Spectral synthesis for the Kronecker sets

By Sadahiro SaEki

(Received Feb. 28, 1969)
(Revised April 23, 1969)

Throughout this paper, let G be any locally compact abelian group and \hat{G} its dual. We denote by $A(G)$ the Banach algebra consisting of the Fourier transforms of all complex-valued functions on \hat{G} that are absolutely summable with respect to the Haar measure of \hat{G} [2].
N. Th. Varopoulos proved in [4] that every totally disconnected Kronecker subset of G is a set of spectral synthesis (an S-set) for the algebra $A(G)$. On the other hand, every compact (Hausdorff) space is homeomorphic to a Kronecker subset of some compact abelian group (see Theorem 2). The main purpose of this paper is to show that every Kronecker set is an S-set.

Definition 1. A compact subset K of the group G is called a quasiKronecker set, provided that: For each $\varepsilon>0$ and each real continuous function h on $K\left(h \in C_{R}(K)\right)$, there exists a character $\gamma \in \hat{G}$ such that

$$
\sup _{x \in K}|\exp [i h(x)]-(x, \gamma)|<\varepsilon .
$$

It is then easy to see that:
(i) Every quasi-Kronecker set is independent;
(ii) A Kronecker set is a quasi-Kronecker set;
(iii) If K is a quasi-Kronecker subset of G, then we have $\|\mu\|=\|\hat{\mu}\|_{\infty}$ for all $\mu \in M(K)$. In particular, every quasi-Kronecker set is a Helson set.

The following theorem seems to be well-known. But the author does not know any literature about it; hence we give here a complete proof of it.

THEOREM 2. There exists a compact abelian group which contains a quasiKronecker set that is not a Kronecker set. Every compact space is homeomorphic to a Kronecker subset of some compact abelian group.

Proof. Suppose that X is a compact space, and that a and b are two constants such that $0<a<b<1$, and take any subset F of $C_{R}(X)$ such that:

$$
\begin{equation*}
\text { We have } a \leqq f \leqq b \text { for all } f \in F \text {; } \tag{2.1}
\end{equation*}
$$

The functions in F separate points of X.
Let us then denote by \mathscr{F} the set of all functions in $C_{R}(X)$ expressible as a finite product of elements in F, and let

$$
\begin{equation*}
G=\prod_{g \in \mathscr{F}} T(g) \quad(T(g)=T \text { for all } g \in \mathscr{F}), \tag{2.3}
\end{equation*}
$$

where T denotes the one-dimensional torus (the circle group). Thus every point p of G has the form

$$
\begin{equation*}
p=(p(g))_{g \equiv \mathscr{F}} \quad(p(g) \in T(g) \text { for all } g \in \mathscr{F}), \tag{2.4}
\end{equation*}
$$

and for every $\gamma \in \hat{G}$ there exist integers $n_{1}, n_{2}, \cdots, n_{k}$ and functions $g_{1}, g_{2}, \cdots, g_{k}$ of \mathscr{F} such that

$$
\begin{equation*}
(p, \gamma)=\prod_{j=1}^{k}\left\{p\left(g_{j}\right)\right\}^{n_{j}} \quad(p \in G) \tag{2.5}
\end{equation*}
$$

We now define a mapping t from X into G by

$$
\begin{equation*}
t(x)=(\exp [2 \pi i g(x)])_{g \equiv \mathscr{F}} \quad(x \in X) . \tag{2.6}
\end{equation*}
$$

It is then trivial that t is a homeomorphism from X onto $K=t(X)$. If $h \in$ $C_{R}(K)$, then there exists $h^{\prime} \in C_{R}(X)$ such that $2 \pi h^{\prime}(x)=h(t(x))$. If $\gamma \in \hat{G}$ has. the form (2.5), we see from (2.6) that

$$
\begin{aligned}
\mid \exp & {[i h(t(x))]-(t(x), \gamma) \mid } \\
& =\left|\exp \left[2 \pi i h^{\prime}(x)\right]-\exp \left[2 \pi i \sum_{j=1}^{k} n_{j} g_{j}(x)\right]\right| \\
& \leqq 2 \pi\left|h^{\prime}(x)-\sum_{j=1}^{k} n_{j} g_{j}(x)\right| \quad(x \in X) .
\end{aligned}
$$

Thus, in order to prove that K is a quasi-Kronecker set, it suffices to apply an analogous argument as in [2: p. 104].

Suppose now that X is homeomorphic to T, and that s is a homeomorphism of K onto T. It then follows from (2.5) and (2.6) that

$$
\begin{aligned}
\inf _{\gamma \equiv \hat{G}}\left\{\sup _{p \equiv K}|s(p)-(p, \gamma)|\right\} & \geqq \inf _{g \equiv C_{R^{(K)}}}\left\{\sup _{p \equiv K}|s(p)-\exp [i g(p)]|\right\} \\
& =\inf _{h \equiv C_{R}(T)}\left\{\sup _{z \equiv T}|z-\exp [i h(z)]|\right\}>0 .
\end{aligned}
$$

Thus K is not a Kronecker set although it is a quasi-Kronecker set, and this establishes the first statement.

Suppose again that X is any compact space, and let \mathscr{F} in (2.3) be the set of all complex-valued functions $g \in C(X)$ with $|g| \equiv 1$. Defining a mapping τ from X into G by

$$
\begin{equation*}
\tau(x)=(g(x))_{g \in \mathscr{F}} \quad(x \in X) \tag{2.7}
\end{equation*}
$$

one can now easily show that τ is a homeomorphism from X onto $K=\tau(X)$, and that K is a Kronecker set of G.

This completes the proof.
We now introduce some notations. For any closed subset E of G, let us
denote by :

$$
\begin{aligned}
I(E) & =\{f \in A(G): f=0 \text { on } E\} ; \\
I_{0}(E) & =\{f \in A(G): E \cap \operatorname{supp} f=\emptyset\} ; \\
J(E) & =\text { the closure of } I_{0}(E) .
\end{aligned}
$$

Thus $I(E)$ (resp. $J(E)$) is the largest (resp. the smallest) closed ideal in $A(G)$ whose zero-set is E. We also denote by $P M(E)$ the space of all pseudomeasures P on G with supp $P \subset E$, and for any $P \in P M(E) \hat{P}$ will be always chosen to be continuous if this is possible, where \hat{P} denotes the bounded Borel function on \hat{G} corresponding to P. We call E an $S H$-set if and only if E is both an S-set and a Helson set. It is trivial that this condition is equivalent to the one $P M(E)=M(E)$, and that such a set is a set of spectral resolution (an $S R$-set) [1].

Now, for any $f \in A(G)$ let $\sigma(f, E)$ be the set of all points $x \in G$ at which f does not belong to $J(E)$ locally, and put

$$
\sigma(E)=\bigcup_{f \equiv I(E)} \sigma(f, E)
$$

It is well-known ([2], [3]) that $\sigma(E)$ is a union of perfect subsets of ∂E (the boundary of E), and that E is an S-set if and only if $\sigma(E)$ is empty. One can also show that $\sigma(E)$ is closed if G is metrizable.

Lemma 3. Suppose that E is the union of two S-sets E_{1} and E_{2} of G, then we have $\sigma(E) \subset \partial E_{1} \cap \partial E_{2} \cap \partial E$. In particular, it follows that E is an S-set if either $\partial E_{1} \cap \partial E_{2} \cap \partial E$ contains no perfect subset or there exists a C-set C such that $\partial E_{1} \cap \partial E_{2} \cap \partial E \subset C \subset E$.

