Orbits of one-parameter groups II (Linear group case)

By Morikuni Goto ${ }^{1)}$

(Received Feb. 17, 1969)

§ 1. Introduction.

Let R denote the field of real numbers. We denote by \mathcal{K} the factor group of the additive group of \boldsymbol{R} modulo the subgroup composed of integers. A compact connected one-dimensional Lie group is called a circle. A circle is topologically isomorphic with \mathcal{K}. A direct product Lie group of a finite number of circles will be called a toral group. By a torus we shall mean the underlying analytic manifold of a toral group.

We can classify one-parameter subgroups of Lie groups topologically into three types: (1) a closed straight line, which is topologically isomorphic with the additive group of \boldsymbol{R}; (2) a circle; and (3) a non-closed one-parameter subgroup. When a one-parameter subgroup \mathscr{X} is non-closed, the closure \bar{X} is a toral group of dimension at least two.

We let $M(n, \boldsymbol{R})$ denote the Lie algebra of all n by n matrices with real entries, and $\mathcal{G} \mathcal{L}(n, \boldsymbol{R})$ the general linear group, the group of all invertible matrices in $M(n, \boldsymbol{R})$. In this paper we shall generalize the foregoing topological classification of one-parameter subgroups of $\mathcal{L} \mathcal{L}(n, \boldsymbol{R})$ to the following form :

Theorem 1. Let \mathcal{L} be a closed connected subgroup, and let \mathfrak{X} be a oneparameter subgroup of $\mathcal{G} \mathcal{L}(n, \boldsymbol{R})$. Then an orbit of \mathfrak{X} in the left coset space $\mathfrak{G} \mathcal{L}(n, \boldsymbol{R}) / \mathcal{L}$ is either locally compact and homeomorphic with a point, \boldsymbol{R} or \mathcal{K}, or there exists an analytic submanifold \mathscr{M} in $\mathcal{G} \mathcal{L}(n, \boldsymbol{R}) / \mathcal{L}$, which is a torus, such that the orbit can be regarded as an everywhere dense one-parameter subgroup with respect to the toral group structure of \mathscr{M}.

We note here that although a locally compact one-parameter subgroup is closed (and vice versa), a locally compact orbit is not necessarily closed. Also it is to be noted that in general it is impossible to find a toral subgroup \subseteq of $\mathscr{G} \mathcal{L}(n, \boldsymbol{R})$ such that an orbit of \mathscr{T} coincides with the torus \mathscr{M} in Theorem 1 .

When \mathcal{L} is a (not necessarily connected) algebraic subgroup in $G \mathcal{L}(n, \boldsymbol{R})$,

[^0]we can get an analogous theorem, essentially as an easier part of the proof of Theorem 1. Moreover, in this case we can get a connection between the topology of an orbit and the notion of play, which was introduced by the author in a previous paper. ${ }^{2)}$

Let \mathcal{G} be a group, and let \mathcal{A} and \mathscr{B} be subgroups of \mathcal{G}. By the play ${ }^{3)}$ of \mathcal{A} in \mathscr{B}, denoted by $\mathscr{P}(\mathcal{A}, \mathscr{B})$, we mean the intersection of all $a \mathscr{B} a^{-1}$ for a in \mathcal{A}. By definition, $\mathscr{P}(\mathcal{A}, \mathscr{B})$ is a subgroup, and \mathcal{A} normalizes $\mathscr{P}(\mathcal{A}, \mathscr{B})$. Hence $Q(\mathcal{A}, \mathscr{B})=\mathscr{A} \cdot \mathscr{P}(\mathcal{A}, \mathscr{B})$ is a subgroup of \mathcal{G}. The group $Q(\mathcal{A}, \mathscr{B})$ will be called the extended play of \mathcal{A} in \mathscr{B}.

Now we can state our theorem:
THEOREM 2. Let \mathcal{L} be an algebraic subgroup, and let \mathfrak{X} be a one-parameter subgroup, of $\mathcal{G} \mathcal{L}(n, \boldsymbol{R})$. Then the orbit $\mathfrak{X} \mathcal{L} / \mathcal{L}$ is locally compact if and only if the extended play $Q=Q(\mathscr{X}, \mathcal{L})$ is closed. When the orbit $\mathscr{X} \mathcal{L} / \mathcal{L}$ is not locally compact, we can find a toral subgroup \mathcal{I} of the closure \bar{Q} of Q such that $\mathfrak{X} \mathcal{L} / \mathcal{L}$ is everywhere dense in $\mathcal{I} \mathcal{L} / \mathcal{L}$.

An example in $\S 6$ will show that it is impossible to generalize Theorem 2 to the case of non-algebraic \mathcal{L}.

This paper is organized into six sections. Because our proofs are based mainly on the "category argument" and on the " orbit theorem" of algebraic groups, we first develop machinery on locally compact groups and on algebraic groups in $\S 2$ and $\S 3$, respectively. We apply the results in $\S 4$ to obtain Theorem 1. The proof of Theorem 2 is given in $\S 5$. Finally in $\S 6$ we give examples of orbits and their closures.

§ 2. Locally compact groups. ${ }^{4)}$

Let \mathscr{M} be a locally compact Hausdorff space, and let \mathcal{S} be a subset of \mathscr{M}. If \mathcal{S} is open or closed in \mathscr{M}, then \mathcal{S} is locally compact (with respect to the relative topology). Conversely if \mathcal{S} is locally compact, then \mathcal{S} is an intersection of a closed set and an open set, i. e. \mathcal{S} is open in the closure $\overline{\mathcal{S}}$ of \mathcal{S}.

