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Throughout this paper, let $G$ be any locally compact abelian group and
$\hat{G}$ its dual. We denote by $A(G)$ the Banach algebra consisting of the Fourier
transforms of all complex-valued functions on $\hat{G}$ that are absolutely summable
with respect to the Haar measure of $\hat{G}[2]$ .

N. Th. Varopoulos proved in [4] that every totally disconnected Kronecker
subset of $G$ is a set of spectral synthesis (an S-set) for the algebra $A(G)$ .
On the other hand, every compact (Hausdorff) space is homeomorphic to a
Kronecker subset of some compact abelian group (see Theorem 2). The main
purpose of this paper is to show that every Kronecker set is an S-set.

DEFINITION 1. A compact subset $K$ of the group $G$ is called a quasi-
Kronecker set, provided that: For each $\epsilon>0$ and each real continuous func-
$tionh$ on $K(h\in C_{R}(K))$ , there exists a character $\gamma\in\hat{G}$ such that

$\sup_{x\in K}|\exp[ih(x)]-(x, \gamma)|<\epsilon$ .

It is then easy to see that:
(i) Every quasi-Kronecker set is independent;
(ii) A Kronecker set is a quasi-Kronecker set;
(iii) If $K$ is a quasi-Kronecker subset of $G$ , then we have $\Vert\mu\Vert=\Vert\hat{\mu}\Vert_{\infty}$ for

all $\mu\in M(K)$ . In particular, every quasi-Kronecker set is a Helson set.
The following theorem seems to be well-known. But the author does not

know any literature about it; hence we give here a complete proof of it.
THEOREM 2. There exists a compact abelian group which contains a quasi-

Kronecker set that is not a Kronecker set. Every compact space is homeomorphic
to a Kronecker subset of some compact abelian group.

PROOF. Suppose that $X$ is a compact space, and that $a$ and $b$ are two
constants such that $0<a<b<1$ , and take any subset $F$ of $C_{R}(X)$ such that:

\langle 2.1) We have $a\leqq f\leqq b$ for all $f\in F$ ;

(2.2) The functions in $F$ separate points of $X$.
Let us then denote by $q$ the set of all functions in $C_{R}(X)$ expressible as a
finite product of elements in $F$, and let
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(2.3) $G=\prod_{g\subset\xi\gamma}T(g)$ ($T(g)=T$ for all $g\in g$) ,

where $T$ denotes the one-dimensional torus (the circle group). Thus $ever_{Y}$

point $p$ of $G$ has the form

(2.4) $p=(p(g))_{g=}-\sigma r$ ( $p(g)\in T(g)$ for all $g\in 9^{i}$) ,

and for every $\gamma\in\hat{G}$ there exist integers $n_{1},$ $n_{2},$ $\cdots$ , $n_{k}$ and functions $g_{1},$ $g_{2},$ $\cdots$ , $g_{k}$

of $q$ such that

(2.5) $(p, \gamma)=.\prod_{j=1}^{k}\{p(g_{j})\}^{n_{j}}$ $(p\in G)$ .

We now define a mapping $t$ from $X$ into $G$ by

(2.6) $t(x)=(\exp[2\pi ig(x)])_{g=\mathscr{D}}$ $(x\in X)$ .
It is then trivial that $t$ is a homeomorphism from $X$ onto $K=t(X)$ . $ lfh\in$

$C_{R}(K)$ , then there exists $h^{\gamma}\in C_{R}(X)$ such that $2\pi h^{\gamma}(x)=h(t(x))$ . If $\gamma\in\hat{G}$ has,

the form (2.5), we see from (2.6) that

$|\exp[ih(t(x))]-(t(x), \gamma)|$

$=|\exp[2\pi ih^{\prime}(x)]-\exp[2\pi i\sum_{j=\iota}^{k}n_{j}g_{j}(x)]|$

$\leqq 2\pi|h^{\prime}(x)-\sum_{j=1}^{k}n_{j}g_{j}(x)|$ $(x\in X)$ .
Thus, in order to prove that $K$ is a quasi-Kronecker set, it suffices to apply
an analogous argument as in [2: p. 104].

Suppose now that $X$ is homeomorphic to $T$, and that $s$ is a homeomorphism
of $K$ onto $T$. It then follows from (2.5) and (2.6) that

$\inf_{r^{\hat{\circ}}}\{\sup_{-,p-K}|s(p)-(p, \gamma)|\}\geqq\inf_{g_{\leftarrow}^{-}C_{R}(K)}$ $\{ \sup_{-,p=x}|s(p)-\exp[ig(p)]|\}$

$=\inf_{h_{-}^{--}C_{R}(T)}\{\sup_{z=T}|z-\exp[ih(z)]|\}>0$ .

Thus $K$ is not a Kronecker set although it is a quasi-Kronecker set, and this
establishes the first statement.

Suppose again that $X$ is any compact space, and let $S^{i}$ in (2.3) be the set
of all complex-valued functions $g\in C(X)$ with $|g|\equiv 1$ . Defining a mapping $\tau$

from $X$ into $G$ by

(2.7) $\tau(x)=(g(x))_{g\in\Psi}$ $(x\in X)$ ,

one can now easily show that $\tau$ is a homeomorphism from $X$ onto $K=\tau(X),$ .
and that $K$ is a Kronecker set of $G$ .

This completes the proof.
We now introduce some notations. For any closed subset $E$ of $G$ , let us
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denote by:
$I(E)=$ { $f\in A(G):f=0$ on $E$ };

$I_{0}(E)=\{f\in A(G):E\cap suppf=\emptyset\}$ ;

$J(E)=the$ closure of $I_{0}(E)$ .
Thus $I(E)$ (resp. $J(E)$) is the largest (resp. the smallest) closed ideal in $A(G)$

whose zero-set is $E$ . We also denote by $PM(E)$ the $space^{T_{4}}$ of all pseudo-
measures $P$ on $G$ with $suppP\subset E$ , and for any $P\in PM(E)\hat{P}$ will be always
chosen to be continuous if this is possible, where $\hat{P}$ denotes the bounded Borel
function on $\hat{G}$ corresponding to $P$. We call $E$ an SH-set if and only if $E$ is
both an S-set and a Helson set. It is trivial that this condition is equivalent
to the one $PM(E)=M(E)$ , and that such a set is a set of spectral resolution
(an SR-set) [1].

Now, for any $f\in A(G)$ let $\sigma(f, E)$ be the set of all points $x\in G$ at which
$f$ does not belong to $J(E)$ locally, and put

$\sigma(E)=\bigcup_{f^{--}I(E)}\sigma(f, E)$ .