Proof. It is trivial that $\sigma(E) \subset \partial E$. To show that every function of $I(E)$ belongs to $J(E)$ locally at any point in the complement of $E_{1} \cap E_{2}$, take $f \in I(E)$ and $x \in E \backslash\left(E_{1} \cap E_{2}\right)$ arbitrarily. Without loss of generality, we may assume that $x \in E_{1}$. Choose $u \in I_{0}\left(E_{2}\right)$ so that $u=1$ on some neighborhood of x. Since E_{1} is an S-set by our assumption, it follows that there is a sequence $\left\{g_{n}\right\}$ in $I_{0}\left(E_{1}\right)$ such that $\lim _{n \rightarrow \infty}\left\|f-g_{n}\right\|=0$. Then $g_{n} u \in I_{0}(E)$ for all $n=1,2, \cdots$, and $\lim _{n \rightarrow \infty}\left\|f u-g_{n} u\right\|=0$, which implies $f u \in J(E)$. Since $f u=f$ on some neighborhood of x, it follows that f belongs to $J(E)$ locally at x. Therefore we have

$$
\sigma(E) \subset E_{1} \cap E_{2} \cap \partial E=\partial E_{1} \cap \partial E_{2} \cap \partial E,
$$

and this establishes the first statement.
If $\partial E_{1} \cap \partial E_{2} \cap \partial E$ contains no perfect subset, then $\sigma(E)$ is empty, and hence E is an S-set. Finally, suppose that E contains a C-set C such that $C \supset \partial E_{1} \cap \partial E_{2} \cap \partial E$. Then for every $f \in I(E)$ we can find a sequence $\left\{v_{n}\right\}_{1}^{\infty}$ in $I_{0}(C)$ so that $\lim _{n \rightarrow \infty}\left\|f-f v_{n}\right\|=0$. Since each $f u_{n}$ belongs to $J(E)$ at all points of G by what we have proved above, it follows that $f v_{n} \in J(E)$ for all
$n=1,2, \cdots$, and hence we have $f \in J(E)$. Since $f \in I(E)$ was arbitrary, this gives the desired conclusion.

The proof is now complete.
Theorem 4. The union of an $S H$-set and an S-set is an S-set.
Proof. Suppose that H and S be an $S H$-set and an S-set of G, respectively. There exists then a finite positive constant C such that to every $k \in C(H)$ corresponds a $g \in A(G)$ with

$$
\begin{equation*}
\left.g\right|_{H}=k, \quad \text { and } \quad\|g\| \leqq C\|k\|_{\infty} . \tag{4.1}
\end{equation*}
$$

Let us take $f \in I(H \cup S)$ and $P \in P M(H \cup S)$ arbitrarily. Since $\sigma(H \cup S)$ $\subset H \cap S$ by Lemma 3, it is easy to verify that $\operatorname{supp} f P \subset H \cap S$. Therefore the assumption that H is an $S H$-set guarantees that $f P$ is a measure on $H \cap S$. To show that $f P=0$, let \mathcal{U} be an arbitrarily fixed basis of open neighborhoods of $H \cap S$, and for each $U \in \mathcal{U}$ denote by $\mathcal{H}(U)$ the set of all $g \in A(G)$ such that

$$
\begin{equation*}
\left.\operatorname{supp} g\right|_{H} \subset U, \quad g=1 \text { on } H \cap S, \text { and }\|g\| \leqq C . \tag{4.2}
\end{equation*}
$$

It follows then from (4.1) that each $\mathcal{K}(U), U \in \mathcal{U}$, is non-empty. Thus the sets $\mathcal{L}(U)=\{g P: g \in \mathcal{K}(U)\}, U \in \mathcal{U}$, have the finite intersection property, and it is trivial that they are all contained in the closed ball of $P M(G)$ with radius $C\|P\|$; hence they have a common weak-star cluster point $Q \in P M(G)$. We then claim that $\operatorname{supp} Q \subset S$ and $f Q=f P$.

To show this, let $h \in I_{0}(S)$ be arbitrary, and take an open neighborhood V of S on which h vanishes. If $U \in \mathcal{U}$ is such that $U \subset V$, and if $g \in \mathcal{K}(U)$, then we have $h g \in I(H \cup S)$ and so $h g \in J(H \cup S)$ by Lemma 3, since $h g=0$ on $V \supset H \cap S$. This yields that $h g P=0$ for all $g \in \mathscr{K}(U)$, and hence $h Q=0$ since Q belongs to the weak-star closure of $\mathcal{L}(U)$. But $h \in I_{0}(S)$ was arbitrary, and so we conclude that $\operatorname{supp} Q \subset S$. On the other hand, for any $U \in U$ and $g \in \mathcal{K}(U)$, it must be $f g P=f P$ since $f P \in M(H \cap S)$ and $g=1$ on $H \cap S$ by (4.2), which yields $f Q=f P$. Finally we have $f P=f Q=0$, since $Q \in P M(S)$, $f \in I(S)$, and S is an S-set.

This completes the proof.
Corollary 5. Every finite union of $S H$-sets is an $S R$-set.
Proof. Since every closed subset of an $S H$-set is also an $S H$-set, it suffices to show that every finite union of $S H$-sets is an S-set. But this follows at once from Theorem 4 by induction.

Corollary 6. Every Helson set that is a finite union of S-sets is an SH-set.
Proof. Trivial.
We shall now prove four lemmas, the first two of which are essentially contained in [4]. To make the paper self-contained, we give their complete proofs.

Lemma 7. To each $\varepsilon>0$ corresponds a constant $\varepsilon>\eta(\varepsilon)>0$ with the following property: For any compact subset K of G, any complex number α with $|\alpha|=1$, and any characters $\gamma_{1}, \gamma_{2} \in \hat{G}$ such that

$$
\begin{equation*}
\sup _{x \in K}\left|\alpha\left(x, \gamma_{1}\right)-\left(x, \gamma_{2}\right)\right|<\eta(\varepsilon), \tag{7.1}
\end{equation*}
$$

we can find $h \in A(G)$ so that

$$
\begin{equation*}
\|h\|<\varepsilon, \quad \text { and } \quad h=\alpha \gamma_{1}-\gamma_{2} \tag{7.2}
\end{equation*}
$$

on some neighborhood of K.
Proof. We shall here regard T as the multiplicative group of the complex numbers z with $|z|=1$. Consider the function $f \in A(T)$ defined by $f(z)$ $=1-z$, and let $\varepsilon>0$ be given. Since $f(1)=0$, there exist a function $f_{\varepsilon} \in A(T)$ and a constant $\varepsilon>\eta(\varepsilon)>0$ such that

$$
\begin{equation*}
f_{\varepsilon}(z)=\sum_{n=-\infty}^{\infty} a_{n} z^{n}, \quad\left\|f_{\varepsilon}\right\|=\sum_{n=-\infty}^{\infty}\left|a_{n}\right|<\varepsilon, \tag{7.3}
\end{equation*}
$$

and such that

$$
\begin{equation*}
z \in T, \quad|1-z|<\eta(\varepsilon) \Rightarrow f_{s}(z)=1-z . \tag{7.4}
\end{equation*}
$$