Now let \mathcal{G} be a locally compact group, and let \mathcal{L} be a subgroup of \mathcal{G}. If \mathcal{L} is closed, then of course it is locally compact. Conversely if \mathcal{L} is locally compact, then because the closure $\overline{\mathcal{L}}$ is also a subgroup of \mathcal{G}, \mathcal{L} is an open subgroup of $\overline{\mathcal{L}}$, and since an open subgroup of a topological group is closed, we have that \mathcal{L} is closed. Thus, a subgroup of a locally compact group is locally compact if and only if it is closed.

[^1]For a pair of subsets \mathcal{A} and \mathscr{B} of a group \mathcal{G}, we adopt the notation: $\mathcal{A} \cdot \mathscr{B}=\mathcal{A} \mathscr{B}=\{a b ; a \in \mathcal{A}, b \in \mathscr{B}\}$.
(2.1) Let \mathfrak{G} be a locally compact group, and let \mathcal{L} be a closed subgroup of G. We denote by G / \mathcal{L} the left coset space. Let \mathscr{H} be a subset of \mathfrak{G}. Then the set $\mathscr{H} \mathcal{L}$ is locally compact (or closed) in G if and only if $\mathscr{H} \mathcal{L} / \mathcal{L}$ is locally compact (or closed) in G / \mathcal{L}.

Proof. Because the projection $\mathcal{G} \ni g \mapsto \pi(g)=g \mathcal{L} \in G / \mathcal{L}$ is continuous and open, the set $\mathscr{H} \mathcal{L} / \mathcal{L}$ is closed or open, according as $\pi^{-1}(\mathscr{H} \mathcal{L} / \mathcal{L})=\mathscr{H} \mathcal{L}$ is closed or open. A necessary and sufficient condition for $\mathscr{G} \mathcal{L}$ to be locally compact is that $\mathscr{H} \mathcal{L}$ is open in the closure $\overline{\mathscr{C} \mathcal{L}}$. On the other hand, the closure of $\mathscr{H} \mathcal{L} / \mathcal{L}$ in $\mathcal{G} / \mathcal{L}$ coincides with $\overline{\mathcal{G} \mathcal{L}} / \mathcal{L}$, and $\mathscr{G} \mathcal{L} / \mathcal{L}$ is open in $\overline{\mathcal{H} \mathcal{L}} / \mathcal{L}$ if and only if $\mathscr{H} \mathcal{L}$ is open in $\overline{\mathcal{H} \mathcal{L}}$.
Q. E. D.
(2.2) Let \mathfrak{a} be a locally compact group, and let \mathcal{A} and \mathscr{B} be locally compact groups with countable bases. Let α and β be continuous one-one homomorphisms from \mathcal{A} and \mathscr{B} into \mathcal{G}, respectively. Suppose that $\alpha(\mathcal{A}) \beta(\mathscr{B})$ is locally compact. Then the mapping ρ :

$$
\mathcal{A} \times \mathscr{B} \ni(a, b) \mapsto \rho(a, b)=\alpha(a)^{-1} \beta(b)
$$

is (continuous and) open. More precisely, setting

$$
\mathcal{C}=\alpha(\mathcal{A}) \cap \beta(\mathscr{B}) \quad \text { and } \quad \mathscr{D}=\left\{\left(\alpha^{-1}(c), \beta^{-1}(c)\right) ; c \in \mathcal{C}\right\}
$$

we have a homeomorphism $\tilde{\rho}$, induced by ρ, from the right coset space $\mathscr{D} \backslash(\mathcal{A} \times \mathscr{B})$ onto $\alpha(A) \cdot \beta(\mathscr{B})$.
(2.3) In (2.2) we suppose moreover that \mathcal{C} is compact. Then for a closed subset \mathcal{A}_{1} of \mathcal{A} and a closed subset \mathscr{B}_{1} of \mathscr{B}, the set $\alpha\left(\mathcal{A}_{1}\right) \beta\left(\mathscr{B}_{1}\right)$ is closed in $\alpha(\mathcal{A}) \beta(\mathscr{B})$, and so it is locally compact.

Proof of (2.2). Let a and a^{\prime} be elements of \mathcal{A}, and let b and b^{\prime} be elements of \mathscr{B}. If $\rho(a, b)=\rho\left(a^{\prime}, b^{\prime}\right)$ then we have that $\left(a^{\prime}, b^{\prime}\right) \in \mathscr{D}(a, b)$ and vice versa. Hence \mathscr{D} is a closed subgroup of $\mathcal{A} \times \mathscr{B}$ and ρ induces a continuous one-one mapping $\tilde{\rho}$ from the right coset space $\mathscr{G} \backslash(\mathcal{A} \times \mathcal{B})$ onto $\alpha(A) \beta(\mathscr{B})$.

Let U_{A} and U_{B} be compact symmetric neighborhoods of the identities of \mathscr{A} and \mathscr{B}, respectively. We take compact symmetric neighborhoods V_{A} and \mathcal{V}_{B} of the identities of \mathcal{A} and \mathscr{B}, with $\mathcal{V}_{A}^{2} \subset \mathcal{V}_{A}$ and $\cup_{B}^{2} \subset \mathcal{Q}_{B}$. Then \mathcal{V}_{A} $\times \mathscr{V}_{B}=\mathscr{V}$ is a compact neighborhood of the identity of $\mathcal{A} \times \mathscr{B}$, and the image $\rho(\mathscr{O})$ is compact. Because $\mathcal{A} \times \mathscr{B}$ has a countable base, we can find an at most countable subset $\left\{\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \cdots\right\}$ of $\mathcal{A} \times \mathscr{B}$ such that $\mathcal{A} \times \mathscr{B}=\bigcup_{k=1}^{\infty} \mathscr{V}\left(a_{k}, b_{k}\right)$, from which it follows that $\alpha(\mathcal{A}) \beta(\mathscr{B})=\bigcup_{k=1}^{\infty} \alpha\left(a_{k}\right)^{-1} \rho(\mathcal{O}) \beta\left(b_{k}\right)$. Since $\alpha(\mathcal{A}) \beta(\mathscr{B})$ is locally compact we can find a number k such that $\alpha\left(a_{k}\right)^{-1} \rho(\subset) \beta\left(a_{k}\right)$ contains an interior point.