It is well-known ([2], [3]) that $\sigma(E)$ is a union of perfect subsets of $\partial E$ (the

boundary of $E$ ), and that $E$ is an S-set if and only if $\sigma(E)$ is empty. One
can also show that $\sigma(E)$ is closed if $G$ is metrizable.

LEMMA 3. Suppose that $E$ is the union of two S-sets $E_{1}$ and $E_{2}$ of $G$ , then
we have $\sigma(E)\subset\partial E_{1}\cap\partial E_{2}\cap\partial E$ . In particular, it follows that $E$ is an S-set if
either $\partial E_{1}\cap\partial E_{2}\cap\partial E$ contains no perfect subset or there exists a C-set $C$ such
that $\partial E_{1}\cap\partial E_{2}\cap\partial E\subset C\subset E$ .

PROOF. It is trivial that $\sigma(E)\subset\partial E$. To show that every function of $I(E)$

belongs to $J(E)$ locally at any point in the complement of $E_{1}\cap E_{2}$ , take $f\in I(E)$

and $x\in E\backslash (E_{1}\cap E_{2})$ arbitrarily. Without loss of generality, we may assume
that $x\in E_{1}$ . Choose $u\in I_{0}(E_{2})$ so that $u=1$ on some neighborhood of $x$ . Since
$E_{1}$ is an S-set by our assumption, it follows that there is a sequence $\{g_{n}\}$ in
$I_{0}(E_{1})$ such that $\lim_{n\rightarrow\infty}\Vert f-g_{n}\Vert=0$ . Then $g_{n}u\in I_{0}(E)$ for all $n=1,2,$ $\cdots$ , and

$\lim_{n\rightarrow\infty}\Vert fu-g_{n}u\Vert=0$ , which implies $fu\in J(E)$ . Since $fu=f$ on some neighborhood

of $x$, it follows that $f$ belongs to $J(E)$ locally at $x$ . Therefore we have

$\sigma(E)\subset E_{1}\cap E_{2}\cap\partial E=\partial E_{1}\cap\partial E_{2}\cap\partial E$ ,

and this establishes the first statement.
If $\partial E_{1}\cap\partial E_{2}\cap\partial E$ contains no perfect subset, then $\sigma(E)$ is empty, and

hence $E$ is an S-set. Finally, suppose that $E$ contains a C-set $C$ such that
$C\supset\partial E_{1}\cap\partial E_{2}\cap\partial E$ . Then for every $f\in I(E)$ we can find a sequence $\{v_{n}\}_{1}^{\infty}$ in
$I_{0}(C)$ so that $\lim_{n\rightarrow\infty}\Vert f-fv_{n}\Vert=0$ . Since each $fu_{n}$ belongs to $J(E)$ at all points

of $G$ by what we have proved above, it follows that $fv_{n}\in J(E)$ for all
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$n=1,2,$ $\cdots$ , and hence we have $f\in J(E)$ . Since $f\in I(E)$ was arbitrary, this
gives the desired conclusion.

The proof is now complete.
THEOREM 4. The union of an SH-set and an S-set is an S-set.
PROOF. Suppose that $H$ and $S$ be an SH-set and an S-set of $G$ , respec-

tively. There exists then a finite positive constant $C$ such that to every
$k\in C(H)$ corresponds a $g\in A(G)$ with

(4.1) $g|_{H}=k$ , and $\Vert g\Vert\leqq C\Vert k\Vert_{\infty}$ .

Let us take $f\in I(HUS)$ and $P\in PM(HUS)$ arbitrarily. Since $\sigma(HUS)$

$\subset H\cap S$ by Lemma 3, it is easy to verify that $suppfP\subset H\cap S$ . Therefore
the assumption that $H$ is an SH-set guarantees that $fP$ is a measure on $H\cap S$ .
To show that $fP=0$ , let $c_{U}$ be an arbitrarily fixed basis of open neighborhoods
of $H\cap S$ , and for each $U\in c_{U}$ denote by $JC(U)$ the set of all $g\in A(G)$ such
that

(4.2) $suppg|_{H}\subset U$ , $g=1$ on $H\cap S$ , and $\Vert g\Vert\leqq C$ .

It follows then from (4.1) that each $c\chi(U)$ , $U\in\subset U$ , is non-empty. Thus the
sets $\rightarrow C(U)=\{gP:g\in X(U)\},$ $U\in(U$ , have the finite intersection property, and
it is trivial that they are all contained in the closed ball of $PM(G)$ with radius
$ C\Vert P\Vert$ ; hence they have a common weak-star cluster point $Q\in PM(G)$ . We
then claim that $suppQ\subset S$ and $fQ=fP$.

To show this, let $h\in I_{0}(S)$ be arbitrary, and take an open neighborhood
$V$ of $S$ on which $h$ vanishes. If $U\in\epsilon U$ is such that $U\subset V$ , and if $g\in JC(U)$ ,

then we have $hg\in I(HUS)$ and so $hg\in J(HUS)$ by Lemma 3, since $hg=0$

on $V\supset H\cap S$ . This yields that $hgP=0$ for all $g\in JC(U)$ , and hence $hQ=0$

since $Q$ belongs to the weak-star closure of $X(U)$ . But $h\in I_{0}(S)$ was arbitrary,
and so we conclude that $suppQ\subset S$ . On the other hand, for any $U\in c_{U}$ and
$g\in JC(U)$ , it must be $fgP=fP$ since $fP\in M(H\cap S)$ and $g=1$ on $H\cap S$ by
(4.2), which yields $fQ=fP$ . Finally we have $fP=fQ=0$ , since $Q\in PM(S)$ ,

$f\in I(S)$ , and $S$ is an S-set.
This completes the proof.
COROLLARY 5. Every finite union of SH-sets is an SR-set.
PROOF. Since every closed subset of an SH-set is also an SH-set, it

suffices to show that every finite union of SH-sets is an S-set. But this
follows at once from Theorem 4 by induction.