Suppose now that K, α, γ_{1} and γ_{2} satisfy the condition (7.1), and define a function g on G by

$$
g(x)=\alpha\left(x, \gamma_{1}\right) f_{\varepsilon}\left(\bar{\alpha}\left(x, \gamma_{2}-\gamma_{1}\right)\right) .
$$

It is then easy to see from (7.3) and (7.4) that g is the Fourier-Stieltjes transform of a measure on G with norm $<\varepsilon$, and that $g=\alpha \gamma_{1}-\gamma_{2}$ on some open set containing K. To complete the proof, take $\delta>0$ and $k=k_{\dot{\delta}} \in A(G)$ so that $\|k\|<1+\delta$ and $k=1$ on some neighborhood of K. Setting $h_{\delta}=g k$, we see that for a sufficiently small $\delta>0, h=h_{\bar{\delta}} \in A(G)$ satisfies (7.2),

This establishes the Lemma.
Lemma 8. Let K be a quasi-Kronecker subset of G, let $\left\{Q_{j}\right\}_{1}^{n}$ be n pseudomeasures in $P M(K)$ such that

$$
\begin{equation*}
\operatorname{supp} Q_{i} \cap \operatorname{supp} Q_{j}=\emptyset \quad(1 \leqq i<j \leqq n), \tag{8.1}
\end{equation*}
$$

and put $Q=\sum_{j=1}^{n} Q_{j}$. Then we have

$$
\begin{equation*}
\sup _{\boldsymbol{i}=\hat{G}}\left|\hat{Q}\left(\gamma_{1}+\gamma\right)-\sum_{j=1}^{n} \alpha_{j} \hat{Q}_{j}(\gamma)\right| \leqq \varepsilon\|Q\| \tag{8.2}
\end{equation*}
$$

for any $\varepsilon>0$, any $\gamma_{1} \in \hat{G}$, and any choice $\left\{\alpha_{j}\right\}_{1}^{n}$ of complex numbers with $\left|\alpha_{j}\right|=1$ $(1 \leqq j \leqq n)$ such that

$$
\begin{equation*}
\left|\left(x, \gamma_{1}\right)-\alpha_{j}\right|<\eta(\varepsilon) \quad\left(x \in \operatorname{supp} Q_{j}, 1 \leqq j \leqq n\right), \tag{8.3}
\end{equation*}
$$

where $\eta(\varepsilon)$ is a constant as in Lemma 7. In particular, we have

$$
\begin{equation*}
\sup _{\gamma \neq \hat{G}} \sum_{j=1}^{n}\left|\hat{Q_{j}}(\gamma)\right| \leqq\|Q\| . \tag{8.4}
\end{equation*}
$$

Proof. Let ε, γ_{1}, and $\left\{\alpha_{j}\right\}_{1}^{n}$ be as in (8.3), and take $\delta>0$ so that the inequality in (8.3) remains valid even if the right term is replaced by $\eta(\varepsilon)-\delta$. Since K is a quasi-Kronecker set, and since $\operatorname{supp} Q=\bigcup_{j=1}^{n} \operatorname{supp} Q_{j} \subset K$, we can find $\gamma^{\prime} \in \hat{G}$ so that

$$
\left|\alpha_{j}-\left(x, \gamma^{\prime}\right)\right|<\eta(\delta) \quad\left(x \in \operatorname{supp} Q_{j}, 1 \leqq j \leqq n\right) .
$$

It follows then that for all $x \in \operatorname{supp} Q$ we have

$$
\begin{aligned}
\left|\left(x, \gamma_{1}\right)-\left(x, \gamma^{\prime}\right)\right| & \leqq \min _{1 \leq j \leq n}\left\{\left|\left(x, \gamma_{1}\right)-\alpha_{j}\right|+\left|\alpha_{j}-\left(x, \gamma^{\prime}\right)\right|\right\} \\
& <\{\eta(\varepsilon)-\delta\}+\eta(\delta)<\eta(\varepsilon)
\end{aligned}
$$

Therefore we see from Lemma 7 that for all $\gamma \in \hat{G}$

$$
\begin{aligned}
& \left|\hat{Q}\left(\gamma_{1}+\gamma\right)-\sum_{j=1}^{n} \alpha_{j} \hat{Q}_{j}(\gamma)\right| \\
& \quad \leqq\left|\hat{Q}\left(\gamma_{1}+\gamma\right)-\hat{Q}\left(\gamma^{\prime}+\gamma\right)\right|+\sum_{j=1}^{n}\left|\hat{Q}_{j}\left(\gamma^{\prime}+\gamma\right)-\alpha_{j} \hat{Q}_{j}(\gamma)\right| \\
& \quad \leqq \varepsilon\|Q\|+\delta \sum_{j=1}^{n}\left\|Q_{j}\right\|
\end{aligned}
$$

Since $\delta>0$ can be taken as small as one pleases, we obtain (8.2).
To complete the proof, let $\gamma \in \hat{G}$ be given, and take α_{j} so that $\left|\alpha_{j}\right|=1$ and $\alpha_{j} \hat{Q}_{j}(\gamma)=\left|\hat{Q}_{j}(\gamma)\right|$ for all $j=1,2, \cdots, n$. Then for any $\varepsilon>0$, there exists $\gamma_{1} \in \hat{G}$ which satisfies (8.3). This fact, combined with (8.2), yields (8.4).

The proof is now established.
Lemma 9. Suppose that K is a quasi-Kronecker subset of G, that $P \in P M(K)$, and that $\left\{E_{k}\right\}_{1}^{n}$ are n closed, pairwise disjoint, subsets of K. Then there exist n pseudo-measures $\left\{P_{k}\right\}_{1}^{n}$ such that:
(9.1) For all $k=1,2, \cdots, n$, we have

$$
\begin{array}{ll}
P_{k} \in P M\left(E_{k}\right), & \left\|\sum_{k=1}^{n} P_{k}\right\| \leqq\|P\|, \\
\left\|P-P_{k}\right\| \leqq\|P\|, & \text { and } \quad P-P_{k} \in P M\left(\overline{K \backslash E_{k}}\right)
\end{array}
$$

(9.2) For all $k=1,2, \cdots, n$ and any neighborhood \hat{U} of \hat{O} of \hat{G},

$$
\sup _{r-\gamma^{\prime} \in \hat{U}}\left|\hat{P}_{k}(\gamma)-\hat{P}_{k}\left(\gamma^{\prime}\right)\right| \leqq \sup _{\gamma-\gamma^{\prime} \in \hat{U}}\left|\hat{P}(\gamma)-\hat{P}\left(\gamma^{\prime}\right)\right|,
$$

and

$$
\sup _{\gamma-\gamma^{\prime} \in \hat{U}}\left|\left(P-P_{k}\right)^{\wedge}(\gamma)-\left(P-P_{k}\right)^{\wedge}(\gamma)\right| \leqq \sup _{\gamma-\gamma^{\prime} \in \hat{U}}\left|\hat{P}(\gamma)-\hat{P}\left(\gamma^{\prime}\right)\right| .
$$

Proof. Fix any $\chi \in A(G)$ so that $\chi=1$ on some neighborhood of K.

Note then that $\chi P=P$, and that $\|\hat{l} \chi P\| \leqq\|l\|\|P\|$ for all $l \in M(\hat{G})$, since K is a compact set containing the support of P.