The direct product group $\mathcal{A} \times \mathscr{B}$ is acting as a transformation group on
the space G by

$$
(\mathcal{A} \times \mathscr{B}) \times \mathcal{G} \ni((a, b), g) \mapsto \alpha(a)^{-1} g \beta(b) \in \mathcal{G},
$$

and $\alpha(\mathcal{A}) \beta(\mathscr{B})$ is one of the orbits. Hence the space $\alpha(\mathcal{A}) \beta(\mathscr{B})$ is homogeneous with respect to the action of $\mathcal{A} \times \mathcal{B}$, and in particular we see that $\rho(Q)$ contains an interior point, say $\rho\left(a_{0}, b_{0}\right)$. Denoting $\mathcal{U}_{A} \times \mathcal{U}_{B}=\mathcal{U}$ we have that $\mathcal{V}\left(a_{0}^{-1}, b_{0}^{-1}\right) \subset \mathcal{U}$. Since $\left.\rho(q)\left(a_{0}^{-1}, b_{0}^{-1}\right)\right)$ contains the identity as an interior point, $\rho(\mathcal{I})$ is a neighborhood of the identity. This obviously implies that ρ is an open mapping.
Q. E. D.

Proof of (2.3). Let us first prove that \mathscr{D} is compact. Since \mathscr{D} is a locally compact group with a countable base, and

$$
\mathscr{D} \ni\left(\alpha^{-1}(c), \beta^{-1}(c)\right) \mapsto \beta^{-1}(c) \mapsto c \in \mathcal{C}
$$

gives a continuous one-one homomorphism from \mathscr{D} onto a (locally) compact group, \mathscr{D} is homeomorphic with \mathcal{C}.

Now because \mathscr{A}_{1}^{-1} and \mathscr{B}_{1} are closed subsets of \mathcal{A} and \mathscr{B} respectively, we have that $\mathcal{A}_{1}^{-1} \times \mathscr{B}_{1}$ is closed in $\mathcal{A} \times \mathscr{B}$. By the compactness of $\mathscr{G}, \mathscr{D}\left(\mathcal{A}_{1}^{-1} \times \mathscr{B}_{1}\right)$ is closed, and from which it follows that $\rho\left(\mathscr{D}\left(\mathscr{A}_{1}^{-1} \times \mathscr{B}_{1}\right)\right)=\alpha\left(\mathscr{A}_{1}\right) \beta\left(\mathscr{B}_{1}\right)$ is closed in $\alpha(\mathcal{A}) \beta(\mathscr{B})$.
Q. E. D.
§ 3. Algebraic groups in $\mathcal{G} \mathcal{L}(n, \boldsymbol{R}) .{ }^{5)}$
Throughout this paper, for a topological group $\mathcal{G}, \mathcal{G}^{0}$ will denote the connected component of G containing the identity; also, by a linear group we shall mean an analytic subgroup of $\mathcal{G} \mathcal{L}(n, \boldsymbol{R})$ for a suitable n.

Let G be an algebraic group in $\mathscr{G}(n, \boldsymbol{R})$. Then G is a closed subgroup, and G^{0} is of finite index in \mathcal{G}. For a linear group \mathscr{H} we denote by [$\left.\mathscr{G}\right]$ the algebraic hull of \mathscr{H}, which is the smallest algebraic group containing \mathscr{H}.

A subalgebra of $M(n, \boldsymbol{R})$ is said to be algebraic if it is a Lie algebra of an algebraic group. Let us call an element X of $M(n, \boldsymbol{R})$ algebraic if the onedimensional Lie algebra $\boldsymbol{R} X$ is algebraic. For a subalgebra H of $M(n, \boldsymbol{R})$, we denote by $[H]$ the algebraic hull of H, which is the smallest algebraic Lie algebra containing H. If H is the Lie algebra of a linear group \mathscr{A}, then [H] is the Lie algebra of $[\mathscr{H}]$.

Let \mathcal{G} be a linear group, and let \mathscr{I} be the normalizer of \mathcal{G}. Denoting $A d(g) A=g A g^{-1}$ for $g \in \mathcal{G} \mathcal{L}(n, \boldsymbol{R})$ and $A \in M(n, \boldsymbol{R})$, we have that $\pi=\{g \in$ $\mathcal{G} \mathcal{L}(n, \boldsymbol{R}) ; \operatorname{Ad}(g) G=G\}$, and so \mathscr{R} is an algebraic group. This implies in particular
(3.1) A linear group \mathcal{G} is a normal subgroup of its own algebraic hull $[\mathcal{G}]$.