COROLLARY 6. Every Helson set that is a finite union of S-sets is an SH-set.
PROOF. Trivial.
We shall now prove four lemmas, the first two of which are essentially

contained in [4]. To make the paper self-contained, we give their complete
proofs.
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LEMMA 7. To each $\epsilon>0$ corresponds a constant $\epsilon>\eta(\epsilon)>0$ with the follow-
ing property: For any compact subset $K$ of $G$ , any complex number $\alpha$ with
$|\alpha|=1$ , and any characters $\gamma_{1},$

$\gamma_{2}\in\hat{G}$ such that

(7.1) $\sup_{x\in K}|\alpha(x, \gamma_{1})-(x, \gamma_{2})|<\eta(\epsilon)$ ,

we can find $h\in A(G)$ so that

(7.2) $\Vert h\Vert<\epsilon$ , and $h=\alpha\gamma_{1}-\gamma_{2}$

on some neighborhood of $K$.
PROOF. We shall here regard $T$ as the multiplicative group of the com-

plex numbers $z$ with $|z|=1$ . Consider the function $f\in A(T)$ defined by $f(z)$

$=1-z$ , and let $\epsilon>0$ be given. Since $f(1)=0$ , there exist a function $f_{\epsilon}\in A(T)$

and a constant $\epsilon>\eta(\epsilon)>0$ such that

\langle 7.3) $f_{\epsilon}(z)=\sum_{n=-\infty}^{\infty}a_{n}z^{n}$ , $\Vert f_{\epsilon}\Vert=\sum_{n=-\infty}^{\infty}|a_{n}|<\epsilon$ ,

and such that

\langle 7.4) $z\in T$ , $|1-z|<\eta(\epsilon)\Rightarrow f_{\epsilon}(z)=1-z$ .
Suppose now that $K,$ $\alpha,$

$\gamma_{1}$ and $\gamma_{2}$ satisfy the condition (7.1), and define a func-
tion $g$ on $G$ by

$g(x)=\alpha(x, \gamma_{1})f_{\epsilon}(\overline{\alpha}(x, \gamma_{2}-\gamma_{1}))$ .

It is then easy to see from (7.3) and (7.4) that $g$ is the Fourier-Stieltjes trans-
form of a measure on $G$ with norm $<\epsilon$ , and that $g=\alpha\gamma_{1}-\gamma_{2}$ on some open
set containing $K$. To complete the proof, take $\delta>0$ and $k=k_{\delta}\in A(G)$ so that
{ $|k\Vert<1+\delta$ and $k=1$ on some neighborhood of $K$. Setting $h_{\delta}=gk$ , we see
that for a sufficiently small $\delta>0,$ $h=h_{\delta}\in A(G)$ satisfies (7.2).

This establishes the Lemma.
LEMMA 8. Let $K$ be a quasi-Kronecker subset of $G$ , let $\{Q_{j}\}_{1}^{n}$ be $n$ pseudo-

measures in $PM(K)$ such that

\langle 8.1) $suppQ_{i}\cap suppQ_{j}=\emptyset$ $(1 \leqq i<j\leqq n)$ ,

and put $Q=\sum_{j=1}^{n}Q_{j}$ . Then we have

\langle 8.2) $\sup_{-\hat{G}}\sim|\hat{Q}(\gamma_{1}+\gamma)-\sum_{j=1}^{n}\alpha_{j}\hat{Q}_{j}(\gamma)|\leqq\epsilon\Vert Q\Vert$

for any $\epsilon>0$ , any $\gamma_{1}\in\hat{G}$ , and any choice $\{\alpha_{j}\}_{1}^{n}$ of complex numbers with $|\alpha_{j}|=1$

$(1\leqq j\leqq n)$ such that

\langle 8.3) $|(x, \gamma_{1})-\alpha_{j}|<\eta(\epsilon)$ $(x\in suppQ_{j}, 1\leqq j\leqq n)$ ,

where $\eta(\epsilon)$ is a constant as in Lemma 7. In particular, we have
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(8.4)
$\sup_{\gamma_{-}^{--\hat{G}}}\sum_{j=1}^{n}|\hat{Q}_{j}(\gamma)|\leqq\Vert Q\Vert$ .

PROOF. Let $\epsilon,$
$\gamma_{1}$ , and $\{\alpha_{j}\}_{1}^{n}$ be as in (8.3), and take $\delta>0$ so that the

inequality in (8.3) remains valid even if the right term is replaced by $\eta(\epsilon)-\delta$ .
Since $K$ is a quasi-Kronecker set, and since $suppQ=\bigcup_{j=1}^{n}suppQ_{j}\subset K$, we can
find $\gamma^{\prime}\in\hat{G}$ so that

$|\alpha_{J}-(x, \gamma^{\prime})|<\eta(\delta)$ $(x\in suppQ_{j}, 1\leqq j\leqq n)$ .
It follows then that for all $x\in suppQ$ we have

$|(x, \gamma_{1})-(x, \gamma^{\prime})|\leqq\min_{\iota\leqq j_{-}\leq n}\{|(x, \gamma_{1})-\alpha_{j}|+|\alpha_{j}-(x, \gamma^{\prime})|\}$

$<\{\eta(\epsilon)-\delta\}+\eta(\delta)<\eta(\epsilon)$ .
Therefore we see from Lemma 7 that for all $\gamma\in\hat{G}$

$|\hat{Q}(\gamma_{1}+\gamma)-\sum_{j=1}^{n}\alpha_{j}\hat{Q}_{j}(\gamma)|$

$\leqq|\hat{Q}(\gamma_{1}+\gamma)-\hat{Q}(\gamma^{\prime}+\gamma)|+\sum_{j=1}^{n}|\hat{Q}_{j}(\gamma^{\prime}+\gamma)-\alpha_{j}\hat{Q}_{j}(\gamma)|$

$\leqq\epsilon\Vert Q\Vert+\delta\sum_{j=1}^{n}\Vert Q_{j}\Vert$ .

Since $\delta>0$ can be taken as small as one pleases, we obtain (8.2).
To complete the proof, let $\gamma\in\hat{G}$ be given, and take $\alpha_{j}$ so that $|\alpha_{j}|=1$

and $\alpha_{j}\hat{Q}_{j}(\gamma)=|\hat{Q}_{j}(\gamma)|$ for all $j=1,2$ , $\cdot$ .. , $n$ . Then for any $\epsilon>0$ , there exists
$\gamma_{1}\in\hat{G}$ which satisfies (8.3). This fact, combined with (8.2), yields (8.4).

The proof is now established.
LEMMA 9. Suppose that $K$ is a quasi-Kronecker subset of $G$ , that $P\in PM(K)$ ,

and that $\{E_{k}\}_{1}^{n}$ are $n$ closed, pairwise disjoint, subsets of K. Then there exist
$n$ pseudo-measures $\{P_{k}\}_{1}^{n}$ such that:
(9.1) For all $k=1,2,$ $\cdots$ , $n$ , we have

$P_{k}\in PM(E_{k})$ , $\Vert\sum_{k=1}^{n}P_{k}\Vert\leqq\Vert P\Vert$ ,

$\Vert P-P_{k}\Vert\leqq\Vert P\Vert$ , and $P-P_{k}\in PM(\overline{K\backslash E_{k}})$ ;

(9.2) For all $k=1,2,$ $\cdots$ , $n$ and any neighborhood $O$ of $\hat{O}$ of $\hat{G}$ ,

$\sup_{\gamma-\gamma’\in\hat{U}}|\hat{P}_{k}(\gamma)-\hat{P}_{k}(\gamma^{\prime})|\leqq\sup_{\gamma-\gamma^{\prime}\in\hat{U}}|\hat{P}(\gamma)-\hat{P}(\gamma^{\prime})|$
,

and

$\sup_{\gamma-\gamma\in\hat{U}}|(P-P_{k})^{\wedge}(\gamma)-(P-P_{k})^{\wedge}(\gamma)|\leqq\sup_{\gamma-\gamma\in\hat{U}}|\hat{P}(\gamma)-\hat{P}(\gamma^{\prime})|$
.