Let U be the set of all tuples $u=\left(\varepsilon ; U_{1}, U_{2}, \cdots, U_{n}\right)$ of $0<\varepsilon<1$ and open neighbourhoods U_{k} of E_{k} such that the sets $\bar{U}_{k}, 1 \leqq k \leqq n$, are pairwise disjoint. If we introduce an order " $<$ " in Q by

$$
\begin{align*}
& \left(\varepsilon_{1} ; U_{11}, U_{21}, \cdots, U_{n 1}\right)<\left(\varepsilon_{2} ; U_{12}, U_{22}, \cdots, U_{n 2}\right) \tag{9.3}\\
& \quad \Leftrightarrow \varepsilon_{1}>\varepsilon_{2}, \text { and } U_{k 1} \supset U_{k 2} \text { for all } k(1 \leqq k \leqq n),
\end{align*}
$$

then \mathcal{U} is clearly a directed set. Fixing $u=\left(\varepsilon ; U_{1}, U_{2}, \ldots, U_{n}\right)$ in \mathcal{U}, we shall now define two pseudo-measures Q_{u} and R_{u} of $P M(K)$ as follows. Take h_{u} $\in C_{R}(K)$ so that

$$
\begin{equation*}
0 \leqq h_{u} \leqq \pi, \quad h_{u}=0 \text { on } \bigcup_{k=1}^{n} E_{k}, \quad \text { and } \quad h_{u}=\pi \text { on } \bigcap_{k=1}^{n} K \backslash U_{k} . \tag{9.4}
\end{equation*}
$$

Since K is a quasi-Kronecker set, there exists $\gamma_{u} \in \hat{G}$ such that

$$
\begin{equation*}
\left|\exp \left[i h_{u}(x)\right]-\left(x, \gamma_{u}\right)\right|<\eta(\varepsilon) / 2 \quad(x \in K), \tag{9.5}
\end{equation*}
$$

where $\eta(\varepsilon)$ is as in Lemma 7. We then define

$$
\begin{equation*}
Q_{u}=\left(1+\gamma_{u}\right) \chi P / 2, \quad \text { and } \quad R_{u}=\left(1-\gamma_{u}\right) \chi P / 2 . \tag{9.6}
\end{equation*}
$$

It is trivial that

$$
\begin{equation*}
P=Q_{u}+R_{u}, \quad \text { and } \quad\left\|Q_{u}\right\|, \quad\left\|R_{u}\right\| \leqq\|P\| \quad(u \in Q) . \tag{9.7}
\end{equation*}
$$

This assures that a subnet of the net $\left\{Q_{u}\right\}_{u}$ (resp. $\left\{R_{u}\right\}_{u}$) converges to some Q (resp. R) of $P M(K)$ in the weak-star topology of $P M(G)$ such that

$$
\begin{equation*}
P=Q+R, \quad \text { and } \quad\|Q\|,\|R\| \leqq\|P\| . \tag{9.8}
\end{equation*}
$$

We claim then that

$$
\begin{equation*}
\operatorname{supp} Q \subset \bigcup_{k=1}^{n} E_{k}, \quad \text { and } \quad \operatorname{supp} R \subset F, \tag{9.9}
\end{equation*}
$$

where F denotes the closure of $\bigcap_{k=1}^{n} K \backslash E_{k}$. To show this, take $f \in I_{0}\left(\bigcup_{k=1}^{n} E_{k}\right)$ arbitrarily. Then for some open set U containing $\bigcup_{k=1}^{n} E_{k}$ we have supp $f P$ $\subset K \backslash U$. On the other hand, for all $u=\left(\varepsilon ; U_{1}, U_{2}, \cdots, U_{n}\right) \in \mathcal{U}$ with $\bigcup_{k=1}^{n} U_{k} \subset U$, we have by (9.4) and (9.5)

$$
\left|1+\gamma_{u}\right|<\eta(\varepsilon) / 2 \text { on } K \backslash U,
$$

and so that

$$
\left\|f Q_{u}\right\|=\left\|\left(1+\gamma_{u}\right) f P\right\| / 2 \leqq \varepsilon\|f\|\|P\| .
$$

Since Q is a cluster point of the net $\left\{Q_{u}\right\}_{u}$, this implies $f Q=0$; since f was an arbitrary function of $I_{0}\left(\bigcup_{k=1}^{n} E_{k}\right)$, it follows that $\operatorname{supp} Q \subset \bigcup_{k=1}^{n} E_{k}$. Similarly
we have supp $R \subset F$, and obtain (9.9).
We now decompose Q into the sum of n pseudo-measures $\left\{P_{k}\right\}_{1}^{n}$ such that

$$
\begin{equation*}
Q=\sum_{k=1}^{n} P_{k}, \quad \text { and } \quad \operatorname{supp} P_{k} \subset E_{k} \quad(1 \leqq k \leqq n) \tag{9.10}
\end{equation*}
$$

and show that these $\left\{P_{k_{k}}\right\}_{1}^{n}$ satisfy the conditions (9.1) and (9.2).
The first two of (9.1) immediately follow from (9.8) and (9.10), To prove the remainder parts, let $\left\{Q_{u(\alpha)}\right\}_{\alpha}$ be any subnet of the net $\left\{Q_{u}\right\}_{u}$ that converges to Q. Fixing $u=\left(\varepsilon ; U_{1}, U_{2}, \cdots, U_{n}\right) \in \mathcal{U}$, we see from (9.4) that the function on K defined by

$$
h_{u}^{\prime}=\left\{\begin{array}{lll}
h_{u} & \text { on } & K \cap U_{1} \tag{9.4}\\
\pi & \text { on } & K \backslash U_{1}
\end{array}\right.
$$

is continuous ; it follows that there exists $\gamma_{u}^{\prime} \in \hat{G}$ with

$$
\begin{equation*}
\left|\exp \left[i h_{u}^{\prime}(x)\right]-\left(x, \gamma_{u}^{\prime}\right)\right|<\eta(\varepsilon) / 2 \quad(x \in K) \tag{9.5}
\end{equation*}
$$

Take now any $g_{1} \in A(G)$ so that $g_{1}=1$ on a neighborhood V_{1} of E_{1} and $g_{1}=0$ on a neighborhood W_{1} of $\bigcup_{k=2}^{n} E_{k}$. Then for all $u=\left(\varepsilon ; U_{1}, U_{2}, \cdots, U_{n}\right) \equiv \mathcal{U}$ with $U_{1} \subset V_{1}$ and $\bigcup_{k=2}^{n} U_{k} \subset W_{1}$, we see from (9.4), (9.4), (9.5) and (9.5) that
and

$$
\begin{array}{lll}
\left|\gamma_{u}^{\prime}-\gamma_{u}\right|<\eta(\varepsilon) & \text { on } & K \backslash W_{1}, \\
\left|1+\gamma_{u}^{\prime}\right|<\eta(\varepsilon) & \text { on } & K \backslash V_{1} .
\end{array}
$$