[^2]Let X be in $M(n, \boldsymbol{R})$. The algebraic hull $[\boldsymbol{R} X]$ of $\boldsymbol{R} X$ may also be denoted simply by $[X] .[X]$ is the set of replicas of X and forms an abelian Lie algebra, and it is possible to find a basis of $[X]$ composed of algebraic elements. From this fact we can obtain the following
(3.2) Let X be in $M(n, \boldsymbol{R})$, and let B be a (not necessarily algebraic) subalgebra of $[X]$. Then we can find an algebraic Lie algebra A such that

$$
[X]=A \oplus B \quad \text { (direct sum) }
$$

Now the following theorem is sometimes quoted as the orbit theorem:
(Orbit Theorem). Let \mathcal{A} and \mathscr{B} be algebraic groups in $\mathcal{G} \mathcal{L}(n, \boldsymbol{R})$. Then the product $\mathcal{A} \mathcal{B}$ is Zariski-open in the Zariski closure of $\mathcal{A} \mathscr{B}$. If, in particular, $\mathcal{A} \mathscr{B}=\mathscr{B} \mathcal{A}$, then $\mathcal{A} \mathscr{B}$ is an algebraic group.

For our purposes we need only the following direct consequence of the orbit theorem:
(3.3) Let \mathcal{A} and \mathscr{B} be algebraic groups in $\mathcal{G} \mathcal{L}(n, \boldsymbol{R})$. Then the product $\mathcal{A} \mathscr{B}$ is locally compact, and so is $\mathcal{A}^{0} \mathcal{B}^{0}$.

§ 4. Proof of Theorem 1.

Let \mathcal{L} be a closed connected subgroup, and let $\mathscr{X}=\exp \boldsymbol{R} X$ be a oneparameter subgroup, of $\mathcal{G L}(n, \boldsymbol{R})$. Let g be an element of $\mathcal{G} \mathcal{L}(n, \boldsymbol{R})$. The orbit of \mathscr{X} passing through the point $g \mathcal{L}$ is $\mathscr{X} g \mathcal{L} / \mathcal{L}$. Since the right trans-
 group with \mathcal{L}, in order to prove Theorem 1 we may assume that $g=I$, the identity matrix, without loss of generality.

Let L denote the Lie algebra of \mathcal{L}. We first exclude the trivial case when $X \in L$. We set $[X] \cap L=R$. Then by (3.2) we can find an algebraic subalgebra S such that $[X]=R \oplus S$. Hence there exist an element X_{1} in R and an element X_{2} in S with $X=X_{1}+X_{2}$. Since X_{1} and X_{2} are commutative, we have that

$$
\exp \lambda X \cdot \mathcal{L}=\exp \lambda X_{2} \cdot \exp \lambda X_{1} \cdot \mathcal{L}=\exp \lambda X_{2} \cdot \mathcal{L} \quad \text { for } \quad \lambda \in \boldsymbol{R} .
$$

Moreover, that $X_{2} \in S$ implies $\left[X_{2}\right] \cap L=\{0\}$. Hence after this we may assume that $[X] \cap L=\{0\}$, without loss of generality.

If X is in [L], then the orbit $\mathscr{X} \mathcal{L} / \mathcal{L}$ is a one-parameter subgroup of the Lie group $[\mathcal{L}] / \mathcal{L}$, by (3.1), and so our theorem is obvious in this case. We set $[X] \cap[L]=B$, and take an algebraic Lie algebra A with $[X]=A \oplus B$, by (3.2). By the foregoing remark, we may assume that $A \neq\{0\}$ after this.

Let us suppose that $B=\{0\}$. By (3.3) the set $[\mathscr{X}][\mathcal{L}]$ is locally compact, and moreover that $B=\{0\}$ implies that $[\mathscr{X}] \cap[\mathcal{L}]$ is a finite group, as a zerodimensional algebraic group. On the other hand, \bar{X} is closed in $[\mathscr{X}]$ and \mathcal{L}
is closed in $[\mathcal{L}]$. Hence $\bar{X} \mathcal{L}$ is locally compact by (2.3). Therefore after this let us consider only the case when $B \neq\{0\}$. We decompose X into the form $X=Y+Z$, where $Y \in A$ and $Z \in B$. Obviously, $[Y]=A$ and $[Z]=B$.

Thus we are going to prove Theorem 1 under the following assumptions:

$$
\left\{\begin{array}{l}
X=Y+Z, \quad[X]=[Y] \oplus[Z], \\
{[Z]=[X] \cap[L], \quad[Z] \cap L=\{0\},} \\
Y \neq 0, \quad Z \neq 0 .
\end{array}\right.
$$

We set

$$
\mathscr{Y}=\exp \boldsymbol{R} Y, \quad \mathscr{Z}=\exp \boldsymbol{R} Z, \quad[\mathscr{Y}]=\mathscr{A}, \quad[\mathscr{X}] \cap[\mathcal{L}]=\mathscr{B} .
$$

Since \mathcal{A} and $[\mathcal{L}]$ are algebraic groups, the set $\mathcal{A}[\mathcal{L}]$ is locally compact by (3.3), and that $[Y] \cap[L]=\{0\}$ implies that $\mathcal{A} \cap[\mathcal{L}]$ is a finite group. Hence by (2.3) $\bar{y} \cdot \bar{Z} \mathcal{L}$ is a locally compact set. Now we have two cases depending on the closedness of the linear group $\mathcal{L} \mathcal{L}$.

Case 1. The linear group $\mathscr{L} \mathcal{L}$ is closed.
We shall first prove that \mathcal{Z} is closed in this case. Because the closure $\overline{\mathcal{Z}}$ is contained in $[\mathcal{Z}]$ and $[Z] \cap L=\{0\}$, it is obvious.