PROOF. Fix any $\chi\in A(G)$ so that $\chi=1$ on some neighborhood of $K$.
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Note then that $\chi P=P$, and that $\Vert l^{\wedge}\chi P\Vert\leqq\Vert 1\Vert\Vert P\Vert$ for all $l\in M(\hat{G})$ , since $K$ is
a compact set containing the support of $P$.

Let $c_{U}$ be the set of all tuples $u=$ $(\epsilon;U_{1}, U_{2}, \cdot.. , U_{n})$ of $0<\epsilon<1$ and open
neighbourhoods $U_{k}$ of $E_{k}$ such that the sets $\overline{U}_{k},$ $1\leqq k\leqq n$ , are pairwise disjoint.
If we introduce an order $‘‘\prec$ in $cU$ by

(9.3) $(\epsilon_{1} ; U_{11}, U_{21}, \cdots U_{n1})\prec(\epsilon_{2} ; U_{12}, U_{22}, \cdots U_{nz})$

$\Leftrightarrow\epsilon_{1}>\epsilon_{2}$ , and $U_{k1}\supset U_{k2}$ for all $k(1\leqq k\leqq n)$ ,

then $c_{U}$ is clearly a directed set. Fixing $u=$ $(\epsilon ; U_{1}, U_{2}, \cdots , U_{n})$ in $c_{U}$ we shall
now define two pseudo-measures $Q_{u}$ and $R_{u}$ of $PM(K)$ as follows. Take $h_{u}$

$\in C_{R}(K)$ so that

(9.4) $ 0\leqq h_{u}\leqq\pi$ , $h_{u}=0$ on $\bigcup_{k=1}^{n}E_{k}$ , and $ l\tau_{u}=\pi$ on $\bigcap_{k=1}^{n}K\backslash U_{k}$ .

Since $K$ is a quasi-Kronecker set, there exists $\gamma_{u}\in\hat{G}$ such that

(9.5) $|\exp[ih_{u}(x)]-(x, \gamma_{u})|<\eta(\epsilon)/2$ $(x\in K)$ ,

where $\eta(\epsilon)$ is as in Lemma 7. We then define

(9.6) $Q_{u}=(1+\gamma_{u})\chi P/2$ , and $R_{u}=(1-\gamma_{u})\chi P/2$ .
It is trivial that

(9.7) $P=Q_{u}+R_{u}$ , and $\Vert Q_{u}\Vert$ , $\Vert R_{u}\Vert\leqq\Vert P\Vert$ $(u\in\subset U)$ .

This assures that a subnet of the net $\{Q_{u}\}_{u}$ (resp. $\{R_{u}\}_{u}$) converges to some
$Q$ (resp. $R$) of $PM(K)$ in the weak-star topology of $PM(G)$ such that

(9.8) $P=Q+R$ , and $\Vert Q\Vert,$ $\Vert R\Vert\leqq\Vert P\Vert$ .

We claim then that

(9.9) $suppQ\subset\bigcup_{k=1}^{n}E_{k}$ , and $suppR\subset F$ ,

where $F$ denotes the closure of $\bigcap_{h=1}^{n}K\backslash E_{k}$ . To show this, take $f\in I_{0}(\bigcup_{k=1}^{n}E_{k})$

arbitrarily. Then for some open set $U$ containing $\bigcup_{k=1}^{n}E_{k}$ we have $suppfP$

$\subset K\backslash U$ . On the other hand, for all $u=$ $(\epsilon;U_{1}, U_{2}, \cdot.. , U_{n})E^{C}U$ with $\bigcup_{k=1}^{n}U_{k}\subset U$ ,

we have by (9.4) and (9.5)

$|1+\gamma_{u}|<\eta(\epsilon)/2$ on $K\backslash U$ ,
and so that

$\Vert fQ_{u}\Vert=\Vert(1+\gamma_{u})fP\Vert/2\leqq\epsilon\Vert f\Vert\Vert P\Vert$ .
Since $Q$ is a cluster point of the net $\{Q_{u}\}_{u}$ , this implies $fQ=0$ ; since $f$ was
an arbitrary function of $I_{0}(\bigcup_{k=1}^{n}E_{k})$ , it follows that $suppQ\subset U^{n}E_{k}k=1$ Similarly
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we have $suppR\subset F$, and obtain (9.9).
We now decompose $Q$ into the sum of $n$ pseudo-measures $\{P_{k}\}_{1}^{n}$ such that

(9.10) $Q=\sum_{k=1}^{n_{\urcorner}}P_{k}$ , and $suppP_{k}\subset E_{k}$ $(1 \leqq k\leqq n)$ ,

and show that these $\{P_{k}\}_{1}^{n}$ satisfy the conditions (9.1) and (9.2).
The first two of (9.1) immediately follow from (9.8) and (9.10). To prove

the remainder parts, let $\{Q_{u(\alpha)}\}_{\alpha}$ be any subnet of the net $\{Q_{u}\}_{u}$ that converges
to $Q$ . Fixing $u=$ $(\epsilon;U_{1}, U_{2}, \cdot.. , U_{n})\in c_{U}$ we see from (9.4) that the function
on $K$ defined by

(9.4) $h_{u^{\prime}}=\left\{\begin{array}{l}h_{u} on K_{\cap}U_{1}\\\pi on K\backslash U_{1}\end{array}\right.$

is continuous; it follows that there exists $\gamma_{u}^{\prime}\in\hat{G}$ with

(9.5) $|\exp[ih_{u}^{\prime}(x)]-(x, \gamma_{u}^{\prime})|<\eta(\epsilon)/2$ $(x\in K)$ .
Take now any $g_{1}\in A(G)$ so that $g_{1}=1$ on a neighborhood $V_{1}$ of $E_{1}$ and $g_{1}=0$

on a neighborhood $W_{1}$ of $\bigcup_{k=2}^{n}E_{k}$ . Then for all $u=$ $(\epsilon;U_{1}, U_{2}, \cdot.. , U_{n})\in cU$ with

$U_{1}\subset V_{1}$ and $\bigcup_{k=2}^{n}U_{k}\subset W_{1}$ , we see from (9.4), (9.4) , (9.5) and (9.5) that