Therefore, taking into account the fact that $\operatorname{supp} g_{1} P \subset K \backslash W_{1}$, we have for such $u \in Q$

$$
\begin{aligned}
& \left\|\left(1+\gamma_{u}^{\prime}\right) \chi P / 2-g_{1} Q_{u}\right\| \\
& \quad \leqq 2^{-1}\left\|\left(1+\gamma_{u}^{\prime}\right) g_{1} \chi P-\left(1+\gamma_{u}\right) g_{1} \chi P\right\|+2^{-1}\left\|\left(1+\gamma_{u}^{\prime}\right)\left(1-g_{1}\right) \chi P\right\| \\
& \quad \leqq\left\|\left(\gamma_{1}^{\prime}-\gamma_{u}\right) g_{1} P\right\|+\varepsilon\left\|\left(1-g_{1}\right) \chi P\right\| \\
& \quad \leqq \varepsilon\left(\left\|g_{1} P\right\|+\left\|1-g_{1}\right\| \cdot\|P\|\right),
\end{aligned}
$$

from which it follows at once that

$$
\begin{align*}
P_{1} & =g_{1} Q \tag{9.11}\\
& =\lim _{\alpha} g_{1} Q_{u(\alpha)} \\
& =\lim _{\alpha}\left[\left(1+\gamma_{u(\alpha)}^{\prime}\right) \chi P / 2+\left\{g_{1} Q_{u(\alpha)}-\left(1+\gamma_{u(\alpha)}^{\prime}\right) \chi P / 2\right\}\right] \\
& =\lim _{\alpha}\left(1+\gamma_{u(\alpha)}^{\prime}\right) \chi P / 2,
\end{align*}
$$

and so that

$$
\begin{equation*}
P-P_{1}=\lim _{\alpha}\left(1-\gamma_{u(\alpha)}^{\prime}\right) \chi P / 2 \tag{9.12}
\end{equation*}
$$

In particular, we have $\left\|P-P_{1}\right\| \leqq\|P\|$, and also it follows from (9.8), (9.9) and (9.10) that

$$
\begin{aligned}
\operatorname{supp}\left(P-P_{1}\right) & =\operatorname{supp}\left(R+\sum_{k=2}^{n} P_{k}\right) \subset\left[\left(K \backslash \bigcup_{k=1}^{n} E_{k}\right)^{-}\right] \cup\left[\bigcup_{k=2}^{n} E_{k}\right] \\
& \subset\left(K \backslash E_{1}\right)^{-} .
\end{aligned}
$$

Suppose now that $\gamma, \gamma^{\prime} \in \hat{G}$ are arbitrary, then we see from (9.11) that

$$
\begin{aligned}
\hat{P}_{1}(\gamma)-\hat{P}_{1}\left(\gamma^{\prime}\right) & =2^{-1} \lim _{\alpha}\left[\left\{\hat{P}(\gamma)+\hat{P}\left(\gamma+\gamma_{u}^{\prime}(\alpha)\right)\right\}-\left\{\hat{P}\left(\gamma^{\prime}\right)+\hat{P}\left(\gamma^{\prime}+\gamma_{u}^{\prime}(\alpha)\right)\right\}\right] \\
& =2^{-1} \lim _{\alpha}\left[\left\{\hat{P}(\gamma)-\hat{P}\left(\gamma^{\prime}\right)\right\}+\left\{\hat{P}\left(\gamma+\gamma_{u(\alpha)}^{\prime}\right)-\hat{P}\left(\gamma^{\prime}+\gamma_{u(\alpha)}^{\prime}\right)\right\}\right],
\end{aligned}
$$

which yields

$$
\sup _{\gamma-\gamma^{\prime} \in \hat{U}}\left|\hat{P}_{1}(\gamma)-\hat{P}_{1}\left(\gamma^{\prime}\right)\right| \leqq \sup _{\gamma-\gamma^{\prime} \in \hat{U}}\left|\hat{P}(\gamma)-\hat{P}\left(\gamma^{\prime}\right)\right|
$$

for all neighborhoods \hat{U} of $\hat{O} \in \hat{G}$. Similarly it follows from (9.12) that this last inequality holds with P_{1} replaced by $P-P_{1}$.

Applying the same arguments for all $k(1 \leqq k \leqq n)$, we see that the $\left\{P_{k}\right\}_{1}^{n}$ have all the required properties, and this completes the proof.

Lemma 10. Suppose that K is a compact subset of G, then for each neighborhood U of $O \in G$, there exists a natural number $N=N(U)$ with the following property:

For any natural number n, we can find $N \times n$ compact subsets $\left\{E_{j k}\right\}, 1 \leqq j \leqq N$, $1 \leqq k \leqq n$, of K such that;
(a) The sets $\left\{E_{j_{k}}\right\}_{k=1}^{n}$ are pairwise disjoint for each $j=1,2, \cdots, N$.
(b) To any choice $\{k(j)\}_{j=1}^{n}$ of natural numbers $k(j)$ with $1 \leqq k(j) \leqq n(1 \leqq j$ $\leqq N$), there correspond finitely many, pairwise disjoint, closed subsets $\left\{K_{l}\right\}_{l}$ of K such that

$$
\bigcap_{j=1}^{N} K \backslash E_{j k(j)} \subset \bigcup_{l} K_{l}, \quad \text { and } \quad \bigcup_{l}\left(K_{l}-K_{l}\right) \subset U .
$$

Proof. We shall first show this lemma in case that G has the form

$$
\begin{equation*}
G=\prod_{\alpha=A} T(\alpha) \quad(T(\alpha)=T \text { for all } \alpha \in A) \tag{10.1}
\end{equation*}
$$

as a topological group. We then denote by $S(\alpha)$ a copy of S for any subset S of T and $\alpha \in A$. Suppose now that U is any fixed neighborhood of $O \in G$. It follows then from the definition of the product topology that we can find a neighborhood W of $O \in T$ and a finite subset A_{1} of A so that

$$
\begin{equation*}
\left(W ; A_{1}\right)=\prod_{\alpha \in A_{1}} W(\alpha) \times \prod_{\alpha \in A \backslash A_{1}} T(\alpha) \subset U . \tag{10.2}
\end{equation*}
$$

We then define $N=N(U)$ to be the number of the elements of A_{1}.
Suppose that n be an arbitrary natural number. Let us then take n closed, pairwise disjoint, subsets $\left\{F_{k}\right\}_{1}^{n}$ of T so that: For each $k(1 \leqq k \leqq n)$,
the closure of $T \backslash F_{k}$ consists of finitely many connected components (i. e., closed arcs) $\left\{C_{k m}\right\}_{m}$ such that $\bigcup_{m}\left(C_{k m}-C_{k m}\right) \subset W$. Denoting by $\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{N}\right\}$ the elements of A_{1}, we define the sets $E_{j k}$ by

$$
\begin{equation*}
E_{j k}=K \cap\left[F_{k}\left(\alpha_{j}\right) \times \prod_{a \neq \alpha_{j}} T(\alpha)\right] \quad(1 \leqq j \leqq N, 1 \leqq k \leqq n) . \tag{10.3}
\end{equation*}
$$

It is then easy to verify that so defined $\left\{E_{j k}\right\}$ satisfy both the required conditions (a) and (b).