Since \mathscr{Z} is in $[\mathcal{L}], \overline{\mathscr{Y}}$ is in \mathcal{A}, and $\mathcal{A} \cap[\mathcal{L}]$ is finite, by using (2.3) again, we see that the abelian group $\overline{\mathcal{y}} \mathcal{Z}$ is closed. Next let us apply (2.2) to the locally compact groups $\bar{y} \mathscr{Z}$ and \mathcal{L}. We set

$$
\bar{y} \mathscr{E} \cap \mathcal{L}=c .
$$

Then \mathcal{C} is a discrete subgroup. Since \mathscr{X} is in $\bar{y} \mathscr{L}$, the closure $\overline{\mathcal{X} \mathcal{L}}$ in $\overline{\mathscr{y}} \mathcal{L} \mathcal{L}$ is given by $\overline{C X} \mathcal{L}$.

If $\mathcal{C X}$ is a closed subgroup of $\bar{y} \mathscr{E}$, then $\mathscr{X} \mathcal{L}=\mathcal{C X} \mathcal{L}$ is locally compact. Otherwise, using the isomorphism theorem (as analytic manifolds):

$$
\overline{\mathcal{X}} \mathcal{L} / \mathcal{L} \simeq \overline{\mathcal{C} X} / \mathcal{C},
$$

we see that the orbit $\mathscr{X} \mathcal{L} / \mathcal{L} \simeq \mathcal{C X} / C$ is an everywhere dense one-parameter subgroup of the toral group $\overline{\mathcal{C} X} / \mathcal{C}$.

Case 2. The linear group $\mathcal{L} \mathcal{L}$ is non-closed.
We first prove the following Lemma:
Lemma. Let \mathfrak{G} be a Lie group, and let $\because n$ be a non-closed analytic subgroup of \mathcal{G}. Suppose that \mathfrak{n} contains a normal analytic subgroup \mathcal{L} of codimension one, which is closed in \mathfrak{G}. Then we can find a non-closed one-parameter subgroup \mathcal{U} of \mathscr{N} with the closure \mathscr{G} such that $\overline{\mathscr{N}}=\mathscr{T} \mathcal{L}$ and $\mathscr{I} \cap \mathcal{L}$ is a finite group.

Proof. We can find a one-parameter subgroup $\mathscr{\mathscr { C }}$ of $\mathscr{\pi}$ such that $\overline{\mathscr{N}}=\overline{\mathscr{A}} \mathscr{\Omega}$, see e.g. Goto [2]. The fact that $\mathscr{H} \mathcal{L}=\mathscr{N}$ implies that $\overline{\mathscr{N}}=\overline{\mathscr{A}} \mathcal{L}$. $\overline{\mathscr{C}}$ is a toral
group and $\overline{\mathscr{H}} \cap \mathcal{L}$ is a closed subgroup of $\overline{\mathcal{H}}$. Hence we can find a toral subgroup \mathscr{I} of $\overline{\mathscr{A}}$ such that $\overline{\mathscr{H}}=\mathscr{I}(\overline{\mathscr{H}} \cap \mathcal{L})^{0}$ and $\mathscr{I} \cap(\overline{\mathscr{H}} \cap \mathcal{L})^{0}=\{I\}$, from which it follows that $\mathscr{I} \cap \mathcal{L}$ is finite. Let \mathscr{U} be the one-parameter subgroup contained in $\mathscr{\Omega}$. Because $\Re=\mathscr{L}$ and \bar{v} is compact, we see that $\bar{\vartheta}=\mathscr{T}$.
Q. E. D.

We apply the Lemma for $\mathscr{N}=\mathscr{L} \mathcal{L}$, and obtain the one-parameter subgroup $\mathcal{U}=\exp \boldsymbol{R} U$ in $\mathscr{L} \mathcal{L}$ and the toral subgroup $\overline{\mathcal{U}}=\mathscr{T}$. By taking a suitable \mathscr{U} we may suppose that there exists an analytic curve $l(\lambda)$ in \mathcal{L} such that

$$
\exp \lambda Z=\exp \lambda U \cdot l(\lambda) \quad \text { for } \quad \lambda \in \boldsymbol{R} .
$$

We set

$$
v(\lambda)=\exp \lambda Y \cdot \exp \lambda U \quad \text { for } \quad \lambda \in \boldsymbol{R} .
$$

$v(\lambda)$ is an analytic curve with $\exp \lambda X \cdot \mathcal{L}=v(\lambda) \mathcal{L}$. We note here that $v(\lambda)$ is not necessarily a one-parameter subgroup.

As we have seen $\overline{y_{\mathcal{I}} \mathscr{L}}=\overline{a_{y}} \overline{\mathcal{L} \mathcal{L}}$ is a locally compact set. $\overline{q_{\mathcal{I}} \mathscr{I}}$ is closed because \mathscr{T} is compact. Let us define an analytic mapping ϕ, from the direct product group $\bar{y} \times \mathscr{I}$ into $G \mathcal{L}(n, \boldsymbol{R}) / \mathcal{L}$, by

$$
\bar{y} \times \mathscr{I} \ni(y, t) \mapsto \phi(y, t)=y t \mathcal{L} .
$$

Let \mathscr{F} denote the set of all elements (y, t) in $\bar{y} \times \mathscr{I}$ with $\phi(y, t)=\mathcal{L}$. Then \mathscr{F} is a subgroup of $\bar{g} \times \mathscr{I}$; because if $y_{1} t_{1}=l_{1}$ and $y_{2} t_{2}=l_{2}$ for $y_{i} \in \bar{y}, t_{i} \in \mathcal{I}, l_{i} \in \mathcal{L}$, ($i=1,2$), then

$$
\left(y_{2} y_{1}^{-1}\right)\left(t_{2} t_{1}^{-1}\right)=t_{1} t_{1}^{-1} y_{1}^{-1} y_{2} t_{2} t_{1}^{-1}=t_{1}\left(l_{1}^{-1} l_{2}\right) t_{1}^{-1} \in \mathcal{L} .
$$