$|\gamma_{u}^{\prime}-\gamma_{u}|<\eta(\epsilon)$ on $K\backslash W_{1}$ ,
and

$|1+\gamma_{u}^{\prime}|<\eta(\epsilon)$ on $K\backslash V_{1}$ .
Therefore, taking into account the fact that $suppg_{1}P\subset K\backslash W_{1}$ , we have for
such $u\in c_{U}$

$\Vert(1+\gamma_{u}^{\prime})\chi P/2-g_{1}Q_{u}\Vert$

$\leqq 2^{-1}\Vert(1+\gamma_{u}^{\prime})g_{1}\chi P-(1+\gamma_{u})g_{1}\chi P\Vert+2^{-1}\Vert(1+\gamma_{u}^{\prime})(1-g_{1})\chi P\Vert$

$\leqq\Vert(\gamma_{1}^{\prime}-\gamma_{u})g_{1}P\Vert+\epsilon\Vert(1-g_{1})\chi P\Vert$

$\leqq\epsilon(\Vert g_{1}P\Vert+\Vert 1-g_{1}\Vert\cdot\Vert P\Vert)$ ,

from which it follows at once that

\langle 9.11) $P_{1}=g_{1}Q$

$=\lim_{\alpha}g_{1}Q_{u(\alpha)}$

$=\lim_{\alpha}[(1+\gamma_{u(a)}^{\prime})\chi P/2+\{g_{1}Q_{u(\alpha)}-(1+\gamma_{u(a)}^{\prime})\chi P/2\}]$

$=\lim_{\alpha}(1+\gamma_{u(\alpha)}^{\prime})\chi P/2$ ,

and so that

\langle 9.12) $P-P_{1}=\lim_{\alpha}(1-\gamma_{u(\alpha)}^{\prime})\chi P/2$ .
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In particular, we have $\Vert P-P_{1}\Vert\leqq\Vert P\Vert$ , and also it follows from (9.8), (9.9) and
(9.10) that

$supp(P-P_{1})=supp(R+\sum_{k=2}^{n}P_{k})\subset[(K\backslash \bigcup_{k=1}^{n}E_{k})^{-}]U$ [ $\bigcup_{k=2}^{n}E_{k}]$

$\subset(K\backslash E_{1})^{-}$

Suppose now that $\gamma,$

$\gamma^{\prime}\in\hat{G}$ are arbitrary, then we see from (9.11) that

$\hat{P}_{1}(\gamma)-\hat{P}_{1}(\gamma^{\prime})=2^{-1}\lim_{\alpha}[\{\hat{P}(\gamma)+\hat{P}(\gamma+\gamma_{u(\alpha)}^{\prime})\}-\{\hat{P}(\gamma^{\prime})+\hat{P}(\gamma^{\prime}+\gamma_{u(\alpha)}^{\prime})\}]$

$=2^{-1}\lim_{\alpha}[\{\hat{P}(\gamma)-\hat{P}(\gamma^{\prime})\}+\{\hat{P}(\gamma+\gamma_{u(\alpha)}^{\prime})-\hat{P}(\gamma^{\prime}+\gamma_{u(\alpha)}^{\prime})\}]$ ,

which yields
$\sup_{\gamma-\gamma^{\prime}\in\hat{U}}|\hat{P}_{1}(\gamma)-\hat{P}_{1}(\gamma^{\prime})|\leqq\sup_{\gamma-\gamma’\in\hat{U}}|\hat{P}(\gamma)-\hat{P}(\gamma^{\prime})|$

for all neighborhoods $\hat{U}$ of $\hat{O}\in\hat{G}$ . Similarly it follows from (9.12) that this
last inequality holds with $P_{1}$ replaced by $P-P_{1}$ .

Applying the same arguments for all $k(1\leqq k\leqq n)$ , we see that the $\{P_{k}\}_{1}^{n}$

have all the required properties, and this completes the proof.
LEMMA 10. Suppose that $K$ is a compact subset of $G$ , then for each neigh-

borhood $U$ of $O\in G$ , there exists a natural number $N=N(U)$ with the following
prop erty:

For any natural number $n$ , we can find $N\times n$ compact subsets $\{E_{jk}\},$ $1\leqq j\leqq N_{r}$

$1\leqq k\leqq n$ , of $K$ such that;
(a) The sets $\{E_{jk}\}_{k=1}^{n}$ are pairwise disjoint for each $j=1,2,$ $\cdots$ , $N$.
(b) To any choice $\{k(j)\}_{j=1}^{n}$ of natural numbers $k(j)$ with $1\leqq k(j)\leqq n(1\leqq i$

$\leqq N)$ , there correspond finitely many, pairwise disjoint, closed subsets $\{K_{l}\}_{l}$ of $K$

such that
$\bigcap_{j=1}^{N}K\backslash E_{jk(j)}\subset\bigcup_{\iota}K_{\iota}$ , and $\bigcup_{l}(K_{\iota}-K_{\iota})\subset U$ .

PROOF. We shall first show this lemma in case that $G$ has the form

(10.1) $G=\prod_{\alpha-A}T(\alpha)$ ($T(\alpha)=T$ for all $\alpha\in A$)

as a topological group. We then denote by $S(\alpha)$ a copy of $S$ for any subset
$S$ of $T$ and $\alpha\in A$ . Suppose now that $U$ is any fixed neighborhood of $O\in G$ .
It follows then from the $d$ efinition of the product topology that we can find
a neighborhood $W$ of $O\in T$ and a finite subset $A_{1}$ of $A$ so that

(10.2) $(W;A_{1})=\prod_{\alpha=A_{1}}W(\alpha)\times\prod_{\alpha\overline{\subset}A\backslash A_{1}}T(\alpha)\subset U$ .

We then define $N=N(U)$ to be the number of the elements of $A_{1}$ .
Suppose that $n$ be an arbitrary natural number. Let us then take $n$

closed, pairwise disjoint, subsets $\{F_{k}\}_{1}^{n}$ of $T$ so that: For each $k(1\leqq k\leqq n)$ ,
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the closure of $T\backslash F_{k}$ consists of finitely many connected components ( $i$ . $e.$ , closed
arcs) $\{C_{km}\}_{m}$ such that $U(C_{km}-C_{km})\subset W$. Denoting by $\{\alpha_{1}, \alpha_{2}, \cdot.. , \alpha_{N}\}$ the

$\prime\prime\iota$

elements of $A_{1}$ , we define the sets $E_{jk}$ by

(10.3)
$E_{jk}=K_{\cap}[F_{k}(\alpha_{j})\times\prod_{a\neq\alpha_{j}}T(\alpha)]$ $(1 \leqq j\leqq N, 1\leqq k\leqq n)$ .