Returning to the general case, suppose that G is any locally compact abelian group, and that K is any compact subset of it. We can find then a cardinal number Ω and a compact subset \tilde{K} of the product group T^{Ω} for which there exists a homeomorphism s from \tilde{K} onto K (cf. the proof of Theorem 2). Fixing any neighborhood U of $O \in G$, take a neighborhood \tilde{U} of $0 \in T^{2}$ so that

$$
\begin{equation*}
\tilde{x}, \tilde{y} \in \tilde{K}, \quad \text { and } \quad \tilde{x}-\tilde{y} \in \tilde{U} \Rightarrow s(\tilde{x})-s(\tilde{y}) \in U . \tag{10.4}
\end{equation*}
$$

For T^{a} and this \tilde{U}, choose a natural number N as before. Then for any natural number n, we can find $N \times n$ compact subsets $\left\{\tilde{E}_{j k}\right\}$ of \tilde{K} that satisfy (a) and (b) with K and $\left\{E_{j k}\right\}$ replaced by \tilde{K} and $\left\{\tilde{E}_{j k}\right\}$. If we define $E_{j k}$ to be $s\left(\widetilde{E}_{j k}\right)$ for $1 \leqq j \leqq N$ and $1 \leqq k \leqq n$, it is easy to see from (10.4) that these sets $\left\{E_{j k}\right\}$ have the required properties.

This completes the proof.
Theorem 11. Every quasi-Kronecker subset K of G is an SH-set.
Proof. We must prove that $P \in P M(K)$ implies $P \in M(K)$.
Fix any $P \in P M(K)$; we shall first show that for any compact subset \hat{C} of \hat{G} and $\varepsilon>0$ there exists a measure $\mu=\mu(\hat{C}, \varepsilon) \in M(K)$ such that

$$
\begin{equation*}
\|\mu\| \leqq\|P\|, \quad \text { and } \quad|\hat{\mu}(\gamma)-\hat{P}(\gamma)| \leqq \varepsilon(\|P\|+1) \quad(\gamma \in \hat{C}) . \tag{11.1}
\end{equation*}
$$

To do this, take $\varepsilon>0$ and a compact subset \hat{C} of \hat{G}, and put

$$
\begin{equation*}
U=U(\hat{C}, \varepsilon)=\left\{x \in G: \sup _{\gamma \in \hat{C}}|1-(x, \gamma)|<\eta(\varepsilon)\right\}, \tag{11.2}
\end{equation*}
$$

which is a neighborhood of $0 \in G$. Let $N=N(U)$ be a natural number as in Lemma 10, Since P has compact support, \hat{P} is a uniformly continuous function on \hat{G}; it follows that there exists a neighborhood \hat{V} of $\hat{O} \in \hat{G}$ such that

$$
\begin{equation*}
\sup _{\gamma-\gamma^{\prime} \in \hat{V}}\left|\hat{P}(\gamma)-\hat{P}\left(\gamma^{\prime}\right)\right|<\varepsilon / 2 N \tag{11.3}
\end{equation*}
$$

Since \hat{C} is compact, we can find finitely many elements of \hat{C}, say $\gamma_{1}, \gamma_{2}, \cdots, \gamma_{r}$ so that

$$
\begin{equation*}
\hat{C} \subset \bigcup_{i=1}^{r}\left(\gamma_{i}+\hat{V}\right) . \tag{11.4}
\end{equation*}
$$

Let us now take a positive integer M with $\|P\|<M \varepsilon / 2 N$, and put $n=r M$.

There exist $N \times n$ compact subsets $\left\{E_{j k}\right\}(1 \leqq j \leqq N, 1 \leqq k \leqq n)$ of K satisfying the conditions (a) and (b) in Lemma 10. Since the sets $\left\{E_{1 k}\right\}_{1}^{n}$ are pairwise disjoint, Lemma 9 applies, and we can find n pseudo-measures $\left\{P_{k}\right\}_{1}^{n}$ so that:

$$
\left\{\begin{array}{l}
P_{k} \in P M\left(E_{1 k}\right), \quad P-P_{k} \in P M\left(\overline{K \backslash E_{1 k}}\right), \tag{11.5}\\
\left\|\sum_{k=1}^{n} P_{k}\right\| \leqq\|P\|, \quad \text { and } \quad\left\|P-P_{k}\right\| \leqq\|P\|
\end{array} \quad(1 \leqq k \leqq n) ;\right.
$$

(11.6) For any neighborhood \hat{U} of $\hat{O} \in \hat{G}$, we have
and

$$
\sup _{\gamma-\gamma^{\prime} \in \hat{U}}\left|\hat{P}_{k}(\gamma)-\hat{P}_{k}\left(\gamma^{\prime}\right)\right| \leqq \sup _{\gamma-\gamma^{\prime} \in \hat{U}}\left|\hat{P}(\gamma)-\hat{P}\left(\gamma^{\prime}\right)\right|,
$$

$$
\sup _{\gamma-\gamma^{\prime} \in \hat{U}}\left|\left(P-P_{k}\right)^{\wedge}(\gamma)-\left(P-P_{k}\right)^{\wedge}\left(\gamma^{\prime}\right)\right| \leqq \sup _{\gamma-\gamma^{\prime} \equiv \hat{U}}\left|\hat{P}(\gamma)-\hat{P}\left(\gamma^{\prime}\right)\right|
$$

for all $k=1,2, \cdots, n$.
We then claim that $\sup _{\gamma \in \hat{o}}\left|\hat{P}_{k}(\gamma)\right|<\varepsilon / N$ for at least one $k(1 \leqq k \leqq n)$. Otherwise, there exist n elements $\left\{\gamma_{k}^{\prime} \in \hat{C}\right\}_{1}^{n}$ with $\left|\hat{P}_{k}\left(\gamma_{k}^{\prime}\right)\right| \geqq \varepsilon / N$ for all k ($1 \leqq k$ $\leqq n$). It follows from (11.4) that some $\gamma_{i}+\hat{V}$, say $\gamma_{1}+\hat{V}$, contains M elements of the set $\left\{\gamma_{k}^{\prime}\right\}_{1}^{n}$, say $\gamma_{1}^{\prime}, \gamma_{2}^{\prime}, \cdots, \gamma_{M}^{\prime}$ (note that $n=r M$). Therefore we have by (11.3) and (11.6)

$$
\begin{aligned}
\left|\hat{P}_{k}\left(\gamma_{1}\right)\right| & \geqq\left|\hat{P}_{k}\left(\gamma_{k}^{\prime}\right)\right|-\left|\hat{P}_{k}\left(\gamma_{k}^{\prime}\right)-\hat{P}_{k}\left(\gamma_{1}\right)\right| \\
& \geqq \varepsilon / N-\sup _{\gamma-\gamma^{\prime} \in \hat{V}}\left|\hat{P}_{k}(\gamma)-\hat{P}_{k k}\left(\gamma^{\prime}\right)\right| \\
& \geqq \varepsilon / 2 N \quad(1 \leqq k \leqq M) .
\end{aligned}
$$

This, combined with Lemma 8 and (11.5), shows

$$
\|P\| \geqq\left\|\sum_{k=1}^{n} P_{k}\right\| \geqq \sum_{k=1}^{n}\left|\hat{P}_{k}\left(\gamma_{1}\right)\right| \geqq \sum_{k=1}^{M}\left|\hat{P}_{k}\left(\gamma_{1}\right)\right| \geqq M \varepsilon / 2 N,
$$

which contradicts our choice of M. Thus there exists an integer $k(1)(1 \leqq k(1)$ $\leqq n)$ with $\sup _{r \in \hat{\sigma}}\left|\hat{P}_{k(1)}(\gamma)\right|<\varepsilon / N$. Putting $P_{1}^{\prime}=P_{k(1)}$, we have a decomposition of P such that:

$$
\left\{\begin{array}{l}
P=\left(P-P_{1}^{\prime}\right)+P_{1}^{\prime}, \quad\left\|P-P_{1}^{\prime}\right\| \leqq\|P\|, \tag{11.7}\\
\sup _{\gamma \in \hat{\sigma}}\left|P_{1}^{\prime}(\gamma)\right|<\varepsilon / N, \quad P-P_{1}^{\prime} \in P M\left(\overline{\left.K \backslash E_{1 k(1)}\right)}\right), \\
\sup _{r \rightarrow \gamma^{\prime} \in \hat{\gamma}}\left|\left(P-P_{1}^{\prime}\right)^{\wedge}(\gamma)-\left(P-P_{1}^{\prime}\right)^{\wedge}\left(\gamma^{\prime}\right)\right|<\varepsilon / 2 N .
\end{array}\right.
$$