\mathscr{I} is a closed subgroup, and $\phi\left(y_{1}, t_{1}\right)=\phi\left(y_{2}, t_{2}\right)$ holds if and only if $\left(y_{2}, t_{2}\right)$ $\in \mathscr{F}\left(y_{1}, t_{1}\right)$. Thus we have an analytic homeomorphism between the abelian Lie group $(\bar{g} \times \mathscr{I}) / \mathscr{I}$ and the submanifold $\bar{y} \mathscr{I} \mathcal{L} / \mathcal{L}$ of $\mathcal{G} \mathcal{L}(n, \boldsymbol{R}) / \mathcal{L}$.

Next we shall prove that \mathscr{F} is a finite group. We set $\mathscr{F}_{1}=\overline{\mathscr{y}} \cap \mathscr{I} \mathcal{L}$ and $\mathscr{F}_{2}=\mathscr{I} \cap \mathcal{L}$. Both \mathscr{F}_{1} and \mathscr{F}_{2} are finite groups. If (y, t) is in \mathscr{F}, then since $y t \in \mathcal{L}$ implies that $y \in \mathscr{I} \mathcal{L}$, we have $y \in \mathscr{F}_{1}$. On the other hand, if both (y, t_{1}) and (y, t_{2}) belong to \mathscr{F}, then $t_{2}^{-1} t_{1}=\left(y t_{2}\right)^{-1}\left(y t_{1}\right) \in \mathcal{L} \cap \mathscr{T}=\mathscr{F}_{2}$. Hence \mathscr{F} is a finite group.

Next we set $\tilde{v}(\lambda)=(\exp \lambda Y, \exp \lambda U)$ for $\lambda \in \boldsymbol{R}$. Then \tilde{v} is a one-parameter subgroup of $\bar{q} \times I$.

When q is a closed straight line, $\tilde{v}(\boldsymbol{R})$ is clearly closed, and so is $\mathscr{F} \tilde{v}(\boldsymbol{R})$ by the finiteness of \mathscr{F}. Hence $\phi(\tilde{v}(\boldsymbol{R}))=v(\boldsymbol{R}) \mathcal{L} / \mathcal{L}$ is closed in $9 \mathscr{T} \mathcal{L} / \mathcal{L}$, i. e. the orbit $\mathscr{X} \mathcal{L} / \mathcal{L}$ is locally compact.

Now we may suppose that \bar{y} is a toral group. Let us denote by \mathscr{W} the
closure of the one-parameter subgroup $\tilde{v}(\boldsymbol{R})$ in the toral group $\overline{\mathcal{y}} \times \mathscr{G}$. Then $\phi(\mathscr{W})$ is the closure of $\phi(\tilde{v}(\boldsymbol{R}))=\mathfrak{X} \mathcal{L} / \mathcal{L}$ in the coset space $\mathcal{G} \mathcal{L}(n, \boldsymbol{R}) / \mathcal{L}$. Since $\mathscr{W} \mathscr{F} / \mathscr{F}$ is a toral group with $\mathscr{W}, \phi(\mathscr{W})$ is a torus.

§ 5. Proof of Theorem 2.

Let \mathcal{L} be an algebraic subgroup, and let $\mathscr{X}=\exp \boldsymbol{R} X$ be a one-parameter subgroup of $\mathcal{G} \mathcal{L}(n, \boldsymbol{R})$. For g in $\mathcal{G} \mathcal{L}(n, \boldsymbol{R})$, the group $g \mathcal{L} g^{-1}$ is also algebraic. Hence the play of \mathscr{X} in \mathcal{L}

$$
\mathscr{P}=\mathscr{P}(\mathscr{X}, \mathcal{L})=\bigcap_{\lambda \in \boldsymbol{R}} \exp \lambda X \cdot \mathcal{L} \cdot \exp (-\lambda X)
$$

is algebraic, as an intersection of algebraic groups. In particular, \mathscr{P}^{0} is of finite index in \mathscr{P}. Let Q be the extended play: $Q=\mathscr{X} \mathscr{P}$. Obviously, $Q^{0}=\mathscr{X} \mathscr{P}^{0}$ and Q is a closed subgroup if and only if Q^{0} is.

When Q is not closed, by the Lemma in $\S 4$, we can find a non-closed one-parameter subgroup $\mathscr{q}_{\mathcal{S}}$ of Q^{0} such that $\bar{Q}^{0}=\overline{\mathscr{y}} \mathscr{Q}^{0}$ and $\overline{\mathcal{Q}} \cap \mathscr{P}^{0}$ is finite. We set $\overline{\mathscr{Y}}=\mathscr{T}$. Using $Q^{0}=\mathfrak{X} \mathscr{P}^{0}=\mathscr{G} \mathscr{P}^{0}$ we have that $\mathscr{T} \mathcal{L}=\overline{\mathscr{X} \mathcal{L}}$. Hence $\overline{\mathcal{X} \mathcal{L}} / \mathcal{L}$ $\simeq \mathscr{I} / \mathscr{I} \cap \mathcal{L}$ as analytic manifolds. Since $\mathscr{T} \cap \mathcal{L}$ is a finite group as a subgroup of $\mathscr{T} \cap \mathscr{P}$, the toral group $\mathscr{T} / \mathscr{I} \cap \mathcal{L}$ is of dimension at least two, and $\mathscr{X} \mathcal{L} / \mathcal{L}$ $=\mathscr{Y} \mathcal{L} / \mathcal{L}$ corresponds to an everywhere dense one-parameter subgroup in the toral group.