It is then easy to verify that so defined $\{E_{jk}\}$ satisfy both the required con-
ditions (a) and (b).

Returning to the general case, suppose that $G$ is any locally compact
abelian group, and that $K$ is any compact subset of it. We can find then a
cardinal number $\Omega$ and a compact subset $\tilde{K}$ of the product group $T^{\Omega}$ for
which there exists a homeomorphism $s$ from $\tilde{K}$ onto $K$ (cf. the proof of
Theorem 2). Fixing any neighborhood $U$ of $O\in G$ , take a neighborhood $\tilde{U}$ of
$0\in T^{\Omega}$ so that

(10.4) $\tilde{x},\tilde{y}\in\tilde{K}$ , and $\tilde{x}-\tilde{y}\in\tilde{U}:2s(\tilde{x})-s(\tilde{y})\in U$ .
For $T^{\Omega}$ and this $\tilde{U}$, choose a natural number $N$ as before. Then for any
natural number $n$ , we can find $N\times n$ compact subsets $\{\tilde{E}_{jk}\}$ of $\tilde{K}$ that satisfy
(a) and (b) with $K$ and $\{E_{jk}\}$ replaced by $\tilde{K}$ and $\{\tilde{E}_{jk}\}$ . If we define $E_{jk}$ to be
$s(\tilde{E}_{jk})$ for $1\leqq j\leqq N$ and $1\leqq k\leqq n$ , it is easy to see from (10.4) that these sets
$\{E_{jk}\}$ have the required properties.

This completes the proof.
THEOREM 11. Every quasi-Kronecker subset $K$ of $G$ is an SH-set.
PROOF. We must prove that PE $PM(K)$ implies $P\in M(K)$ .
Fix any $P\in PM(K)$ ; we shall first show that for any compact subset $\hat{C}$

of $\hat{G}$ and $\epsilon>0$ there exists a measure $\mu=\mu(\hat{C}, \epsilon)\in M(K)$ such that

(11.1) $\Vert\mu\Vert\leqq\Vert P\Vert$ , and $|\hat{\mu}(\gamma)-\hat{P}(\gamma)|\leqq\epsilon(\Vert P\Vert+1)$ $(\gamma\in\hat{C})$ .
To do this, take $\epsilon>0$ and a compact subset $\hat{C}$ of $\hat{G}$ , and put

(11.2)
$U=U(\hat{C}, \epsilon)=\{x\in G:\sup_{\gamma^{\sim c^{\wedge}}}|1-(x, \gamma)|<\eta(\epsilon)\}$

,

which is a neighborhood of $0\in G$ . Let $N=N(U)$ be a natural number as in
Lemma 10. Since $P$ has compact support, $\hat{P}$ is a uniformly continuous func-
tion on $\hat{G}$ ; it follows that there exists a neighborhood $\hat{V}$ of $\hat{O}\in\hat{G}$ such that

(11.3)
$\sup_{\gamma-\gamma\in\hat{V}}|\hat{P}(\gamma)-\hat{P}(\gamma^{\prime})|<\epsilon/2N$

.

Since $\hat{C}$ is compact, we can find finitely many elements of $\hat{C}$ , say $\gamma_{1},$ $\gamma_{2},$
$\cdots$ , $\gamma_{r}$

so that

(11.4) $\hat{C}\subset\bigcup_{i=1}^{r}(\gamma_{i}+\hat{V})$ .

Let us now take a positive integer $M$ with $\Vert P\Vert<M\epsilon/2N$, and put $n=rM$.
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There exist $N\times n$ compact subsets $\{E_{jk}\}(1\leqq j\leqq N, 1\leqq k\leqq n)$ of $K$ satisfying
the conditions (a) and (b) in Lemma 10. Since the sets $\{E_{1k}\}_{1}^{n}$ are pairwise
disjoint, Lemma 9 applies, and we can find $n$ pseudo-measures $\{P_{k}\}_{1}^{n}$ so that:

(11.5)
$\{||\sum_{k=1}^{n}P_{k}||\leqq\Vert PP_{k}\in PM(E_{1k})_{\Vert}$

,
$and\Vert^{k}P-P\Vert\leqq\Vert PP-P\in PM_{k}(K\backslash E_{1k})_{\Vert}$

,
$(1\leqq k\leqq n)$ ;

(11.6) For any neighborhood $U$ of $\hat{O}\in\hat{G}$ , we have

$\sup_{\gamma-\gamma\in\hat{U}}|\hat{P}_{k}(\gamma)-\hat{P}_{k}(\gamma^{\prime})|\leqq\sup_{\gamma-\gamma\not\subset\hat{U}}|\hat{P}(\gamma)-\hat{P}(\gamma^{\prime})|$
,

and
$\sup_{\gamma-\gamma’\in\hat{U}}|(P-P_{k})^{\wedge}(\gamma)-(P-P_{k})^{\wedge}(\gamma^{\prime})|\leqq\sup_{c\gamma-\gamma^{-\hat{U}}}|\hat{P}(\gamma)-\hat{P}(\gamma^{\prime})|$

for all $k=1,2,$ $\cdots$ , $n$ .
We then claim that

$\sup_{\subset\gamma^{\prime}\hat{C}}|\hat{P}_{k}(\gamma)|<\epsilon/N$
for at least one $k(1\leqq k\leqq n)$ .

Otherwise, there exist $n$ elements $\{\gamma_{k^{\prime}}\in\hat{C}\}_{1}^{n}$ with $|\hat{P}_{k}(\gamma_{k^{\prime}})|\geqq\epsilon/N$ for all $k(1\leqq k$

$\leqq n)$ . It follows from (11.4) that some $\gamma_{i}+\hat{V}$, say $\gamma_{1}+\hat{V}$, contains $M$ elements
of the set $\{\gamma_{k^{\prime}}\}_{1}^{n}$ , say $\gamma_{1}^{\prime},$ $\gamma_{2^{\prime}},$ $\cdots$ , $\gamma_{M}^{\prime}$ (note that $n=rM$). Therefore we have by
(11.3) and (11.6)

$|\hat{P}_{k}(\gamma_{1})|\geqq|\hat{P}_{k}(\gamma_{k^{\prime}})|-|\hat{P}_{k}(\gamma_{k^{\prime}})-\hat{P}_{k}(\gamma_{1})|$

$\geqq\epsilon/N-\sup_{\gamma-\gamma\subset-\hat{V}}|\hat{P}_{k}(\gamma)-\hat{P}_{k}(\gamma^{\prime})|$

$\geqq\epsilon/2N$ $(1\leqq k\leqq M)$ .
This, combined with Lemma 8 and (11.5), shows

