G}}(\mathfrak{P}_{11})$ in $N_{\mathfrak{G}}(\mathfrak{P}_{11})$ is a factor of 10. Thus this contradicts the Sylow's theorem.

If \mathfrak{G}_1 is isomorphic to $SL^*(2, 8)$, then i = 28. Since every involution of \mathfrak{G}_1 leaves just four symbols of $\mathfrak{J}(\mathfrak{R}_1)$, we obtain that $\alpha(I) \neq 0$. Therefore, since every involution of \mathfrak{G} is conjugate to a permutation with the cyclic structure $(12) \cdots$, we have that $g^*(2) = 0$ and hence n = i(2i-1). Thus the order of \mathfrak{F} is equal to $4 \cdot 3^4 \cdot 19$. Since \mathfrak{R} is cyclic, \mathfrak{F} has a normal 2-complement \mathfrak{Q} of order $3^4 \cdot 19$. Let \mathfrak{P}_{19} be Sylow 19-subgroup of \mathfrak{Q} . By Sylow's theorem \mathfrak{P}_{19} is normal in \mathfrak{Q} . \mathfrak{P}_{19} is normal even in \mathfrak{F} . Since the order of the automorphism group of \mathfrak{P}_{19} is equal to 18, τ must be contained in $C_{\mathfrak{P}}(\mathfrak{P}_{19})$. This is a contradiction.

Next we shall consider the case $d \neq 2$. If $2^{i} = 4$, then $\langle K, I \rangle$ is dihedral. If \mathfrak{G}_{1} is isomorphic to PSL(2, 5), then i = 6 and, since $n - i = i\beta(i-1)$ must be divisible by 4, $\beta = 2$ or 4. Therefore $\langle K, I \rangle$ is a Sylow 2-subgroup of \mathfrak{G} . By [4, Theorem 7.7.3] $C_{\mathfrak{G}}(\tau)$ has a normal 2-complement and hence $C_{\mathfrak{G}}(\tau)$ is solvable. Thus $\mathfrak{G}_1 = C_\mathfrak{G}(\tau)/\langle \tau \rangle$ must be solvable and this is a contradiction. If \mathfrak{G}_1 is isomorphic to $SL^*(2, 8)$, then, since for every involution η of $SL^*(2, 8)\alpha(\eta) = 4$, $\alpha(\mathfrak{R}) = 4$. Hence the order of $N_\mathfrak{G}(\mathfrak{R})/\mathfrak{R}$ is equal to 4.3. Since I is not contained in $C_\mathfrak{G}(\mathfrak{R})$ and $N_\mathfrak{G}(\mathfrak{R})/\mathfrak{R}$ is a complete Frobenius group, $C_\mathfrak{G}(\mathfrak{R})$ is contained in a Sylow 2-subgroup. Thus the order of $N_\mathfrak{G}(\mathfrak{R})/C_\mathfrak{G}(\mathfrak{R})$ is divisible by 3. This is a contradiction.

If $2^i = 8$, then i = 6 or 10. Since $n - i = \beta i(i-1)$ must be divisible by 8, β is equal to 4 or 8. If $\langle K, I \rangle$ is dihedral, then $\langle K, I \rangle$ is a Sylow 2-subgroup of \mathfrak{G} . Thus $C_{\mathfrak{G}}(\tau)$ is solvable and also $C_{\mathfrak{G}}(\tau)/\langle \tau \rangle$ is solvable. Hence $\langle K, I \rangle$ must be semi-dihedral and d = 4. Since $g^*(2) = 0$ and \mathfrak{G}_1 is a Zassenhaus group, all involutions are conjugate and a permutation leaving at least three symbols of Ω fixed is an involution. Thus \mathfrak{G} satisfies the conditions in [12]. Hence by [6] and [12] \mathfrak{G} is isomorphic to either $PSU(3, 5^2)$ or one of the groups of Ree type (see [16]). Since a Sylow 2-subgroup of a group of Ree type is elementary abelian of order 8, G is isomorphic to $PSU(3, 5^2)$.

3. Case $\Re_1 = \langle \tau \rangle$ and $2^l > 8$. \mathfrak{G}_1 is isomorphic to one of the groups $PSU(3, 3^2)$, $PSU(3, 5^2)$, PGL(2, *) and PSL(2, *). Then *i* is not divisible by 8. Since $n-i=\beta i(i-1)$ is divisible by 2^l , β is divisible by 4. Thus we have that d>2 and hence $\langle K, I \rangle$ is dihedral or semi-dihedral and in particular $\langle K, I \rangle / \langle \tau \rangle$ is dihedral. Therefore \mathfrak{G}_1 is isomorphic to either PGL(2, *) or PSL(2, *) and *i* is divisible by 2 exactly. Thus we have that $\beta = 2^{l-1}$ or 2^l . Thus $\langle K, I \rangle$ is a Sylow 2-subgroup of \mathfrak{G} . If $\langle K, I \rangle$ is dihedral, then $C_{\mathfrak{G}}(\tau)$ is solvable and hence $C_{\mathfrak{G}}(\tau)/\langle \tau \rangle$ is solvable. If $\langle K, I \rangle$ is semi-dihedral, then $\beta = 2^{l-1}$ and $g^*(2) = 0$. Again by [6] and [12], G must be isomorphic to either $PSU(3, 5^2)$ or one of the groups of Ree type. This is a contradiction.