Next, let us suppose that Q is closed. If X normalizes L, then $Q^{0}=\mathfrak{X} \mathcal{L}^{0}$ is closed, and so is $\mathscr{X} \mathcal{L}$. Hence we may assume, after this, that

$$
\begin{aligned}
& X=Y+Z, \quad[Y, Z]=0, \quad Z \in L, \\
& {[Y] \cap L=\{0\} \quad \text { and } \quad Y \neq 0 .}
\end{aligned}
$$

Since $\exp \boldsymbol{R} Z \subset \mathscr{Q}$, the one-parameter subgroup $\mathcal{G}=\exp \boldsymbol{R} Y$ is contained in Q. Because the closure \bar{q} is contained in [$q]$, the intersection $\bar{q} \cap \mathscr{P}$ is a finite group. Hence for $\bar{q} \mathscr{P}$ to be in Q, it is necessary that $\operatorname{dim} \bar{y}=1$, i. e. a_{y} is closed. Applying (2.3) for [$\mathcal{Y}]$ and \mathcal{L}, we see that $\mathscr{I} \mathcal{L}$ is closed in the locally compact set [$\left.\mathcal{Y}^{2}\right] \mathcal{L}$.

§ 6. Examples.

Example 1. We choose real numbers α, β and γ such that the system $\{1, \alpha, \beta, \gamma\}$ is linearly independent over the rationals. We set

$$
e=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad i=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right), \quad 0=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),
$$

and define matrices L and X in $M(8, \boldsymbol{R})$ by

$$
L=\left(\begin{array}{cccc}
e-i & 0 & 0 & 0 \\
0 & e-\alpha i & 0 & 0 \\
0 & 0 & e-i & 0 \\
0 & 0 & 0 & e-\beta i
\end{array}\right)
$$

and

$$
X=\left(\begin{array}{cccc}
e & -\gamma e & 0 & 0 \\
\gamma e & e & 0 & 0 \\
0 & 0 & e & -\gamma e \\
0 & 0 & \gamma e & e
\end{array}\right)
$$

For a real number λ,

$$
\exp \lambda L=\exp \lambda \cdot\left(\begin{array}{cccc}
r(-\lambda) & 0 & 0 & 0 \\
0 & r(-\alpha \lambda) & 0 & 0 \\
0 & 0 & r(-\lambda) & 0 \\
0 & 0 & 0 & r(-\beta \lambda)
\end{array}\right)
$$

where

$$
r(\mu)=\exp \mu i=\left(\begin{array}{rr}
\cos \mu & -\sin \mu \\
\sin \mu & \cos \mu
\end{array}\right),
$$

and

$$
\exp \lambda X=\exp \lambda \cdot\left(\begin{array}{cccc}
\cos \gamma \lambda \cdot e & -\sin \gamma \lambda \cdot e & 0 & 0 \\
\sin \gamma \lambda \cdot e & \cos \gamma \lambda \cdot e & 0 & 0 \\
0 & 0 & \cos \gamma \lambda \cdot e & -\sin \gamma \lambda \cdot e \\
0 & 0 & \sin \gamma \lambda \cdot e & \cos \gamma \lambda \cdot e
\end{array}\right)
$$

Both $\mathcal{L}=\exp \boldsymbol{R} L$ and $\mathscr{X}=\exp \boldsymbol{R} X$ are closed straight lines.
The Lie algebra $[L]$ is of dimension four and is given by $[L]=\boldsymbol{R} I \oplus T$, where T is the Lie algebra of a toral group \mathscr{T} and T has a basis:

$$
H_{1}=\left(\begin{array}{cccc}
i & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & i & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad H_{2}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & i & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad H_{3}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & i
\end{array}\right) .
$$

Next, setting $Y=X-I$ we have that $[X]=\boldsymbol{R} I+\boldsymbol{R} Y$ and $[X] \cap[L]=\boldsymbol{R} I$. The one-parameter subgroup $\mathscr{Y}=\exp \boldsymbol{R} Y$ is a circle. We set $Y=\gamma H_{0}$ and

$$
v(\lambda)=\exp \left(\lambda \gamma H_{0}\right) \cdot \exp \left(\lambda H_{1}+\lambda \alpha H_{2}+\lambda \beta H_{3}\right), \quad \lambda \in \boldsymbol{R} .
$$

$v(\lambda)$ is a curve in $9 \mathscr{I}$ and $v(\lambda) \mathcal{L}=\exp \lambda X \cdot \mathcal{L}$.
Since $\mathscr{G} \cap \mathscr{I}=\{ \pm I\}$, the set $\mathscr{M}=\mathscr{G}$ can be identified with the toral group $(\mathscr{I} \times \mathscr{I}) /\{ \pm(I, I)\}$ and \mathscr{M} is a torus. The curve $v(\lambda)$ is obviously everywhere dense in \mathscr{M}. Because $\operatorname{det}(m)=1$ for $m \in \mathscr{M}$ and $\operatorname{det}(\exp \lambda L)=\exp (8 \lambda)$, we see that the mapping $\mathscr{M} \times \mathcal{L} \ni(m, l) \mapsto m l \in \mathscr{M} \mathcal{L}$ is one-one. Thus, we have proved that the closure of the orbit $\mathfrak{X} \mathcal{L} / \mathcal{L}$ can be identified with the four-dimensional torus M.