$\Vert P\Vert\geqq\Vert\sum_{k=1}^{v}P_{k}\Vert\geqq\sum_{k=1}^{n}|\hat{P}_{k}(\gamma_{1})|\geqq\sum_{k=1}^{M}|\hat{P}_{k}(\gamma_{1})|\geqq M\epsilon/2N$ ,

which contradicts our choice of $M$. Thus there exists an integer $k(1)(1\leqq k(1)$

$\leqq n)$ with
$\sup_{\gamma\in\hat{G}}|\hat{P}_{k(1)}(\gamma)|<\epsilon/N$

. Putting $P_{1}^{\prime}=P_{k(1)}$ , we have a decomposition of

$P$ such that:

(11.7)
$\left\{\begin{array}{l}P=(P-P_{1}^{\prime})+P_{t}^{\prime}, \Vert P-P_{1}^{\prime}||\leqq\Vert P\Vert,\\\sup_{\gamma\in\hat{C}}|P_{1}^{\prime}(\gamma)|<\epsilon/N, P-P_{1}\in PM(\overline{K\backslash E_{1k(1)}}),\\\sup|(P-P_{1}^{\prime})^{\wedge}(\gamma)-(P-P_{1}^{\prime})^{\wedge}(\gamma^{/})|<\epsilon/2N.\end{array}\right.\wedge$

$\gamma-\gamma^{\prime}\in V$

Repeating the same arguments for $P-P_{1}^{\prime}\in PM(\overline{K\backslash E_{1k(1)}})$ and the compact
subsets $\{E_{2k}\cap(\overline{K\backslash E_{1k(1)}})\}_{k=1}^{n}$ of $\overline{K\backslash E_{1k(1)}}$, and so on, we can find $N$ integers
$\{k(j)\}_{j\Leftarrow 1}^{N}$ with $1\leqq k(j)\leqq N$ and $N$ pseudo-measures $\{P_{j}^{\prime}\}_{1}^{N}$ so that:
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(11.8) $P=Q+\sum P_{j}^{\prime}N$ , $\sup\{\sup|\hat{P}_{j}^{\prime}(\gamma)|\}<\epsilon/N$ ,
$j=1$ $1\leqq j\leqq N\gamma\in\hat{C}$

and

(11.9) $\Vert Q\Vert\leqq\Vert P\Vert$ , suppQcthe closure of $\bigcap_{J=\iota}^{N}K\backslash E_{jk(j)}$ .

It then follows from (b) of Lemma 10 that there exist finitely many, pairwise
disjoint, closed subsets $\{K_{\iota}\}_{l}$ of $K$ such that

(11.10) $\bigcap_{j=1}^{N}K\backslash E_{jk(j)}\subset\bigcup_{\iota}K_{\iota}$ , and $\bigcup_{\iota}(K_{\iota}-K_{\iota})\subset U$ .

Therefore we have a decomposition of $Q$ of the form

(11.11) $Q=\sum_{\iota}Q_{\iota}$ , $Q_{\iota}\in PM(K_{\iota})$ for all 1.

Letting $\{x_{l}\in K_{\iota}\}_{l}$ be any choice of points, we now define

(11.12) $\mu\in M(K)$ by $\mu=\sum_{\iota}\hat{Q}_{l}(0)\delta(x_{l})$ ,

where in general $\delta(x)$ denotes the unit mass at the point $x$ . Observe then
that $\Vert\mu\Vert\leqq\sum_{\iota}|\hat{Q}_{\iota}(0)|$ , which together with (11.9), (11.11) and Lemma 8 givec

$\Vert\mu\Vert\leqq\Vert Q\Vert\leqq\Vert P\Vert$ . We have also by (11.8) and (11.12)

$|\hat{\mu}(\gamma)-\hat{P}(\gamma)|\leqq|\sum_{\iota}(x_{\iota}, \gamma)\hat{Q}_{\iota}(0)-\hat{Q}(\gamma)|+\sum_{j=1}^{N}|\hat{P}_{j}^{\prime}(\gamma)|$

$\leqq|\hat{Q}(\gamma)-\sum_{\iota}(x_{\iota}, \gamma)\hat{Q}_{\iota}(0)|+\epsilon$
$(\gamma\in\hat{C})$ .

This, combined with Lemma 8, (11.2), (11.10) and (11.11) shows
$|\hat{\mu}(\gamma)-\hat{P}(\gamma)|\leqq\epsilon\Vert Q\Vert+\epsilon\leqq\epsilon(\Vert P\Vert+1)$ $(\gamma\in\hat{C})$ ,

and we have proved the existence of a measure $\mu\in M(K)$ satisfying (11.1).
But it is clear that (11.1) implies that $P$ is the Fourier-Stieltjes transform

of a measure of $M(K)$ , which follows $at$ once from the fact that every closed
(bounded) ball of $M(K)$ is weak-star compact.

This establishes the Theorem.
COROLLARY 12. Every finite union of quasi-Kronecker sets is an SR-set.
PROOF. This is evident from Theorem 11 and Corollary 5.
THEOREM 13 (cf. [5]). Suppose that $\{K_{j}\}_{0}^{n}$ are $n+1$ , pairwise disjoint,

compact subsets of $G$ such that:

(13.1) The set $\bigcup_{j=0}^{n}K_{j}$ is a quasi-Kronecker set;

(13.2) Any $K_{j}$ contains no perfect subset $(1 \leqq j\leqq n)$ .
Then the set $K_{0}+K_{1}+\cdots+K_{n}$ is an SR-set.



Spectral synthesis for the Kronecker sets 561

PROOF. We prove this by induction on $n$ . When $n=0$ , the statement is
nothing but Theorem 11. Suppose that the conclusion of the Theorem holds
with $n$ replaced by $n-1$ for some natural number $n$ , and that the sets $\{K_{j}\}_{0}^{n}$

satisfy the above conditions. Put then

$L=K_{0}+K_{1}+$ $+K_{n- 1}$ , and $D=K_{n}$ ,

and let $W=\{1,2, \cdots , \alpha, \alpha+1, \}$ be any well-ordered set having cardinal
number larger than that of $D$ . For any compact subset $E$ of $D$ , we shall
define a family $\{E(\alpha);\alpha\in W\}$ of subsets of $E$ as follows. Let $E(1)$ be the
set of all accumulation points of $E$, and suppose that $E(\alpha)$ has already defined
for every $\alpha\in W$ with $\alpha<\alpha_{0}$ . We then define the set $E(\alpha_{0})$ to be the set
$\bigcap_{\alpha<\alpha_{0}}E(\alpha)$ if $\alpha_{0}-1$ does not exist, and to be the set of all accumulation points

of $E(\alpha_{0}-1)$ if $\alpha_{0}-1$ exists. By transfinite induction, we obtain the family
$\{E(\alpha);\alpha\in W\}$ .