Repeating the same arguments for $P-P_{1}^{\prime} \in P M\left(\overline{K \backslash E_{1 k(1)}}\right)$ and the compact subsets $\left\{E_{2 k} \cap\left(\overline{\left.K \backslash E_{1 k(1)}\right)}\right\}_{k=1}^{n}\right.$ of $\overline{K \backslash E_{1 k(1)}}$, and so on, we can find N integers $\{k(j)\}_{j=1}^{N}$ with $1 \leqq k(j) \leqq N$ and N pseudo-measures $\left\{P_{j}^{\prime}\right\}_{1}^{N}$ so that:

$$
\begin{equation*}
P=Q+\sum_{j=1}^{N} P_{j}^{\prime}, \quad \sup _{1 \leqq j \leqq N}\left\{\sup _{r \in \hat{O}}\left|\hat{P}_{j}^{\prime}(\gamma)\right|\right\}<\varepsilon / N, \tag{11.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\|Q\| \leqq\|P\|, \quad \operatorname{supp} Q \subset \text { the closure of } \bigcap_{j=1}^{N} K \backslash E_{j k(j)} . \tag{11.9}
\end{equation*}
$$

It then follows from (b) of Lemma 10 that there exist finitely many, pairwise disjoint, closed subsets $\left\{K_{l}\right\}_{l}$ of K such that

$$
\begin{equation*}
\bigcap_{j=1}^{N} K \backslash E_{j k(j)} \subset \bigcup_{l} K_{l}, \quad \text { and } \quad \bigcup_{l}\left(K_{l}-K_{l}\right) \subset U \tag{11.10}
\end{equation*}
$$

Therefore we have a decomposition of Q of the form

$$
\begin{equation*}
Q=\sum_{l} Q_{l}, \quad Q_{l} \in P M\left(K_{l}\right) \quad \text { for all } l . \tag{11.11}
\end{equation*}
$$

Letting $\left\{x_{l} \in K_{l}\right\}_{l}$ be any choice of points, we now define

$$
\begin{equation*}
\mu \in M(K) \quad \text { by } \quad \mu=\sum_{l} \hat{Q}_{l}(0) \delta\left(x_{l}\right), \tag{11.12}
\end{equation*}
$$

where in general $\delta(x)$ denotes the unit mass at the point x. Observe then that $\|\mu\| \leqq \sum_{l}\left|\hat{Q}_{l}(0)\right|$, which together with (11.9), (11.11) and Lemma 8 gives $\|\mu\| \leqq\|Q\| \leqq\|P\|$. We have also by (11.8) and (11.12)

$$
\begin{aligned}
|\hat{\mu}(\gamma)-\hat{P}(\gamma)| & \leqq\left|\sum_{l}\left(x_{l}, \gamma\right) \hat{Q}_{l}(0)-\hat{Q}(\gamma)\right|+\sum_{j=1}^{N}\left|\hat{P}_{j}^{\prime}(\gamma)\right| \\
& \leqq\left|\hat{Q}(\gamma)-\sum_{l}\left(x_{l}, \gamma\right) \hat{Q}_{l}(0)\right|+\varepsilon \quad(\gamma \in \hat{C}) .
\end{aligned}
$$

This, combined with Lemma 8, (11.2), (11.10) and (11.11) shows

$$
|\hat{\mu}(\gamma)-\hat{P}(\gamma)| \leqq \varepsilon\|Q\|+\varepsilon \leqq \varepsilon(\|P\|+1) \quad(\gamma \in \hat{C}),
$$

and we have proved the existence of a measure $\mu \in M(K)$ satisfying (11.1),
But it is clear that (11.1) implies that P is the Fourier-Stieltjes transform of a measure of $M(K)$, which follows at once from the fact that every closed (bounded) ball of $M(K)$ is weak-star compact.

This establishes the Theorem.
Corollary 12. Every finite union of quasi-Kronecker sets is an $S R$-set.
Proof. This is evident from Theorem 11 and Corollary 5.
Theorem 13 (cf. [5]). Suppose that $\left\{K_{j}\right\}_{0}^{n}$ are $n+1$, pairwise disjoint, compact subsets of G such that:

$$
\begin{align*}
& \text { The set } \bigcup_{j=0}^{n} K_{j} \text { is a quasi-Kronecker set; } \tag{13.1}\\
& \text { Any } K_{j} \text { contains no perfect subset }(1 \leqq j \leqq n) \text {. } \tag{13.2}
\end{align*}
$$

Then the set $K_{0}+K_{1}+\cdots+K_{n}$ is an $S R$-set.

Proof. We prove this by induction on n. When $n=0$, the statement is nothing but Theorem 11. Suppose that the conclusion of the Theorem holds with n replaced by $n-1$ for some natural number n, and that the sets $\left\{K_{j}\right\}_{0}^{n}$ satisfy the above conditions. Put then

$$
L=K_{0}+K_{1}+\cdots+K_{n-1}, \quad \text { and } \quad D=K_{n},
$$

and let $W=\{1,2, \ldots, \alpha, \alpha+1, \cdots\}$ be any well-ordered set having cardinal number larger than that of D. For any compact subset E of D, we shall define a family $\{E(\alpha) ; \alpha \in W\}$ of subsets of E as follows. Let $E(1)$ be the set of all accumulation points of E, and suppose that $E(\alpha)$ has already defined for every $\alpha \in W$ with $\alpha<\alpha_{0}$. We then define the set $E\left(\alpha_{0}\right)$ to be the set $\bigcap_{\alpha<\alpha_{0}} E(\alpha)$ if $\alpha_{0}-1$ does not exist, and to be the set of all accumulation points of $E\left(\alpha_{0}-1\right)$ if $\alpha_{0}-1$ exists. By transfinite induction, we obtain the family $\{E(\alpha) ; \alpha \in W\}$.

Suppose now that E is a closed subset of D. If $E(1)=\emptyset$, then E is finite, and so $L+E$ is a finite disjoint union of translates of L by (13.1). Since L is an $S R$-set by the hypothesis of the induction, it is easy to see that $L+E$ is an $S R$-set. We shall now fix $\alpha_{0}>1\left(\alpha_{0} \in W\right)$ and assume that $L+E$ is an $S R$-set for every compact subset E of D with $E(\alpha)=\emptyset$ for some $\alpha<\alpha_{0}$.