Next, let us prove the following two propositions concerning our example :
(i) $\mathscr{P}(\mathscr{X}, \mathcal{L})=\{I\}$, and so the extended play \mathfrak{X} is closed.
(ii) For any toral subgroup \mathscr{A} of $\mathcal{G} \mathcal{L}(8, \boldsymbol{R}), \mathscr{A} \mathcal{L}$ cannot contain $\mathfrak{X} \mathcal{L}$.

Proof of (i). Computing $[X, L]$ we see that $\{X, L\}$ cannot be a basis of two-dimensional Lie algebra. Hence $\mathscr{P}=\mathscr{P}(\mathscr{X}, \mathcal{L})$ is discrete. Since \mathscr{X} is connected and \mathfrak{X} normalizes \mathscr{P}, \mathscr{X} must centralize \mathscr{P}. On the other hand, the equality

$$
\left[\left(\begin{array}{cc}
r(-\lambda) & 0 \\
0 & r(-\alpha \lambda)
\end{array}\right), \quad\left(\begin{array}{cc}
0 & -\gamma e \\
\gamma e & 0
\end{array}\right)\right]=0
$$

implies that $r(\lambda)=r(\alpha \lambda)$, i.e. $\alpha \lambda-\lambda=2 m \pi$ for some integer m. If we have moreover that $\beta \lambda-\lambda=2 n \pi$ for some integer n, then λ must vanish by the linear independence of $\{1, \alpha, \beta\}$. This proves that $\mathscr{P}=\{I\}$.

Proof of (ii). Suppose that $\mathscr{H} \mathcal{L} \supset \mathscr{X} \mathcal{L}$. Since $\mathscr{H} \mathcal{L}$ is closed, we have that $\mathscr{H} \mathcal{L} \supset \overline{\mathcal{X} \mathcal{L}}=\mathscr{M} \mathcal{L}$. Because a toral subgroup of $\mathscr{G} \mathcal{L}(8, \boldsymbol{R})$ is of dimension at most four, and $\operatorname{dim}(\mathscr{M} \mathcal{L})=5$, we have that $\operatorname{dim} \mathscr{A}=4$. From the equality $\operatorname{dim}(\mathscr{H} \mathcal{L})+\operatorname{dim}(\mathscr{H} \cap \mathscr{L})=\operatorname{dim} \mathscr{H}+\operatorname{dim}(\mathscr{I} \mathcal{L})$, we have $\operatorname{dim}(\mathscr{H} \cap \mathscr{T} \mathcal{L})=3$. On the other hand, \mathscr{I} is the largest compact subgroup of $\mathscr{I} \mathcal{L}$. Hence we have $\mathscr{H} \cap \mathscr{T} \mathcal{L}=\mathscr{T}$, whence $\mathscr{H} \supset \mathscr{G}$. Since $\mathscr{I} \mathcal{L}=\exp \boldsymbol{R I} \cdot \mathscr{G}, \mathscr{H} \supset \mathscr{I}$ implies that $\mathscr{H} \mathcal{L}$ is an abelian group, which contradicts the fact that $[X, L] \neq 0$.

EXAMPLE 2. Let \mathcal{L} be a closed connected subgroup or an algebraic subgroup, and let \mathscr{X} be a one-parameter subgroup, of $\mathscr{G} \mathcal{L}(n, \boldsymbol{R})$. Suppose the orbit $\mathscr{X} \mathcal{L} / \mathcal{L}$ is a locally compact straight line. Let \mathscr{B} be the boundary of the orbit, i. e. \mathcal{B} is the complement of $\mathscr{X} \mathcal{L} / \mathcal{L}$ in $\bar{X} \mathcal{L} / \mathcal{L}$. We can find examples of \mathscr{X} and \mathcal{L} such that \mathscr{B} is empty, one end-point, or two end-points. Also \mathscr{B} can be a single point in the closure of the orbit which is a circle. In these cases, the boundary points are all fixed points of the one-parameter group \mathscr{X}. When \mathcal{L} is algebraic and $\mathscr{X}=\exp \boldsymbol{R} X$, with X algebraic, by the orbit theorem we can prove this is true.

However the following example shows that it is not true in general.
For an irrational number α we consider the orbit of the one-parameter group $\exp \boldsymbol{R} X$:

$$
\left.X=\left\lvert\, \begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & -\alpha & 0 & 0 \\
0 & \alpha & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right.\right)
$$

passing through the point $(1,1,1,1,1)$ in \boldsymbol{R}^{5}. Then the boundary of the orbit is a torus of two dimension, although the isotropy group is algebraic.

Bibliography

[1] C. Chevalley, Théorie des groupes de Lie, t. 2, Hermann et Cie., Paris, 1951.
[2] M. Goto, Faithful representations of Lie groups I, Math. Japon., 1 (1948), 107-119.
[3] M. Goto, Orbits of one-parameter groups I, J. Math. Soc. Japan, 22 (1970), 113-122.
[4] D. Montgomery and L. Zippin, Topological transformation groups, Interscience, New York, 1955.

[^0]: 1) Research supported in part by NSF Grant GP 4503.
[^1]: 2) Goto [3].
 3) In Goto [3] the notion of "play" was introduced infinitesimally, i. e. the play in [3] is the Lie algebra of the play in this paper.
 4) Refer Montgomery and Zippin [4].
[^2]: 5) Throughout this section, the reader may refer Chevalley [1].