Suppose now that $E$ is a closed subset of $D$ . If $ E(1)=\emptyset$ , then $E$ is finite,
and so $L+E$ is a finite disjoint union of translates of $L$ by (13.1). Since $L$ is
an SR-set by the hypothesis of the induction, it is easy to see that $L+E$ is
an SR-set. We shall now fix $\alpha_{0}>1(\alpha_{0}\in W)$ and assume that $L+E$ is an
SR-set for every compact subset $E$ of $D$ with $ E(\alpha)=\emptyset$ for some $\alpha<\alpha_{0}$ .

Let us then take any closed subset $E$ of $D$ with $ E(\alpha_{0})=\emptyset$ . In case that
$\alpha_{0}-1$ does not exist, then $E(\alpha_{0})=\bigcap_{\alpha<\alpha_{0}}E(\alpha)$ by the definition of $E(\alpha_{0})$ ; it

follows that $ E(\alpha)=\emptyset$ for some $\alpha<\alpha_{0}$ , since each $E(\alpha),$ $\alpha\in W$, is compact, and
since we have $E(\alpha)\supset E(\alpha^{\prime})$ for all $\alpha,$

$\alpha^{\prime}\in W$ with $\alpha<\alpha^{\prime}$ . Thus $L+E$ is an
SR-set by our hypothesis of the transfinite induction. If $\alpha_{1}=\alpha_{0}-1$ exists,
then $E(\alpha_{1})$ must be finite. Taking any closed subset $F$ of $L+E,$ $f\in I(F)$ , and
$P\in PM(F)$ , we want to show that $fP=0$.

First of all we have

(13.3) $suppfP\subset F\cap(L+E(\alpha_{1}))$ .
In fact, let $u\in I_{0}(F\cap(L+E(\alpha_{1})))$ be arbitrary; there exists an open set $U$ such
that $U\supset E(\alpha_{1})$ and $(suppu)\cap(F\cap(L+U))=\emptyset$ ; we have then

$suppuP\subset(suppu)\cap F\subset F\backslash (L+U)\subset L+(E\backslash U)$ .
But $(E\backslash U)(\alpha_{1})\subset E(\alpha_{1})\backslash U=\emptyset$ ; it follows from our assumption that $L+(E\backslash U)$

is an SR-set, and so that we have $ufP=0$ . Since $u\in I_{0}(F_{\cap}(L+E(\alpha_{1})))$ was
arbitrary, this establishes (13.3). Note also that $L+E(\alpha_{1})$ is an SR-set since
$E(\alpha_{1})$ is a finite subset of $D$ .

Let $\epsilon>0$ be arbitrary; there exists $f_{\epsilon}\in A(G)$ with

(13.4) $suppf_{\epsilon}\cap(F_{\cap}(L+E(\alpha_{1})))=\emptyset$ , and $\Vert f-f_{\epsilon}\Vert<\epsilon$ .
Since $D=K_{n}$ contains no perfect subset by (13.2), $D$ is totally disconnected;
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thus $E$, as a compact subset of $D$ , is O-dimensional. Therefore we can find
an open set $U$ so that:

(13.5) $\{(suppf_{\epsilon})\cap F\cap(L+U)=\emptyset U\supset E(\alpha_{1}),andE\cap Uis$

compact:

For each $\eta>0$, there exists $\gamma\in\hat{G}$ such that;

$|\gamma-1|<\eta$ on $(E\cap U)U\bigcup_{j=0}^{n-1}K_{j}$ ;

$|\gamma+1|<\eta$ on $E\backslash U$ ;

because of (13.1). Consequently we can find $\gamma_{\epsilon}\in\hat{G}$ so that:

$|\gamma_{\epsilon}-1|<\eta(\epsilon)$ on $L+(E\cap U)$ ;

$|\gamma_{\epsilon}+1|<\eta(\epsilon)$ on $L+(E\backslash U)$ .
This, together with (13.3), (13.4) and (13.5) gives

I $ fP-(\gamma_{\epsilon}+1)(f-f_{\epsilon})P/2\Vert$

$\leqq 2^{-1}\{\Vert(1-\gamma_{\epsilon})fP\Vert+\Vert(\gamma_{\epsilon}+1)f_{\epsilon}P\Vert\}$

$\leqq 2^{-1}\epsilon(\Vert fP\Vert+\Vert f_{\epsilon}P\Vert)\leqq\epsilon(\Vert fP\Vert+\epsilon\Vert P\Vert)$ ,
and hence

$\Vert fP\Vert\leqq\epsilon(\Vert fP\Vert+\epsilon\Vert P\Vert)+\Vert(\gamma_{\epsilon}+1)(f-f_{\epsilon})P/2\Vert$

$\leqq\epsilon(\Vert fP\Vert+\epsilon\Vert P\Vert)+\epsilon\Vert P\Vert$ .
Letting $\epsilon\rightarrow 0$ , we have $fP=0$ . Thus $F$ is an S-set, and we have proved that
$L+E$ is an SR-set for every compact subset $E$ of $D$ with $ E(\alpha_{0})=\emptyset$ .

By transfinite induction, we see that $L+E$ is an SR-set for every compact
subset Eof $D$ such that $ E(\alpha)=\emptyset$ for some $\alpha\in W$. But it is easy to see that
$ D(\alpha)=\emptyset$ for some $\alpha\in W$, since $D$ contains no perfect subset and since the
cardinal number of $W$ is larger than that of $D$ . Thus the set $L+D=K_{0}+K_{1}$

$+\cdots+K_{n}$ is an SR-set.
This completes the induction, and so establishes the Theorem.
We finish up this paper with:
THEOREM 14. For $n$ compact spaces $X=\{K_{j}\}_{1}^{n}$ , let $V=V(dC)$ be the tensor

algebra over the spaces $JC=\{K_{j}\}_{1}^{n}$ (for the definition, see [6; p. 59]). Then, if
at least $n-1$ spaces $K_{j}$ do not contain any perfect subsets, spectral synthesis
holds in the algebra $V$ .

PROOF. Without loss of generality, we can and will assume that $\{K_{j}\}_{1}^{n}$ are
pairwise disjoint compact subsets of some compact abelian group $G$ such that
their union is a Kronecker set (see the proof of Theorem 2). Then we can
identify isometrically and algebraically $V$ to the quotient algebra $A(\tilde{K})=$
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$A(G)/I(\tilde{K})$ , where $\tilde{K}=K_{1}+K_{2}+$ $+K_{n}$ [ $6$ ; p. 73]. Thus our statement follows
.at once from Theorem 13 (cf. [6; \S 4]).

Tokyo Metropolitan University
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