Let us then take any closed subset E of D with $E\left(\alpha_{0}\right)=\emptyset$. In case that $\alpha_{0}-1$ does not exist, then $E\left(\alpha_{0}\right)=\bigcap_{\alpha<\alpha_{0}} E(\alpha)$ by the definition of $E\left(\alpha_{0}\right)$; it follows that $E(\alpha)=\emptyset$ for some $\alpha<\alpha_{0}$, since each $E(\alpha), \alpha \in W$, is compact, and since we have $E(\alpha) \supset E\left(\alpha^{\prime}\right)$ for all $\alpha, \alpha^{\prime} \in W$ with $\alpha<\alpha^{\prime}$. Thus $L+E$ is an $S R$-set by our hypothesis of the transfinite induction. If $\alpha_{1}=\alpha_{0}-1$ exists, then $E\left(\alpha_{1}\right)$ must be finite. Taking any closed subset F of $L+E, f \in I(F)$, and $P \in P M(F)$, we want to show that $f P=0$.

First of all we have

$$
\begin{equation*}
\operatorname{supp} f P \subset F \cap\left(L+E\left(\alpha_{1}\right)\right) . \tag{13.3}
\end{equation*}
$$

In fact, let $u \in I_{0}\left(F \cap\left(L+E\left(\alpha_{1}\right)\right)\right)$ be arbitrary ; there exists an open set U such that $U \supset E\left(\alpha_{1}\right)$ and $(\operatorname{supp} u) \cap(F \cap(L+U))=\emptyset$; we have then

$$
\operatorname{supp} u P \subset(\operatorname{supp} u) \cap F \subset F \backslash(L+U) \subset L+(E \backslash U) .
$$

But $(E \backslash U)\left(\alpha_{1}\right) \subset E\left(\alpha_{1}\right) \backslash U=\emptyset$; it follows from our assumption that $L+(E \backslash U)$ is an $S R$-set, and so that we have $u f P=0$. Since $u \in I_{0}\left(F \cap\left(L+E\left(\alpha_{1}\right)\right)\right)$ was arbitrary, this establishes (13.3). Note also that $L+E\left(\alpha_{1}\right)$ is an $S R$-set since $E\left(\alpha_{1}\right)$ is a finite subset of D.

Let $\varepsilon>0$ be arbitrary; there exists $f_{\varepsilon} \in A(G)$ with

$$
\begin{equation*}
\operatorname{supp} f_{\varepsilon} \cap\left(F \cap\left(L+E\left(\alpha_{1}\right)\right)\right)=\emptyset, \quad \text { and } \quad\left\|f-f_{\varepsilon}\right\|<\varepsilon . \tag{13.4}
\end{equation*}
$$

Since $D=K_{n}$ contains no perfect subset by (13.2), D is totally disconnected;
thus E, as a compact subset of D, is 0 -dimensional. Therefore we can find an open set U so that:

$$
\left\{\begin{array}{l}
U \supset E\left(\alpha_{1}\right), \text { and } E \cap U \text { is compact: } \tag{13.5}\\
\left(\operatorname{supp} f_{\varepsilon}\right) \cap F \cap(L+U)=\emptyset .
\end{array}\right.
$$

For each $\eta>0$, there exists $\gamma \in \hat{G}$ such that;

$$
\begin{array}{ll}
|\gamma-1|<\eta & \text { on }(E \cap U) \cup \bigcup_{j=0}^{n-1} K_{j} ; \\
|\gamma+1|<\eta & \text { on } E \backslash U ;
\end{array}
$$

because of (13.1). Consequently we can find $\gamma_{\varepsilon} \in \hat{G}$ so that:

$$
\begin{array}{lll}
\left|\gamma_{\varepsilon}-1\right|<\eta(\varepsilon) & \text { on } & L+(E \cap U) ; \\
\left|\gamma_{\varepsilon}+1\right|<\eta(\varepsilon) & \text { on } & L+(E \backslash U) .
\end{array}
$$

This, together with (13.3), (13.4) and (13.5) gives

$$
\begin{aligned}
\| f P- & \left(\gamma_{\varepsilon}+1\right)\left(f-f_{\varepsilon}\right) P / 2 \| \\
& \leqq 2^{-1}\left\{\left\|\left(1-\gamma_{\varepsilon}\right) f P\right\|+\left\|\left(\gamma_{\varepsilon}+1\right) f_{\varepsilon} P\right\|\right\} \\
& \leqq 2^{-1} \varepsilon\left(\|f P\|+\left\|f_{\varepsilon} P\right\|\right) \leqq \varepsilon(\|f P\|+\varepsilon\|P\|),
\end{aligned}
$$

and hence

$$
\begin{aligned}
\|f P\| & \leqq \varepsilon(\|f P\|+\varepsilon\|P\|)+\left\|\left(\gamma_{\varepsilon}+1\right)\left(f-f_{\varepsilon}\right) P / 2\right\| \\
& \leqq \varepsilon(\|f P\|+\varepsilon\|P\|)+\varepsilon\|P\| .
\end{aligned}
$$

Letting $\varepsilon \rightarrow 0$, we have $f P=0$. Thus F is an S-set, and we have proved that $L+E$ is an $S R$-set for every compact subset E of D with $E\left(\alpha_{0}\right)=\emptyset$.

By transfinite induction, we see that $L+E$ is an $S R$-set for every compact subset E of D such that $E(\alpha)=\emptyset$ for some $\alpha \in W$. But it is easy to see that $D(\alpha)=\emptyset$ for some $\alpha \in W$, since D contains no perfect subset and since the cardinal number of W is larger than that of D. Thus the set $L+D=K_{0}+K_{1}$ $+\cdots+K_{n}$ is an $S R$-set.

This completes the induction, and so establishes the Theorem.
We finish up this paper with:
Theorem 14. For n compact spaces $\mathcal{K}=\left\{K_{j}\right\}_{1}^{n}$, let $V=V(\mathcal{K})$ be the tensor algebra over the spaces $\mathcal{K}=\left\{K_{j}\right\}_{1}^{n}$ (for the definition, see [6; p. 59]). Then, if at least $n-1$ spaces K_{j} do not contain any perfect subsets, spectral synthesis holds in the algebra V.

Proof. Without loss of generality, we can and will assume that $\left\{K_{j}\right\}_{1}^{n}$ are pairwise disjoint compact subsets of some compact abelian group G such that their union is a Kronecker set (see the proof of Theorem 2). Then we can identify isometrically and algebraically V to the quotient algebra $A(\tilde{K})=$
$A(G) / I(\tilde{K})$, where $\tilde{K}=K_{1}+K_{2}+\cdots+K_{n}[6 ;$ p. 73]. Thus our statement follows at once from Theorem 13 (cf. [6; §4]).

Tokyo Metropolitan University

References

[1] P. Malliavin, Ensembles de résolution spectrale, Proc. I.C.M. Stockholm, 1962, 368-378.
[2] W. Rudin, Fourier analysis on groups, New York, Interscience, 1962.
[3] S. Saeki, An elementary proof of a theorem of Henry Helson, Tôhoku Math. J., 20 (1968), 244-247.
[4] N. Th. Varopoulos, Sur les ensembles parfaits et les séries trigonométriques, C.R. Acad. Sci. Paris, 260 (1955), 3831-3834.
[5] N. Th. Varopoulos, Sur les ensembles parfaits et les séries trigonométriques, C. R. Acad. Sci. Paris, 260 (1955), 4668-4670.
[6] N. Th. Varopoulos, Tensor algebras and harmonic analysis, Acta Math., 119 (1967), 51-112.