Thus there exists no group satisfying the conditions of the theorem in this case.

4. Case $\Re_1 > \langle \tau \rangle$. Since \Re_1 is a proper subgroup of \Re , the order of \Re is greater than 4. At first assume that d=2. By inductive hypothesis *i* is not divisible by 8. Since $n-i=\beta i(i-1)$ is divisible by 2^i , $\beta=2$, $2^i=8$ and *i* is divisible by 4. Thus we obtain that \mathfrak{G}_1 is isomorphic to $SL^*(2, 8)$ and $n=2^2\cdot7\cdot5\cdot11$. If we consider a Sylow 19-subgroup of \mathfrak{H} , likewise in 5.2, we can obtain a contradiction.

Next we assume that d > 2. Then $\langle K, I \rangle / \Re_1$ is dihedral. Hence \mathfrak{G}_1 is isomorphic to either PGL(2, *) or PSL(2, *). Since n-i is divisible by 2^l , we have that $\beta = 2^l$ or 2^{l-1} . Therefore $\langle K, I \rangle$ is a Sylow 2-subgroup of \mathfrak{G} . If $\langle K, I \rangle$ is dihedral, then $C_{\mathfrak{G}}(\tau)$ is solvable and hence $C_{\mathfrak{G}}(\tau)/\Re_1$ must be solvable. Thus $\langle K, I \rangle$ is semi-dihedral. Set $\mathfrak{G}_0 = C_G(\tau)/\langle \tau \rangle$ ($= N_{\mathfrak{G}}(\mathfrak{R}_1)/\langle \tau \rangle$). Then, since $\langle K, I \rangle / \Re_1$ is a Sylow 2-subgroup of \mathfrak{G}_0 and a dihedral group. Let $\eta = K^{2^{l-2}} \langle \tau \rangle$ be the involution in the center of $\langle K, I \rangle / \langle \tau \rangle$. It can be easily

276

proved that η is contained in the center of \mathfrak{G}_0 . Thus, by [4, Theorem 7.7.3], \mathfrak{G}_0 has a normal 2-complement and hence \mathfrak{G}_0 is solvable. Hence \mathfrak{G}_1 must be solvable. This is a contradiction.

Thus there exists no group satisfying the conditions of the theorem in this case.

Thus Theorem is proved.

Hokkaido University

References

- [1] W. Feit, On class of doubly transitive permutation groups, Illinois J. Math., 4 (1960), 170-186.
- [2] W. Feit and J.G. Thompson, Solvability of groups of odd order, Pacific J. Math., 13 (1963), 775-1029.
- [3] P. Fong, Some Sylow subgroups of order 32 and a characterization of U(3, 3),
 J. Algebra, 6 (1967), 65-76.
- [4] D. Gorenstein, Finite groups, Harper and Row, New York, 1968.
- [5] D. Gorenstein and J. H. Walter, The characterization of finite groups with dihedral Sylow 2-subgroups, I, II, III, J. Algebra, 2 (1965), 85-151, 218-270, 334-393.
- [6] K. Harada, A characterization of the simple group $U_3(5)$, Nagoya Math. J. (to appear).
- [7] B. Huppert, Endliche Gruppen I, Springer, Berlin, 1968.
- [8] N. Ito, On a class of doubly transitive permutation groups, Illinois J. Math., 6 (1962), 341-352.
- [9] N. Ito, On doubly transitive groups of degree n and order 2(n-1)n, Nagoya Math. J., 27 (1966), 409-417.
- [10] H. Kimura, On doubly transitive permutation groups of degree n and order 4(n-1)n, J. Math. Soc. Japan, 21 (1969), 234-243.
- [11] H. Lüneburg, Charakterisierungen der endlichen desarguesschen projektiven Ebenen, Math. Z., 85 (1964), 419-450.
- [12] R. Ree, Sur une famille de groupes de permutations doublement transitifs, Canad. J. Math., 16 (1964), 797-819.
- [13] W.R. Scott, Group theory, Prentice-Hall, Englewood Cliffs, N. J., 1964.
- [14] M. Suzuki, On a class of doubly transitive groups, Ann. of Math., 75 (1962), 105-145.
- [15] M. Suzuki, A characterization of the 3-dimensional projective unitary grcup over a finite field of odd characteristic, J. Algebra, 2 (1965), 1-14.
- [16] H. N. Ward, On Ree's series of simple groups, Trans. Amer. Math. Soc., 121 (1966), 62-89.
- [17] H. Wielandt, Finite permutation groups, Academic Press, New York, 1964.
- [18] H. Zassenhaus, Kennzeichung endlicher linearer Gruppen als Permutationsgruppen, Abh. Math. Sem. Univ. Hamburg, 11 (1936), 17-40.